WO2021232592A1 - 涂胶轨迹的获取方法及涂胶方法、装置和涂胶轨迹生成系统 - Google Patents
涂胶轨迹的获取方法及涂胶方法、装置和涂胶轨迹生成系统 Download PDFInfo
- Publication number
- WO2021232592A1 WO2021232592A1 PCT/CN2020/105487 CN2020105487W WO2021232592A1 WO 2021232592 A1 WO2021232592 A1 WO 2021232592A1 CN 2020105487 W CN2020105487 W CN 2020105487W WO 2021232592 A1 WO2021232592 A1 WO 2021232592A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point
- glue
- gun
- path
- trajectory
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 238000004026 adhesive bonding Methods 0.000 title claims abstract description 46
- 239000003292 glue Substances 0.000 claims abstract description 474
- 238000013507 mapping Methods 0.000 claims abstract description 45
- 238000010304 firing Methods 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 12
- 238000003860 storage Methods 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 8
- 230000002829 reductive effect Effects 0.000 claims description 8
- 230000008569 process Effects 0.000 abstract description 28
- 238000004519 manufacturing process Methods 0.000 abstract description 10
- 230000006870 function Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 230000007704 transition Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000005452 bending Methods 0.000 description 5
- 238000004590 computer program Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 4
- 230000001788 irregular Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000013072 incoming material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C5/00—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
- B05C5/02—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/10—Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
- B05C11/1002—Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
- B05C11/1015—Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to a conditions of ambient medium or target, e.g. humidity, temperature ; responsive to position or movement of the coating head relative to the target
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/26—Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
Definitions
- the present disclosure relates to the field of industrial intelligent manufacturing, and in particular to a method for obtaining a glue application trajectory, a glue application method, a device, and a glue application track generation system.
- the glue coating of the cabin door is an important part of it.
- most of the industry uses manual gluing combined with gluing tooling equipment for gluing.
- the location of the incoming materials is not fixed, the glue path is complicated, and the precision of the glue is required.
- the old glue technology is low in accuracy and efficiency. For example, for places with incorrect or insufficient precision, To clean up the colloid and re-apply it will not only cause the waste of colloid, but also greatly reduce the production efficiency.
- the embodiments of the present disclosure provide a method for obtaining a glue application track, a glue application method, a device, and a glue application track generation system, which at least partially solve the problems existing in the prior art.
- the embodiments of the present disclosure provide a method for obtaining glue track, including:
- the corresponding trajectory information is generated based on each demand path.
- the trajectory information includes the glue gun point, glue line trajectory point, glue gun off point, gun firing advance point and end extension point.
- the glue line trajectory point is located at the glue gun point and Between the glue gun closing points, the gun advance point is before the glue gun opening point, and the end extension point is after the glue gun closing point;
- the template of each object to be glued and the corresponding trajectory information are correspondingly stored in the path-object mapping set.
- Generate target trajectory information for the target demand path in each demand path including:
- a glue gun point is generated at the beginning end of the target demand path, or a glue gun point is generated at the early end of the target demand path.
- the glue gun passes through the gun advance point, the glue gun point, the glue line trajectory point, the glue gun off point, and the end extension point in order of position;
- the glue gun retreats after passing the end extension point, and then passes the end extension point again, or;
- the trajectory information also includes a drawing point, which is located after the end extension point.
- the distance between the gun advance point and the template of the object to be glued is greater than the distance of the object to be glued from the glue line track point;
- the moving speed of the glue gun at the advance point of the gun is different from the moving speed at the glue line trajectory point.
- the demand path includes:
- the generating glue line trajectory points on the target demand path includes:
- the corresponding number of glue line trajectory points are generated at a preset distance at a non-breakpoint.
- the method further includes:
- the demand path includes multiple sub-paths
- the trajectory information includes the sub-path trajectory information of each segment of the sub-paths, and the arrangement order of each sub-path trajectory information in the trajectory information, wherein the arrangement order is The similarity of the beginning and end of different sub-paths makes the comprehensive distance across different sub-paths the shortest.
- the generating glue line trajectory points on the target demand path includes:
- the glue line trajectory points with different distances from the corresponding two reference positions on the corresponding glue-coated object template will be adjusted.
- embodiments of the present disclosure provide a glue application method, including:
- the robot Based on the trajectory information matching the object to be glued in the preset path-object mapping set, the robot drives the glue gun to perform the glue application operation as needed.
- the trajectory information includes: a glue gun point, a glue line trajectory point, a glue gun off point, a gun firing advance point, and an end extension point;
- the robot drives the glue gun to perform glue application operations as required, including:
- the trajectory information also includes drawing points:
- the trajectory information matching the object to be glued in the preset path-object mapping set, so that the robot drives the glue gun to perform the glue application operation as needed includes:
- the trajectory information is adjusted according to the position and posture of the object to be glued, and the result is sent to the robot to drive the glue gun to perform the glue application operation.
- an embodiment of the present invention also provides a device for acquiring glue track, including:
- Recognition device used for image recognition of the demand path of each object template to be glued
- the processing module is used to generate corresponding trajectory information based on each demand path.
- the trajectory information includes the glue gun point, glue line trajectory point, glue gun off point, gun firing advance point and end extension point, and the glue line trajectory point in the corresponding trajectory Located between the glue gun opening point and the glue gun closing point, the gun advance point is before the glue gun opening point, and the end extension point is after the glue gun closing point;
- the storage module is used to store the template of each object to be glued and the corresponding trajectory information into the path-object mapping set.
- the processing module may be used for:
- the glue gun passes through the gun advance point, the glue gun point, the glue line trajectory point, the glue gun off point, and the end extension point in order of position;
- the glue gun retreats after passing the end extension point, and then passes the end extension point again, or;
- the trajectory information also includes a drawing point, which is located after the end extension point.
- the distance between the gun advance point and the template of the object to be glued is greater than the distance of the object to be glued from the glue line track point;
- the moving speed of the glue gun at the advance point of the gun is different from the moving speed at the glue line trajectory point.
- the demand path includes:
- the processing module is specifically used for:
- the corresponding number of glue line trajectory points are generated at a preset distance at a non-breakpoint.
- the processing module is further configured to:
- the demand path includes multiple sub-paths
- the trajectory information includes the sub-path trajectory information of each segment of the sub-paths, and the arrangement order of each sub-path trajectory information in the trajectory information, wherein the arrangement order is The similarity of the beginning and end of different sub-paths makes the comprehensive distance across different sub-paths the shortest.
- the processing module is further configured to:
- the glue line trajectory points with different distances from the corresponding two reference positions on the corresponding glue-coated object template will be adjusted.
- an embodiment of the present invention also provides a gluing device, including:
- Recognition module used for image recognition of the object to be glued
- the execution module is configured to enable the robot to drive the glue gun to perform the glue application operation on demand based on the trajectory information matching the object to be glued in the preset path-object mapping set.
- the trajectory information includes: a glue gun point, a glue line trajectory point, a glue gun off point, a gun firing advance point, and an end extension point;
- the execution module is specifically used for:
- the trajectory information also includes drawing points:
- the execution module 702 is further configured to:
- the trajectory information matching the object to be glued in the preset path-object mapping set so that the robot drives the glue gun to perform the glue application operation as needed includes:
- the trajectory information is adjusted according to the position and posture of the object to be glued, and the result is sent to the robot to drive the glue gun to perform the glue application operation.
