WO2021233171A1 - 嵌入式空调器及其出风控制方法、计算机可读存储介质 - Google Patents

嵌入式空调器及其出风控制方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2021233171A1
WO2021233171A1 PCT/CN2021/093233 CN2021093233W WO2021233171A1 WO 2021233171 A1 WO2021233171 A1 WO 2021233171A1 CN 2021093233 W CN2021093233 W CN 2021093233W WO 2021233171 A1 WO2021233171 A1 WO 2021233171A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air conditioner
embedded
control method
fan
Prior art date
Application number
PCT/CN2021/093233
Other languages
English (en)
French (fr)
Inventor
张继通
董德智
张吉义
赵心蕾
陈冬铃
王春玉
王海梅
刘新波
李珍
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021233171A1 publication Critical patent/WO2021233171A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the technical field of air conditioners, in particular to an embedded air conditioner, an air outlet control method thereof, and a computer readable storage medium.
  • Embedded air conditioners are also called ceiling or ceiling air conditioners. Because this type of air conditioner can save space and is more beautiful after installation, it has a wide range of applications and is mostly used in shopping malls, shops, office places, etc.
  • the control method of embedded air conditioner is mainly manual control. Even if it has automatic control, its logic is relatively simple. Usually, it is only based on the size of the indoor environment temperature to adjust the start and stop of the fan. However, in indoor spaces such as shopping malls and office spaces, it is difficult for users to adjust the air supply intensity of the air conditioner in real time based on the current number of people in the room due to the dense population and high mobility. This makes the existing embedded air conditioners basically Maintaining the same mode for a long period of time continues to run, which seriously affects the comfort of users. Especially when there are very few or no people in the room, the continuous operation of the air conditioner will cause energy waste.
  • the present invention provides an air outlet control method of the embedded air conditioner ,
  • the embedded air conditioner includes a shell, a heat exchanger and a fan are arranged in the shell, a plurality of main air outlets are opened on the shell, and each of the main air outlets is equipped with an air deflector, The air deflector is pivotally connected to the main air outlet,
  • the wind control method includes:
  • the air outlet control method includes:
  • the opening and closing of the wind deflector and the rotation speed of the fan are controlled.
  • the step of "controlling the opening and closing of the air deflector and the rotation speed of the fan based on the duration of the nobody state" further includes:
  • the air deflector of the control part is closed, and the fan is controlled to run at a first preset speed.
  • a plurality of corner air outlets are also opened on the housing, "based on the duration of the unmanned state, the opening and closing of the air deflector is controlled.
  • the step of "and the rotation speed of the fan” further includes:
  • the second time threshold is greater than the first time threshold, and the second preset rotation speed is less than the first preset rotation speed.
  • the step of "controlling the opening and closing of the air deflector and the rotation speed of the fan based on the duration of the nobody state" further includes:
  • the embedded air conditioner is controlled to shut down.
  • the housing includes a bottom plate and a plurality of side plates arranged around the bottom plate, and each of the side plates is provided with a central part along the length direction.
  • the corner air outlet is provided on both sides of the main air outlet.
  • the air outlet control method further includes:
  • the operating mode includes at least a normal air supply mode and the energy-saving mode
  • the current operation mode is the energy-saving mode and the judgment result is that there are people in the room, control all the wind deflectors to fully open, and control the fan to run at the third preset speed for a preset time.
  • the air outlet control method further includes:
  • the air outlet control method includes:
  • All the air deflectors are controlled to be fully opened, and based on the number of personnel, the rotation speed of the fan is controlled.
  • the step of "controlling the rotation speed of the fan based on the number of persons" further includes:
  • the third preset rotational speed, the fourth preset rotational speed, and the fifth preset rotational speed decrease sequentially.
  • the present application also provides an embedded air conditioner, the embedded air conditioner comprising: a memory; a processor; and a computer program, the computer program is stored in the memory and configured to be executed by the processor In order to realize the air outlet control method described in any one of the above-mentioned preferred technical solutions.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement the air outlet control method according to any one of the above-mentioned preferred technical solutions .
  • the embedded air conditioner includes a shell, a heat exchanger and a fan are arranged in the shell, and a plurality of main air outlets are opened on the shell.
  • the air outlets are equipped with air deflectors, which are pivotally connected to the main air outlet.
  • the air outlet control method includes: obtaining the number of people in the indoor environment during the operation of the embedded air conditioner; and judging the indoor environment based on the number of people Whether there are people; when the judgment result is that there is no one in the room and the duration of the nobody state is greater than or equal to the preset time threshold, the embedded air conditioner is controlled to run in the energy-saving mode; when the embedded air conditioner is in the energy-saving mode, the air outlet control method includes : Control the opening and closing of the wind deflector and the speed of the fan based on the duration of the nobody state.
  • the air outlet control method of this application can reasonably adjust the air outlet intensity based on the number of indoor people, and reduce the number of people indoors. Timely air conditioning energy consumption to avoid energy waste. Further, by controlling the opening and closing of the air deflector and the speed of the fan based on the duration of the nobody state when the embedded air conditioner is running in the energy-saving mode, the air outlet control method of the present application can also take into account the operation effect and energy consumption of the air conditioner. .
  • the control part of the air deflector is closed, and the fan is controlled to run at the first preset speed, so as to reduce the operating energy consumption of the embedded air conditioner.
  • the air conditioner still has a certain wind intensity to ensure the stable change of the indoor ambient temperature.
  • control all wind deflectors to close, and control the fan to run at the second preset speed, which can further reduce the operation of the embedded air conditioner Energy consumption, and rely on the corner air outlets for air to further ensure the stability of the indoor temperature.
  • the duration of the indoor unmanned state is greater than the second time threshold, it is proved that the indoor has been in an unmanned state for a long time. At this time, the embedded air conditioner is controlled to shut down to minimize energy consumption.
  • the air conditioner when the air conditioner is currently running in the energy-saving mode and the judgment result is that there are people in the room, all the air deflectors are controlled to be fully opened, and the fans are controlled to run at the third preset speed for a preset time, so that the embedded air conditioner can operate at a higher speed.
  • the wind intensity of the operation so as to adjust the indoor environment temperature at a faster speed, to ensure the comfort of the indoor environment.
  • the embedded air conditioner controls the embedded air conditioner to continue to operate in the normal air supply mode when the air conditioner is currently operating in the normal air supply mode and the judgment result is that there are people in the room, and further control the fan speed based on the number of indoor people, the embedded air conditioner The intensity of the wind can be matched with the number of indoor personnel to ensure the comfort of the indoor environment.
  • Figure 1 is a structural diagram of the main structural components of the embedded air conditioner of the present invention.
  • Figure 2 is a structural diagram of some parts of the embedded air conditioner of the present invention (the upper cover of the drain pan is omitted);
  • Fig. 3 is a structural diagram of some parts of the embedded air conditioner of the present invention after omitting the heat exchanger (1);
  • Figure 4 is a structural diagram of some parts of the embedded air conditioner of the present invention after omitting the heat exchanger (2);
  • Figure 5 is a structural diagram of some parts of the embedded air conditioner of the present invention omitting the shell and the heat exchanger;
  • Figure 6 is an assembly diagram (1) of the water receiving tray and the corner cover of the embedded air conditioner of the present invention.
  • Figure 7 is an assembly diagram (2) of the water receiving tray and the corner cover of the embedded air conditioner of the present invention.
  • Figure 8 is a structural diagram (1) of the water receiving tray of the embedded air conditioner of the present invention.
  • Figure 9 is a structural diagram of the water receiving tray of the embedded air conditioner of the present invention (2).
  • Figure 10 is a partial enlarged view of Figure 8 at A;
  • Figure 11 is a partial enlarged view of Figure 8 at B;
  • FIG. 12 is a structural diagram of the upper cover of the water receiving tray of the embedded air conditioner of the present invention.
  • Figure 13 is a structural diagram of the first cover of the embedded air conditioner of the present invention.
  • 15 is the main flow chart of the method for controlling the air outlet of the embedded air conditioner of the present invention.
  • FIG. 16 is a flowchart of a preferred embodiment of the method for controlling the air outlet of the embedded air conditioner of the present invention.
  • Fig. 17 is a logic diagram of a possible implementation manner of the method for controlling the air outlet of the embedded air conditioner of the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the embedded air conditioner of the present application includes a casing and a fan ( Figure Not shown in), heat exchanger 2, water receiving tray 3, and multiple corner covers.
  • the housing includes a bottom plate 11 and a plurality of side plates 12 arranged around the bottom plate 11.
  • a return air outlet 111 is opened in the middle of the bottom plate 11.
  • the adjacent side plates 12 are connected to each other and form a corner at the joint.
  • a main air outlet 121 is opened along the middle of the length direction.
  • the main air outlet 121 is equipped with a wind deflector 15 which is driven by a driving mechanism (such as a driving motor) to open and close relative to the main air outlet 121.
  • a driving mechanism such as a driving motor
  • At least one end of each side plate 12 along the length direction is provided with a corner air outlet 122 at a position adjacent to the corner.
  • the fan is arranged in the casing, and the heat exchanger 2 is enclosed between the fan and the plurality of side plates 12.
  • the water receiving tray 3 includes a first body 31 that matches the shape of the outer edge of the bottom plate 11, and a corner wind guide structure is provided on the first body 31 at a position corresponding to each corner; a plurality of corner covers Each corner cover in the middle is covered and connected with a corner air guiding structure, and an air guiding channel is formed between the two after being connected.
  • a certain space for air flow is formed between the heat exchanger 2 and the side plate 12.
  • One end of the air induction channel is connected to the space, and the other end is connected to the corner air outlet 122. The airflow is guided to the adjacent corner air outlet 122.
  • the fan starts to run, and the wind deflector 15 is opened to a certain angle.
  • the indoor air enters the inside of the housing from the return air outlet 111, and after the heat exchange is performed in the heat exchanger 2, a part of the heat exchanged airflow is discharged from the main air outlet 121 under the guidance of the air guide plate 15.
  • a part of the airflow after heat exchange is discharged through the corner air outlet 122 under the guidance of the air duct.
  • the embedded air conditioner of the present application can increase the air supply volume of the corner air outlet 122 during operation, reduce the temperature difference between the various areas in the room, and improve the temperature uniformity between the various areas in the room.
  • the side air outlet of the embedded air conditioner is realized, which can increase the air outlet area of the embedded air conditioner and realize a large indoor area. Air supply.
  • the air return port 111 is provided in the middle of the bottom plate 11, the problem of air flow short circuit between the air return port 111 and the air outlet can be avoided.
  • the air guiding channel is formed between the corner covering part and the corresponding corner air guiding structure,
  • the air induction channel can guide the heat exchanged airflow to the corner air outlet 122, thereby increasing the air supply volume of the corner air outlet 122, so that the air supply area corresponding to the corner air outlet 122 is in line with the main air outlet 121
  • the temperature difference between the right areas is reduced, and the temperature uniformity of each area in the room is improved.
  • the housing includes a bottom plate 11 and a plurality of side plates 12.
  • the outer edge of the bottom plate 11 is approximately square, and a square air return port 111 is opened in the middle.
