WO2021233190A1 - 基于双分裂变压器的多逆变器系统双模式组合控制方法 - Google Patents
基于双分裂变压器的多逆变器系统双模式组合控制方法 Download PDFInfo
- Publication number
- WO2021233190A1 WO2021233190A1 PCT/CN2021/093505 CN2021093505W WO2021233190A1 WO 2021233190 A1 WO2021233190 A1 WO 2021233190A1 CN 2021093505 W CN2021093505 W CN 2021093505W WO 2021233190 A1 WO2021233190 A1 WO 2021233190A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grid
- voltage
- inverter
- coordinate system
- phase
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/12—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
- H02J3/16—Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/373—Design optimisation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
- H02J3/241—The oscillation concerning frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/48—Controlling the sharing of the in-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/50—Controlling the sharing of the out-of-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the invention relates to a multi-inverter system control method based on a double-split transformer, in particular to a dual-mode combined control method of a multi-inverter system based on a double-split transformer, and belongs to the field of electrical engineering.
- the inverter When the switching boundary value is lower than the switching boundary value, the inverter adopts the current source grid-connected mode control method, and when the switching boundary value is higher than the switching boundary value, the inverter adopts the voltage source grid-connected mode
- the control method which combines the advantages of the two grid-connected modes, solves the problem that when the inverter adopts a single current source or voltage source grid-connected mode under different grid impedance conditions, the inverter can only be used in a relatively small grid Disadvantages of stable operation within the range of impedance changes.
- this article is based on the mutual switching between current source mode and voltage source mode by a single inverter, and does not involve the stability problem when the dual-mode control is extended to a multi-inverter system based on a double-split transformer.
- the existing literature further proposes to extend the dual-mode control based on "current source mode/voltage source mode" from a single inverter system to a multi-inverter system, and switch the multi-inverter system from full current source mode To hybrid mode, that is, the system has both current source mode and voltage source mode grid-connected inverters, which can effectively improve the stability of the multi-inverter system in a weak grid.
- hybrid mode that is, the system has both current source mode and voltage source mode grid-connected inverters, which can effectively improve the stability of the multi-inverter system in a weak grid.
- the existing literature does not involve the issue of whether the hybrid mode control is still stable when the power grid continues to weaken to a very weak level (ie, a very weak power grid).
- This method adaptively increases the current regulator gain of the grid-connected inverters still running in current source mode by switching part of the grid-connected inverters in the multi-inverter system to the voltage source grid-connected mode, compared with the full
- the current source mode multi-inverter system not only ensures the stable operation of the system, but also greatly improves the dynamic performance of the grid-connected inverter.
- this article does not involve the issue of whether the hybrid mode control is still stable when the power grid continues to weaken to a very weak level (ie, very weak power grid).
- the system equivalent short-circuit ratio detection method adopted by the present invention can accurately and intuitively reflect the weak grid
- the status of the grid-connected inverter provides a basis for the dual-mode switching of the current source and the voltage source of the grid-connected inverter, ensures the stable operation of the grid-connected inverter, and greatly improves the grid-connected quality of the grid-connected inverter.
- this article does not involve the issue of whether the hybrid mode control is still stable when the power grid continues to weaken to a very weak level (ie, very weak power grid).
- the existing dual-mode control includes both "grid-connected mode/island mode” and "current source mode/voltage source mode".
- the dual-mode control based on "grid-connected mode/island mode” does not Solve the stability problem of multi-inverter system based on double split transformer under weak grid, and dual-mode control based on "current source mode/voltage source mode” can improve the stability of single inverter system under weak grid, but it is now Some documents even extend the scheme from a single inverter system to a multi-inverter system based on a double split transformer, and propose that the multi-inverter system is switched from full current source mode to hybrid mode (that is, the system has both current source mode and current source mode).
- the present invention aims at the stability problem of a multi-inverter system based on a double split transformer in a very weak power grid when adopting a traditional single current source mode or a mixed mode, and proposes a double split transformer based A dual-mode combined control method for a multi-inverter system.
- This method obtains the equivalent grid impedance at the common coupling point of a grid-connected inverter in a multi-inverter system based on a double split transformer through a grid impedance identification algorithm.
- the grid impedance gradually increases, that is, when the grid is operating in a strong grid, a weak grid, and a very weak grid respectively, the system runs in full current source mode, hybrid mode and full voltage source mode in sequence, thereby effectively improving the multi-inverter based on double split transformer
- the stability of the generator system in the case of changes in the strength of the power grid.
- the present invention is not only simple to implement, but also greatly increases the stability margin of the multi-inverter system based on the double split transformer when the grid impedance fluctuates greatly, and especially ensures that the system can still operate stably under extremely weak grids, and improves the grid adaptability of the system sex.
- the present invention proposes a dual-mode combined control method for a multi-inverter system based on a double-split transformer.
- the multi-inverter system based on a double-split transformer involved in the control method includes two identical grid-connected inverters.
- the dual-mode combined control method includes full current source mode, mixed mode and full voltage source mode;
- Step 1 Choose 1 grid-connected inverter from the multi-inverter system, and record it as 1# grid-connected inverter, and the other 1 grid-connected inverter as 2# grid-connected inverter, and pass the grid
- the impedance identification algorithm obtains the equivalent grid impedance of the public coupling point of 1# grid-connected inverter, and records it as the reference equivalent grid impedance Z g_est ;
- Step 2 Set the lower boundary value ⁇ 1 of the equivalent grid impedance and the upper boundary value ⁇ 2 of the equivalent grid impedance, and perform the following judgments and operations based on the reference equivalent grid impedance Z g_est obtained in step 1:
- the full current source mode refers to two grid-connected inverters operating in current source mode;
- the hybrid mode refers to one grid-connected inverter operating in current source mode and one grid-connected inverter Operating in voltage source mode;
- the full voltage source mode refers to the two grid-connected inverters operating in voltage source mode;
- the grid-connected inverter is a three-phase full-bridge grid-connected inverter.
- control steps of the current source mode are as follows:
- Step 2.1 the output sampling grid current i ga, i gb, i gc , sampling point of common coupling voltage u pcca, u pccb, u pccc ;
- Step 2.2 point of common coupling according to step 2.1 sampled voltage u pcca, u pccb, u pccc , by the three-phase stationary coordinate system to the two-phase rotating coordinate transformation equation is obtained based point of common coupling the dq-axis voltage component u pccd, u pccq; the point of common coupling voltage u pcca, u pccb, u pccc obtained after the PLL lock voltage point of common coupling phase angle [theta];
- ⁇ 0 is the rated angular frequency of the voltage at the common coupling point
- K p_PLL is the proportional adjustment coefficient of the phase-locked loop PI regulator
- K i_PLL is the integral adjustment coefficient of the phase-locked loop PI regulator
- s is the Laplacian operator ;
- Step 2.3 according to the voltage phase angle ⁇ of the common coupling point obtained in step 2.2, transform the output grid-connected current i ga , i gb , i gc sampled in step 2.1 into The output grid-connected current dq components i gd and i gq in a two-phase rotating coordinate system;
- Step 2.4 set the output grid-connected current command signals i gdref and i gqref , and according to the output grid-connected current dq components i gd and i gq obtained in step 2.3, the control signals u d and u q are obtained through the grid current closed-loop control equation;
- K p is the proportional control coefficient of the PI regulator in the grid current closed-loop control equation
- K i is the integral control coefficient of the PI regulator in the grid current closed-loop control equation
- Step 2.5 According to the voltage phase angle ⁇ of the common coupling point obtained in step 2.2, the control signals u d and u q obtained in step 2.4 are transformed into three-phase stationary coordinates through the transformation equation of the two-phase rotating coordinate system to the three-phase stationary coordinate system The control signal components u a , u b , u c under the system ;
- the voltage control signals of the bridge arms of the grid-connected inverter are: u a +u pcca , u b +u pccb , u c +u pccc , which are then modulated by SVPWM to generate the switching signal of the power device of the grid-connected inverter.
- the circuit controls the turn-on and turn-off of the power devices of the three-phase full-bridge grid-connected inverter.
- control steps of the voltage source mode are as follows:
- Step 3.1 the output sampling grid current i ga, i gb, i gc , sampling point of common coupling voltage u pcca, u pccb, u pccc ;
- Step 3.2 according to the output grid-connected current i ga , i gb , i gc sampled in step 4.1, the output grid-connected current ⁇ axis components i g ⁇ , i g ⁇ are obtained through the transformation equation from the three-phase stationary coordinate system to the two-phase stationary coordinate system; according to step 3.1 of the sampling point of common coupling voltage u pcca, u pccb, u pccc , by the three-phase stationary coordinate system to the two-phase stationary coordinate transformation equation is obtained based point of common coupling voltage ⁇ -axis component u pcc ⁇ , u pcc ⁇ ;
- Step 3.3 according to the output grid-connected current ⁇ axis components i g ⁇ , i g ⁇ , and the common coupling point voltage ⁇ axis components u pcc ⁇ , u pcc ⁇ obtained in step 3.2, first obtain the average active power through the average active power calculation equation Then pass the average reactive power calculation equation to get the average reactive power
- the average active power calculation equation is:
- the average reactive power calculation equation is:
- ⁇ is the time constant of the first-order low-pass filter
- s is the Laplace operator
- Step 3.4 the average active power obtained according to step 3.3
- the output angular frequency ⁇ of the grid-connected inverter is obtained through the active power-frequency droop control equation; the active power-frequency droop control equation is:
- P n is the given active power command of the grid-connected inverter
- ⁇ n is the rated angular frequency corresponding to the given active power command P n of the grid-connected inverter
- D p is the active droop coefficient
- Step 3.5 point of common coupling according to step 3.1 sampled voltage u pcca, u pccb, u pccc , and obtained according to step 3.4 and inverter output phase angle ⁇ 0, by the three-phase stationary coordinate system to the two-phase rotating coordinate system
- the transformation equation of obtains the common coupling point voltage dq axis components u pccd , u pccq ;
- Step 3.6 According to the output grid-connected current i ga , i gb , i gc sampled in step 4.1, and the output phase angle ⁇ 0 of the grid-connected inverter obtained according to step 3.4, go through the three-phase stationary coordinate system to the two-phase rotating coordinate system The transformation equation of to obtain the output grid-connected current dq components i gd and i gq ;
- Step 3.7 according to the average reactive power output of the grid-connected inverter obtained in step 3.3
- the common coupling point voltage dq component reference values u pccdref and u pccqref of the grid-connected inverter are obtained through the reactive power-amplitude droop control equation, and the reactive power-amplitude droop control equation is:
- U n is the rated output voltage corresponding to the grid-connected inverter when the reactive power command Q n is given, and D q is the reactive power droop coefficient;
- Step 3.8 according to the common coupling point voltage dq axis components u pccd and u pccq obtained in step 3.5, and the common coupling point voltage dq component reference values u pccdref and u pccqref obtained in step 3.7, the output grid-connected current is obtained through the voltage loop control equation Command signals i gdref , i gqref ;
- the voltage loop control equation is:
- K p1 is the proportional control coefficient of the PI regulator in the voltage loop control equation
- K i1 is the integral control coefficient of the PI regulator in the voltage loop control equation
- Step 3.9 according to the output grid-connected current command signals i gdref and i gqref obtained in step 3.8, and according to the output grid-connected current dq components i gd and i gq obtained in step 3.6, the control signals u d and i gq are obtained through the current loop control equation u q ;
- the current loop control equation is:
- K p2 is the proportional control coefficient of the PI regulator in the current loop control equation
- K i2 is the integral control coefficient of the PI regulator in the current loop control equation
- step 3.10 according to the output phase angle ⁇ 0 of the grid-connected inverter obtained in step 3.4, the control signals u d and u q obtained in step 3.9 are transformed into three-phase rotating coordinate system to three-phase stationary coordinate system through the transformation equation The control signal components u a , u b , u c in the phase stationary coordinate system;
- the voltage control signals of the bridge arms of the grid-connected inverter are: u a +u pcca , u b +u pccb , u c +u pccc , which are then modulated by SVPWM to generate the switching signal of the power device of the grid-connected inverter.