- an embodiment of the present invention also provides a glue application track generation system, including a marking template and electronic equipment;
- the surface of the marking template is covered with a differentially strengthened paper strip, and the surface of the differentially strengthened paper strip is marked with a marking line that matches the demand path;
- the electronic device is used to generate a path-object mapping set
- the path-object mapping set includes the trajectory information of each object template to be glued to which the marking template is applied; each trajectory information includes the glue gun point, glue line trajectory point, glue gun off point, and gun advance point And the end extension point.
- each trajectory information includes the glue gun point, glue line trajectory point, glue gun off point, and gun advance point And the end extension point.
- the glue line trajectory point is located between the glue gun opening point and the glue gun closing point, the gun firing advance point is before the glue gun opening point, and the end extension point is after the glue gun closing point;
- each track information is used for The robot drives the glue gun to automatically apply glue on the object to be glued corresponding to the template of the object to be glued according to the corresponding track information.
- the embodiments of the present disclosure provide a glue trajectory acquisition method and device and a glue trajectory generation system, wherein the glue trajectory acquisition method is to identify the demand paths of multiple object templates to be glued through images, and then generate based on the demand paths including The trajectory information of each trajectory point corresponding to each object template to be glued is stored correspondingly, so that the path-object mapping set can be obtained.
- the path-object mapping set based on the embodiment of the present disclosure can meet the requirements of various objects. Diverse gluing process requirements.
- the state of the glue gun can be accurately matched with the movement process along the demand path, which effectively improves the precision and accuracy of the glue application operation, improves production efficiency, and realizes the intelligent and batch glue application of the robot.
- the embodiment of the present disclosure provides a glue application method and device, which recognizes the object to be glued, and performs the glue application operation based on the trajectory information of the corresponding object in the preset path-object mapping set.
- the trajectory information includes various trajectory points. In this way, It can meet the diverse gluing process requirements of a variety of objects, effectively realize the automatic gluing operation plan, and save labor costs.
- the precise matching between the state of the glue gun and the path requirements is realized, which effectively improves the precision and accuracy of the glue application operation and improves the production efficiency.
- FIG. 1 is a schematic flowchart of a method for obtaining glue traces according to an embodiment of the disclosure
- FIGS. 2a to 2e are schematic diagrams of the template of the object to be glued involved in the method for obtaining glue track provided by the embodiments of the present disclosure
- FIG. 3 is a schematic diagram of the required path of the template of the object to be glued involved in the method for obtaining the glue track provided by the embodiment of the disclosure;
- FIG. 4 is a schematic diagram of the glue application track involved in the glue application track acquisition method provided by an embodiment of the disclosure
- FIGS. 5a to 5g, and FIGS. 6 and 7 are schematic diagrams of the demand paths involved in the method for obtaining the glue track provided by the embodiments of the present disclosure
- FIG. 8a is a schematic flowchart of a gluing method provided by an embodiment of the present disclosure.
- FIGS. 8b-8d are schematic diagrams of the gluing effect of a gluing method provided by the embodiments of the disclosure.
- FIG. 9 is a schematic structural diagram of a device for obtaining a glue track provided by an embodiment of the present disclosure.
- FIG. 10 is a schematic structural diagram of a gluing device provided by an embodiment of the disclosure.
- the present disclosure provides a method for obtaining glue application traces.
- FIG. 1 is a schematic flow chart of a method for obtaining a glue track provided by an embodiment of the present disclosure. As shown in Figure 1, the method mainly includes the following steps:
- the embodiments of the present disclosure provide a method for obtaining glue trajectory, which is used in a glue-on-demand scene of an object surface, and the glue trajectory information when the surface of the object is glued on-demand is acquired through related embodiments.
- the provided method for obtaining the glue trajectory can also be used in the pre-configuration process of the intelligent glue application method, that is, pre-configure the glue trajectory information corresponding to different object templates, and then select the corresponding glue application according to different objects to be glued.
- the trajectory information can realize the intelligent glue application of the robot.
- the corresponding object is defined as an object template to be glued
- the provided method is to obtain the glue trajectory information corresponding to each object template to be glued for multiple object templates to be glued, and then store it.
- the method for obtaining the glue trajectory can be executed by a computing device, which can be implemented as software, or as a combination of software and hardware, and the computing device can be integrated in an electronic device or the like.
- the electronic equipment can also be connected to other peripherals, such as image acquisition devices, positioning devices, operating robots, etc., to assist in implementing functions such as image acquisition and positioning.
- the operating robot may be a four-axis robot arm or a six-axis robot arm.
- the surface of the template of the object to be glued can be divided into the area to be glued and the blank area.
- the area to be glued is the area that needs to be glued, and the blank area is the area that does not need to be glued.
- the sum of the various paths that the glued area moves, and the path on the glued area is defined as the demand path.
- the application operator can perform relevant highlighting in advance for identification.
- a marking line may be drawn at the position of the area to be glued to highlight the demand path, thereby helping to clearly identify the demand path.
- the template for the object to be glued can be of any material, for example, metal material, wood, plastic products, etc.; the template for the object to be glued can be of any shape, and can include, for example, irregular rectangles, irregular frames, and the like.
- a simple schematic embodiment of the template of the object to be glued is shown in Figs. 2a to 2e.
- the image recognition may be performed based on the image information of the template of the object to be glued collected by an industrial camera. In other embodiments, the image recognition may be performed based on the information required for modeling of the object to be glued collected by the 3D camera.
- a paper strip can be pasted on the surface of the template of the object to be glued, and then the object to be glued can be differentiated from the plane on which it is placed.
- the paper strip can be a white paper strip, and the white paper strip can be glued Draw a black line in the place of the demand path to highlight the demand path.
- the edge contour information of the object template to be glued can be identified by the method of object edge extraction to be used as the corresponding identifier between the object template to be glued and the subsequent generated trajectory information, and the subsequent search is based on the identifier.
- Corresponding track information a plane edge contour of a certain viewing angle of an object is recognized.
- the plane edge contour and the depth information of the object are recognized at the same time to obtain the three-dimensional edge contour of the object.
- other forms of information such as pre-defined labels and codes, can be used to identify the template of the object to be glued, which can be used as the identification of the correspondence between the template of the object to be glued and the subsequent generated trajectory information. Find the corresponding track information according to the identifier.
- the demand path includes a continuous path of any shape; in other embodiments, the demand path may be embodied as a discontinuous path as shown in some line segments in FIG. 3; in some embodiments, the demand path is embodied as a straight line, and in other embodiments In the embodiments, the demand path is embodied as a broken line, and in some embodiments, the demand path may also be embodied as an arc or the like.
- trajectory information includes the glue gun point, glue line trajectory point, glue gun off point, gun firing advance point, and end extension point.
- the glue line trajectory point is located in the glue gun. Between the glue gun point and the glue gun off point, the gun advance point is before the glue gun point, and the end extension point is after the glue gun point;
- the glue gun point, glue line trajectory point, glue gun off point, gun advance point, and end extension point mentioned in some of the above embodiments are embodied as the robot carrying the glue gun in some embodiments.
- the track points after the path is discretized during the movement; some of the points are embodied in other embodiments as the state of the glue gun switch at the time when the robot moves to the corresponding track point; some of the points are embodied in other embodiments as The glue application effect formed by the glue gun in the corresponding track and the glue in the corresponding state.
- the glue gun is driven by the robot at point A to accelerate and descend to approach the object to be glued.