  • There are four side plates 12, and the four side plates 12 are respectively formed by the four outer edges of the bottom plate 11 extending upward, and the four side plates 12 are sequentially connected along the circumference of the bottom plate 11, and the adjacent side plates 12 are at the joints.
  • the corners are formed. In the present application, there are a total of four corners.
  • a main air outlet 121 is formed in the middle of each side plate 12 along the length direction, and each main air outlet 121 is equipped with an air deflector 15 which is pivotally connected to the main air outlet 121 and is connected to the main air outlet 121 by a driving mechanism (such as The driving of the driving motor) realizes the opening and closing relative to the main air outlet 121.
  • Each side plate 12 is also provided with two corner air outlets 122. As shown in FIG. 1, two corner air outlets 122 are provided on both sides of each main air outlet 121, and the two corner air outlets 122 are respectively It is arranged near one end of the side plate 12, and the corner air outlet 122 is not provided with a wind guide member and is in a normally-on state.
  • the side plate 12 and the bottom plate 11 may be integrally formed, such as integral injection molding, of course, they may also be fixedly connected by welding, clamping, screwing, or the like.
  • the above-mentioned housing may obviously also include other components, such as a corner cover or a box connected to the side plate 12, which will not be repeated in this application.
  • the heat exchanger 2 is strip-shaped.
  • the strip-shaped heat exchanger 2 extends along the inner side of the side plates 12 and is bent to form a rounded rectangle, and the two free ends of the heat exchanger 2 extend to one corner and are at the corner. Piping gaps are formed at the part to facilitate the connection of piping.
  • the four corners of the present application further include a first corner 13 and a second corner 14, wherein the two free ends of the heat exchanger 2 form a piping gap and the corresponding corner is the first corner 13, and the rest of the heat exchange
  • the three corners corresponding to the three bend round corners of the device 2 are the second corners 14.
  • the water tray 3 is made of foam material or plastic material, which includes a first body 31 matching the shape of the outer edge of the bottom plate 11, the first body 31 is ring-shaped, most of which are provided Between the heat exchanger 2 and the bottom plate 11.
  • the first body 31 is provided with a water receiving tank to collect the condensed water flowing down the coil of the heat exchanger 2.
  • the first body 31 is provided with a first air guiding structure 32 and a second air guiding structure 33 at positions corresponding to the first corner 13 and the second corner 14 respectively, and the first air guiding structure 32 is covered with a first cover
  • a second cover member 42 is provided on the cover of the second air guiding structure 33.
  • the first cover 41 and the first air guiding structure 32 enclose two first air guiding channels 51, and each first air guiding channel 51 corresponds to one corner air outlet 122 of the first corner 13.
  • the second cover 42 and the second air guiding structure 33 enclose two second air guiding channels 52, and each second air guiding channel 52 corresponds to a corner air outlet 122 of the second corner 14.
  • FIGS. 6 to 8, FIG. 10 and FIG. 13 the first air guiding structure 32 and the first cover 41 of the present application will be introduced.
  • the first air guiding structure 32 includes a first corner protrusion 321 extending upward from the first body 31, two vertical ribs 322 and two horizontal ribs 323.
  • the first corner protrusion 321 is arranged at the position of the first body 31 of the drain pan 3 corresponding to the first corner 13, and when installed, the first corner protrusion 321 partially abuts against the inner side of the first corner 13 .
  • the bottom ends of the two vertical ribs 322 (that is, the lower end in FIG. 10) are respectively connected to the first body 31, and the top ends of the two vertical ribs 322 (that is, the upper end in FIG. 10) form a first corner respectively.
  • the direction away from the first corner 13 is bent and extended to form free ends.
  • the first ends of the two transverse ribs 323 are respectively connected to the side of the first corner protrusion 321 away from the first corner portion 13, and the second ends of the two transverse ribs 323 are respectively along the two sides forming the first corner portion 13.
  • the length direction of the two side plates 12 extends away from the first corner 13 and is finally connected to the bottom end of a vertical rib 322 respectively.
  • the first cover 41 includes a first plate body 411 and the sides of the first plate body 411 along the length direction of the two side plates 12 constituting the first corner 13 Two upper air-inducing grooves 412 curved and extending in the direction away from the first corner 13.
  • the first air guide structure 32 is formed with a first stepped surface 35.
  • the first stepped surface 35 is formed by a part of the top surface of the first corner protrusion 321 and a part of the top surface of the two transverse ribs 323.
  • a cover member 41 is fixedly covered on the first air guiding structure 32 through the first stepped surface 35.
  • each upper air-inducing groove 412 is butted with the corresponding lower air-inducing groove to form a first air-inducing channel 51.
  • the inside of the first air-inducing channel 51 is along the length of the side plate 12.
  • An S-shaped flow channel extending in the direction, and the inlet of the first air guide passage 51 is higher than the outlet.
  • the upper air guide groove 412 is provided with an air guide slope 4121 on an inner side surface corresponding to the entrance of the first air guide channel 51, so that the entrance of the first air guide channel 51 forms a bell mouth.
  • the upper air guiding groove 412 is provided with an air guiding inclined surface 4122 on an inner surface corresponding to the outlet of the first air guiding channel 51, so that the outlet of the first air guiding channel 51 is inclined downward to facilitate the first air guiding.
  • the air flow in the channel 51 passes through the corner air outlet 122 and then blows out obliquely downward.
  • the second air guide structure 33 includes a second corner protrusion 331 extending upward from the first body 31 and two vertical protrusions 332.
  • the second corner protrusion 331 is provided
  • the first body 31 of the water receiving tray 3 corresponds to the position of the second corner 14, and the second corner protrusion 331 partially abuts the inner side of the second corner 14 when installed.
  • Two vertical projections 332 are respectively arranged on both sides of the second corner projection 331 along the length direction of the two adjacent side plates 12 constituting the second corner 14. Each vertical projection 332 is connected to the second corner.
  • a wind-inducing gap 34 is formed between the bumps 331.
  • the second cover member 42 includes a second plate body 421 and two protrusions 422 formed by extending downward from the bottom surface of the second plate body 421.
  • the second air guide structure 33 is formed with a second stepped surface 36.
  • the second stepped surface 36 is formed by a part of the top surface of the second corner protrusion 331 and a part of the top surface of the two vertical protrusions 332.
  • the second covering member 42 is fixedly covered on the second air guiding structure 33 through the second stepped surface 36.
  • each protrusion 422 is embedded in an air-inducing gap 34, so that the air-inducing gap 34 and the protrusion 422 are enclosed to form a second air-inducing structure Channel 52.
  • part of the inner surface of the vertical protrusion 332 is provided with a wind guide slope 3321
  • the top surface is provided with a wind guide slope 3322
  • the wind guide slopes 3321 provided on the inner sides of the two vertical protrusions 332 are arranged symmetrically to each other, so that A tapered trumpet-shaped space is formed between the two along the air flow direction, so as to guide the heat exchanged air flow to the entrance of the second air induction channel 52.
  • the air guide inclined surface 3322 provided on the top surface of the two vertical protrusions 332 is inclined toward the inside of the air conditioner, so as to guide the heat exchanged air flow to the entrance of the second air guide channel 52. Referring to FIG.
  • two wind guide openings 34 are respectively provided with wind guide slopes 341, and the height of the wind guide slopes 341 gradually decreases along the airflow direction.
  • the bottom surface of each protrusion 422 is correspondingly provided with a wind guide slope 4221.
  • the height of the wind guide slope 4221 gradually decreases in the direction of the wind, so that the second wind guide
  • the outlet of the channel 52 is inclined obliquely downward, so as to guide the air flow in the second air-inducing channel 52 to blow out obliquely downward after passing through the corner air outlet 122.
  • the outer side of the first air guiding structure 32 is formed with first avoiding grooves 3221 at positions corresponding to both ends of the air guiding plate 15, and the outer side of the second air guiding structure 33 corresponds to the air guiding plate 15.
  • Second avoidance grooves 3323 are formed at the two ends. Specifically, the first avoiding groove 3221 is formed below the curved top end of the vertical convex rib 322, and the second avoiding groove 3323 is opened outside the vertical convex block 332.
  • the upper cover 6 of the water receiving tray is made of foam material or plastic material, and includes a second body 61 and a plurality of side edges formed by the edges of the second body 61 extending downward. 62.
  • the second body 61 is covered on the top of the heat exchanger 2, and the side 62 at least partially covers the outer surface of the heat exchanger 2.
  • the side 62 of the upper cover 6 of the water receiving tray can extend to completely cover the outer side of the heat exchanger 2. In this way, a relatively closed space is enclosed between the second body 61 of the upper cover 6 of the water receiving tray, the side 62, the outer surface of the heat exchanger 2 and the side plate 12 of the shell.
  • the inner surface of the two adjacent sides 62 corresponding to the water tray 3 and the first corner 13 are each provided with a triangular rib 621, the triangular rib 621 has three wind guide slopes 6211, two of which The air guiding inclined surface 6211 is symmetrically arranged and inclined to the left and right sides of the side 62 respectively.
  • the other air guiding inclined surface 6211 is inclined upward after the upper cover 6 of the water receiving pan is installed, so that the air guiding inclined surface 6211 can flow the air after the heat exchange. Lead to the first air induction channel 51.
  • the two first air induction passages 51 of one corner 13 are arranged as S-shaped flow passages extending along the length direction of the side plate 12, and the entrance of the first air induction passage 51 is higher than the outlet, so that the vicinity of the first corner 13
  • the air flow after heat exchange with the upper part of the second peripheral side of the heat exchanger enters the first air induction channel 51 and is discharged to the corner air outlet 122 through the S-shaped flow channel of the first air induction channel 51. Since the air flow at the remaining second corner 14 can all exchange heat with the heat exchanger 2, the inlets of the two second air ducts 52 provided at the second corner 14 are directly facing the heat exchanger.
  • the setting in the direction of 2 can directly introduce the air flow near the second corner 14 after heat exchange with the heat exchanger 2 into the second air induction channel 52 and discharge it to the corner air outlet 122 through the second air induction channel 52.
  • an air guiding inclined surface 4121 is provided on an inner side of the upper air guiding groove 412 corresponding to the entrance of the first air guiding channel 51, and two adjacent first corners 13 of the upper cover 6 corresponding to the water receiving tray are provided.
  • a triangular rib 621 is provided on each side 62 of the triangular rib, and an air guiding slope 6211 is provided on the triangular rib 621, which can successfully guide the air flow to the entrance of the first air guiding channel 51, thereby increasing the first air guiding channel 51
  • the air inlet volume is further increased to increase the air outlet volume of the corner air outlet 122, so as to avoid the small air outlet of the corner air outlet 122 due to the formation of a piping gap at the first corner 13.
  • an air guiding inclined surface 3321 is provided on the inner side of the vertical protrusion 332, an air guiding inclined surface 3322 is provided on the top surface, the airflow after heat exchange can be guided to the entrance of the second air guiding channel 52, and the second air guiding channel 52 can be increased.
  • the inlet air volume of the air channel 52 further increases the air outlet volume of the corner air outlet 122.
  • the air flow in the first air guiding channel can be guided obliquely downward after passing through the corner air outlet 122 By blowing out, the blowing effect of the corner air outlet 122 of the first corner 13 is improved.