- the circuit controls the turn-on and turn-off of the power devices of the three-phase full-bridge grid-connected inverter.
- the present invention has the following beneficial effects:
- the present invention is not only simple to implement, but also through the use of dual-mode combined control based on "current source mode/voltage source mode", that is, the introduction of three types of combined control of full current source mode, mixed mode and full voltage source mode, greatly increasing The stability margin of the multi-inverter system based on the double split transformer when the grid impedance fluctuates greatly;
- the present invention ensures that the multi-inverter system based on the double split transformer under the extremely weak grid can still operate stably, and improves the grid adaptability of the system;
- the present invention can improve the grid-connected stability of the entire multi-inverter system, and suppress the stability of resonance and other stability caused by the double-split transformer-based multi-inverter system operating in a single current source mode in a weak grid or a very weak grid problem;
- the present invention only needs to obtain the equivalent grid impedance of the common coupling point of a grid-connected inverter in the multi-inverter system based on the double split transformer through the grid impedance identification algorithm.
- the equivalent grid impedance gradually increases, that is, the grid When running on a strong power grid, a weak power grid, and a very weak power grid respectively, the system runs in full current source mode, hybrid mode and full voltage source mode in sequence, thereby effectively improving the changes in power grid strength of multi-inverter systems based on double split transformers
- the stability is simple and effective.
- FIG. 1 is a schematic diagram of the structure of a multi-inverter system based on a double split transformer used in the present invention.
- Figure 2 shows the topology of a single grid-connected inverter in a multi-inverter system based on a double split transformer used in the present invention.
- Figure 3 is a flow chart of the implementation of the present invention.
- Figure 4 is a schematic diagram of a control strategy when a single grid-connected inverter in a multi-inverter system based on a double-split transformer in a weak grid runs in current source mode.
- Figure 5 is a schematic diagram of a control strategy when a single grid-connected inverter is operating in voltage source mode in a multi-inverter system based on a double split transformer in a weak grid.
- Fig. 6 is a block diagram of the grid impedance identification algorithm based on non-characteristic harmonic injection according to the present invention.
- Figure 7 shows the experimental waveforms of the dual-mode combined control strategy of the multi-inverter system based on the dual-splitting transformer.
- Fig. 8 is an enlarged experimental waveform of the time period t 1 -t 2 in Fig. 7.
- Fig. 9 is an enlarged experimental waveform of the time period t 2 -t 3 in Fig. 7.
- Fig. 10 is an enlarged experimental waveform of the time period t 3 -t 4 in Fig. 7.
- the embodiment of the present invention provides a dual-mode combined control method for a multi-inverter system based on a double-splitting transformer to solve the problem of adopting a traditional single current source mode or a hybrid mode for the multi-inverter system based on the double-splitting transformer in a very weak grid
- the grid impedance identification algorithm is used to obtain the equivalent grid impedance at the common coupling point of a grid-connected inverter in a multi-inverter system based on a double split transformer.
- the grid When the equivalent grid impedance gradually increases, the grid When running on a strong power grid, a weak power grid, and a very weak power grid respectively, the system runs in full current source mode, hybrid mode and full voltage source mode in sequence, thereby effectively improving the changes in power grid strength of multi-inverter systems based on double split transformers Down the stability.
- the present invention is not only simple to implement, but also greatly increases the stability margin of the multi-inverter system based on the double split transformer when the grid impedance fluctuates greatly, and especially ensures that the system can still operate stably under extremely weak grids, and improves the grid adaptability of the system sex.
- FIG. 1 The structure diagram of the multi-inverter system based on the double split transformer used in the present invention is shown in Figure 1. It includes two identical grid-connected inverters, and each grid-connected inverter is connected to a photovoltaic system. For the battery panel, a double split transformer is connected to a multi-inverter system composed of two grid-connected inverters.
- FIG. 2 The topological structure of a single grid-connected inverter in a multi-inverter system based on a double split transformer used in the present invention is shown in FIG. 2.
- the single grid-connected inverter is a three-phase full-bridge grid-connected inverter, and its topology includes a DC side filter capacitor C dc , a three-phase bridge inverter topology, and an inverter side inductor L 1 , Filter capacitor C, damping resistor Rd , grid-side inductance L 2 and common coupling point PCC.
- C dc 600 ⁇ F
- L 1 0.9mH
- C 20 ⁇ F
- Rd 0.6 ⁇
- L 2 0.05mH.
- Figure 3 is a flow chart of the implementation of the present invention. It can be seen from FIG. 3 that the dual-mode combined control method includes a full current source mode, a hybrid mode, and a full voltage source mode.
- Step 1 Choose 1 grid-connected inverter from the multi-inverter system, and record it as 1# grid-connected inverter, and the other 1 grid-connected inverter as 2# grid-connected inverter, and pass the grid
- the impedance identification algorithm obtains the equivalent grid impedance of the public coupling point of 1# grid-connected inverter, and records it as the reference equivalent grid impedance Z g_est ;
- Step 2 Set the lower boundary value ⁇ 1 of the equivalent grid impedance and the upper boundary value ⁇ 2 of the equivalent grid impedance, and perform the following judgments and operations based on the reference equivalent grid impedance Z g_est obtained in step 1:
- the full current source mode refers to two grid-connected inverters operating in current source mode; the hybrid mode refers to one grid-connected inverter operating in current source mode and one grid-connected inverter Operating in voltage source mode; the full voltage source mode refers to that the two grid-connected inverters are all operating in voltage source mode.
- FIG. 4 is a schematic diagram of a control strategy when a single grid-connected inverter in a multi-inverter system based on a double-split transformer in a weak grid runs in a current source mode. It can be seen from Figure 4 that the control steps of the grid-connected inverter running in current source mode are as follows:
- Step 2.1 the output sampling grid current i ga, i gb, i gc , sampling point of common coupling voltage u pcca, u pccb, u pccc .
- the sampling ratio coefficient of the current sensor is 29, and the sampling ratio coefficient of the voltage sensor is 400.
- Step 2.2 point of common coupling according to step 2.1 sampled voltage u pcca, u pccb, u pccc , by the three-phase stationary coordinate system to the two-phase rotating coordinate transformation equation is obtained based point of common coupling the dq-axis voltage component u pccd, u pccq; the point of common coupling voltage u pcca, u pccb, u pccc locked through the PLL to obtain the point of common coupling voltage phase angle ⁇ .
- ⁇ 0 is the rated angular frequency of the voltage at the common coupling point
- K p_PLL is the proportional adjustment coefficient of the phase-locked loop PI regulator
- K i_PLL is the integral adjustment coefficient of the phase-locked loop PI regulator
- s is the Laplacian operator .
- ⁇ 0 314 rad /s
- K p_PLL 0.3
- K i_PLL 36.
- Step 2.3 according to the voltage phase angle ⁇ of the common coupling point obtained in step 2.2, transform the output grid-connected current i ga , i gb , i gc sampled in step 2.1 into The output grid-connected current dq components i gd and i gq in a two-phase rotating coordinate system.
- Step 2.4 set the output grid-connected current command signals i gdref and i gqref , and according to the output grid-connected current dq components i gd and i gq obtained in step 2.3, the control signals u d and u q are obtained through the grid current closed-loop control equation;
- K p is the proportional control coefficient of the PI regulator in the grid current closed-loop control equation
- K i is the integral control coefficient of the PI regulator in the grid current closed-loop control equation.
- Step 2.5 According to the voltage phase angle ⁇ of the common coupling point obtained in step 2.2, the control signals u d and u q obtained in step 2.4 are transformed into three-phase stationary coordinates through the transformation equation of the two-phase rotating coordinate system to the three-phase stationary coordinate system The control signal components u a , u b , u c under the system ;
- the voltage control signals of the bridge arms of the grid-connected inverter are: u a +u pcca , u b +u pccb , u c +u pccc , which are then modulated by SVPWM to generate the switching signal of the power device of the grid-connected inverter.
- the circuit controls the turn-on and turn-off of the power devices of the three-phase full-bridge grid-connected inverter.
- FIG. 5 is a schematic diagram of a control strategy when a single grid-connected inverter in a multi-inverter system in a weak grid runs in voltage source mode. It can be seen from Figure 5 that the control steps of the grid-connected inverter operating in voltage source mode are as follows:
- Step 3.1 the output sampling grid current i ga, i gb, i gc , sampling point of common coupling voltage u pcca, u pccb, u pccc .
- Step 3.2 according to the output grid-connected current i ga , i gb , i gc sampled in step 4.1, the output grid-connected current ⁇ axis components i g ⁇ , i g ⁇ are obtained through the transformation equation from the three-phase stationary coordinate system to the two-phase stationary coordinate system; according to step 3.1 of the sampling point of common coupling voltage u pcca, u pccb, u pccc , obtained by the three-phase stationary coordinate point of common coupling voltage ⁇ -axis component u pcc ⁇ , u pcc ⁇ transformation equation to two-phase stationary coordinate system.