- point B it stays close to the object to be glued.
- point A is the advance point of the gun and point B is the glue Gun point
- C, D, E point is the glue line trajectory point
- F point is the glue gun off point
- G point is the end extension point.
- the corresponding density setting can be performed on the corresponding demand path with the corresponding number and the point spacing.
- points of different categories can be set separately according to different numbers and spacing requirements, of course, they can also be set uniformly according to the same number and spacing.
- the trajectory information includes the trajectory information provided by the present disclosure and sent to the robot to make the robot move according to the corresponding path requirements and using default or non-default robot kinematics parameters.
- the track information is used for the glue application operation, that is, the glue application track information.
- the trajectory information includes the coordinate information of each trajectory point on the trajectory; in some embodiments, the coordinate information of the trajectory point includes two-dimensional coordinates, and the glue is applied strictly according to the corresponding demand path in the two-dimensional plane.
- the coordinate information of the track points includes three-dimensional coordinates, and then on the basis of the glue application according to the corresponding demand path, the glue application operation moves up and down according to the fluctuation of the surface of the object to be glued.
- the degree of fluctuation of the surface of the object to be glued can be identified according to the depth information of the template of the object to be glued. At the fluctuations, such as a curved surface or a stepped surface, a corresponding amount or corresponding amount of glue can be generated based on the required glue amount. Interval track points.
- the trajectory information includes the posture information of each trajectory point.
- the posture information can be embodied as the orientation of the tool at a certain trajectory point relative to the surface of the object.
- the glue gun is relative to the object to be glued during the pre-generation process.
- the orientation is embodied as the angle between the plane of the glue gun outlet and the aforementioned surface, or the angle between the glue gun outlet axial direction and the aforementioned surface normal, etc., or any other that can reflect the attitude of the glue gun or the glue gun.
- the posture information can be determined based on the fluctuations presented on the surface of the object. For example, if the surface of the object is downwardly dented during the forward movement of the glue gun during the actual glue application process, adjust the direction of the glue gun facing the surface of the object at the corresponding point in the recess, and optionally adjust the tangential direction of the glue gun to the surface of the object. The angle between (or normal) is used to ensure that the glue gun is perpendicular to the surface, or is used to ensure that the glue gun is at a required angle with the surface.
- the trajectory information includes movement kinematics parameter information of the robot trajectory.
- the robot performs trajectory movement according to its default related kinematics information.
- the robot kinematics parameters can be set and adjusted on the relevant points of the trajectory information, such as adjusting the robot moving speed at a certain trajectory point, or adjusting the turning radius of the robot at a certain trajectory point; or, setting the corresponding trajectory through adjustment Indirectly adjust the acceleration of the robot by means of point interval and number.
- S103 Store the template of each object to be glued and the corresponding trajectory information in the path-object mapping set.
- a mapping set is stored for recording related mapping relationships.
- the mapping set can be embodied as the association between a storage area for storing identification and another storage area for storing trajectories, such as storing each object to be glued
- the association between the area of the template related information and the area where the corresponding trajectory information is stored, and the association may be specifically embodied as a mapping table.
- path-object mapping collection in the above related embodiments must not necessarily be used to store the mapping relationship between paths and objects.
- the name is intended to indicate that the mapping collection is used to determine the correlation of the corresponding objects. Relevant gluing operations following the demand path after the demand path.
- the identifier in the mapping set may be embodied as related information of the template of the object to be glued, and the trajectory may be the determined corresponding trajectory information.
- the relevant information of the template of the object to be glued may be a predefined code or label of the template, or the edge contour of the template.
- the relevant information of all the template of the object to be glued and its corresponding trajectory information are correspondingly stored in the path-object mapping set, and the information containing different objects can be obtained.
- Corresponding trajectory information of the template of the object to be glued In this way, in the subsequent actual gluing operation, if it is necessary to perform a gluing operation on an object to be glued, it is sufficient to find the corresponding trajectory information in the path-object mapping set according to the relevant information of the object.
- generating corresponding trajectory information based on each demand path may include the steps shown in FIG. 5a. Generate target trajectory information for the target demand path in each demand path:
- S502 Generate a glue gun point at the end of the target demand path
- S503 Generate an end extension point at the end of the target demand path
- S504 Generate a glue gun point at the beginning end of the target demand path
- S505 Generate a gun shot advance point at the advance end of the target demand path.
- the target demand path in the related embodiment is the demand path of a template for which trajectory information is not generated in each object template to be glued.
- target trajectory information is generated correspondingly based on the target demand path.
- the trajectory information generation of all templates is completed. The specific process can be shown in Figure 5a.
- step S501, step S502 (or step S503), and step S504 (or step S505) are not necessarily executed in the order shown in the figure.
- the related embodiment of FIG. 5a corresponds to different trajectory information generation results. The related results are shown in FIG. 5b to FIG. 5e. The different embodiments in FIG. Require.
- Figures 5b-5e are intended to illustrate the positional relationship between the demand path and the points included in the trajectory information.
- the relevant graphic content does not have a restrictive effect on the demand path, and the relevant graphic content does not limit the demand path at the same time.
- the relationship between the amount of glue applied to each point, and the relationship between the length of the demand path and the number of points is not limited.
- Fig. 5b corresponds to the execution result of the step embodiment of the leftmost branch in Fig. 5a, which realizes the operation of synchronously opening and closing the glue gun;
- Fig. 5c corresponds to the execution result of the step embodiment of the second branch from the left in Fig.
- the shape of the demand path may include: a straight-line segment path and a polyline-segment path.
- a simple schematic embodiment is shown in each diagram of FIG. 2 and FIG. 3.
- the target demand path shape also includes a straight-line segment path and a polyline-segment path.
- glue line trajectory points may be generated at the turning point, or a corresponding number of glue line trajectory points may be generated at a predetermined distance at a non-break point.
- the target demand path does not include turning points.
- the non-turning points are all over the entire path, and a corresponding amount of glue needs to be generated on the path with a preset distance.
- Line trajectory point the target demand path in some embodiments also includes a combination of a straight-line segment path and a polyline-segment path. In this case, related embodiments can be combined to generate glue line trajectory points.
- a corresponding required number of points can be generated with a corresponding required distance.
- a certain degree of bend angle of the broken line segment path is greater than a preset value, the turning radius of the glue gun is reduced.
- the subsequent robot based on the trajectory information does not necessarily strictly follow the corresponding fold line path to turn and move at the bend of the broken line.
- the actual situation is based on the figure. 5f to explain. For the path with a certain degree of bending shown by the dotted line in Fig. 5f, if trajectory information such as points A, B, and C are generated, the robot defaults to the actual movement trajectory from A to C through the arc shown by the solid line in Fig. 5f.
- the closeness of this arc to point B is determined by a robot kinematics parameter, that is, the turning radius.
- the degree of bend angle at the turning point is judged. If the degree of bend angle is greater than the preset value so that the robot turns before reaching the turning point, the turning radius at the turning point is reduced to make the robot hold
- the actual moving trajectory of the glue gun strictly follows the broken line path, that is, it moves strictly according to the path of ABC.
- the degree of bend angle is embodied as the included angle of the corresponding line segment on the broken line path. For example, the included angle of the broken line segment ABC in FIG.
- the degree of bend is reflected in the angle between the bending direction of the path at the turning point and its original direction.