  • the air guide slope 341 is provided at the air guide gap 34, and the air guide slope 4221 is provided on the bottom surface of the protrusion 422, which can guide the air flow in the second air guide channel 52 to blow obliquely downward after passing through the corner air outlet 122 , The air blowing effect of the corner air outlet 122 of the second corner 14 is improved.
  • the first cover member 41 is fixedly covered to the first air guide structure 32 through the first stepped surface 35, so that the first cover member 41 can be firmly The cover is combined and clamped between the first air guiding structure 32 and the side plate 12 to prevent air leakage from the first air guiding channel 51 from occurring.
  • the second cover member 42 is fixedly covered to the second air guide structure 33 through the second stepped surface 36, so that the second cover member 42 can The firm cover is combined and clamped between the second air guiding structure 33 and the side plate 12 to prevent air leakage from the second air guiding channel 52.
  • an escape space can be reserved for the motor of the air deflector 15 to facilitate air conditioning. Assembly of the device.
  • the water receiving tray 3 can form a barrier on the upper and outer sides of the heat exchanger 2 to prevent The heat-exchanged air flow does not pass through the air-inducing passages, but directly leaks through the upper part or the upper side of the heat exchanger 2 so as to increase the air inlet volume of the air-inducing passages and ensure the air outlet effect of the corner air outlets 122.
  • the foregoing embodiment is described in conjunction with two different corner wind-inducing structures and corner cover parts, the application is not limited to this, and other possible
  • the positions of the two free ends of the heat exchanger 2 can also be changed so that the four corners have the same structure.
  • the four corners can be arranged in accordance with the arrangement of the second corner 14 described above.
  • the above embodiment describes the first air guiding structure 32, the first covering member 41, the second air guiding structure 33, and the second covering member 42 in great detail.
  • this is not intended to limit the scope of protection of this application.
  • Those skilled in the art can adjust the above-mentioned structure based on the principles of this application, as long as the adjustment can effectively travel the first air induction channel 51 and the second air induction channel 52 is fine.
  • a person skilled in the art can change the inlet direction of the first air guiding channel 51 by changing the structure of the first air guiding structure 32 and the first cover 41, so that the inlet direction and the side plate 12 form a certain clip. Angle, so that the air flow enters more smoothly.
  • those skilled in the art can also omit the arrangement of the air guiding slopes 4121 and 4122 in the upper air guiding groove 412, which does not affect the implementation of this application.
  • those skilled in the art can also adjust the specific shape and location of the second air guide structure 33 and the second cover 42, or omit the air guide slope 4221 or the air guide gap 34 provided on the protrusion 422.
  • the wind guide slope 341 and so on can also be adjusted.
  • each The number of corner air outlets 122 provided on the side plate 12 is not limited, and the number of corner air outlets 122 can also be set to one or more. Under the premise of changing the number, it is only necessary to form the corresponding The first air guiding structure 32 and the first covering member 41 of an air guiding channel 51, and the second air guiding structure 33 and the second covering member 42 forming the second air guiding channel 52 can be adjusted.
  • FIG. 15 is the main flowchart of the air outlet control method of the embedded air conditioner of the present invention.
  • this application also provides an embedded air conditioner
  • the wind control methods include:
  • the embedded air conditioner obtains the number of people in the indoor environment; for example, a human body detection component is installed on the bottom plate of the embedded air conditioner (hereinafter or referred to as the air conditioner), such as an infrared sensor, a camera or Radar sensors, etc.
  • the air conditioner can obtain the current number of human bodies in the room based on the above-mentioned human body detection components.
  • the principle of detecting the number of human bodies by the above-mentioned human body detection component is common knowledge in the art, and will not be repeated here.
  • the human body detection component can also be arranged in any possible position, such as on the ceiling or wall of an indoor space.
  • S103 Determine whether there are people in the room based on the number of people; for example, after obtaining the number of people in the room, determine whether the number of people is zero, and if so, determine that there are no people in the room; otherwise, if the number of people is not zero, then determine whether the number of people in the room is not zero. Someone.
  • the preset time threshold is not static, and those skilled in the art can adjust it, so that the air outlet control method is suitable for more specific application scenarios.
  • the preset time threshold can also be any value within 2min-50min.
  • the embedded air conditioner runs in the energy-saving mode, control the opening and closing of the air deflector and the speed of the fan based on the duration of the nobody state. For example, when the embedded air conditioner runs in the energy-saving mode, the duration of the nobody state is less than 1 hour, the control part of the air deflector is turned off, and the fan runs at a reduced speed; on this basis, if the duration of the nobody state exceeds 1 hour , Then further control all wind deflectors to close, and further reduce the speed of the fan.
  • the air outlet control method of this application can be reasonably adjusted based on the number of indoor personnel.
  • the wind intensity reduces the energy consumption of the air conditioner when there is no one in the room, and avoids energy waste.
  • the air outlet control method of the present application can also take into account the operation effect and energy consumption of the air conditioner. .
  • FIG. 16 is a flowchart of a preferred embodiment of the method for controlling the air outlet of the embedded air conditioner of the present invention.
  • the air outlet control method of the embedded air conditioner includes the following steps:
  • step S201 is performed to obtain the number of people in the indoor environment during the operation of the embedded air conditioner; for example, the number of people in the indoor environment is obtained through human inspection components such as infrared sensors, cameras, or radar sensors set on the bottom plate.
  • human inspection components such as infrared sensors, cameras, or radar sensors set on the bottom plate.
  • step S203 is executed to determine whether there are people in the room based on the number of people in the indoor environment; if not, step S205 is executed to further determine whether the duration of the nobody state is greater than or equal to the preset time threshold; otherwise, if there is, then Step S215 is executed to further determine whether the current operation mode of the air conditioner is the normal air supply mode.
  • step S205 When step S205 is executed, if the further judgment result is yes, that is, the duration of the nobody state is greater than or equal to the preset time threshold, then step S207 is executed to control the air conditioner to operate in the energy-saving mode, that is, to control the wind guide based on the duration of the nobody state The opening and closing of the board and the rotation speed of the fan; otherwise, if the judgment result is no, that is, the duration of the state of each person is less than the preset time threshold, the air conditioner is controlled to return to step S201 to reacquire the number of people in the indoor environment.
  • the duration of the unmanned state is greater than or equal to the preset time threshold, it is proved that the room has been in an unmanned state for a period of time. At this time, no matter what operating mode the air conditioner was in before, if you continue to follow This mode of operation will cause energy waste. At this time, controlling the opening and closing of the wind deflector and the speed of the fan based on the duration of the unmanned state can not only save energy, but also take into account the operating effect of the air conditioner. Conversely, if the duration of the nobody state is less than the preset time threshold, it proves that the time that the room is in the nobody state is too short.
  • controlling the air conditioner to run the energy-saving mode may cause frequent start and stop of the air conditioner and mode switching. Conducive to the control stability and service life of the air conditioner.
  • the air conditioner is controlled to return to step S201 to reacquire the number of people in the room.
  • the preset time threshold is preferably 30 minutes in this application, and of course, those skilled in the art can adjust it based on actual application scenarios. For example, when the indoor environment space is large, the flow of people is more frequent. At this time, the preset time threshold can be appropriately increased to avoid frequent switching operation modes of the air conditioner; when the indoor environment space is small, the flow of people is less. Appropriately reduce the preset time threshold to ensure that the mode switching of the air conditioner is more timely.
  • the operation mode of the air conditioner includes at least a normal air supply mode and an energy-saving mode.
  • the normal air supply mode is applied to the situation where there are people indoors by controlling the opening and closing of the air deflector and the speed of the fan. To adjust the indoor ambient temperature and create a comfortable environment for indoor personnel.
  • the energy-saving mode corresponds to the situation where there is no one in the room. It reduces the operating energy consumption of the air conditioner by controlling part or all of the air baffle to close, and greatly reducing the speed of the fan. In general, the operating energy consumption of the normal air supply mode is greater than that of the energy-saving mode.
  • the operation mode of the air conditioner includes only the normal air supply mode and the energy-saving mode as an example for description.
  • step S207 further includes:
  • the first time threshold may be 1h
  • the second time threshold may be 2h
  • the first preset speed may be 1/4n
  • the second preset speed may be 1/8n, where n is the rated speed of the fan or Maximum speed.
  • the control part of the air deflector is closed.
  • the two opposite air deflectors are controlled to close, and the fan speed is reduced to 1/4 of the rated speed or the maximum speed.
  • the air conditioner The air conditioner is in a weak air supply state with dual air guide plates, which can reduce the energy consumption of the air conditioner, so that the air conditioner still has a certain peak intensity, and ensures a stable indoor ambient temperature.
  • the air conditioner When the indoor environment is in an unoccupied state for more than 1h and less than 2h, control all air deflectors to close, and reduce the fan speed to 1/8 of the rated speed or the maximum speed. At this time, the air conditioner is at the corner of the air outlet to supply air State, to further reduce the energy consumption of the air conditioner while ensuring stable temperature changes. When the indoor environment is filled with no one for more than 2 hours, it proves that the room has been left unmanned for a long time. At this time, the air conditioner is controlled to shut down to minimize energy consumption.
  • the indoor temperature can be changed steadily and slowly, and the direct shutdown control method in the unmanned state can avoid frequent air conditioners caused by the direct shutdown control method. Start-stop, large fluctuations in indoor ambient temperature occur.
  • first time threshold the second time threshold
  • first preset rotation speed the first preset rotation speed
  • second preset rotation speed the second preset rotation speed in the above specific examples are not unique.
  • Those skilled in the art can make adjustments based on actual application scenarios, and this adjustment does not deviate from this application.
  • step S215 is executed to determine whether the current operating mode of the air conditioner is the normal air supply mode, for example, by obtaining the fan speed, the rotation angle of the driving motor of the wind deflector, etc. Obtain the current air supply mode, or obtain the current air supply mode by reading the current operating status information, etc. If the judgment result is yes, that is, the current operation mode is the normal air supply mode, step S217 is executed to continue the operation in the normal mode. Among them, in the normal air supply mode, the air deflector is controlled to fully open, and the speed of the fan is controlled based on the number of personnel.
  • step S217 further includes:
  • the first number threshold may be 5
  • the second number threshold may be 2
  • the third preset speed may be n
  • the fourth preset speed may be 3/4n
  • the fifth preset speed may be 1/2n
  • n can also be the rated speed or the maximum speed of the fan.
  • the embedded air conditioner is controlled to continue to operate in the normal air supply mode, and the speed of the fan is further controlled based on the number of people in the room to make the embedded air conditioner air out
  • the intensity can be matched with the number of indoor personnel to ensure the comfort of the indoor environment.
  • step S215 when the judgment result of step S215 is no, that is, when the air conditioner is currently in the energy-saving air supply mode, it proves that the room has changed from an unmanned state to a manned state at this time, and the indoor environment temperature needs to be quickly adjusted to a more comfortable temperature.
  • step S223 is directly executed, that is, the air deflector is controlled to be fully opened, and the fan is controlled to run at the rated speed or the maximum speed, so as to quickly adjust the low indoor ambient temperature.
  • the first number threshold, the second number threshold, the third preset speed, the fourth preset speed, and the fifth preset speed in the above specific examples are not unique, and those skilled in the art can make adjustments based on actual application scenarios. The adjustment does not deviate from the principle of this application.