- Step 3.3 according to the output grid-connected current ⁇ axis components i g ⁇ and i g ⁇ obtained in step 3.2, and the common coupling point voltage ⁇ axis components u pcc ⁇ and u pcc ⁇ , first obtain the average active power through the average active power calculation equation Then pass the average reactive power calculation equation to get the average reactive power
- the average active power calculation equation is:
- the average reactive power calculation equation is:
- ⁇ is the time constant of the first-order low-pass filter
- s is the Laplace operator.
- ⁇ 0.00667s.
- Step 3.4 the average active power obtained according to step 3.3
- the output angular frequency ⁇ of the grid-connected inverter is obtained through the active power-frequency droop control equation; the active power-frequency droop control equation is:
- P n is the given active power command of the grid-connected inverter
- ⁇ n is the rated angular frequency corresponding to the given active power command P n of the grid-connected inverter
- D p is the active droop coefficient.
- ⁇ n 314rad/s
- P n 100kW
- D p 0.0001.
- Step 3.5 point of common coupling according to step 3.1 sampled voltage u pcca, u pccb, u pccc , and obtained according to step 3.4 and inverter output phase angle ⁇ 0, by the three-phase stationary coordinate system to the two-phase rotating coordinate system
- Step 3.6 According to the output grid-connected current i ga , i gb , i gc sampled in step 4.1, and the output phase angle ⁇ 0 of the grid-connected inverter obtained according to step 3.4, go through the three-phase stationary coordinate system to the two-phase rotating coordinate system The transformation equation of, obtains the output grid-connected current dq components i gd and i gq .
- Step 3.7 according to the average reactive power output of the grid-connected inverter obtained in step 3.3
- the common coupling point voltage dq component reference values u pccdref and u pccqref of the grid-connected inverter are obtained through the reactive power-amplitude droop control equation, and the reactive power-amplitude droop control equation is:
- U n is the rated output voltage corresponding to the grid-connected inverter when the reactive power command Q n is given, and D q is the reactive power droop coefficient.
- Step 3.8 according to the common coupling point voltage dq axis components u pccd and u pccq obtained in step 3.5, and the common coupling point voltage dq component reference values u pccdref and u pccqref obtained in step 3.7, the output grid-connected current is obtained through the voltage loop control equation Command signals i gdref , i gqref ;
- the voltage loop control equation is:
- K p1 is the proportional control coefficient of the PI regulator in the voltage loop control equation
- K i1 is the integral control coefficient of the PI regulator in the voltage loop control equation.
- Step 3.9 according to the output grid-connected current command signals i gdref and i grqef obtained in step 3.8, and according to the output grid-connected current dq components i gd and i gq obtained in step 3.6, the control signals u d and i gq are obtained through the current loop control equation u q .
- the current loop control equation is:
- K p2 is the proportional control coefficient of the PI regulator in the current loop control equation
- K i2 is the integral control coefficient of the PI regulator in the current loop control equation.
- step 3.10 according to the output phase angle ⁇ 0 of the grid-connected inverter obtained in step 3.4, the control signals u d and u q obtained in step 3.9 are transformed into three-phase rotating coordinate system to three-phase stationary coordinate system through the transformation equation The control signal components u a , u b , u c in the phase stationary coordinate system.
- the voltage control signals of the bridge arms of the grid-connected inverter are: u a + u pcca , u b + u pccb , u c + u pccc , which are then modulated by SVPWM to generate the switching signal of the power device of the grid-connected inverter.
- the circuit controls the turn-on and turn-off of the power devices of the three-phase full-bridge grid-connected inverter.
- Fig. 6 is a block diagram of the grid impedance identification method based on non-characteristic harmonic injection according to the present invention. According to Figure 6, the steps of the grid impedance identification algorithm described in step 1 of the present invention are as follows:
- Step 1.1 inject a non-characteristic sub-harmonic current with a frequency of 75 Hz at the common coupling point PCC.
- the amplitude of the non-characteristic sub-harmonic current with the injection frequency of 75 Hz is 8A;
- Step 1.2 sampling the harmonic response voltage u pcch and the harmonic response current i gh at the common coupling point PCC;
- Step 1.3 Perform spectrum analysis on the harmonic response voltage u pcch and the harmonic response current i gh through the fast Fourier algorithm FFT, and obtain the amplitude of the harmonic response voltage component at 75Hz frequency
- ⁇ Z g ⁇ U pcch_75Hz - ⁇ I pcch_75Hz ;
- Step 1.4 according to the amplitude of the grid impedance at 75Hz
- Fig. 7 shows the experimental waveforms of the dual-mode combined control strategy of the multi-inverter system based on the double split transformer. The experimental process is described as follows:
- Time period t 1 -t 2 The 0.2mH reactor is connected to the system at time t 1 , and the strong power grid situation is simulated at this time.