- the broken line segment ABC in Figure 5f the original direction of which is A ⁇ B
- the bending direction at the turning point For B ⁇ C, the deviation angle is 90°. If the deviation angle increases and the direction becomes B ⁇ C ⁇ in Figure 5g after bending, the degree of bending angle is said to increase.
- the degree of reduction of the turning radius in some embodiments may optionally be reduced to the order of millimeters, and specifically may be 5 mm, 6 mm, 7 mm, or a non-integer value in between.
- the adjustment of the turning radius in some embodiments of the present disclosure can not only be applied to corners, bends, and turns included in the demand path, but the adjustment process can also be applied to other movements related to the gluing operation of the present disclosure.
- B happens to be the glue gun opening point, or B happens to be the glue gun closing point, or B happens to be the end extension point, you can use the same turning radius adjustment method to ensure that the actual glue gun's trajectory is as required. To match the movement trajectory.
- the trajectory information corresponding to each demand path is sequentially generated until the trajectory information of all the demand paths on the object template to be glued is generated, that is, the trajectory information of the object template to be glued is generated.
- the ending actions of different demand paths are slightly different, which is related to the glue application requirements of each demand path.
- the robot holding the glue gun sequentially passes through the gun advance point, the glue gun point, the glue line trajectory point, the glue gun off point, and the end extension point in order of position, to complete
- the glue gun after passing the end extension point, the glue gun can pass through the end extension point again by retreating to realize the shrinkage of the glue line, so that the glue line is in the shape of a line with a uniform width.
- the trajectory information may also include a drawing point, which is located after the end extension point, and the glue gun passes through the gun advance point, the glue gun point, the glue line trajectory point, the glue gun off point, and the end point in sequence. Extend the point and then reach the drawing point to achieve the drawing effect of the glue line.
- the present disclosure further meets the needs of different glue line tail shapes through different embodiments and combinations thereof.
- An exemplary embodiment of the drawing point may be shown as the points H, I, and J in FIG. 4.
- the distance between the end extension point and the template of the object to be glued is greater than the distance between the template of the object to be glued and the track point of the glue line.
- the glue gun collides with the glue line that has been glued, and the specific raising distance can be set according to requirements.
- the angle of the glue line drawing angle can be set, that is, the angle between the straight line of the drawn glue line in the corresponding viewing angle and the glue line on the demand path can be set, and then the straight line where the drawing point is located is determined, and then according to the corresponding The spacing and number of drawing points are generated.
- the distance between the drawing point and the template of the object to be glued is greater than the distance between the template of the object to be glued and the track point of the glue line.
- the path requirement includes multiple sub-paths.
- the gun is fired in advance and the distance from the template of the object to be glued is greater than the distance between the template of the object to be glued and the glue line track point.
- the glue gun In order to ensure that the glue gun is raised at the early point of the gun, it prevents the glue gun from damaging the glue lines of other sub-paths that have been applied before when the glue gun is applied to a certain sub-path.
- the moving speed of the glue gun at the shooting advance point is different from the moving speed at the glue line trajectory point.
- the moving speed V1 of the glue gun at the advance point of the gun can be greater than the moving speed V2 of the glue gun at the glue line track point; alternatively, V1 can be less than V2 to meet different glue application speed requirements while allowing the robot to move at the same time.
- the speed of the gun is changed in advance, so that the acceleration will not be too large, ensuring the safety of the robot's movement, and further improving the robot's intelligence.
- V1 is equal to V2 should also be included in the protection scope of the present disclosure.
- the number of gun advance points is unique, and when the gun advance points, the robot starts to change the corresponding speed, so that it applies glue along the demand path at the corresponding speed.
- the movement speed of the gun advance point includes the maximum (or minimum) speed of the robot from the first gun advance point to the glue gun point, or the movement speed of the gun advance point includes when the glue gun is infinitely close to the glue gun.
- the moving speed of the glue line trajectory point may include the average speed of the glue gun moving between the points.
- the demand path includes multiple sub-paths
- the trajectory information includes the sub-path trajectory information of each segment of the sub-paths, and the arrangement order of each sub-path trajectory information in the trajectory information, wherein the arrangement order is The similarity of the beginning and end of different sub-paths makes the comprehensive distance across different sub-paths the shortest.
- the demand path includes multiple sub-paths
- the trajectory information corresponding to the demand path also includes the sub-path trajectory information of each segment of the sub-paths, and the arrangement order of each sub-path trajectory information in the trajectory information, indicating that the glue gun is moving.
- the order of the sub-paths passed in.
- For the order of each sub-path in order to save unnecessary empty walking operations, when determining the arrangement order, it is necessary to traverse all the sub-path sorting methods to obtain the solution with the shortest comprehensive distance. It is better to determine the approach by making the ends of the different sub-paths close.
- the solution with the shortest comprehensive distance makes the comprehensive distance between different sub-paths the shortest.
- each sub-path trajectory information of each segment of the sub-path has the same attributes as the trajectory information described in the relevant embodiments of the present disclosure.
- each sub-path trajectory information includes glue gun point, glue line trajectory point, Glue gun off point, gun advance point and end extension point.
- the glue line trajectory point is located between the glue gun point and the glue gun off point.
- the gun advance point is before the glue gun point, and the end extension point is at the glue off point. After the gun point.
- the attributes of the sub-path information in other related embodiments are also correspondingly applied to the sub-path trajectory information.
- the dot matrix filling part in FIG. 6 is the template of the object to be glued.
- the demand path in FIG. 6 includes multiple sub-paths a, b, c, d, e, and f, and the ordering of each sub-path may include the following optional solutions.
- Solution 1 The robot holding the glue gun first goes through sub-path a from left to right, then goes through sub-path b from right to left, then goes through sub-path e from top to bottom, then goes through sub-path d from left to right, and then continues Go through the sub-path c from bottom to top, and finally go through the sub-path f from right to left.
- Scheme 2 The robot holding the glue gun first passes through subpath c from top to bottom, then goes through subpath d from right to left, then goes through subpath e from bottom to top, then goes through subpath a from left to right, and then from Go through the sub-path b from right to left, and finally go through the sub-path f from left to right.
- Scheme 3 the robot holding the glue gun first goes through sub-path d from right to left, then goes through sub-path e from bottom to top, then goes through sub-path a from left to right, then goes through sub-path b from right to left, and then from Go through the sub-path f from left to right, and finally go through the sub-path c from bottom to top.
- the selection of the same distance solution can be determined according to the initial position of the robot holding the glue gun.
- transition points can be set at the junctions between the sub-paths to make the robot move between the sub-paths to realize multi-path gluing. It can be understood that the transition point is only used for the robot to move between the sub-paths, and no glue is applied during this movement, so the glue gun at the transition point is in the closed state.
- the transition point is set after the end extension point of the previous sub-path, and before the shooting advance point of the subsequent sub-path.
- the transition point is set after the drawing point of the previous sub-path, and before the shooting point of the subsequent sub-path.
- the distance between the transition point and the template of the object to be glued is greater than the distance between the template of the object to be glued and the glue line track points to ensure that the movement of the glue gun between different sub-paths will not collide with the already coated Glue line.
- the determination of the transition point is specifically based on the connecting route between the sub-paths and based on the distance between the corresponding points (or the number of corresponding points). For example, if in Figure 6, the robot holding the glue gun moves along the sub-path f from left to right, and then moves along the sub-path c from top to bottom, it can be at the right end of the sub-path f and the upper end of the sub-path c A corresponding number of transition points (or corresponding point spacing) are generated on the connection line.