  • step S205 the step of obtaining the current operating mode in step S205 and determining whether it is the normal air supply mode can be performed after the determination result of step S203 is that there are people in the room, or before step S203, or when the control method starts to be performed.
  • step S201 the step of controlling the fan speed based on the number of personnel when operating in the normal air supply mode may be omitted.
  • FIG. 17 is a logic diagram of a possible implementation manner of the method for controlling the air outlet of the embedded air conditioner of the present invention.
  • the embedded air conditioner is in operation.
  • step S301 obtain the number of people in the indoor environment M through the infrared sensor, and determine whether M>0 is established based on the obtained M; when M>0 is established, it is proved that the indoor is in a human state, and then perform the step S305: It is further judged whether the current operation mode of the air conditioner is an energy-saving mode; otherwise, when M>0 is not established, it is proved that the room is in an unmanned state.
  • step S307 is executed to determine whether the duration of being in an unmanned state is T ⁇ 0.5h. Established.
  • step S305 When performing step S305, if the current operating mode of the air conditioner is the energy-saving mode, control the air conditioner to perform step S313, control the air deflector to be fully opened, and control the fan to run at the highest speed n; otherwise, when the air conditioner is running
  • step S309 is executed to control the air conditioner to continue to operate in the air supply mode, that is, the air deflector is controlled to be fully opened, and the speed of the fan is controlled based on the current number of people M.
  • step S309 After performing step S309, first determine whether the number of personnel M ⁇ 5 is established. If M ⁇ 5 is established, perform step S313 to control the wind deflector to fully open and control the fan to run at the maximum speed n; otherwise, when M When ⁇ 5 is not established, step S323 is executed to further determine whether M ⁇ 2 is established.
  • step S323 When step S323 is executed, if M ⁇ 2 is not established, then step S321 is executed to control the air deflector to be fully opened, and control the rod fan to run at 3/4 of the maximum speed n; otherwise, if M ⁇ 2 is established, then Step S329 is executed to control the wind deflector to be fully opened, and control the fan to run at 1/2 of the maximum speed n.
  • step S307 When performing step S307, if T ⁇ 0.5h does not hold, then return to step S301, and reacquire the number of personnel M after a certain interval; otherwise, if T ⁇ 0.5h holds, then perform step S311 to control the air conditioner to enter Energy-saving mode operation, which controls the opening and closing of the air deflector and the speed of the fan based on the duration of the nobody state.
  • step S311 After performing step S311, first determine whether T ⁇ 1h is established, if T ⁇ 1h is established, then perform step S319, control the two wind deflectors arranged opposite to each other to close, and control the fan to 1/4 of the maximum speed n Run; otherwise, if T ⁇ 1h is not established, step S325 is executed to further determine whether T ⁇ 2h is established.
  • step S325 When step S325 is executed, if T ⁇ 2h is not established, then step S327 is executed to control all the air deflectors to close and control the fan to run at 1/8 of the maximum speed n; otherwise, if T ⁇ 2h is established, execute In step S331, the embedded air conditioner is controlled to stop.
  • the present invention also provides a computer-readable storage medium.
  • the computer-readable storage medium may be configured to store a program that executes the air outlet control method of an embedded air conditioner in the foregoing method embodiment, and the program may be loaded by a processor And run to realize the above-mentioned embedded air conditioner air outlet control method.
  • the computer-readable storage medium may be a storage medium device formed by various electronic devices.
  • the storage in the embodiment of the present invention is a non-transitory computer-readable storage medium, such as a magnetic disk, hard disk, optical disk, flash memory, Read memory, random access memory, etc.
  • the present invention also provides an embedded air conditioner.
  • the embedded air conditioner includes a processor and a memory
  • the memory may be configured to store a computer program that executes the air outlet control method of the embedded air conditioner in the above method embodiment
  • the processor may be configured to execute a computer program in the memory to implement the above-mentioned method for controlling the air outlet of the embedded air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Air-Flow Control Members (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种嵌入式空调器及其出风控制方法、计算机可读存储介质。该出风控制方法包括步骤:在嵌入式空调器运行过程中,获取室内环境中的人员数量(S101);基于人员数量,判断室内是否有人(S103);在判断结果为室内没人且没人状态的持续时间大于等于预设时间阈值时,则控制嵌入式空调器运行节能模式(S105);当嵌入式空调器运行节能模式时,基于没人状态的持续时间,控制导风板的开闭和风机的转速(S107)。该出风控制方法能够基于室内人员数量合理调整出风强度,降低室内无人时的空调能耗,避免能源浪费。

Description

嵌入式空调器及其出风控制方法、计算机可读存储介质 技术领域
本发明涉及空调技术领域,具体涉及一种嵌入式空调器及其出风控制方法、计算机可读存储介质。
背景技术
嵌入式空调器,又称天花机或吸顶式空调器,由于该种类型的空调器可以节省空间并且安装后也比较美观,因此其应用较为广泛,多应用于商场、商铺、办公场所等。
目前嵌入式空调器的控制方式主要为手动控制,即使具备自动控制其逻辑较为简单,通常只是基于室内环境温度的大小来调整风机的启停。但是在商场、办公场所等室内空间中,由于人员密集、流动性较大,用户很难基于当前的室内人数来实时调整空调器的送风强度,这就使得现有的嵌入式空调器基本上长时间都保持同一模式持续运行,严重影响用户的舒适性。特别是当室内人数极少或没有人时,空调持续运行,会造成能源浪费。