- the 1# grid-connected inverter and the 2# grid-connected inverter both operate in the current source mode.
- Figure 8 shows the enlarged experimental waveforms of the time period t 1 -t 2 in Figure 7. It can be seen that the grid current i ga and the capacitor voltage u Cab are operating stably, and there are 75 Hz harmonics (this is achieved by injecting 75 Hz harmonics into the
- the response obtained by the grid inverter uses the grid impedance identification algorithm).
- the output value of grid impedance identification is 0.2mH
- the control mode flag of 1# grid-connected inverter and 2# grid-connected inverter is 0, indicating that the system is running in full current source mode.
- Time period t 2 -t 3 Continue to cut into the 1mH reactor at time t 2 , at this time, the weak grid situation is simulated.
- the 2# grid-connected inverter is set to operate in voltage source mode, while 1# is grid-connected The inverter is still running in current source mode.
- Figure 9 shows the amplified experimental waveforms of the time period t 2 -t 3 in Figure 7.
- the grid current i ga and capacitor voltage u Cab are still operating stably, and due to the grid impedance identification algorithm, the voltage and current waveforms contain 75 Hz harmonics.
- the output value of the grid impedance identification is 1.2mH, which can track the changes of the grid impedance in real time.
- the control mode flags of 1# grid-connected inverter and 2# grid-connected inverter are 0 and 1, respectively, indicating that the system is running in mixed mode.
- Time period t 3 -t 4 Continue to cut into the 1.6mH reactor at time t 3 , at this time, the extremely weak power grid situation is simulated.
- Fig. 10 is an enlarged experimental waveform of the time period t 3 -t 4 in Fig. 7.
- the grid current i ga and the capacitor voltage u Cab are still operating stably, and 75 Hz harmonics are generated due to the grid impedance identification algorithm.
- the output value of grid impedance identification is 2.8mH, which can track changes in grid impedance in real time.
- the control mode flag of 1# grid-connected inverter and 2# grid-connected inverter is 1, indicating that the system is running in full voltage source mode.
- Time period t 4 -t 5 Continue to cut off the 1.6mH reactor at time t 4.
- the control strategy and experimental waveform during this period are consistent with the t 2 -t 3 time period.
- Time period t 5 -t 6 Continue to cut off the 1mH reactor at time t 5.
- the control strategy and experimental waveform during this period are consistent with the t 1 -t 2 time period.
- the experimental waveforms in Figure 7 are in full compliance with the implementation flow chart of the present invention shown in Figure 3.
- the present invention is not only simple to implement, but also greatly increases the performance of a multi-inverter system based on a double split transformer when the grid impedance fluctuates significantly.
- the stability margin in particular, ensures that the system can still operate stably under extremely weak grids, and improves the grid adaptability of the system.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Computer Hardware Design (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- Inverter Devices (AREA)
Abstract
本发明公开了一种基于双分裂变压器的多逆变器系统双模式组合控制方法,属于电气工程领域。本发明针对极弱电网下提出一种基于双分裂变压器的多逆变器系统双模式组合控制方法,该方法通过电网阻抗辨识算法获得基于双分裂变压器的多逆变器系统中某台并网逆变器公共耦合点的等效电网阻抗,并根据等效电网阻抗逐渐增大,系统依次运行在全电流源模式、混合模式和全电压源模式,从而有效提升基于双分裂变压器的多逆变器系统在电网强弱变化情况下的稳定性。本发明不仅实施简单,而且大幅增加了基于双分裂变压器的多逆变器系统在电网阻抗大幅波动时的稳定裕度,尤其保证了极弱电网下系统仍旧能够稳定运行,提高了系统的电网适应性。
Description
本申请主张2020年05月21日申请的申请号为202010434737.X的“基于双分裂变压器的多逆变器系统双模式组合控制方法”的优先权,原受理机构为中国。
本发明涉及基于双分裂变压器的多逆变器系统控制方法,尤其是涉及一种基于双分裂变压器的多逆变器系统双模式组合控制方法,属于电气工程领域。
目前世界各地已不断增加对风能、太阳能等可再生新能源的开发使用,尤其是中国、美国和印度等地建设投运了MW级以上的大型荒漠光伏电站,新能源发电渗透率越来越高。而且,对于场地开阔的荒漠电站,采用集中式光伏发电系统结构具有简洁、高效、维护简单等特点,得到了广泛的运用。另外,大型光伏电站中光伏并网逆变器与箱式变电站的连接是整个光伏发电系统中关键的一步,基于双分裂变压器的多逆变器系统方案对节省建设投资成本与占地面积有着一定的实际经济意义,已经成为大型光伏电站的标准化设计方案。然而,由于这种高渗透率的集中式光伏发电逆变器大多接入多台集中式大功率光伏并网逆变器,长距离输电线路和变压器将系统互连并连接公共电网,系统将表现出高电网阻抗的弱电网或极弱电网特性。弱电网或极弱电网特性将导致弃风、弃光和电网故障频发,已经严重威胁到电网和新能源发电系统的安全稳定运行,甚至引发电网系统故障。并且,考虑到风电和光伏等新能源发电具有时段性、随机性和出力波动的特点,往往会引起系统等效电网阻抗大幅波动,使电网呈现出强弱电网变化特性,这一特性给基于双分裂变压器的多逆变器系统的运行在传统单一电流源模式时的稳定性带来了严峻挑战。
目前,针对弱电网或极弱电网下的并网逆变器稳定性控制方法,既有学术论文对此做了深入的理论分析,也有实际应用的工程方法。而且,现有的双模式控制既包括了“并网模式/孤岛模式”,也包括“电流源模式/电压源 模式”,然而,基于“并网模式/孤岛模式”的双模式控制并不能解决弱电网或极弱电网下的并网逆变器稳定性问题,例如:
1)孙丽和郑恩让发表于2017年《计算机仿真》第34卷第8期上的《双模式逆变器独立供电稳定性能控制策略研究》一文。该文提出了一种微网中并网/独立双模式逆变器控制方案,该方案通过将准比例谐振控制和比例复数积分控制引入下垂控制策略两种方案,基于αβ坐标系的这两种控制算法无需解耦,有效抑制了电压波动。该文献所提双模式控制针对的是逆变器并网状态与离网状态两种模式,未涉及逆变器在并网情况下由于电网阻抗变化所引起的电流源与电压源模式之间相互切换的问题。
2)李响、李庆光和朱宁辉等人发表于2018年《电气应用》第37卷第6期上的《电网和负载不平衡条件下的双模式逆变器控制研究》一文。该文研究了负载和电网处于不平衡条件下的双模式逆变器控制,提出了并网和离网两种情况下的逆变器电压正负序分量提取的方法,实现了在电网电压不平衡时快速跟踪电网变化以改善电网不平衡对逆变器的影响。该文献未涉及电网阻抗引起的弱电网场景对逆变器稳定性的影响,也未涉及多逆变器系统电流源模式和电压源模式之间的双模式切换的问题。
为此,有文献提出基于“电流源模式/电压源模式”的双模式控制虽然可以提升弱电网下的单逆变器系统稳定性,但是不涉及多逆变器系统稳定性问题,例如:
1)发表于2018年国际电力电子会议(IPEC-ECCE Asia)的“Ming Li,Xing Zhang,et al,The Grid Impedance Adaptation Dual Mode Control Strategy in Weak Grid”,the 2018 International Power Electronics Conference ECCE Asia,2018:2973-2979.(“弱电网下基于电网阻抗自适应的双模式控制策略”),该文献提出了基于电网阻抗自适应的双模式控制方案,该方案针对弱电网中电流源并网模式和电压源并网模式两种主要的稳定控制策略,分别分析了两种模式下并网逆变器的功率传输单调性。并且,通过对运行于电压源模式的逆变器进行小信号建模和分析,指出电压源模式在电网阻抗增大时有更好的稳定性。但是,该文基于的是单台逆变器进行电流源模式和电压源模式的相互切换,未涉及双模式控制扩展到基于双分裂变压器的多逆变 器系统构成的多台逆变器系统时的稳定性问题。
2)中国专利文献CN 105356507 B于2017年8月29日授权公告的《基于电网阻抗自适应的LC型并网逆变器双模式控制方法》,通过电网阻抗辨识,根据设置的逆变器电流源与电压源并网模式相互切换的电网阻抗边界值,在低于切换边界值时逆变器采用电流源并网模式控制方法,在高于切换边界值时逆变器采用电压源并网模式控制方法,而综合了两种并网模式的优点,解决了在不同电网阻抗条件下,逆变器采用单一的电流源或电压源并网模式时,逆变器只能在相对较小的电网阻抗变化范围内稳定运行的缺点。但是,该文基于的是单台逆变器进行电流源模式和电压源模式的相互切换,未涉及双模式控制扩展到基于双分裂变压器的多逆变器系统时的稳定性问题。