- the discrete point adsorption function of trajectory information is provided, and the specific discrete points may include any form of points in the relevant embodiments of the present disclosure.
- the related function can be turned on for the related line; or there is no need to turn on, and the trajectory information of an object to be glued template is generated directly.
- Each line performs adsorption search. Specifically, if there are discrete points that deviate in a certain range around the straight line, the points in the range are adjusted to the straight line. Or, perform discrete point adsorption for a certain corner, and adjust the discrete points within the corresponding numerical range of the corner to the corner.
- the on-site environment may affect the identification of the demand path.
- the demand path is a straight line segment or a polyline segment, it may cause some points in the trajectory information to deviate from the demand path. Therefore, in some embodiments, the discrete point adsorption function is applied to the glue line trajectory points generated on the target demand path: any glue line trajectory point deviates from the corresponding target demand path within a preset value, then the glue line trajectory point is adjusted to On the path of target demand. In this way, the error of the gluing operation can be effectively reduced.
- the The equidistant correction function can be used for correction. Specifically, after displaying the relevant trajectory information, you can wait for the instructions of the on-site operator to open the equal-distance correction requirement.
- the glue line track points with different distances from the corresponding two reference positions on the corresponding glue-coated object template are adjusted.
- the reference part may specifically be an edge of a certain part of the edge contour of the template of the object to be glued.
- the dot matrix filling part in Figure 7 is the template of the object to be glued.
- the sub-path e is not between the outer contour edge and the inner contour edge as shown in the figure.
- the embodiment of the present disclosure provides a method for obtaining glue path. After identifying the required path of an object template to be glued through images, corresponding trajectory information is generated based on the required path and stored accordingly, so that multiple templates of objects to be glued can be obtained. Corresponding trajectory information mapping set, in this way, based on the path-object mapping set of the embodiment of the present disclosure, the requirements of various gluing processes for various objects can be met. In addition, the state of the glue gun can be accurately matched with the movement process along the demand path, which effectively improves the precision and accuracy of the glue application operation, improves production efficiency, and realizes the intelligent and batch glue application of the robot.
- the present disclosure provides a glue application method.
- FIG. 8a is a schematic flow chart of a glue application method provided by an embodiment of the present disclosure.
- the embodiments of the present disclosure provide a glue application method, which recognizes the object to be glued, and performs the glue operation based on the trajectory information of the corresponding object in the preset path-object mapping set.
- the trajectory information includes various trajectory points, so that it can satisfy The diversified gluing process requirements of various objects effectively realize the automatic gluing operation plan and save labor costs.
- the precise matching between the state of the glue gun and the path requirements is realized, which effectively improves the precision and accuracy of the glue application operation and improves the production efficiency.
- the surface of the object to be glued in the related embodiment is pre-planned as the area to be glued and the blank area.
- the area to be glued is the area that needs to be glued, and the blank area is the area that does not need to be glued.
- To identify the glued object find the corresponding track information in the preset path-object mapping set to apply glue, and then apply glue on the glued area of the object to be glued.
- the preset path-object mapping set please refer to the related embodiment of the first aspect of the present disclosure.
- the image recognition in step S801 can be performed by collecting image information of the object to be glued, and then the image information can be used as the identification information of the object to be glued, and the identification information is used in the preset path- Find the trajectory information matching the object to be glued in the object mapping set.
- the image information can optionally be embodied as edge contours.
- the image recognition process in step S801 is a process of recognizing a plane edge contour image of a certain angle of view of the object; or in some alternative embodiments, the image recognition process includes simultaneous recognition of the plane edge contour and The process of recognizing the depth information of an object, that is, recognizing the three-dimensional edge contour image of the object.
- the edge contour is first bound to the model of the object to be glued, and then the model is used as the identification information to find the matching trajectory information in step S802.
- the object model can be embodied as a code, a label, and so on.
- the process of image recognition includes the process of image recognition of codes and labels.
- the image recognition may be performed based on the image information of the object to be glued collected by the industrial camera. In other embodiments, the image recognition can be performed based on the information required for modeling of the object to be glued collected by the 3D camera. In still other embodiments, the image recognition can be performed based on the code pattern collected by the code reader.
- the object to be glued can be of any material, for example, it can be metal, wood, plastic products, etc.; in other embodiments, the object to be glued can be of any shape, and can include, for example, irregularities. Rectangle, irregular frame, etc.
- a simple schematic embodiment of the shape of the object to be glued is shown in Figs. 2a-2e.
- the trajectory information includes: the glue gun point, glue line trajectory point, glue gun off point, gun firing advance point and end extension point; in some embodiments, the robot drives the glue gun from The gun is moved in advance to adjust the speed; when it reaches the glue gun point, it turns on the glue gun and moves along the glue line trajectory point to the glue gun off point; when it reaches the glue gun off point, it closes the glue gun and passes through the end extension point, and back again After the end extension point.
- the robot drives the glue gun to move down from the gun advance point (or move at the same time); when it reaches the glue gun point, it turns on the glue gun and moves along the glue line trajectory to the glue gun off point; When closing the glue gun point, close the glue gun and after the end extension point is raised, keep the raised state and return to pass the end extension point again.
- the trajectory information in some embodiments also includes the drawing point: and then the robot carries the glue gun and raises it along the end extension point, and then draws the wire at a corresponding angle along the drawing point.
- the gluing trajectory is shown by the arrow.
- the robot starts to adjust or descend at the advance point of the gun, and moves to the glue gun point at the same time.
- it reaches the glue gun point it turns on the glue gun and paints along the glue line trajectory point.
- it reaches the glue gun point turn off the glue gun of the glue applicator.
- passing the end extension point it can return to the end extension point to make the glue line appear as a line with the same width, or along the end
- the extension point is raised and then drawn along the drawing point.
- the posture and position of the object to be glued are uncertain. Therefore, in some embodiments, it is necessary to adjust the trajectory information according to the position and posture of the object to be glued, and send the adjusted result to the robot to drive the glue gun Carry out the glue operation.
- the current position and posture of the object to be glued can be obtained, and the current position and posture can be compared with the standard position and posture of the corresponding template, and the trajectory information matched in step S802 can be adjusted according to the comparison difference, so that the adjusted trajectory information is the same as the current position. Posture matching. Then the adjusted trajectory information is sent to the robot, so that the robot drives the glue gun to perform the glue application operation that matches the current position and posture of the object to be glued, so as to further optimize the glue application effect.
- the robot holding the glue gun makes a turn with a smaller turning radius at the turn. It should be noted that based on the relevant embodiments of the present disclosure, if the robot turns with a larger turning radius, it is also within the protection scope of the present disclosure.
- the present invention can identify the object to be glued whose magnitude is on the meter level, which can specifically be 2.2m ⁇ 0.8m as shown in Figure 8b.
- Figure 8b is the original picture of the object to be glued, and the brighter part is the object to be glued;
- Fig. 8b is enlarged at a zoom ratio of 200% to obtain Fig. 8c, and the glue line to the edge can be seen, such as the circled part A, the glue line is obtained by applying the glue according to the embodiment of the present disclosure.
- the embodiment of the present disclosure can realize the glue coating operation with the glue line spacing on the order of millimeters.
- the part A of Figure 8b is enlarged at a zoom ratio of 600% to obtain Figure 8d, which can clearly distinguish millimeters. Glue line spacing.