相应地,本领域需要一种新的嵌入式空调器的出风控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述至少一个问题,即为了解决嵌入式空调器无法基于室内人员数量控制送风强度,导致能源浪费的问题,本发明提供了一种嵌入式空调器的出风控制方法,所述嵌入式空调器包括壳体,所述壳体内设置有换热器和风机,所述壳体上开设有多个主出风口,每个所述主出风口都配置有导风板,所述导风板枢转连接于所述主出风口处,
所述出风控制方法包括:
在所述嵌入式空调器运行过程中,获取室内环境中的人员数量;
基于所述人员数量,判断室内是否有人;
在判断结果为室内没人且没人状态的持续时间大于等于预设时间阈值时,则控制所述嵌入式空调器运行节能模式;
当所述嵌入式空调器运行所述节能模式时,所述出风控制方法包括:
基于所述没人状态的持续时间,控制所述导风板的开闭和所述风机的转速。
在上述嵌入式空调器的出风控制方法的优选技术方案中,“基于没人状态的持续时间,控制所述导风板的开闭和所述风机的转速”的步骤进一步包括:
如果所述没人状态的持续时间小于第一时间阈值,则控制部分所述导风板关闭,并控制所述风机以第一预设转速运行。
在上述嵌入式空调器的出风控制方法的优选技术方案中,所述壳体上还开设有多个角部出风口,“基于没人状态的持续时间,控制所述导风板的开闭和所述风机的转速”的步骤进一步包括:
如果所述没人状态的持续时间大于等于所述第一时间阈值且小于第二时间阈值,则控制所有所述导风板关闭,并控制所述风机以第二预设转速运行;
其中,所述第二时间阈值大于所述第一时间阈值,所述第二预设转速小于所述第一预设转速。
在上述嵌入式空调器的出风控制方法的优选技术方案中,“基于没人状态的持续时间,控制所述导风板的开闭和所述风机的转速”的步骤进一步包括:
如果所述没人状态的持续时间大于等于所述第二时间阈值,则控制所述嵌入式空调器停机。
在上述嵌入式空调器的出风控制方法的优选技术方案中,所述壳体包括底板以及围绕所述底板设置的多个侧板,每个所述侧板沿长度方向的中部开设有一个所述主出风口,所述主出风口的两侧各开设有一个所述角部出风口。
在上述嵌入式空调器的出风控制方法的优选技术方案中,所述出风控制方法还包括:
获取所述嵌入式空调器的当前运行模式;其中,所述运行模式至少包括正常送风模式和所述节能模式;
如果所述当前运行模式为所述节能模式且所述判断结果为室内有人,则控制所有所述导风板全开,并控制所述风机以第三预设转速运行预设时间。
在上述嵌入式空调器的出风控制方法的优选技术方案中,所述出风控制方法还包括:
在所述当前运行模式为所述正常送风模式且所述判断结果为室内有人,则控制所述嵌入式空调器继续运行所述正常送风模式;
当所述嵌入式空调器运行所述正常送风模式时,所述出风控制方法包括:
控制所有所述导风板全开,并基于所述人员数量,控制所述风机的转速。
在上述嵌入式空调器的出风控制方法的优选技术方案中,“基于所述人员数量,控制所述风机的转速”的步骤进一步包括:
如果所述人员数量大于等于第一人数阈值,则控制所述风机以所述第三预设转速运行;
如果所述人员数量小于所述第一人数阈值且大于等于第二人数阈值,则控制所述风机以第四预设转速运行;
如果所述人员数量小于所述第二人数阈值时,则控制所述风机以第五预设转速运行;
其中,所述第三预设转速、第四预设转速和所述第五预设转速依次减小。
本申请还提供了一种嵌入式空调器,所述嵌入式空调器包括:存储器;处理器;以及计算机程序,所述计算机程序存储于所述存储器中,并被配置为由所述处理器执行以实现上述优选技术方案中任一项所述的出风控制方法。
本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现上述优选技术方案中任一项所述的出风控制方法。
本领域技术人员能够理解的是,在本发明的优选技术方案中,嵌入式空调器包括壳体,壳体内设置有换热器和风机,壳体上开设有多个主出风口,每个主出风口都配置有导风板,导风板枢转连接于主出风口处,出风控制方法包括:在嵌入式空调器运行过程中,获取室内环境中的人员数量;基于人员数量,判断室内是否有人;在判断结果为室内没人且没人状态的持续时间大于等于预设时间阈值时,则控制嵌入式空调器运行节能模式;当嵌入式空调器运行节能模式时,出风控制方法包括:基于没人状态的持续时间,控制导风板的开闭和风机的转速。通过在室内没人且没人状态的持续时间大于等于预设时间阈值时控制嵌入式空调器进入节能模式,本申请的出风控制方法能够基于室内人员数量合理调整出风强度,降低室内无人时的空调能耗,避免能源浪费。进一步地,通过在嵌入式空调器运行节能模式时,基于没人状态的持续时间控制导风板的开闭和风机的转速,本申请的出风控制方法还能够兼顾空调的运行效果与能耗。
具体地,在室内处于没人状态的持续时间小于第一时间阈值时,控制部分导风板关闭,并控制风机以第一预设转速运行,从而在降低嵌入式空调器的运行能耗的基础上,使空调器仍然具备一定的出风强度,保证室内环境温度平稳变化。在室内处于没人状态的持续时间大于等于第一时间阈值且小于第二时间阈值时,控制全部导风板关闭,并控制风机以第二预设转速运行,能够进一步降低嵌入式空调器的运行能耗,并且依靠角部出风口进行出风,进一步保证室内温度的平稳。在室内处于没人状态的持续时间大于第二时间阈值时,证明室内已经长时间处于无人状态,此时控制嵌入式空调器停机,以最大限度地降低能耗。
进一步地,通过在空调器当前运行节能模式且判断结果为室内有人时,控制所有导风板全开,并控制风机以第三预设转速运行预设时间,使得嵌入式空调器能够以较高的出风强度运行,从而以较快的速度调节室内环境温度,保证室内环境的舒适度。
进一步地,通过在空调器当前运行正常送风模式模式且判断结果为室内有人时,控制嵌入式空调器继续运行正常送风模式,并进一步基于室内人员数量控制风机的转速,使得嵌入式空调器的出风强度能够与室内人员数量相匹配,保证室内环境的舒适度。
附图说明
下面参照附图来描述本发明的嵌入式空调器及其出风控制方法、计算机可读存储介质。附图中:
图1为本发明的嵌入式空调器的主要结构部件的结构图;
图2为本发明的嵌入式空调器的部分部件的结构图(省略接水盘上盖);
图3为本发明的嵌入式空调器省略换热器后的部分部件的结构图(一);
图4为本发明的嵌入式空调器省略换热器后的部分部件的结构图(二);
图5为本发明的嵌入式空调器省略壳体和换热器后的部分部件的结构图;
图6为本发明的嵌入式空调器的接水盘与角部盖合件的装配图(一);
图7为本发明的嵌入式空调器的接水盘与角部盖合件的装配图(二);
图8为本发明的嵌入式空调器的接水盘的结构图(一);
图9为本发明的嵌入式空调器的接水盘的结构图(二);
图10为图8在A处的局部放大图;
图11为图8在B处的局部放大图;
图12为本发明的嵌入式空调器的接水盘上盖的结构图;
图13为本发明的嵌入式空调器的第一盖合件的结构图;
图14为本发明的嵌入式空调器的第二盖合件的结构图;
图15为本发明的嵌入式空调器的出风控制方法的主流程图;
图16为本发明的嵌入式空调器的出风控制方法的一种较佳的实施方式的流程图;
图17为本发明的嵌入式空调器的出风控制方法的一种可能的实施方式的逻辑图。
附图标记列表
1、壳体;11、底板;111、进风口;12、侧板;121、主出风口;122、角部出风口;13、第一角部;14、第二角部;15、导风板;
2、换热器;
3、接水盘;31、第一本体;32、第一引风结构;321、第一角部凸块;322、竖向凸筋;3221、第一避让槽;323、横向凸筋;33、第二引风结构;331、第二角部凸块;332、竖向凸块;3323、第二避让槽;34、引风豁口;35、第一阶梯面;36、第二阶梯面;
41、第一盖合件;411、第一板体;412、上引风凹槽;42、第二盖合件;421、第二板体;422、凸起;
51、第一引风通道;52、第二引风通道;
6、接水盘上盖;61、第二本体;62、侧边;621、三角筋;
341,3321,3322,4121,4122,4221,6211、导风斜面。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施方式是结合主出风口和角部出风口设置在侧板上进行介绍的,但是这并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员可以将本发明应用 于其他应用场景。例如,本申请也可以应用于主出风口和角部出风口设置于底板上的嵌入式空调器。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参照图1至图5,对本发明的嵌入式空调器进行描述。
如图1至5所示,为了解决现有嵌入式空调器的角部出风口122送风效果有限的问题,本申请的嵌入式空调器(以下或简称空调器)包括壳体、风机(图中未示出)、换热器2、接水盘3以及多个角部盖合件。壳体包括底板11和围绕底板11设置的多个侧板12,底板11的中部开设有回风口111,相邻的侧板12之间彼此连接并在连接处形成角部,每个侧板12沿其长度方向的中部开设有主出风口121,主出风口121配置有导风板15,导风板15通过驱动机构(如驱动电机)的驱动实现相对于主出风口121的开闭。每个侧板12沿长度方向的至少一端在邻近角部的位置开设有角部出风口122。风机设置于壳体内,换热器2围设于风机与多个侧板12之间。接水盘3包括与底板11的外缘形状相适配的第一本体31,第一本体31上与每个角部对应的位置设置有一个角部引风结构;多个角部盖合件中每个角部盖合件与一个角部引风结构盖合连接,连接好后二者之间形成引风通道。换热器2与侧板12之间形成一定的供气流流动的空间,引风通道的一端与该空间连通,另一端与角部出风口122连通,引风通道设置成能够将换热后的气流引导至邻近的角部出风口122处。
空调器在运行时,风机启动运行,导风板15打开至一定角度。在风机的带动下,室内空气从回风口111进入壳体内部,并在于换热器2进行热交换后,一部分换热后的气流在导风板15的导向下由主出风口121排出,另一部分换热后的气流在引风通道的导引下通过角部出风口122排出。
由上述描述可以看出,本申请的嵌入式空调器在运行时能够增大角部出风口122的送风量,降低房间内各区域间的温差,提高房间内各区域间的温度均匀性。具体而言,通过在侧板12上设置主出风口121和角部出风口122,实现了嵌入式空调器的侧向出风,能够增大嵌入式空调器的出风面积,实现大面积室内送风。并且,由于回风口111设置于底板11的中部,还能够避免回风口111与出风口之间气流短路的问题。通过在接水盘3上设置角部引风结构,并且在角部引风结构上设置角部盖合件,使得角部盖合件与相应的角部引风结构之间形成引风通道,该引风通道能够将换热后的气流引导至角部出风口122处,从而增大角部出风口122的送风量,使得角部出风口122所对应的送风区域与主出风口121正对的区域之间的温差减小,提高室内各区域的温度均匀性。
下面参照图1至图14,对本申请的一种较为优选的实施方式进行描述。
首先参照图1至图4,在一种较为优选的实施方式中,壳体包括底板11和多个侧板12,底板11的外缘大致为正方形,其中部开设有方形的回风口111。侧板12设置有四个,四个侧板12分别由底板11的四个外缘向上延伸形成,并且四个侧板12沿底板11的周向依次连接,相邻的侧板12在连接处形成角部,本申请中角部一共形成有四个。每个侧板12沿长度方向的中部形成有主出风口121,每个主出风口121配置有导风板15,导风板15枢转连接于主出风口121处,并通过驱动机构(如驱动电机)的驱动实现相对于主出风口121的开闭。每个侧板12上还开设有两个角部出风口122,如图1所示,每个主出风口121的 两侧各设置有一个角部出风口122,两个角部出风口122分别靠近侧板12的一端设置,并且角部出风口122处未设置导风部件而处于常通状态。本申请中,侧板12与底板11可以一体成型,如采用一体注塑成型,当然也可以通过焊接、卡接、螺接等方式固定连接。此处需要说明的是,上述壳体除底板11和侧板12外,显然还可以包括其他组成部件,如与侧板12连接的角盖或箱体等,本申请不再赘述。
换热器2成条状,条状换热器2的沿多个侧板12的内侧延伸弯折形成圆角矩形,且换热器2的两自由端共同延伸至一个角部并在该角部处形成配管豁口,以方便连接配管。
本申请的四个角部中,进一步包括第一角部13和第二角部14,其中换热器2的两自由端形成配管豁口处对应的角部为第一角部13,其余换热器2的三个弯折圆角处对应的三个角部为第二角部14。
参照图6至图9,接水盘3由泡沫材料或塑料材料制成,其包括与底板11的外缘形状相适配的第一本体31,第一本体31为环状,其大部分设置于换热器2与底板11之间。第一本体31上开设有接水槽,以收集由换热器2盘管上流下冷凝水。第一本体31上对应于第一角部13和第二角部14的位置分别设置有第一引风结构32和第二引风结构33,第一引风结构32上盖设有第一盖合件41,第二引风结构33上盖设有第二盖合件42。第一盖合件41与第一引风结构32围设形成两个第一引风通道51,每个第一引风通道51对应第一角部13的一个角部出风口122。相似地,第二盖合件42与第二引风结构33围设形成两个第二引风通道52,每个第二引风通道52对应第二角部14的一个角部出风口122。