基于此,现有文献进一步提出将基于“电流源模式/电压源模式”的双模式控制从单逆变器系统扩展到多逆变器系统,并将多逆变器系统由全电流源模式切换到混合模式,即系统同时有电流源模式和电压源模式并网逆变器,可以有效提高多逆变器系统在弱电网下的稳定性。但是,现有文献并未涉及电网继续减弱到非常弱时(即极弱电网)时混合模式控制是否仍旧稳定的问题。例如:
1)发表于2018年11卷8期《Energies》期刊的“Ming Li,Xing Zhang,Wei Zhao,A Novel Stability Improvement Strategy for a Multi-Inverter System in a Weak Grid Utilizing Dual-Mode Control”,Energies,2018,11(8):2144.(“弱电网下基于双模式控制的多逆变器系统稳定性提升策略”),该文献将基于“电流源模式/电压源模式”的双模式控制应用到多逆变器系统,提出多逆变器系统由全电流源模式切换到混合模式,即系统同时有电流源模式和电压源模式并网逆变器,可以有效提高多逆变器系统在弱电网下的稳定性。但是,该文并未涉及电网继续减弱到非常弱时(即极弱电网)时混合模式控制是否仍旧稳定的问题。
2)中国专利文献CN 108039729 A于2018年5月15日公开的《弱电网下基于模式自适应的多逆变器系统稳定控制方法》,是通过电网阻抗辨识算法获得多逆变器系统中某台并网逆变器公共耦合点的等效电网阻抗,当其数值大于设定的等效电网阻抗边界值时,将多逆变器系统内其余并网逆变器逐 个切换运行到电压源模式,大幅增加了多逆变器系统在弱电网下的稳定裕度,提高了多逆变器系统的电网适应性。但是,该文也并未涉及电网继续减弱到非常弱时(即极弱电网)时混合模式控制是否仍旧稳定的问题。
3)中国专利文献CN 108933447 A于2018年12月4日公开的《弱网下基于模式切换的多逆变器系统参数自适应控制方法》,是针对弱网下全电流源模式的多逆变器系统,通常通过降低并网逆变器电流调节器增益的方式提升系统稳定性,但是却同时恶化了动态性能的问题,提出一种弱网下基于模式切换的多逆变器系统参数自适应控制方法,该方法通过切换多逆变器系统中部分并网逆变器为电压源并网模式,自适应提高仍运行在电流源模式的并网逆变器电流调节器增益,相比于全电流源模式的多逆变器系统,不仅保证了系统稳定运行,还大幅改善了并网逆变器动态性能。但是,该文也并未涉及电网继续减弱到非常弱时(即极弱电网)时混合模式控制是否仍旧稳定的问题。
4)中国专利文献CN 108933447 A于2019年7月16日公开的《弱电网下基于短路比的并网逆变器双模式控制方法》,是针对弱电网下全电流源模式的多逆变器系统通常采用电网阻抗辨识的方式来调整并网逆变器控制参数或者并网模式,但是由于弱电网特征往往与短路比直接相关,因此本发明提出一种弱电网下基于短路比的并网逆变器双模式控制方法,以解决现有技术存在的传统方案中采用电网阻抗表征弱电网状态不够直观、清晰的问题,本发明采用的系统等效短路比检测的方式能够准确直观反映出弱电网的状态,为并网逆变器的电流源、电压源并网双模式切换提供依据,保证了并网逆变器的稳定运行,大幅改善了并网逆变器并网质量。但是,该文也并未涉及电网继续减弱到非常弱时(即极弱电网)时混合模式控制是否仍旧稳定的问题。
综上所述,现有技术存在以下问题:
(1)现有的双模式控制既包括了“并网模式/孤岛模式”,也包括“电流源模式/电压源模式”,然而,基于“并网模式/孤岛模式”的双模式控制并不能解决弱电网下基于双分裂变压器的多逆变器系统稳定性问题,而基于“电流源模式/电压源模式”的双模式控制虽然可以提升弱电网下的单逆变器系统稳定性,但是现有文献即使将该方案从单逆变器系统扩展到基于双分裂 变压器的多逆变器系统,并提出多逆变器系统由全电流源模式切换到混合模式(即系统同时有电流源模式和电压源模式并网逆变器)来有效提高多逆变器系统在弱电网下的稳定性,现有文献仍未涉及电网继续减弱到非常弱时(即极弱电网)时混合模式控制是否仍旧稳定的问题。
(2)现有文献均未涉及通过电网阻抗辨识算法获得基于双分裂变压器的多逆变器系统中某台并网逆变器公共耦合点的等效电网阻抗,当等效电网阻抗逐渐增大,即电网分别运行在强电网、弱电网和极弱电网时,系统依次运行在全电流源模式、混合模式和全电压源模式,从而有效提升基于双分裂变压器的多逆变器系统在电网强弱变化情况下的稳定性的问题。
发明内容
为克服上述各种技术方案的局限性,本发明针对极弱电网下基于双分裂变压器的多逆变器系统采用传统单一电流源模式或混合模式时的稳定性问题,提出一种基于双分裂变压器的多逆变器系统双模式组合控制方法,该方法通过电网阻抗辨识算法获得基于双分裂变压器的多逆变器系统中某台并网逆变器公共耦合点的等效电网阻抗,当等效电网阻抗逐渐增大,即电网分别运行在强电网、弱电网和极弱电网时,系统依次运行在全电流源模式、混合模式和全电压源模式,从而有效提升基于双分裂变压器的多逆变器系统在电网强弱变化情况下的稳定性。本发明不仅实施简单,而且大幅增加了基于双分裂变压器的多逆变器系统在电网阻抗大幅波动时的稳定裕度,尤其保证了极弱电网下系统仍旧能够稳定运行,提高了系统的电网适应性。
本发明的目的是这样实现的。本发明提出了一种基于双分裂变压器的多逆变器系统双模式组合控制方法,本控制方法所涉及的基于双分裂变压器的多逆变器系统包括2个相同的并网逆变器,所述双模式组合控制方法包括全电流源模式、混合模式和全电压源模式;
本控制方法的步骤如下:
步骤1,从多逆变器系统中任意选择1个并网逆变器,记为1#并网逆变器,另外1个并网逆变器记为2#并网逆变器,通过电网阻抗辨识算法获得1#并网逆变器公共耦合点的等效电网阻抗,并记为基准等效电网阻抗Z
g_est;
步骤2,设置等效电网阻抗下边界值λ
1和等效电网阻抗上边界值λ
2, 并根据步骤1得到的基准等效电网阻抗Z
g_est进行如下判断及操作:
当满足Z
g_est≤λ
1时,判断电网处于强电网状态,设置多逆变器系统运行在全电流源模式,并结束本控制流程;
当满足λ
1<Z
g_est≤λ
2时,判断电网处于弱电网状态,设置多逆变器系统运行在混合模式,并结束本控制流程;
当满足Z
g_est>λ
2时,判断电网处于极弱电网状态,设置多逆变器系统运行在全电压源模式,并结束本控制流程;
所述全电流源模式指的是2个并网逆变器均运行在电流源模式;所述混合模式指的是1个并网逆变器运行在电流源模式、1个并网逆变器运行在电压源模式;所述全电压源模式指的是2个并网逆变器均运行在电压源模式;所述的并网逆变器为三相全桥并网逆变器。
优选地,所述电流源模式的控制步骤如下:
步骤2.1,采样输出并网电流i
ga、i
gb、i
gc,采样公共耦合点电压u
pcca、u
pccb、u
pccc;
步骤2.2,根据步骤2.1采样的公共耦合点电压u
pcca、u
pccb、u
pccc,经三相静止坐标系到两相旋转坐标系的变换方程得到公共耦合点电压dq轴分量u
pccd、u
pccq;将公共耦合点电压u
pcca、u
pccb、u
pccc经过锁相环PLL锁相得到公共耦合点电压相角θ;
公共耦合点电压三相静止坐标系到两相旋转坐标系的变换方程为:
公共耦合点电压相角θ的计算公式为:
其中,ω
0为公共耦合点电压的额定角频率,K
p_PLL为锁相环PI调节器的比例调节系数,K
i_PLL为锁相环PI调节器的积分调节系数,s为拉普拉斯算子;
步骤2.3,根据步骤2.2得到的公共耦合点电压相角θ,经过三相静止 坐标系到两相旋转坐标系的变换,将步骤2.1采样的输出并网电流i
ga、i
gb、i
gc转化为两相旋转坐标系下的输出并网电流dq分量i
gd和i
gq;
输出并网电流由三相静止坐标系到两相旋转坐标系的变换方程为:
步骤2.4,设置输出并网电流指令信号i
gdref、i
gqref,并根据步骤2.3得到的输出并网电流dq分量i
gd和i
gq,通过电网电流闭环控制方程得到控制信号u
d和u
q;
电网电流闭环控制方程为:
其中,K
p为电网电流闭环控制方程中PI调节器的比例控制系数,K
i为电网电流闭环控制方程中PI调节器的积分控制系数;
步骤2.5,根据步骤2.2得到的公共耦合点电压相角θ,将步骤2.4得到的控制信号u
d和u
q经过两相旋转坐标系到三相静止坐标系的变换方程,转化为三相静止坐标系下的控制信号分量u
a、u
b、u
c;
控制信号由两相旋转坐标系到三相静止坐标系的变换方程为:
u
a=u
dcosθ-u
qsinθ
步骤2.6,根据步骤2.5得到的三相静止坐标系下的分量u
a、u
b、u
c,分别与步骤2.1得到的公共耦合点电压u
pcca、u
pccb、u
pccc相加,得到三相全桥并网逆变器桥臂电压控制信号分别为:u
a+u
pcca、u
b+u
pccb、u
c+u
pccc,再经过SVPWM调制生成并网逆变器功率器件的开关信号,经过驱动电路控制三相全桥并网逆变器功率器件的开通和关断。
优选地,所述电压源模式的控制步骤如下:
步骤3.1,采样输出并网电流i
ga、i
gb、i
gc,采样公共耦合点电压u
pcca、u
pccb、u
pccc;
步骤3.2,根据步骤4.1采样的输出并网电流i
ga、i
gb、i
gc,经三相静止坐标系到两相静止坐标系的变换方程得到输出并网电流αβ轴分量i
gα、i
gβ;根据步骤3.1采样的公共耦合点电压u
pcca、u
pccb、u
pccc,经三相静止坐标系到两相静止坐标系的变换方程得到公共耦合点电压αβ轴分量u
pccα、u
pccβ;
输出并网电流由三相静止坐标系到两相静止坐标系的变换方程为:
公共耦合点电压由三相静止坐标系到两相静止坐标系的变换方程为:
步骤3.3,根据步骤3.2得到的输出并网电流αβ轴分量i
gα、i
gβ,以及公共耦合点电压αβ轴分量u
pccα、u
pccβ,先经过平均有功功率计算方程得到平均有功功率
再经过平均无功功率计算方程得到平均无功功率
平均有功功率计算方程为:
平均无功功率计算方程为:
其中,τ为一阶低通滤波器时间常数,s为拉普拉斯算子;
其中,P
n为并网逆变器给定有功功率指令,ω
n为并网逆变器在给定有功功率指令P
n时所对应的额定角频率,D
p为有功下垂系数;
对并网逆变器的输出角频率ω积分得到并网逆变器输出相角θ
0,即:
步骤3.5,根据步骤3.1采样的公共耦合点电压u
pcca、u
pccb、u
pccc,以及根据步骤3.4得到的并网逆变器输出相角θ
0,经三相静止坐标系到两相旋转坐标系的变换方程得到公共耦合点电压dq轴分量u
pccd、u
pccq;
公共耦合点电压由三相静止坐标系到两相旋转坐标系的变换方程为:
步骤3.6,根据步骤4.1采样的输出并网电流i
ga、i
gb、i
gc,以及根据步骤3.4得到的并网逆变器输出相角θ
0,经三相静止坐标系到两相旋转坐标系的变换方程得到输出并网电流dq分量i
gd和i
gq;
输出并网电流由三相静止坐标系到两相旋转坐标系的变换方程为:
步骤3.7,根据步骤3.3得到的并网逆变器输出平均无功功率
经无功功率-幅值下垂控制方程得到并网逆变器的公共耦合点电压dq分量基准值u
pccdref、u
pccqref,无功功率-幅值下垂控制方程为:
u
pccqref=0
其中,U
n为并网逆变器在给无功功率指令Q
n时所对应的额定输出电压, D
q为无功下垂系数;
步骤3.8,根据步骤3.5得到的公共耦合点电压dq轴分量u
pccd、u
pccq,以及步骤3.7得到的公共耦合点电压dq分量基准值u
pccdref、u
pccqref,通过电压环控制方程得到输出并网电流指令信号i
gdref、i
gqref;
电压环控制方程为:
其中,K
p1为电压环控制方程中PI调节器的比例控制系数,K
i1为电压环控制方程中PI调节器的积分控制系数;
步骤3.9,先根据步骤3.8得到的输出并网电流指令信号i
gdref、i
gqref,并根据步骤3.6得到的输出并网电流dq分量i
gd和i
gq,通过电流环控制方程得到控制信号u
d和u
q;
电流环控制方程为:
其中,K
p2为电流环控制方程中PI调节器的比例控制系数,K
i2为电流环控制方程中PI调节器的积分控制系数;
步骤3.10,根据步骤3.4得到的并网逆变器输出相角θ
0,将步骤3.9得到的控制信号u
d和u
q经过两相旋转坐标系到三相静止坐标系的变换方程,转化为三相静止坐标系下的控制信号分量u
a、u
b、u
c;
控制信号由两相旋转坐标系到三相静止坐标系的变换方程为:
u
a=u
dcosθ
0-u
qsinθ
0
步骤3.11,根据步骤3.10得到的三相静止坐标系下的分量u
a、u
b、u
c,分别与步骤3.1得到的公共耦合点电压u
pcca、u
pccb、u