- the gluing method provided by the above embodiment of the present disclosure recognizes the object to be glued, and performs the gluing operation based on the trajectory information of the corresponding object in the preset path-object mapping set.
- the trajectory information includes various trajectory points, so that it can satisfy The diversified gluing process requirements of various objects effectively realize the automatic gluing operation plan and save labor costs.
- the precise matching between the state of the glue gun and the path requirements is realized, which effectively improves the precision and accuracy of the glue application operation and improves the production efficiency.
- the method for obtaining glue trajectory and the glue application method provided by the embodiments of the present disclosure can be applied to the complex trajectory glue of any type of frame-shaped object. For each type of object, only one trajectory point generation is required. , Can carry out high-precision, high-efficiency track gluing.
- the embodiments of the present disclosure also provide a device for acquiring glue track.
- the glue application track acquisition device 90 includes:
- the recognition module 901 is used for image recognition of the demand path of each object template to be glued;
- the processing module 902 is used to generate corresponding trajectory information based on each demand path, where the trajectory information includes the glue gun point, glue line trajectory point, glue gun off point, gun firing advance point and end extension point, and the glue line trajectory in the corresponding trajectory
- the point is located between the glue gun opening point and the glue gun closing point, the gun advance point is before the glue gun opening point, and the end extension point is after the glue gun closing point;
- the storage module 903 is used to store the template of each object to be glued and the corresponding trajectory information into the path-object mapping set.
- processing module 902 may be used for:
- Generate target trajectory information for the target demand path in each demand path including:
- a glue gun point is generated at the beginning end of the target demand path, or a glue gun point is generated at the early end of the target demand path.
- the glue gun passes through the gun advance point, the glue gun point, the glue line trajectory point, the glue gun off point, and the end extension point in the sequence of positions;
- the glue gun retreats after passing the end extension point, and then passes the end extension point again, or;
- the trajectory information also includes a drawing point, which is located after the end extension point.
- the distance between the gun advance point and the template of the object to be glued is greater than the distance of the object to be glued from the glue line track point;
- the moving speed of the glue gun at the advance point of the gun is different from the moving speed at the glue line trajectory point.
- the demand path includes:
- the processing module 902 is specifically configured to:
- the corresponding number of glue line trajectory points are generated at a preset distance at a non-breakpoint.
- processing module is also used to:
- the demand path includes multiple sub-paths
- the trajectory information includes the sub-path trajectory information of each sub-path, and the sequence of each sub-path trajectory information in the trajectory information.
- the comprehensive distance between different sub-paths is the shortest.
- processing module 902 is further configured to:
- the glue line trajectory points with different distances from the corresponding two reference positions on the corresponding glue-coated object template will be adjusted.
- this embodiment also provides a glue spreading device 100, which includes:
- the recognition module 1001 is used for image recognition of the object to be glued;
- the execution module 1002 is configured to enable the robot to drive the glue gun to perform the glue application operation as needed based on the trajectory information matching the object to be glued in the preset path-object mapping set.
- the trajectory information includes: a glue gun opening point, a glue line trajectory point, a glue gun closing point, a gun opening advance point, and an end extension point;
- the execution module 1002 is specifically used for:
- the trajectory information also includes drawing points:
- execution module 1002 is also used to:
- the trajectory information matching the object to be glued in the preset path-object mapping set so that the robot drives the glue gun to perform the glue application operation as needed includes:
- the trajectory information is adjusted according to the position and posture of the object to be glued, and the result is sent to the robot to drive the glue gun to perform the glue application operation.
- an embodiment of the present invention also provides a glue application track generating system, which is characterized in that it includes a marking template and an electronic device;
- the surface of the marking template is covered with a differentially strengthened paper strip, and the surface of the differentially strengthened paper strip is marked with a marking line that matches the demand path;
- the electronic device is used to generate a path-object mapping set
- the path-object mapping set includes the trajectory information of each object template to be glued to which the marking template is applied; each trajectory information includes the glue gun point, glue line trajectory point, glue gun off point, and gun advance point And the end extension point.
- each trajectory information includes the glue gun point, glue line trajectory point, glue gun off point, and gun advance point And the end extension point.
- the glue line trajectory point is located between the glue gun opening point and the glue gun closing point, the gun firing advance point is before the glue gun opening point, and the end extension point is after the glue gun closing point;
- each track information is used for The robot drives the glue gun to automatically apply glue on the object to be glued corresponding to the template of the object to be glued according to the corresponding track information.
- the foregoing device and system can correspondingly execute the content in the foregoing method embodiment.
- an electronic device which includes:
- At least one processor and,
- a memory communicatively connected with the at least one processor; wherein,
- the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the glue application method in the foregoing method embodiment.
- the embodiments of the present disclosure also provide a non-transitory computer-readable storage medium that stores computer instructions for causing the computer to execute the glue application method in the foregoing method embodiments.
- the embodiments of the present disclosure also provide a computer program product, the computer program product includes a calculation program stored on a non-transitory computer-readable storage medium, the computer program includes program instructions, when the program instructions are executed by a computer, The computer executes the glue application method in the foregoing method embodiment.
- first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.
- “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
- the computer program code used to perform the operations of the present disclosure can be written in one or more programming languages or a combination thereof.
- the aforementioned programming languages include object-oriented programming languages, such as Java, Smalltalk, C++, and also include conventional procedural programming languages-such as "C" language or similar programming languages.
- the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
- the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
- LAN local area network
- WAN wide area network
- each block in the flowchart or block diagram can represent a module, program segment, or part of code, and the module, program segment, or part of code contains one or more for realizing the specified logic function.
- Executable instructions can also be noted that, in some alternative implementations, the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two consecutively represented blocks can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved. This should be determined by those skilled in the art to which the embodiments of the present disclosure belong. Understand.
- each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations Or it can be realized by a combination of dedicated hardware and computer instructions.
- multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
- a suitable instruction execution system For example, if it is implemented by hardware, as in another embodiment, it can be implemented by any one or a combination of the following technologies known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate array (PGA), field programmable gate array (FPGA), etc.
- a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
- computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
- the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be performed, for example, by optically scanning the paper or other medium, and then editing, interpreting, or other suitable methods when necessary. Process to obtain the program electronically and then store it in the computer memory.
- a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing relevant hardware to complete.
- the program can be stored in a computer-readable storage medium, and when the program is executed, , Including one of the steps of the method embodiment or a combination thereof.