下面参照图6至图8、图10和图13,对本申请的第一引风结构32和第一盖合件41进行介绍。
参照图8和图10,第一引风结构32包括由第一本体31向上延伸而成的第一角部凸块321、两个竖向凸筋322和两个横向凸筋323。第一角部凸块321设置于接水盘3的第一本体31对应于第一角部13的位置,当安装好后第一角部凸块321部分抵靠于第一角部13的内侧。两个竖向凸筋322的底端(即图10中的下端)分别与第一本体31连接,两个竖向凸筋322的顶端(即图10中的上端)分别沿组成第一角部13的两个侧板12的长度方向中的远离第一角部13的方向弯曲延伸并形成自由端。两个横向凸筋323的第一端分别与第一角部凸块321远离第一角部13的一侧连接,两个横向凸筋323的第二端分别沿组成第一角部13的两个侧板12的长度方向中的远离第一角部13的方向延伸并最终分别与一个竖向凸筋322的底端连接。在接水盘3安装在壳体内时,第一角部凸块321、两个竖向凸筋322、两个横向凸筋323以及第一角部13共同围设形成两个下引风凹槽。
参照图6至7、图10和图13,第一盖合件41包括第一板体411以及由第一板体411的侧面沿组成第一角部13的两个侧板12的长度方向中的远离第一角部13的方向弯曲延伸的两个上引风凹槽412。第一引风结构32形成有第一阶梯面35,本申请中该第一阶梯面35由第一角部凸块321的部分顶面、两个横向凸筋323的部分顶面共同形成,第一盖合件41通过该第一阶梯面35固定盖合于第一引风结构32上。在盖合好后,每个上引风凹槽412与对应的下引风凹槽对接从而围设形成一个第一引风通道51,该第一引风通道51内部为沿侧板12的长度方向延伸的S型流道,并且第一引风通道51的入口高于出口。
参照图13,上引风凹槽412在对应第一引风通道51的入口处的一个内侧面上设置有导风斜面4121,从而使第一引风通道51的入口形成喇叭口。上引风凹槽412在对应第一引风通道51的出口处的一个内侧面上设置有导风斜面4122,从而使以便第一引风通道51的出口向斜下方倾斜,以便第一引风通道51内的空气流通过角部出风口122后向斜下方吹出。
下面参照图6至图9、图11和图14,对本申请的第二引风结构33和第二盖合件42进行介绍。
如图8和图11所示,第二引风结构33包括由第一本体31向上延伸而成的第二角部凸块331和两个竖向凸块332,第二角部凸块331设置于接水盘3的第一本体31对应于第 二角部14的位置,当安装好后第二角部凸块331部分抵靠于第二角部14的内侧。两个竖向凸块332分别沿组成第二角部14的两相邻侧板12的长度方向布置于第二角部凸块331的两侧,每个竖向凸块332与第二角部凸块331之间形成有一个引风豁口34。
参照图6至7、图9、图11和图14,第二盖合件42包括第二板体421以及由第二板体421的底面向下延伸形成的两个凸起422。第二引风结构33形成有第二阶梯面36,本申请中该第二阶梯面36由第二角部凸块331的部分顶面、两个竖向凸块332的部分顶面共同形成,第二盖合件42通过该第二阶梯面36固定盖合于第二引风结构33上。在第二盖合件42盖合至第二角部14引风结构时,每个凸起422嵌入一个引风豁口34内,从而引风豁口34与凸起422围设形成一个第二引风通道52。
参照图11,竖向凸块332的部分内侧面设置有导风斜面3321,顶面设置有导风斜面3322,两个竖向凸块332的内侧面设置的导风斜面3321相向对称设置,使得二者之间沿空气流向形成渐缩的喇叭状空间,以便将换热后的空气流引导至第二引风通道52的入口处。两个竖向凸块332的顶面设置的导风斜面3322向空调器的内部倾斜,以便将换热后的空气流引导至第二引风通道52的入口处。参照图9,两个引风豁口34处分别设置有导风斜面341,该导风斜面341的高度沿气流方向逐渐降低。参照图14,每个凸起422的底面相应地设置有导风斜面4221,在第二盖合件42安装好后,该导风斜面4221的高度沿出风方向逐渐降低,从而第二引风通道52的出口向斜下方倾斜,以便引导第二引风通道52内的空气流通过角部出风口122后向斜下方吹出。
此外,参照图9和图10,第一引风结构32的外侧面对应于导风板15两端的位置形成有第一避让槽3221,第二引风结构33的外侧面对应于导风板15两端的位置形成有第二避让槽3323。具体地,第一避让槽3221形成于竖向凸筋322弯曲的顶端的下方,第二避让槽3323开设与竖向凸块332的外侧。
下面参照图3、图4和图12,对本申请的接水盘上盖6进行介绍。
如图3、图4和图12所示,接水盘上盖6由泡沫材料或塑料材料制成,其包括第二本体61以及由第二本体61的边缘向下延伸形成的多个侧边62,安装好后,第二本体61盖设于换热器2的顶部,侧边62至少部分遮盖换热器2的外侧面。优选地,接水盘上盖6的侧边62能够延伸至完全遮盖换热器2的外侧面。如此一来,接水盘上盖6的第二本体61、侧边62、换热器2的外侧面以及壳体的侧板12之间围设出一个较为封闭的空间。参照图12,接水盘3与第一角部13对应的两个相邻的侧边62的内侧面上各设置有一个三角筋621,三角筋621具有三个导风斜面6211,其中两个导风斜面6211对称设置分别向侧边62的左右两侧倾斜,另一个导风斜面6211在接水盘上盖6安装好后向上方倾斜,从而导风斜面6211能够将换热后的空气流引导至第一引风通道51。
通过将四个角部细化为第一角部13和第二角部14,并针对不同的角部设置不同的引风结构和盖合件,使得不同的角部形成不同的引风通道,从而通过不同的引风通道将换热后的气流成功引导至对应的角部出风口122,保证每个角部出风口122的出风效果。具体而言,由于换热器2的两自由端在第一角部13形成管路豁口,因此被风机排出的空气在该豁口处不能与换热器2进行换热,因此,通过将该第一角部13的两个第一引风通道51设置为沿侧板12的长度方向延伸的S型流道,并且第一引风通道51的入口高于出口,能够使得第一角部13附近与换热器2周侧上部换热后的空气流进入第一引风通道51并通过第一引风通道51的S型流道排出至角部出风口122。而其余第二角部14处的空气流由于均可以与换热器2进行换热,因此将第二角部14处设置的两个第二引风通道52的入口直接以正对换热器2的方向设置,能够直接将第二角部14附近与换热器2换热后的空气流引入第二引风通道52并通过第二引风通道52排出至角部出风口122。
进一步地,通过在上引风凹槽412对应第一引风通道51的入口处的一个内侧面设置导风斜面4121,以及在接水盘上盖6对应第一角部13的两个相邻的侧边62上各设置一个三角筋621,并且在三角筋621上设置导风斜面6211,能够将空气流成功引导至第一引风 通道51的入口处,从而增加第一引风通道51的进风量,进而提高角部出风口122的出风量,避免由于第一角部13处形成配管豁口而导致的角部出风口122的出风量较小。同样地,通过在竖向凸块332的内侧面设置导风斜面3321、顶面设置导风斜面3322,能够将换热后的气流引导至第二引风通道52的入口,增大第二引风通道52的进风量,进而提高角部出风口122的出风量。
通过在上引风凹槽412对应第一引风通道51的出口处的一个内侧面设置导风斜面4122,能够引导第一导风通道内的空气流在通过角部出风口122后向斜下方吹出,提高第一角部13的角部出风口122的送风效果。同样地,通过引风豁口34处设置导风斜面341、凸起422的底面设置导风斜面4221,能够引导第二引风通道52内的空气流在通过角部出风口122后向斜下方吹出,提高第二角部14的角部出风口122的送风效果。
通过在第一引风结构32上形成第一阶梯面35,第一盖合件41通过第一阶梯面35固定盖合到第一引风结构32上,使得第一盖合件41能够牢固的盖合并卡置于第一引风结构32与侧板12之间,避免第一引风通道51漏风等情况发生。同样地,通过在第二引风结构33形成第二阶梯面36,第二盖合件42通过第二阶梯面36固定盖合到第二引风结构33上,使得第二盖合件42能够牢固的盖合并卡置于第二引风结构33与侧板12之间,避免第二引风通道52出现漏风。通过在第一引风结构32的外侧面设置第一避让槽3221、第二引风结构33的外侧面设置第二避让槽3323,可以为导风板15的电机预留出避让空间,方便空调器的组装。
通过设置接水盘上盖6,并且接水盘上盖6的侧边62至少部分遮盖换热器2的外侧面,使得接水盘3能够在换热器2上部和外侧形成屏障,以阻止换热后的气流不经过引风通道而直接通过换热器2的上部或侧面上部泄漏,从而提高各引风通道的进风量,保证角部出风口122的出风效果。
需要说明的是,上述优选的实施方式仅仅用于阐述本发明的原理,并非旨在于限制本发明的保护范围。在不偏离本发明原理的前提下,本领域技术人员可以对上述设置方式进行调整,以便本发明能够适用于更加具体的应用场景。
例如,在一种可替换的实施方式中,虽然上述实施方式中是结合两种不同的角部引风结构和角部盖合件进行描述的,但本申请并非局限于此,在其他可能的实施方式中,也可以改变换热器2两自由端的设置位置,而使得四个角部的结构相同,此时四个角部都按照上述第二角部14的设置方式进行设置即可。
再如,在另一种可替换的实施方式中,虽然上述实施方式非常详细的描述了第一引风结构32、第一盖合件41、第二引风结构33和第二盖合件42的具体结构,但这并非旨在于限制本申请的保护范围,本领域技术人员可以基于本申请的原理对上述结构进行调整,只要该调整能够有效行程第一引风通道51和第二引风通道52即可。比如,本领域技术人员可以通过改变第一引风结构32和第一盖合件41的结构而改变第一引风通道51的入口嘲朝向,使该入口朝向与侧板12之间形成一定夹角,从而使气流的进入更加顺利。再如,本领域技术人员还可以省略上引风凹槽412中的导风斜面4121和4122的设置,这并不影响本申请的实施。类似地,本领域技术人员还可以对第二引风结构33和第二盖合件42的具体形状、设置位置等进行调整,或省略凸起422上设置的导风斜面4221或引风豁口34处设置的导风斜面341等。
再如,在另一种可替换的实施方式中,虽然上述实施方式中是结合每个侧板12设置有两个角部出风口122进行说明的,但本领域技术人员理解的是,每个侧板12上设置的角部出风口122的数量等不受限制,该角部出风口122的数量也可以设置为一个或更多个,在数量改变的前提下,只需相应地对形成第一引风通道51的第一引风结构32和第一盖合件41,以及形成第二引风通道52的第二引风结构33和第二盖合件42作出调整即可。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
下面参照图15,对本申请的嵌入式空调器的出风控制方法进行介绍。其中,图15为本发明的嵌入式空调器的出风控制方法的主流程图。
如图15所示,为了解决嵌入式空调器无法基于室内人员数量控制送风强度而导致能源浪费的问题,在上述嵌入式空调器的结构基础上,本申请还提供了一种嵌入式空调器的出风控制方法,包括:
S101、在嵌入式空调器运行过程中,获取室内环境中的人员数量;例如,在嵌入式空调器(以下或简称空调器)的底板上安装有人体检测部件,如可以是红外传感器、摄像头或雷达传感器等,空调器能够基于上述人体检测部件获取当前室内的人体数量。其中,上述人体检测部件检测人体数量的原理为本领域公知常识,在此不再赘述。当然,人体检测部件除设置在底板上外,还可以设置在任何可能的位置,如室内空间的天花板上或墙壁上等。
S103、基于人员数量,判断室内是否有人;例如,在获取到室内的人体数量后,判断人体数量是否为零,如果是,则判定室内没有人;否则,如果人体数量不为零,则判定室内有人。
S105、在判断结果为室内没人且没人状态的持续时间大于等于预设时间阈值时,则控制嵌入式空调器运行节能模式;例如,预设时间阈值可以为30min,在判定室内没有人的同时,统计室内处于没人状态的持续时间,当没人状态的持续时间大于等于30min时,控制嵌入式空调器运行节能模式。当然,预设时间阈值并非一成不变,本领域技术人员可以对其进行调整,以便本出风控制方法适用于更加具体的应用场景。如预设时间阈值还可以为2min-50min内的任意值等。
S107、当嵌入式空调器运行节能模式时,基于没人状态的持续时间,控制导风板的开闭和风机的转速。例如,当嵌入式空调器运行节能模式时,没人状态的持续时间小于1小时,则控制部分导风板关闭,风机降低转速运行;在此基础上,如果没人状态的持续时间超过1小时,则进一步控制全部导风板关闭,并进一步降低风机的转速。
从上述描述可以看出,通过在室内没人且没人状态的持续时间大于等于预设时间阈值时控制嵌入式空调器进入节能模式,本申请的出风控制方法能够基于室内人员数量合理调整出风强度,降低室内无人时的空调能耗,避免能源浪费。进一步地,通过在嵌入式空调器运行节能模式时,基于没人状态的持续时间控制导风板的开闭和风机的转速,本申请的出风控制方法还能够兼顾空调的运行效果与能耗。
下面结合图16,对本申请的一种较佳的实施方式进行描述。其中,图16为本发明的嵌入式空调器的出风控制方法的一种较佳的实施方式的流程图。
如图16所示,在一种较佳的实施方式中,嵌入式空调器的出风控制方法包括如下步骤:
首先执行步骤S201,在嵌入式空调器运行过程中,获取室内环境中的人员数量;例如,通过底板上设置的红外传感器、摄像头或雷达传感器等人体检查部件来获取室内环境中的人员数量。
紧接着,执行步骤S203,基于室内环境中的人员数量,判断室内是否有人;如果没有,则执行步骤S205,进一步判断没人状态的持续时间是否大于等于预设时间阈值;否则,如果有,则执行步骤S215,进一步判断空调器的当前运行模式是否为正常送风模式。
当执行步骤S205时,如果进一步判断结果为是、即没人状态的持续时间大于等于预设时间阈值,则执行步骤S207,控制空调器运行节能模式,即基于没人状态的持续时间 控制导风板的开闭和风机的转速;否则,如果判断结果为否、即每人状态的持续时间小于预设时间阈值,则控制空调器返回执行步骤S201,重新获取室内环境中的人员数量。
本领域技术人员能够理解的是,当没人状态的持续时间大于等于预设时间阈值时,证明室内处于没人状态已经有一段时间,此时无论之前空调器处于何种运行模式,如果继续按照该模式运行,都会造成能源浪费的问题。此时,基于没人状态的持续时间来控制导风板的开闭和风机的转速,不仅能够节约能耗,而且还能兼顾空调的运行效果。反之,如果没人状态的持续时间小于预设时间阈值,则证明室内处于没人状态的时间过短,此时控制空调器运行节能模式,可能会造成空调器的频繁启停和模式切换,不利于空调器的控制稳定性和使用寿命。此时,控制空调器返回步骤S201重新获取室内人员数量。
其中,预设时间阈值在本申请中优选的为30min,当然本领域技术人员可以基于实际应用场景进行调整。例如,在室内环境空间较大时,人员流动更为频繁,此时可以适当的增大预设时间阈值,以避免空调器频繁切换运行模式;在室内环境空间较小时,人员流动较少,可以适当减小预设时间阈值,以保证空调器的模式切换更加及时。
还需要解释的是,在本申请中,空调器的运行模式至少包括正常送风模式和节能模式,正常送风模式应用于室内有人的情况,其通过控制导风板的开闭和风机的转速来调节室内环境温度,为室内人员创造舒适的环境。而节能模式对应于室内无人的情况,其通过控制部分或全部导风板关闭,并大幅降低风机的转速来降低空调器的运行能耗。总的来说,正常送风模式的运行能耗要大于节能模式的运行能耗。本实施方式以空调器的运行模式仅包括正常送风模式和节能模式为例进行说明。
在一种较为优选的实施方式中,步骤S207进一步包括:
S209、如果没人状态的持续时间小于第一时间阈值,则控制部分导风板关闭,并控制风机以第一预设转速运行。
S211、如果没人状态的持续时间大于等于第一时间阈值且小于第二时间阈值,则控制所有导风板关闭,并控制风机以第二预设转速运行。
S213、如果没人状态的持续时间大于等于第二时间阈值,则控制嵌入式空调器停机;其中,第二时间阈值大于第一时间阈值,第二预设转速小于第一预设转速。
举例而言,第一时间阈值可以为1h,第二时间阈值可以为2h,第一预设转速可以为1/4n,第二预设转速可以为1/8n,其中n为风机的额定转速或最高转速。当室内环境处于没人状态的持续时间小于1h时,控制部分导风板关闭,如控制两相对的导风板关闭,并降低风机的转速为额定转速或最高转速的1/4,此时空调器处于双导风板微弱送风状态,能够在降低空调器运行能耗的基础上,使空调器仍具备一定的出峰强度,保证室内环境温度平稳。当室内环境处于没人状态的持续时间大于1h小于2h时,控制全部导风板关闭,并降低风机的转速为额定转速或最高转速的1/8,此时空调器处于角部出风口送风状态,进一步降低空调器运行能耗的同时,保证温度平稳变化。当室内环境处于没人装填的持续时间大于2h时,证明室内长期处于无人状态,此时控制空调器停机,以最大程度的降低能耗。
总的来说,通过在室内没人状态的持续时间不同时采用不同的导风板和风机控制,能够使室内的温度平稳缓慢变化,避免在无人状态采用直接停机的控制方式导致空调器频繁起停、室内环境温度大幅波动的情况出现。
当然,上述具体示例中第一时间阈值、第二时间阈值、第一预设转速以及第二预设转速并非唯一,本领域技术人员可以基于实际应用场景进行调整,这种调整并未偏离本申请的原理。
继续参照3,当步骤S203的判断结果为室内有人时,则执行步骤S215,判断空调器的当前运行模式是否为正常送风模式,如通过获取风机转速、导风板的驱动电机的转动角度等获取当前送风模式,或者通过读取当前运行状态信息来获取当前送风模式等。如果判断结果为是,即当前运行模式为正常送风模式,则执行步骤S217,继续以该正常模式运行。其中,在该正常送风模式下,控制导风板全开,并基于人员数量控制风机的转速。
具体地,在一种较为优选的实施方式中,步骤S217进一步包括:
S219、如果人员数量大于等于第一人数阈值,则控制风机以第三预设转速运行。
S221、如果人员数量小于第一人数阈值且大于等于第二人数阈值,则控制风机以第四预设转速运行。
S223、如果人员数量小于第二人数阈值时,则控制风机以第五预设转速运行;其中,第三预设转速、第四预设转速和第五预设转速依次减小。
举例而言,第一人数阈值可以为5,第二人数阈值可以为2,第三预设转速可以为n,第四预设转速可以为3/4n,第五预设转速可以为1/2n,其中n同样可以为风机的额定转速或最大转速。当室内人员数量大于等于5人时,证明此时人员数量较多,需要空调器提供较高的出风强度,此时控制导风板全开的基础上,控制风机以额定转速或最大转速运行,使空调器处于强力送风状态;当室内人员数量小于5人且大于等于2人时,证明此时人员数量处于合理较少,需要适当降低空调器的出风强度,此时控制导风板全开的基础上,控制风机以额定转速或最高转速的3/4运行,使空调器处于平稳送风状态;当室内人员数量少于2人时,证明此时人员数量非常少,需要进一步降低空调器的出风强度,此时控制导风板全开的基础上,只需控制风机以额定转速或最高转速的1/2运行,使空调器处于柔和送风状态。
通过在空调器当前运行正常送风模式模式且判断结果为室内有人时,控制嵌入式空调器继续运行正常送风模式,并进一步基于室内人员数量控制风机的转速,使得嵌入式空调器的出风强度能够与室内人员数量相匹配,保证室内环境的舒适度。
继续参照图16,当步骤S215的判断结果为否,即空调当前处于节能送风模式时,证明此时室内从无人状态变为有人状态,需要将室内环境温度快速调节至较为舒适的温度,此时直接执行步骤S223,即控制导风板全开,且控制风机以额定转速或最高转速运行,以快调节低室内环境温度。
通过在空调器当前运行节能模式且判断结果为室内有人时,控制所有导风板全开,并控制风机以第三预设转速运行预设时间,使得嵌入式空调器能够以较高的出风强度运行,从而以较快的速度调节室内环境温度,保证室内环境的舒适度。
当然,上述具体示例中第一人数阈值、第二人数阈值、第三预设转速、第四预设转速以及第五预设转速并非唯一,本领域技术人员可以基于实际应用场景进行调整,这种调整并未偏离本申请的原理。
需要说明的是,上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。例如,步骤S205获取当前运行模式并判断是否为正常送风模式的步骤可以如上述实施方式在步骤S203的判断结果为室内有人之后执行,也可以在步骤S203之前进行,或者在本控制方法开始执行的时候与步骤S201并行执行。再如,在一些可能的实施方式中,运行正常送风模式时基于人员数量控制风机转速步骤中(步骤S219-S223)的一个或多个可以省略。
下面结合图17对本发明的一种可能的控制过程作简要说明。其中,图17为本发明的嵌入式空调器的出风控制方法的一种可能的实施方式的逻辑图。
如图17所示,在一种可能的控制过程中,嵌入式空调器处于运行状态。
(1)首先执行步骤S301,通过红外传感器获取室内环境中的人员数量M,并基于获取到的M判断M>0是否成立;当M>0成立时,证明室内处于有人状态,此时执行步骤S305,进一步判断空调器的当前运行模式是否为节能模式;否则,当M>0不成立时,证明室内处于无人状态,此时执行步骤S307,判断处于无人状态的持续时间T≥0.5h是否成立。
(2)当执行步骤S305时,如果空调器的当前运行模式为节能模式,则控制空调器执行步骤S313,控制导风板全开,并控制风机以最高转速n运行;否则,当空调器的当前运行模式为正常送风模式时,则执行步骤S309,控制空调器继续以送风模式运行,即控制导风板全开,并基于当前人员数量M控制风机的转速。
(3)当执行步骤S309后,首先判断人员数量M≥5是否成立,如果M≥5成立,则执行步骤S313,控制导风板全开,并控制风机以最大转速n运行;否则,当M≥5不成立时,执行步骤S323,进一步判断M<2是否成立。
(4)当执行步骤S323时,如果M<2不成立,则执行步骤S321,控制导风板全开,并控制杆风机以最大转速n的3/4运行;否则,如果M<2成立,则执行步骤S329,控制导风板全开,并控制风机以最大转速n的1/2运行。
(5)当执行步骤S307时,如果T≥0.5h不成立,则返回执行步骤S301,间隔一定时间后重新获取人员数量M;否则,如果T≥0.5h成立,则执行步骤S311,控制空调器进入节能模式运行,即基于没人状态的持续时间控制导风板的开闭和风机的转速。
(6)当执行步骤S311后,首先判断T<1h是否成立,如果T<1h成立,则执行步骤S319,控制相向设置的两个导风板关闭,并控制风机以最大转速n的1/4运行;否则,如果T<1h不成立,则执行步骤S325,进一步判断T≥2h是否成立。
(7)当执行步骤S325时,如果T≥2h不成立,则执行步骤S327,控制导风板全部关闭,并控制风机以最大转速n的1/8运行;否则,如果T≥2h成立,则执行步骤S331,控制嵌入式空调器停机。
进一步,本发明还提供了一种计算机可读存储介质。在根据本发明的一个计算机可读存储介质实施例中,计算机可读存储介质可以被配置成存储执行上述方法实施例的嵌入式空调器的出风控制方法的程序,该程序可以由处理器加载并运行以实现上述嵌入式空调器的出风控制方法。为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该计算机可读存储介质可以是包括各种电子设备形成的存储介质设备,可选的,本发明实施例中存储是非暂时性的计算机可读存储介质,比如磁碟、硬盘、光碟、闪存、只读存储器、随机存取存储器等等。
进一步,本发明还提供了一种嵌入式空调器。在根据本发明的一个嵌入式空调器的实施例中,嵌入式空调器包括处理器和存储器,存储器可以被配置成存储有执行上述方法实施例的嵌入式空调器的出风控制方法的计算机程序,处理器可以被配置成用于执行存储器中的计算机程序,以实现上述嵌入式空调器的出风控制方法。为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。
需要说明的是,尽管上文详细描述了本发明方法的详细步骤,但是,在不偏离本发明的基本原理的前提下,本领域技术人员可以对上述步骤进行组合、拆分及调换顺序,如此修改后的技术方案并没有改变本发明的基本构思,因此也落入本发明的保护范围之内。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种嵌入式空调器的出风控制方法,其特征在于,所述嵌入式空调器包括壳体,所述壳体内设置有换热器和风机,所述壳体上开设有多个主出风口,每个所述主出风口都配置有导风板,所述导风板枢转连接于所述主出风口处,
    所述出风控制方法包括:
    在所述嵌入式空调器运行过程中,获取室内环境中的人员数量;
    基于所述人员数量,判断室内是否有人;
    在判断结果为室内没人且没人状态的持续时间大于等于预设时间阈值时,则控制所述嵌入式空调器运行节能模式;
    当所述嵌入式空调器运行所述节能模式时,所述出风控制方法包括:
    基于所述没人状态的持续时间,控制所述导风板的开闭和所述风机的转速。
  2. 根据权利要求1所述的嵌入式空调器的出风控制方法,其特征在于,“基于没人状态的持续时间,控制所述导风板的开闭和所述风机的转速”的步骤进一步包括:
    如果所述没人状态的持续时间小于第一时间阈值,则控制部分所述导风板关闭,并控制所述风机以第一预设转速运行。
  3. 根据权利要求2所述的嵌入式空调器的出风控制方法,其特征在于,所述壳体上还开设有多个角部出风口,“基于没人状态的持续时间,控制所述导风板的开闭和所述风机的转速”的步骤进一步包括:
    如果所述没人状态的持续时间大于等于所述第一时间阈值且小于第二时间阈值,则控制所有所述导风板关闭,并控制所述风机以第二预设转速运行;
    其中,所述第二时间阈值大于所述第一时间阈值,所述第二预设转速小于所述第一预设转速。
  4. 根据权利要求3所述的嵌入式空调器的出风控制方法,其特征在于,“基于没人状态的持续时间,控制所述导风板的开闭和所述风机的转速”的步骤进一步包括:
    如果所述没人状态的持续时间大于等于所述第二时间阈值,则控制所述嵌入式空调器停机。
  5. 根据权利要求3所述的嵌入式空调器的出风控制方法,其特征在于,所述壳体包括底板以及围绕所述底板设置的多个侧板,每个所述侧板沿长度方向的中部开设有一个所述主出风口,所述主出风口的两侧各开设有一个所述角部出风口。