pccc相加,得到三相全桥 并网逆变器桥臂电压控制信号分别为:u
a+u
pcca、u
b+u
pccb、u
c+u
pccc,再经过SVPWM调制生成并网逆变器功率器件的开关信号,经过驱动电路控制三相全桥并网逆变器功率器件的开通和关断。
与现有技术相比,本发明所具有的有益效果为:
1、本发明不仅实施简单,而且通过采用基于“电流源模式/电压源模式”的双模式组合控制,即引入全电流源模式、混合模式和全电压源模式三类组合型控制,大幅增加了基于双分裂变压器的多逆变器系统在电网阻抗大幅波动时的稳定裕度;
2、本发明通过引入全电压源模式控制,保证了极弱电网下基于双分裂变压器的多逆变器系统仍旧能够稳定运行,提高了系统的电网适应性;
3、本发明可以提高整个多逆变器系统并网稳定性,抑制弱电网或极弱电网下基于双分裂变压器的多逆变器系统运行在单一电流源模式下时在引起的谐振等稳定性问题;
4、本发明仅需通过电网阻抗辨识算法获得基于双分裂变压器的多逆变器系统中某台并网逆变器公共耦合点的等效电网阻抗,当等效电网阻抗逐渐增大,即电网分别运行在强电网、弱电网和极弱电网时,系统依次运行在全电流源模式、混合模式和全电压源模式,从而有效提升基于双分裂变压器的多逆变器系统在电网强弱变化情况下的稳定性,实现方式简便有效。
图1为本发明所采用的基于双分裂变压器的多逆变器系统结构示意图。
图2为本发明所采用的基于双分裂变压器的多逆变器系统中单台并网逆变器拓扑结构。
图3为本发明的实施流程图。
图4为弱电网下基于双分裂变压器的多逆变器系统中单台并网逆变器运行在电流源模式时控制策略示意图。
图5为弱电网下基于双分裂变压器的多逆变器系统中单台并网逆变器运行在电压源模式时控制策略示意图。
图6为本发明基于非特征谐波注入的电网阻抗辨识算法框图。
图7为基于双分裂变压器的多逆变器系统双模式组合控制策略实验波 形。
图8为图7中t
1-t
2时间段的放大实验波形。
图9为图7中t
2-t
3时间段的放大实验波形。
图10为图7中t
3-t
4时间段的放大实验波形。
本发明的实施例提供了一种基于双分裂变压器的多逆变器系统双模式组合控制方法,以解决极弱电网下基于双分裂变压器的多逆变器系统采用传统单一电流源模式或混合模式时的稳定性问题,通过电网阻抗辨识算法获得基于双分裂变压器的多逆变器系统中某台并网逆变器公共耦合点的等效电网阻抗,当等效电网阻抗逐渐增大,即电网分别运行在强电网、弱电网和极弱电网时,系统依次运行在全电流源模式、混合模式和全电压源模式,从而有效提升基于双分裂变压器的多逆变器系统在电网强弱变化情况下的稳定性。本发明不仅实施简单,而且大幅增加了基于双分裂变压器的多逆变器系统在电网阻抗大幅波动时的稳定裕度,尤其保证了极弱电网下系统仍旧能够稳定运行,提高了系统的电网适应性。
下面将结合附图对本发明的技术方案进行清楚、完整的描述。
本发明所采用的本发明所采用的基于双分裂变压器的多逆变器系统结构示意图如图1所示,包括2个相同的并网逆变器,每个并网逆变器连接了一个光伏电池板,一个双分裂变压器接入2个并网逆变器构成的多逆变器系统中。
本发明所采用的基于双分裂变压器的多逆变器系统中单个并网逆变器拓扑结构如图2所示。由图2可见,该单个并网逆变器为三相全桥并网逆变器,其拓扑结构包括直流侧滤波电容C
dc、三相桥式逆变拓扑、逆变器侧电感L
1、滤波电容C、阻尼电阻R
d、网侧电感L
2及公共耦合点PCC。本实施例中,C
dc=600μF,L
1=0.9mH,C=20μF,R
d=0.6Ω,L
2=0.05mH。
图3为本发明的实施流程图。由图3可见,所述双模式组合控制方法包括全电流源模式、混合模式和全电压源模式。
具体的,本控制方法的步骤如下:
步骤1,从多逆变器系统中任意选择1个并网逆变器,记为1#并网逆变 器,另外1个并网逆变器记为2#并网逆变器,通过电网阻抗辨识算法获得1#并网逆变器公共耦合点的等效电网阻抗,并记为基准等效电网阻抗Z
g_est;
步骤2,设置等效电网阻抗下边界值λ
1和等效电网阻抗上边界值λ
2,并根据步骤1得到的基准等效电网阻抗Z
g_est进行如下判断及操作:
当满足Z
g_est≤λ
1时,判断电网处于强电网状态,设置多逆变器系统运行在全电流源模式,并结束本控制流程;
当满足λ
1<Z
g_est≤λ
2时,判断电网处于弱电网状态,设置多逆变器系统运行在混合模式,并结束本控制流程;
当满足Z
g_est>λ
2时,判断电网处于极弱电网状态,设置多逆变器系统运行在全电压源模式,并结束本控制流程;
所述全电流源模式指的是2个并网逆变器均运行在电流源模式;所述混合模式指的是1个并网逆变器运行在电流源模式、1个并网逆变器运行在电压源模式;所述全电压源模式指的是2个并网逆变器均运行在电压源模式。
在本发明实例中,λ
1=0.98mH,λ
2=2mH。
图4为弱电网下基于双分裂变压器的多逆变器系统中单个并网逆变器运行在电流源模式时控制策略示意图。由图4可见,运行在电流源模式的并网逆变器控制步骤如下:
步骤2.1,采样输出并网电流i
ga、i
gb、i
gc,采样公共耦合点电压u
pcca、u
pccb、u
pccc。在本发明实施例中,电流传感器采样比例系数为29,电压传感器采样比例系数为400。
步骤2.2,根据步骤2.1采样的公共耦合点电压u
pcca、u
pccb、u
pccc,经三相静止坐标系到两相旋转坐标系的变换方程得到公共耦合点电压dq轴分量u
pccd、u
pccq;将公共耦合点电压u
pcca、u
pccb、u
pccc经过锁相环PLL锁相得到公共耦合点电压相角θ。
公共耦合点电压三相静止坐标系到两相旋转坐标系的变换方程为:
公共耦合点电压相角θ的计算公式为:
其中,ω
0为公共耦合点电压的额定角频率,K
p_PLL为锁相环PI调节器的比例调节系数,K
i_PLL为锁相环PI调节器的积分调节系数,s为拉普拉斯算子。在本发明实施例中,ω
0=314rad/s,K
p_PLL=0.3,K
i_PLL=36。
步骤2.3,根据步骤2.2得到的公共耦合点电压相角θ,经过三相静止坐标系到两相旋转坐标系的变换,将步骤2.1采样的输出并网电流i
ga、i
gb、i
gc转化为两相旋转坐标系下的输出并网电流dq分量i
gd和i
gq。
输出并网电流由三相静止坐标系到两相旋转坐标系的变换方程为:
步骤2.4,设置输出并网电流指令信号i
gdref、i
gqref,并根据步骤2.3得到的输出并网电流dq分量i
gd和i
gq,通过电网电流闭环控制方程得到控制信号u
d和u
q;
电网电流闭环控制方程为:
其中,K
p为电网电流闭环控制方程中PI调节器的比例控制系数,K
i为电网电流闭环控制方程中PI调节器的积分控制系数。在本发明实施例中,K
p=67.2,K
i=180000。
步骤2.5,根据步骤2.2得到的公共耦合点电压相角θ,将步骤2.4得到的控制信号u
d和u
q经过两相旋转坐标系到三相静止坐标系的变换方程,转化为三相静止坐标系下的控制信号分量u
a、u
b、u
c;
控制信号由两相旋转坐标系到三相静止坐标系的变换方程为:
u
a=u
dcosθ-u
qsinθ
步骤2.6,根据步骤2.5得到的三相静止坐标系下的分量u
a、u
b、u
c,分别与步骤2.1得到的公共耦合点电压u
pcca、u
pccb、u
pccc相加,得到三相全桥并网逆变器桥臂电压控制信号分别为:u
a+u
pcca、u
b+u
pccb、u
c+u
pccc,再经过SVPWM调制生成并网逆变器功率器件的开关信号,经过驱动电路控制三相全桥并网逆变器功率器件的开通和关断。
图5为弱电网下多逆变器系统中单个并网逆变器运行在电压源模式时控制策略示意图。由图5可见,所述运行在电压源模式的并网逆变器控制步骤如下:
步骤3.1,采样输出并网电流i
ga、i
gb、i
gc,采样公共耦合点电压u
pcca、u
pccb、u
pccc。
步骤3.2,根据步骤4.1采样的输出并网电流i
ga、i
gb、i
gc,经三相静止坐标系到两相静止坐标系的变换方程得到输出并网电流αβ轴分量i
gα、i
gβ;根据步骤3.1采样的公共耦合点电压u
pcca、u
pccb、u
pccc,经三相静止坐标系到两相静止坐标系的变换方程得到公共耦合点电压αβ轴分量u
pccα、u
pccβ。
输出并网电流由三相静止坐标系到两相静止坐标系的变换方程为:
公共耦合点电压由三相静止坐标系到两相静止坐标系的变换方程为:
步骤3.3,根据步骤3.2得到的输出并网电流αβ轴分量i
gα、i
gβ,以 及公共耦合点电压αβ轴分量u
pccα、u
pccβ,先经过平均有功功率计算方程得到平均有功功率
再经过平均无功功率计算方程得到平均无功功率
平均有功功率计算方程为:
平均无功功率计算方程为:
其中,τ为一阶低通滤波器时间常数,s为拉普拉斯算子。在本发明实施例中,τ=0.00667s。
其中,P
n为并网逆变器给定有功功率指令,ω
n为并网逆变器在给定有功功率指令P
n时所对应的额定角频率,D
p为有功下垂系数。在本发明实施例中,ω
n=314rad/s,P
n=100kW,D
p=0.0001。
对并网逆变器的输出角频率ω积分得到并网逆变器输出相角θ
0,即:
步骤3.5,根据步骤3.1采样的公共耦合点电压u
pcca、u
pccb、u
pccc,以及根据步骤3.4得到的并网逆变器输出相角θ
0,经三相静止坐标系到两相旋转坐标系的变换方程得到公共耦合点电压dq轴分量u
pccd、u
pccq。
公共耦合点电压由三相静止坐标系到两相旋转坐标系的变换方程为:
步骤3.6,根据步骤4.1采样的输出并网电流i
ga、i
gb、i
gc,以及根据步 骤3.4得到的并网逆变器输出相角θ
0,经三相静止坐标系到两相旋转坐标系的变换方程得到输出并网电流dq分量i
gd和i
gq。
输出并网电流由三相静止坐标系到两相旋转坐标系的变换方程为:
步骤3.7,根据步骤3.3得到的并网逆变器输出平均无功功率
经无功功率-幅值下垂控制方程得到并网逆变器的公共耦合点电压dq分量基准值u
pccdref、u
pccqref,无功功率-幅值下垂控制方程为:
u
pccqref=0
其中,U
n为并网逆变器在给无功功率指令Q
n时所对应的额定输出电压,D
q为无功下垂系数。在本发明实施例中,U
n=220V,Q
n=0,D
q=0.0001。
步骤3.8,根据步骤3.5得到的公共耦合点电压dq轴分量u
pccd、u
pccq,以及步骤3.7得到的公共耦合点电压dq分量基准值u
pccdref、u
pccqref,通过电压环控制方程得到输出并网电流指令信号i
gdref、i
gqref;
电压环控制方程为:
其中,K
p1为电压环控制方程中PI调节器的比例控制系数,K
i1为电压环控制方程中PI调节器的积分控制系数。在本发明实施例中,K
p1=0.05,K
i1=3223。
步骤3.9,先根据步骤3.8得到的输出并网电流指令信号i
gdref、i
grqef,并根据步骤3.6得到的输出并网电流dq分量i
gd和i
gq,通过电流环控制方程得到控制信号u
d和u
q。
电流环控制方程为:
其中,K
p2为电流环控制方程中PI调节器的比例控制系数,K
i2为电流环控制方程中PI调节器的积分控制系数。在本发明实施例中,K
p2=200,K
i2=0。
步骤3.10,根据步骤3.4得到的并网逆变器输出相角θ
0,将步骤3.9得到的控制信号u
d和u
q经过两相旋转坐标系到三相静止坐标系的变换方程,转化为三相静止坐标系下的控制信号分量u
a、u
b、u
c。
控制信号由两相旋转坐标系到三相静止坐标系的变换方程为:
u
a=u
dcosθ
0-u
qsinθ
0
步骤3.11,根据步骤3.10得到的三相静止坐标系下的分量u
a、u
b、u
c,分别与步骤3.1得到的公共耦合点电压u
pcca、u
pccb、u
pccc相加,得到三相全桥并网逆变器桥臂电压控制信号分别为:u
a+u
pcca、u
b+u
pccb、u
c+u
pccc,再经过SVPWM调制生成并网逆变器功率器件的开关信号,经过驱动电路控制三相全桥并网逆变器功率器件的开通和关断。
图6为本发明基于非特征谐波注入的电网阻抗辨识方法框图。根据图6,本发明步骤1所述电网阻抗辨识算法的步骤如下:
步骤1.1,在公共耦合点PCC处注入频率75Hz的非特征次谐波电流。在本发明实例中,注入频率75Hz的非特征次谐波电流幅值为8A;
步骤1.2,采样公共耦合点PCC处的谐波响应电压u
pcch和谐波响应电流i
gh;
步骤1.3,通过快速傅里叶算法FFT分别对谐波响应电压u
pcch和谐波响应电流i
gh进行频谱分析,分别获得在75Hz频率处谐波响应电压分量的幅值|U
pcch_75Hz|、75Hz频率处谐波响应电压分量的相位∠U
pcch_75Hz、75Hz频率处的谐波响应电流分量的幅值|I
pcch_75Hz|、75Hz频率处的谐波响应电流分量的相位∠I
pcch_75Hz;根据下式得到在75Hz频率处电网阻抗的幅值|Z
g|和75Hz频率处 电网阻抗的相位∠Z
g:
∠Z
g=∠U
pcch_75Hz-∠I
pcch_75Hz;