- the functional units in the various embodiments of the present disclosure may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
- the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
- the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Manipulator (AREA)
Abstract
一种涂胶轨迹的获取方法及涂胶方法、装置及涂胶轨迹生成系统,属于工业智能制造领域。方法包括:图像识别各待涂胶物体模板的需求路径(S101);基于各需求路径生成相应轨迹信息,轨迹信息包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结束延伸点位于关胶枪点之后(S102);将各待涂胶物体模板以及相应轨迹信息对应存储到路径-物体映射集合(S103)。基于路径-物体映射集合,满足多种物体的多样涂胶工艺需求;还实现胶枪的状态与沿需求路径移动过程的精准匹配,有效提高涂胶操作的精度、准确度,提高生产效率进而实现机器人智能化、批量化涂胶。
Description
本公开涉及工业智能制造领域,尤其涉及一种涂胶轨迹的获取方法及涂胶方法、装置和涂胶轨迹生成系统。
在汽车制造领域,舱门涂胶是其一个重要环节。对于种类繁多,来料任意摆放,涂胶路径复杂的情况下,业内大多数采用手工结合涂胶工装设备进行涂胶的方式。
对于舱门规格型号繁多,来料位置不定,涂胶路径复杂,涂胶精度要求高的需求,旧的涂胶技术在精度和效率上都较低,比如对于涂错或精度不够的地方,就要将胶体清理掉重新涂胶,不仅造成了胶体的浪费,同时也大大降低了生产效率。
可见,现有的涂胶方案存在效率较低、自动化和涂胶精度较低的技术问题。
发明内容
有鉴于此,本公开实施例提供一种涂胶轨迹的获取方法及涂胶方法、装置和涂胶轨迹生成系统,至少部分解决现有技术中存在的问题。
第一方面,本公开实施例提供了一种涂胶轨迹的获取方法,包括:
图像识别各待涂胶物体模板的需求路径;
基于各需求路径生成相应轨迹信息,其中,轨迹信息包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结束延伸点位于关胶枪点之后;
将各待涂胶物体模板以及相应轨迹信息对应存储到路径-物体映射集合。
针对各需求路径中的目标需求路径生成目标轨迹信息:
直至生成所有需求路径的轨迹信息;其中,
针对各需求路径中的目标需求路径生成目标轨迹信息,包括:
在所述目标需求路径上生成胶线轨迹点;
在所述目标需求路径的结束端生成关胶枪点,或者在所述目标需求路径的结束端生成结束延伸点;
在所述目标需求路径的起始端生成开胶枪点,或者在所述目标需求路径的提前端生成开胶枪点。
根据本公开实施例的一种具体实现方式,胶枪按位置顺序经过开枪提前点、开胶枪点、胶线轨迹点、关胶枪点、结束延伸点;
胶枪经过结束延伸点后回退,再次经过结束延伸点,或者;
所述轨迹信息还包括拉丝点,拉丝点位于结束延伸点之后。
根据本公开实施例的一种具体实现方式,针对一个待涂胶物体模板,
开枪提前点距该待涂胶物体模板的距离大于该待涂胶物体距胶线轨迹点的距离;和/或
胶枪在开枪提前点的移动速度不同于在胶线轨迹点的移动速度。
根据本公开实施例的一种具体实现方式,需求路径包括:
直线段路径、折线段路径;
所述在所述目标需求路径上生成胶线轨迹点,包括:
在折点处生成胶线轨迹点;和/或
在非折点处以预设距离生成相应数量胶线轨迹点。
根据本公开实施例的一种具体实现方式,所述方法还包括:
若折线段路径的某一折角程度大于预设值,则缩小胶枪的转弯半径。
根据本公开实施例的一种具体实现方式,需求路径包括多段子路径,轨迹信息包括各段子路径的子路径轨迹信息、以及各子路径轨迹信息在轨迹信息内的排列顺序,其中,排列顺序中不同子路径的首尾相近使得跨越不同子路径间的综合距离最短。
根据本公开实施例的一种具体实现方式,所述在所述目标需求路径上生成胶线轨迹点,包括:
若任意胶线轨迹点偏离所述目标需求路径在预设数值内,则将该胶线轨迹点 调整至所述目标需求路径上;或者
若检测到等间距校正需求,则将离相应涂胶物体模板上相应两参考部位距离不等的胶线轨迹点进行调整。
第二方面,本公开实施例提供了一种涂胶方法,包括:
图像识别待涂胶物体;
基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作。
根据本公开实施例的一种具体实现方式,所述轨迹信息包括:开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点;
所述机器人带动胶枪按需执行涂胶操作,包括:
从所述开枪提前点下降移动、和/或调速移动至所述开胶枪点;
在到达所述开胶枪点时开启胶枪,并沿所述胶线轨迹点向所述关胶枪点移动;
在到达所述关胶枪点时关闭胶枪经过所述结束延伸点后,回退再次经过所述结束延伸点;或,
所述轨迹信息还包括拉丝点:
沿所述结束延伸点抬高,并沿所述拉丝点进行拉丝。
根据本公开实施例的一种具体实现方式,所述基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作,包括:
根据所述待涂胶物体的位置姿态调整所述轨迹信息,发送结果至所述机器人使其带动胶枪执行涂胶操作。
第三方面,本发明实施例还提供了一种涂胶轨迹的获取装置,包括:
识别装置,用于图像识别各待涂胶物体模板的需求路径;
处理模块,用于基于各需求路径生成相应轨迹信息,其中,轨迹信息包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结 束延伸点位于关胶枪点之后;
存储模块,用于将各待涂胶物体模板以及相应轨迹信息对应存储到路径-物体映射集合。
根据本公开实施例的一种具体实现方式,所述处理模块可以用于:
针对各需求路径中的目标需求路径生成目标轨迹信息:
在所述目标需求路径上生成胶线轨迹点;
在所述目标需求路径的结束端生成关胶枪点,或者在所述目标需求路径的结束端生成结束延伸点;
在所述目标需求路径的起始端生成开胶枪点,或者在所述目标需求路径的提前端生成开胶枪点;
直至生成所有需求路径的轨迹信息。
根据本公开实施例的一种具体实现方式,所述胶枪按位置顺序经过开枪提前点、开胶枪点、胶线轨迹点、关胶枪点、结束延伸点;
胶枪经过结束延伸点后回退,再次经过结束延伸点,或者;
所述轨迹信息还包括拉丝点,拉丝点位于结束延伸点之后。
根据本公开实施例的一种具体实现方式,针对一个待涂胶物体模板,
开枪提前点距该待涂胶物体模板的距离大于该待涂胶物体距胶线轨迹点的距离;和/或
胶枪在开枪提前点的移动速度不同于在胶线轨迹点的移动速度。
根据本公开实施例的一种具体实现方式,需求路径包括:
直线段路径、折线段路径;
所述处理模块具体用于:
在折点处生成胶线轨迹点;和/或
在非折点处以预设距离生成相应数量胶线轨迹点。
根据本公开实施例的一种具体实现方式,所述处理模块还用于:
若折线段路径的某一折角程度大于预设值,则缩小胶枪的转弯半径。
根据本公开实施例的一种具体实现方式,需求路径包括多段子路径,轨迹 信息包括各段子路径的子路径轨迹信息、以及各子路径轨迹信息在轨迹信息内的排列顺序,其中,排列顺序中不同子路径的首尾相近使得跨越不同子路径间的综合距离最短。
根据本公开实施例的一种具体实现方式,所述处理模块还用于:
若任意胶线轨迹点偏离所述目标需求路径达到预设数值,则将该胶线轨迹点调整至所述目标需求路径上;或者
若检测到等间距校正需求,则将离相应涂胶物体模板上相应两参考部位距离不等的胶线轨迹点进行调整。
第四方面,本发明实施例还提供了一种涂胶装置,包括:
识别模块,用于图像识别待涂胶物体;
执行模块,用于基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作。