  6. 根据权利要求1所述的嵌入式空调器的出风控制方法,其特征在于,所述出风控制方法还包括:
    获取所述嵌入式空调器的当前运行模式;其中,所述运行模式至少包括正常送风模式和所述节能模式;
    如果所述当前运行模式为所述节能模式且所述判断结果为室内有人,则控制所有所述导风板全开,并控制所述风机以第三预设转速运行预设时间。
  7. 根据权利要求6所述的嵌入式空调器的出风控制方法,其特征在于,所述出风控制方法还包括:
    在所述当前运行模式为所述正常送风模式且所述判断结果为室内有人,则控制所述嵌入式空调器继续运行所述正常送风模式;
    当所述嵌入式空调器运行所述正常送风模式时,所述出风控制方法包括:
    控制所有所述导风板全开,并基于所述人员数量,控制所述风机的转速。
  8. 根据权利要求7所述的嵌入式空调器的出风控制方法,其特征在于,“基于所述人员数量,控制所述风机的转速”的步骤进一步包括:
    如果所述人员数量大于等于第一人数阈值,则控制所述风机以所述第三预设转速运行;
    如果所述人员数量小于所述第一人数阈值且大于等于第二人数阈值,则控制所述风机以第四预设转速运行;
    如果所述人员数量小于所述第二人数阈值时,则控制所述风机以第五预设转速运行;
    其中,所述第三预设转速、第四预设转速和所述第五预设转速依次减小。
  9. 一种嵌入式空调器,其特征在于,所述嵌入式空调器包括:
    存储器;
    处理器;以及
    计算机程序,所述计算机程序存储于所述存储器中,并被配置为由所述处理器执行以实现权利要求1至8中任一项所述的出风控制方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现权利要求1-8中任一项所述的出风控制方法。
PCT/CN2021/093233 2020-08-31 2021-05-12 嵌入式空调器及其出风控制方法、计算机可读存储介质 WO2021233171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010898224.4A CN112032840B (zh) 2020-08-31 2020-08-31 嵌入式空调器及其出风控制方法、计算机可读存储介质
CN202010898224.4 2020-08-31

Publications (1)

Publication Number Publication Date
WO2021233171A1 true WO2021233171A1 (zh) 2021-11-25

Family

ID=73586471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093233 WO2021233171A1 (zh) 2020-08-31 2021-05-12 嵌入式空调器及其出风控制方法、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN112032840B (zh)
WO (1) WO2021233171A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944624A (zh) * 2021-03-01 2021-06-11 青岛海尔空调器有限总公司 用于空调控制的方法和空调

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112032840B (zh) * 2020-08-31 2022-10-25 青岛海尔空调电子有限公司 嵌入式空调器及其出风控制方法、计算机可读存储介质
CN112032842B (zh) * 2020-08-31 2022-07-12 青岛海尔空调电子有限公司 嵌入式空调器
CN114061086A (zh) * 2021-11-03 2022-02-18 青岛海尔空调器有限总公司 杀菌控制方法、装置、电子设备、存储介质及空调器
CN114061103A (zh) * 2021-11-03 2022-02-18 青岛海尔空调器有限总公司 空调器控制方法、装置、电子设备、存储介质及空调器
CN114183827B (zh) * 2021-12-17 2022-12-16 珠海格力电器股份有限公司 室内机出风控制装置及方法、室内机
CN114484751A (zh) * 2022-01-29 2022-05-13 青岛海尔空调电子有限公司 用于空调器的运行控制方法、装置和直膨式空调机组
CN114636235A (zh) * 2022-03-07 2022-06-17 青岛海信日立空调系统有限公司 一种空调器及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052204A (ko) * 2008-11-10 2010-05-19 엘지전자 주식회사 공기조화기 및 그 제어방법
CN106440217A (zh) * 2016-09-30 2017-02-22 广东美的制冷设备有限公司 空调器的节能控制方法及装置、空调器
CN110160241A (zh) * 2019-05-17 2019-08-23 青岛海尔空调电子有限公司 空调器及用于空调器制冷的导风板控制方法
CN110160237A (zh) * 2019-05-17 2019-08-23 青岛海尔空调电子有限公司 空调器及用于空调器制热的导风板控制方法
CN110173862A (zh) * 2019-06-14 2019-08-27 珠海格力电器股份有限公司 基于俯视视角人体信息的空调控制方法、装置及空调系统
CN112032840A (zh) * 2020-08-31 2020-12-04 青岛海尔空调电子有限公司 嵌入式空调器及其出风控制方法、计算机可读存储介质

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399195B2 (ja) * 1995-11-24 2003-04-21 松下電器産業株式会社 空気調和機の制御装置
JP5871747B2 (ja) * 2012-08-08 2016-03-01 三菱電機株式会社 空気調和機
CN105042785B (zh) * 2015-07-31 2018-10-12 青岛海尔空调器有限总公司 空调器舒适节能控制方法
CN105258307B (zh) * 2015-10-21 2017-11-14 广东美的制冷设备有限公司 空调室内机及空调室内出风控制方法
CN106225166B (zh) * 2016-07-29 2019-03-15 广东美的制冷设备有限公司 空调器运行控制方法及装置
CN106247558A (zh) * 2016-08-25 2016-12-21 珠海格力电器股份有限公司 空调器的控制方法和装置
CN107560084B (zh) * 2017-09-13 2018-12-28 珠海格力电器股份有限公司 空调控制方法及空调
CN107620727A (zh) * 2017-09-21 2018-01-23 潘荣昌 一种智能风扇控制系统
CN108592304B (zh) * 2018-04-27 2020-11-27 广东美的制冷设备有限公司 空调器的换新风控制方法、空调器和可读存储介质
CN109297088A (zh) * 2018-09-14 2019-02-01 青岛海信日立空调系统有限公司 一种嵌入式多出风口空调室内机及调节方法
CN109373698B (zh) * 2018-11-05 2021-03-19 广州美的华凌冰箱有限公司 风冷冰箱风机转速控制方法、冰箱及可读存储介质
CN110030678B (zh) * 2019-04-22 2020-10-30 宁波奥克斯电气股份有限公司 空调舒适性送风控制方法、装置及空调器
CN110395085B (zh) * 2019-07-29 2020-11-03 珠海格力电器股份有限公司 车载空调调节方法、介质、装置、车载空调系统和车辆
CN110513845B (zh) * 2019-08-02 2021-04-16 宁波奥克斯电气股份有限公司 一种空调送风控制方法及控制系统
CN110686374A (zh) * 2019-09-02 2020-01-14 珠海格力电器股份有限公司 一种空调节能控制方法、计算机可读存储介质及空调
CN110567103A (zh) * 2019-09-16 2019-12-13 珠海格力电器股份有限公司 空调的控制方法、装置和空调
CN111336594B (zh) * 2020-03-11 2021-08-20 广东美的制冷设备有限公司 空调器的控制方法、装置、空调器及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052204A (ko) * 2008-11-10 2010-05-19 엘지전자 주식회사 공기조화기 및 그 제어방법
CN106440217A (zh) * 2016-09-30 2017-02-22 广东美的制冷设备有限公司 空调器的节能控制方法及装置、空调器
CN110160241A (zh) * 2019-05-17 2019-08-23 青岛海尔空调电子有限公司 空调器及用于空调器制冷的导风板控制方法
CN110160237A (zh) * 2019-05-17 2019-08-23 青岛海尔空调电子有限公司 空调器及用于空调器制热的导风板控制方法
CN110173862A (zh) * 2019-06-14 2019-08-27 珠海格力电器股份有限公司 基于俯视视角人体信息的空调控制方法、装置及空调系统
CN112032840A (zh) * 2020-08-31 2020-12-04 青岛海尔空调电子有限公司 嵌入式空调器及其出风控制方法、计算机可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944624A (zh) * 2021-03-01 2021-06-11 青岛海尔空调器有限总公司 用于空调控制的方法和空调
CN112944624B (zh) * 2021-03-01 2022-09-06 青岛海尔空调器有限总公司 用于空调控制的方法和空调

Also Published As

Publication number Publication date
CN112032840A (zh) 2020-12-04
CN112032840B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2021233171A1 (zh) 嵌入式空调器及其出风控制方法、计算机可读存储介质
KR101915365B1 (ko) 재실자를 고려한 다기종 실내 환경 기기의 통합 제어 방법 및 이를 위한 시스템
KR101915364B1 (ko) 다기종 실내 환경 기기의 통합 제어 방법
EP3936782A1 (en) Indoor unit of air conditioner and control method therefor
JP2001304645A (ja) 空気調和装置
JP2017048929A (ja) 空気調和機
KR20110102729A (ko) 에너지 절감을 위한 하이브리드 환기시스템 및 그 방법
KR20140135377A (ko) 전자동 시스템 냉풍기
WO2022044325A1 (ja) 換気報知装置および換気報知プログラム
JP5730689B2 (ja) 空調運転制御システム
KR102101024B1 (ko) 미세먼지 저감 빌딩자동제어 시스템
JPH06123473A (ja) 空気調和装置
WO2021233181A1 (zh) 嵌入式空调器
JP3670771B2 (ja) 空調装置
JP3369337B2 (ja) 空気調和機
KR20050104674A (ko) 에어커튼 기능이 구비되는 공조기
JP4334887B2 (ja) 通気住宅および冷気溜りの形成方法
JP2021188852A (ja) 環境制御システム
KR200209771Y1 (ko) 통기 구조 커튼월과 팬코일유니트를 이용한 일체형 에너지 절약형 공조시스템
JP2002277020A (ja) 換気システム及び換気方法
JPH08303840A (ja) 室温調節機能付除湿機を有する冷暖房システム
JP6486290B2 (ja) 換気システム
JPH0972599A (ja) 空気調和機
KR102228247B1 (ko) 건물의 창측 바닥에 설치되는 고효율 공기조화기
JP2013036719A (ja) 空調システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809339

Country of ref document: EP

Kind code of ref document: A1