步骤1.4,根据步骤1.3得到的在75Hz频率处电网阻抗的幅值|Z
g|和75Hz频率处电网阻抗的相位∠Z
g,按照下式计算得到基准等效电网阻抗Z
g_est:
在本发明实施例中,图7给出了基于双分裂变压器的多逆变器系统双模式组合控制策略实验波形,实验过程描述如下:
t
1-t
2时间段:将0.2mH电抗器在t
1时刻接入系统,此时模拟了强电网情况。根据图3所示本发明的实施流程图可知,由于Z
g_est≤λ
1=0.98mH,1#并网逆变器和2#并网逆变器均在电流源模式中运行。图8给出了图7中t
1-t
2时间段的放大实验波形,可以看到电网电流i
ga和电容器电压u
Cab稳定运行,并且存在75Hz谐波(这是通过将75Hz谐波注入并网逆变器而获得的响应使用电网阻抗识别算法)。此外,电网阻抗辨识的输出值为0.2mH,并且1#并网逆变器和2#并网逆变器的控制模式标志位为0,表明系统运行在全电流源模式。
t
2-t
3时间段:在t
2时刻继续切入1mH电抗器,此时模拟了弱电网情况。根据图3所示本发明的实施流程图可知,由于λ
1=0.98mH<Z
g_est≤λ
2=2mH,因此2#并网逆变器设置为在电压源模式中运行,而1#并网逆变器仍在电流源模式中运行。图9给出了图7中t
2-t
3时间段的放大实验波形,电网电流i
ga和电容器电压u
Cab仍然稳定运行,并且由于电网阻抗辨识算法,电压和电流波形包含75Hz谐波。此外,电网阻抗辨识的输出值为1.2mH,可以实时跟踪电网阻抗的变化。1#并网逆变器和2#并网逆变器的控制模式标志分别为0和1,表明系统运行在混合模式。
t
3-t
4时间段:在t
3时刻继续切入1.6mH电抗器,此时模拟了极弱电网情况。根据图3所示本发明的实施流程图可知,由于Z
g_est>λ
2=2mH,因此1#并网逆变器和2#并网逆变器均在电压源模式中运行。图10为图7中t
3-t
4 时间段的放大实验波形,电网电流i
ga和电容器电压u
Cab仍然稳定运行,并且由于电网阻抗辨识算法而产生了75Hz谐波。此外,电网阻抗辨识输出值为2.8mH,可以实时跟踪电网阻抗的变化。1#并网逆变器和2#并网逆变器的控制模式标志为1,指示系统运行在全电压源模式。
t
4-t
5时间段:在t
4时刻继续切除1.6mH电抗器。在此期间的控制策略和实验波形与t
2-t
3时间段一致。
t
5-t
6时间段:在t
5时刻继续切断1mH电抗器。在此期间的控制策略和实验波形与t
1-t
2时间段一致。
综上所述,图7的实验波形完全符合图3所示本发明的实施流程图,本发明不仅实施简单,而且大幅增加了基于双分裂变压器的多逆变器系统在电网阻抗大幅波动时的稳定裕度,尤其保证了极弱电网下系统仍旧能够稳定运行,提高了系统的电网适应性。
Claims (3)
- 一种基于双分裂变压器的多逆变器系统双模式组合控制方法,其特征在于,本控制方法所涉及的基于双分裂变压器的多逆变器系统包括2个相同的并网逆变器,所述双模式组合控制方法包括全电流源模式、混合模式和全电压源模式;本控制方法的步骤如下:步骤1,从多逆变器系统中任意选择1个并网逆变器,记为1#并网逆变器,另外1个并网逆变器记为2#并网逆变器,通过电网阻抗辨识算法获得1#并网逆变器公共耦合点的基准等效电网阻抗,并记为基准等效电网阻抗Z g_est;步骤2,设置等效电网阻抗下边界值λ 1和等效电网阻抗上边界值λ 2,并根据步骤1得到的基准等效电网阻抗Z g_est进行如下判断及操作:当满足Z g_est≤λ 1时,判断电网处于强电网状态,设置多逆变器系统运行在全电流源模式,并结束本控制流程;当满足λ 1<Z g_est≤λ 2时,判断电网处于弱电网状态,设置多逆变器系统运行在混合模式,并结束本控制流程;当满足Z g_est>λ 2时,判断电网处于极弱电网状态,设置多逆变器系统运行在全电压源模式,并结束本控制流程;所述全电流源模式指的是2个并网逆变器均运行在电流源模式;所述混合模式指的是1个并网逆变器运行在电流源模式、1个并网逆变器运行在电压源模式;所述全电压源模式指的是2个并网逆变器均运行在电压源模式;所述的并网逆变器为三相全桥并网逆变器。
- 根据权利要求1所述的基于双分裂变压器的多逆变器系统双模式组合控制方法,其特征在于,所述电流源模式的控制步骤如下:步骤2.1,采样输出并网电流i ga、i gb、i gc,采样公共耦合点电压u pcca、u pccb、u pccc;步骤2.2,根据步骤2.1采样的公共耦合点电压u pcca、u pccb、u pccc,经三相静止坐标系到两相旋转坐标系的变换方程得到公共耦合点电压dq轴分量u pccd、u pccq;将公共耦合点电压u pcca、u pccb、u pccc经过锁相环PLL锁相得到公共耦合点电压相角θ;公共耦合点电压三相静止坐标系到两相旋转坐标系的变换方程为:公共耦合点电压相角θ的计算公式为:其中,ω 0为公共耦合点电压的额定角频率,K p_PLL为锁相环PI调节器的比例调节系数,K i_PLL为锁相环PI调节器的积分调节系数,s为拉普拉斯算子;步骤2.3,根据步骤2.2得到的公共耦合点电压相角θ,经过三相静止坐标系到两相旋转坐标系的变换,将步骤2.1采样的输出并网电流i ga、i gb、i gc转化为两相旋转坐标系下的输出并网电流dq分量i gd和i gq;输出并网电流由三相静止坐标系到两相旋转坐标系的变换方程为:步骤2.4,设置输出并网电流指令信号i gdref、i gqref,并根据步骤2.3得到的输出并网电流dq分量i gd和i gq,通过电网电流闭环控制方程得到控制信号u d和u q;电网电流闭环控制方程为:其中,K p为电网电流闭环控制方程中PI调节器的比例控制系数,K i为电网电流闭环控制方程中PI调节器的积分控制系数;步骤2.5,根据步骤2.2得到的公共耦合点电压相角θ,将步骤2.4得到的控制信号u d和u q经过两相旋转坐标系到三相静止坐标系的变换方程,转 化为三相静止坐标系下的控制信号分量u a、u b、u c;控制信号由两相旋转坐标系到三相静止坐标系的变换方程为:u a=u d cosθ-u q sinθ步骤2.6,根据步骤2.5得到的三相静止坐标系下的分量u a、u b、u c,分别与步骤2.1得到的公共耦合点电压u pcca、u pccb、u pccc相加,得到三相全桥并网逆变器桥臂电压控制信号分别为:u a+u pcca、u b+u pccb、u c+u pccc,再经过SVPWM调制生成并网逆变器功率器件的开关信号,经过驱动电路控制三相全桥并网逆变器功率器件的开通和关断。
- 根据权利要求1所述的基于双分裂变压器的多逆变器系统双模式组合控制方法,其特征在于,所述电压源模式的控制步骤如下:步骤3.1,采样输出并网电流i ga、i gb、i gc,采样公共耦合点电压u pcca、u pccb、u pccc;步骤3.2,根据步骤4.1采样的输出并网电流i ga、i gb、i gc,经三相静止坐标系到两相静止坐标系的变换方程得到输出并网电流αβ轴分量i gα、i gβ;根据步骤3.1采样的公共耦合点电压u pcca、u pccb、u pccc,经三相静止坐标系到两相静止坐标系的变换方程得到公共耦合点电压αβ轴分量u pccα、u pccβ;输出并网电流由三相静止坐标系到两相静止坐标系的变换方程为:公共耦合点电压由三相静止坐标系到两相静止坐标系的变换方程为:步骤3.3,根据步骤3.2得到的输出并网电流αβ轴分量i gα、i gβ,以及公共耦合点电压αβ轴分量u pccα、u pccβ,先经过平均有功功率计算方程得到平均有功功率 再经过平均无功功率计算方程得到平均无功功率平均有功功率计算方程为:平均无功功率计算方程为:其中,τ为一阶低通滤波器时间常数,s为拉普拉斯算子;其中,P n为并网逆变器给定有功功率指令,ω n为并网逆变器在给定有功功率指令P n时所对应的额定角频率,D p为有功下垂系数;对并网逆变器的输出角频率ω积分得到并网逆变器输出相角θ 0,即:步骤3.5,根据步骤3.1采样的公共耦合点电压u pcca、u pccb、u pccc,以及根据步骤3.4得到的并网逆变器输出相角θ 0,经三相静止坐标系到两相旋转坐标系的变换方程得到公共耦合点电压dq轴分量u pccd、u pccq;公共耦合点电压由三相静止坐标系到两相旋转坐标系的变换方程为:步骤3.6,根据步骤4.1采样的输出并网电流i ga、i gb、i gc,以及根据步骤3.4得到的并网逆变器输出相角θ 0,经三相静止坐标系到两相旋转坐标 系的变换方程得到输出并网电流dq分量i gd和i gq;输出并网电流由三相静止坐标系到两相旋转坐标系的变换方程为:步骤3.7,根据步骤3.3得到的并网逆变器输出平均无功功率 经无功功率-幅值下垂控制方程得到并网逆变器的公共耦合点电压dq分量基准值u pccdref、u pccqref,无功功率-幅值下垂控制方程为:u pccqref=0其中,U n为并网逆变器在给无功功率指令Q n时所对应的额定输出电压,D q为无功下垂系数;步骤3.8,根据步骤3.5得到的公共耦合点电压dq轴分量u pccd、u pccq,以及步骤3.7得到的公共耦合点电压dq分量基准值u pccdref、u pccqref,通过电压环控制方程得到输出并网电流指令信号i gdref、i gqref;电压环控制方程为:其中,K p1为电压环控制方程中PI调节器的比例控制系数,K i1为电压环控制方程中PI调节器的积分控制系数;步骤3.9,先根据步骤3.8得到的输出并网电流指令信号i gdref、i gqref,并根据步骤3.6得到的输出并网电流dq分量i gd和i gq,通过电流环控制方程得到控制信号u d和u q;电流环控制方程为:其中,K p2为电流环控制方程中PI调节器的比例控制系数,K i2为电流环控制方程中PI调节器的积分控制系数;步骤3.10,根据步骤3.4得到的并网逆变器输出相角θ 0,将步骤3.9得到的控制信号u d和u q经过两相旋转坐标系到三相静止坐标系的变换方程,转化为三相静止坐标系下的控制信号分量u a、u b、u c;控制信号由两相旋转坐标系到三相静止坐标系的变换方程为:u a=u d cosθ 0-u q sinθ 0步骤3.11,根据步骤3.10得到的三相静止坐标系下的分量u a、u b、u c,分别与步骤3.1得到的公共耦合点电压u pcca、u pccb、u pccc相加,得到三相全桥并网逆变器桥臂电压控制信号分别为:u a+u pcca、u b+u pccb、u c+u pccc,再经过SVPWM调制生成并网逆变器功率器件的开关信号,经过驱动电路控制三相全桥并网逆变器功率器件的开通和关断。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/764,210 US11979025B2 (en) | 2020-05-21 | 2021-05-13 | Dual-mode combined control method for multi-inverter system based on double split transformer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010434737.XA CN111769591B (zh) | 2020-05-21 | 2020-05-21 | 基于双分裂变压器的多逆变器系统双模式组合控制方法 |
CN202010434737.X | 2020-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021233190A1 true WO2021233190A1 (zh) | 2021-11-25 |
Family
ID=72719459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/093505 WO2021233190A1 (zh) | 2020-05-21 | 2021-05-13 | 基于双分裂变压器的多逆变器系统双模式组合控制方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11979025B2 (zh) |
CN (1) | CN111769591B (zh) |
WO (1) | WO2021233190A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114285043A (zh) * | 2021-12-03 | 2022-04-05 | 国网黑龙江省电力有限公司电力科学研究院 | 一种极弱电网下并网逆变器功率传输能力提升方法 |
CN114928076A (zh) * | 2022-06-09 | 2022-08-19 | 合肥工业大学 | 无交流电压传感器的虚拟同步机双闭环控制方法 |
CN115021323A (zh) * | 2022-07-22 | 2022-09-06 | 国网浙江省电力有限公司经济技术研究院 | 一种阻抗扫描系统及方法 |
CN115021317A (zh) * | 2022-06-24 | 2022-09-06 | 合肥工业大学 | 一种新能源自同步并网逆变器低电压穿越控制方法 |
CN115065092A (zh) * | 2022-06-22 | 2022-09-16 | 中南大学 | 单相并网变换器频率耦合调节控制方法 |
WO2023108925A1 (zh) * | 2021-12-15 | 2023-06-22 | 新疆金风科技股份有限公司 | 风力发电机组、风电变流器的控制方法和控制装置 |
CN116683528A (zh) * | 2023-08-03 | 2023-09-01 | 合肥工业大学 | 基于电压源和电流源分时的并网逆变器融合控制方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111769591B (zh) * | 2020-05-21 | 2022-04-08 | 合肥工业大学 | 基于双分裂变压器的多逆变器系统双模式组合控制方法 |
CN113363985B (zh) * | 2021-03-23 | 2023-02-21 | 国网山西省电力公司电力科学研究院 | 一种双向功率变换器双模式并网控制策略 |
CN113933558A (zh) * | 2021-10-13 | 2022-01-14 | 江苏斯菲尔电气股份有限公司 | 一种可自动识别电流互感器规格并设置变比的仪表 |
CN114696320B (zh) * | 2022-03-25 | 2024-04-19 | 国网湖北省电力有限公司电力科学研究院 | 一种新能源发电装备自同步电压源控制及低电压穿越控制双模式切换控制方法 |
CN115207968B (zh) * | 2022-06-22 | 2024-05-03 | 湖南工业大学 | 一种弱电网下提高光伏并网逆变器稳定裕度的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105356507A (zh) * | 2015-11-23 | 2016-02-24 | 合肥工业大学 | 基于电网阻抗自适应的lc型并网逆变器双模式控制方法 |
CN108039729A (zh) * | 2017-12-21 | 2018-05-15 | 合肥工业大学 | 弱电网下基于模式自适应的多逆变器系统稳定控制方法 |
CN108933447A (zh) * | 2018-07-02 | 2018-12-04 | 合肥工业大学 | 弱网下基于模式切换的多逆变器系统参数自适应控制方法 |
CN110021959A (zh) * | 2019-04-02 | 2019-07-16 | 合肥工业大学 | 弱电网下基于短路比的并网逆变器双模式控制方法 |
EP3637574A1 (en) * | 2018-10-11 | 2020-04-15 | Universidade de Vigo | Method for estimating electrical parameters of a grid |
CN111769591A (zh) * | 2020-05-21 | 2020-10-13 | 合肥工业大学 | 基于双分裂变压器的多逆变器系统双模式组合控制方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110148943B (zh) * | 2019-06-18 | 2022-08-23 | 福州大学 | 一种抑制电网背景谐波影响的lcl并网逆变器阻抗重塑方法 |
-
2020
- 2020-05-21 CN CN202010434737.XA patent/CN111769591B/zh active Active
-
2021
- 2021-05-13 WO PCT/CN2021/093505 patent/WO2021233190A1/zh active Application Filing
- 2021-05-13 US US17/764,210 patent/US11979025B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105356507A (zh) * | 2015-11-23 | 2016-02-24 | 合肥工业大学 | 基于电网阻抗自适应的lc型并网逆变器双模式控制方法 |
CN108039729A (zh) * | 2017-12-21 | 2018-05-15 | 合肥工业大学 | 弱电网下基于模式自适应的多逆变器系统稳定控制方法 |
CN108933447A (zh) * | 2018-07-02 | 2018-12-04 | 合肥工业大学 | 弱网下基于模式切换的多逆变器系统参数自适应控制方法 |
EP3637574A1 (en) * | 2018-10-11 | 2020-04-15 | Universidade de Vigo | Method for estimating electrical parameters of a grid |
CN110021959A (zh) * | 2019-04-02 | 2019-07-16 | 合肥工业大学 | 弱电网下基于短路比的并网逆变器双模式控制方法 |
CN111769591A (zh) * | 2020-05-21 | 2020-10-13 | 合肥工业大学 | 基于双分裂变压器的多逆变器系统双模式组合控制方法 |
Non-Patent Citations (1)
Title |
---|
LI MING: "Research on Impedance Adaptive Dual-Mode Control of the Grid-Connected Inverter for High-Penetration New Energy Generation", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, CN, 15 January 2021 (2021-01-15), CN , XP055869643, ISSN: 1674-022X * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114285043A (zh) * | 2021-12-03 | 2022-04-05 | 国网黑龙江省电力有限公司电力科学研究院 | 一种极弱电网下并网逆变器功率传输能力提升方法 |
CN114285043B (zh) * | 2021-12-03 | 2023-06-09 | 国网黑龙江省电力有限公司电力科学研究院 | 一种极弱电网下并网逆变器功率传输能力提升方法 |
WO2023108925A1 (zh) * | 2021-12-15 | 2023-06-22 | 新疆金风科技股份有限公司 | 风力发电机组、风电变流器的控制方法和控制装置 |
CN114928076A (zh) * | 2022-06-09 | 2022-08-19 | 合肥工业大学 | 无交流电压传感器的虚拟同步机双闭环控制方法 |
CN114928076B (zh) * | 2022-06-09 | 2024-03-26 | 合肥工业大学 | 无交流电压传感器的虚拟同步机双闭环控制方法 |
CN115065092A (zh) * | 2022-06-22 | 2022-09-16 | 中南大学 | 单相并网变换器频率耦合调节控制方法 |
CN115065092B (zh) * | 2022-06-22 | 2024-04-19 | 中南大学 | 单相并网变换器频率耦合调节控制方法 |
CN115021317A (zh) * | 2022-06-24 | 2022-09-06 | 合肥工业大学 | 一种新能源自同步并网逆变器低电压穿越控制方法 |
CN115021317B (zh) * | 2022-06-24 | 2024-03-19 | 合肥工业大学 | 一种新能源自同步并网逆变器低电压穿越控制方法 |
CN115021323A (zh) * | 2022-07-22 | 2022-09-06 | 国网浙江省电力有限公司经济技术研究院 | 一种阻抗扫描系统及方法 |
CN116683528A (zh) * | 2023-08-03 | 2023-09-01 | 合肥工业大学 | 基于电压源和电流源分时的并网逆变器融合控制方法 |
CN116683528B (zh) * | 2023-08-03 | 2023-10-27 | 合肥工业大学 | 基于电压源和电流源分时的并网逆变器融合控制方法 |
Also Published As
Publication number | Publication date |
---|---|
US11979025B2 (en) | 2024-05-07 |
US20220352726A1 (en) | 2022-11-03 |
CN111769591A (zh) | 2020-10-13 |
CN111769591B (zh) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021233190A1 (zh) | 基于双分裂变压器的多逆变器系统双模式组合控制方法 | |
CN108847669B (zh) | 基于多同步旋转坐标系的多功能并网逆变器谐波治理方法 | |
CN105140921B (zh) | 一种基于电流源型逆变器实现的电力弹簧拓扑结构及其控制方法 | |
CN112217236B (zh) | 一种不对称故障下双馈风电并网系统虚拟阻抗控制方法 | |
CN103296700B (zh) | 微电网谐波和无功电流的无互联线补偿控制的方法 | |
WO2022022202A1 (zh) | 基于电感电流微分反馈的虚拟同步机强电网稳定控制方法 | |
CN106655199A (zh) | 一种提高电压稳定性的vsc‑hvdc功率控制方法 | |
CN110336318A (zh) | 一种单相光伏并网发电系统及控制方法 | |
CN113363985A (zh) | 一种双向功率变换器双模式并网控制策略 | |
Liu et al. | Stability control method based on virtual inductance of grid-connected PV inverter under weak grid | |
CN105490297A (zh) | 基于双逆变器群协调控制的微电网供电电压和电网电流谐波同步补偿方法 | |
CN113241748B (zh) | 电力电子变流器接入弱电网暂态过电压抑制方法及系统 | |
Huang et al. | Comparison of DC-link voltage control schemes on grid-side and machine-side for type-4 wind generation system under weak grid | |
CN113949294A (zh) | 基于调制信号补偿的隔离型ac/dc变换器控制方法 | |
CN116316697A (zh) | 并网变流器在弱电网不对称短路故障下的动态增稳控制方法 | |
CN114123206B (zh) | 面向电动汽车充电站的谐波治理方法 | |
CN113162117B (zh) | 一种弱电网下并网逆变器控制器带宽设计方法 | |
CN113013898B (zh) | 基于远端电网锁相的并网逆变器次同步振荡抑制方法 | |
CN102832644B (zh) | 三相并网逆变器控制系统及方法 | |
CN112838601A (zh) | 基于锁相优化的柔直输电系统高频振荡抑制方法及系统 | |
Wang et al. | Impedance modeling of PMSG wind farms from the machine side DC-port with outer power loop | |
CN110912130A (zh) | 一种双交流母线并网变换器的电路结构及其谐波补偿方法 | |
CN219717889U (zh) | 一种功率换流器谐波自适应控制电路 | |
CN117239813B (zh) | 一种考虑谐波抑制的低压储能变流器控制方法 | |
CN111641228B (zh) | 多功能光伏并网逆变器等效负载电流检测环节的构建方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21807783 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21807783 Country of ref document: EP Kind code of ref document: A1 |