根据本公开实施例的一种具体实现方式,所述轨迹信息包括:开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点;
所述执行模块具体用于:
从所述开枪提前点下降移动、和/或调速移动至所述开胶枪点;
在到达所述开胶枪点时开启胶枪,并沿所述胶线轨迹点向所述关胶枪点移动;
在到达所述关胶枪点时关闭胶枪经过所述结束延伸点后,回退再次经过所述结束延伸点;或,
所述轨迹信息还包括拉丝点:
沿所述结束延伸点抬高,并沿所述拉丝点进行拉丝。
根据本公开实施例的一种具体实现方式,所述执行模块702还用于:
所述基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作,包括:
根据所述待涂胶物体的位置姿态调整所述轨迹信息,发送结果至所述机器人使其带动胶枪执行涂胶操作。
第五方面,本发明实施例还提供了一种涂胶轨迹生成系统,包括标记模板、电子设备;
所述标记模板表面覆盖差异强化纸条,所述差异强化纸条表面标记与需求路径相匹配的标记线;
所述电子设备用于生成路径-物体映射集合;
其中:所述路径-物体映射集合中包括应用所述标记模板的各待涂胶物体模板的轨迹信息;各轨迹信息分别包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结束延伸点位于关胶枪点之后;各轨迹信息用于使得机器人带动胶枪按照相应轨迹信息在相应待涂胶物体模板对应的待涂胶物体上自动涂胶。
本公开实施例提供一种涂胶轨迹获取方法及装置及涂胶轨迹生成系统,其中涂胶轨迹获取方法为通过图像识别多个待涂胶物体模板的需求路径后,再基于各需求路径生成包括各轨迹点的与各待涂胶物体模板相应的轨迹信息并对应存储,这样既可以获得路径-物体映射集合,如此,基于本公开实施例的路径-物体映射集合,便可以满足多种物体的多样涂胶工艺需求。此外,可以实现胶枪的状态与沿需求路径移动过程的精准匹配,有效提高了涂胶操作的精度、准确度,提高生产效率进而实现机器人智能化、批量化涂胶。
本公开实施例提供一种涂胶方法及装置,对待涂胶物体进行识别,基于预设的路径-物体映射集合中相应物体的轨迹信息进行涂胶操作,轨迹信息包括各种轨迹点,这样,可以满足多种物体的多样涂胶工艺需求,有效实现自动涂胶操作方案,节省了人力成本。此外,实现胶枪的状态与路径需求间的精准匹配,有效提高了涂胶操作的精度、准确度,提高生产效率。
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可 以根据这些附图获得其它的附图。
图1为本公开实施例提供的一种涂胶轨迹的获取方法的流程示意图;
图2a至图2e为本公开实施例提供的涂胶轨迹的获取方法所涉及的待涂胶物体模板的示意图;
图3为本公开实施例提供的涂胶轨迹的获取方法所涉及的待涂胶物体模板的需求路径的示意图;
图4为本公开实施例提供的涂胶轨迹的获取方法所涉及的涂胶轨迹的示意图;
图5a至图5g,以及图6和图7为本公开实施例提供的涂胶轨迹的获取方法所涉及的需求路径的示意图;
图8a为本公开实施例提供的一种涂胶方法的流程示意图;
图8b-8d为本公开实施例提供的一种涂胶方法的涂胶效果示意图;
图9为本公开实施例提供的一张涂胶轨迹的获取装置的结构示意图;
图10为本公开实施例提供的一种涂胶装置的结构示意图。
下面结合附图对本公开实施例进行详细描述。
以下通过特定的具体实例说明本公开的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本公开的其他优点与功效。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。本公开还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本公开的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应 了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本公开的基本构想,图式中仅显示与本公开中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。
第一方面,本公开提供一种涂胶轨迹的获取方法。
参见图1,为本公开实施例提供的一种涂胶轨迹的获取方法的流程示意图。如图1所示,所述方法主要包括以下步骤:
S101,图像识别各待涂胶物体模板的需求路径;
本公开实施例提供一种涂胶轨迹的获取方法,用于物体表面的按需涂胶场景,通过相关实施例获取对该物体表面进行按需涂胶时的涂胶轨迹信息。所提供的涂胶轨迹的获取方法,还可以用于智能涂胶方法的前期预配置过程,即预先配置好不同物体模板对应的涂胶轨迹信息,后期根据不同待涂胶物体选择对应的涂胶轨迹信息即可实现机器人智能涂胶。
部分实施方式中,将所对应的物体定义为待涂胶物体模板,所提供的方法就是针对多个待涂胶物体模板,获取各待涂胶物体模板相应的涂胶轨迹信息,进而进行存储。
部分实施例提供的涂胶轨迹的获取方法可以由一计算装置来执行,该装置可以实现为软件,或者实现为软件和硬件的组合,该计算装置可以集成设置在电子设备等中。此外,电子设备还可以连接其他外设,例如图像采集装置、定位装置、操作机器人等,以辅助实现图像采集、定位等功能。部分实施例中,操作机器人可以为四轴机器人手臂、或者六轴机器人手臂。
待涂胶物体模板表面可以分为需涂胶区域和空白区域,需涂胶区域即需要涂胶的区域,空白区域则为不需要涂胶的区域,涂胶轨迹即为机器人持胶枪在需涂胶区域移动的各个路径的总和,将需涂胶区域上的路径定义为需求路径。对于需求路径,可由应用操作人员预先进行相关的突出标记,进而进行识别。部分实施例中,可以在需涂胶区域的位置勾画标记线对需求路径进行突出标记,进而帮助清晰地识别需求路径。
待涂胶物体模板可以为任意材质,示例性地可以为金属材质、木质、塑料制品等;待涂胶物体模板可以为任意形状,示例性地可以包括不规则矩形、不规则框架等。待涂胶物体模板的简单示意性实施例,如图2a至图2e所示。
一些实施例中,图像识别可以基于通过工业相机采集的待涂胶物体模板的图像信息进行。另一些实施例中,图像识别可以基于通过3D相机所采集的待涂胶物体的建模所需信息进行。
一些实施例中,可在待涂胶物体模板表面粘贴纸条,进而对待涂胶物体进行与其所放置平面间的差异化标记,纸条可选为白色纸条,在白色纸条上对应涂胶需求路径的地方画黑线,用于突出标记需求路径。
部分实施例中在进行图像识别时,可以通过物体边缘提取的方式识别待涂胶物体模板的边缘轮廓信息用以作为待涂胶物体模板与后续所生成轨迹信息间对应的标识,后续根据标识查找相应轨迹信息。部分实施例中识别物体的某一视角的平面边缘轮廓,一些可选实施例中同时识别平面边缘轮廓以及物体的深度信息以获取物体的三维边缘轮廓。另一些实施例中在进行图像识别时,可以通过识别待涂胶物体模板的预定义标签、编码等其他形式信息,用以作为待涂胶物体模板与后续所生成轨迹信息间对应的标识,后续根据标识查找相应轨迹信息。
部分实施例中,需求路径包括任意形状的连续路径;另一些实施例中,需求路径可以体现为如图3中部分线段所示的间断的路径;一些实施例中需求路径体现为直线,另一些实施例中需求路径体现为折线,再一些实施例中需求路径还可以体现为弧线等。
S102,基于各需求路径生成相应轨迹信息,其中,轨迹信息包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结束延伸点位于关胶枪点之后;
在部分实施例中,上述部分实施例所提及的开胶枪点、胶线轨迹点、关胶枪点、开枪提前点、结束延伸点:其在部分实施例中体现为机器人携胶枪进行移动过程中所经过路径被离散化后的轨迹点;其中部分点在其他一些实施例中体现为机器人移动到相应轨迹点对应时刻胶枪开关的状态;其中部分点在另一些实施例中体现为在相应轨迹点胶枪以相应状态涂胶所形成的涂胶效果。列举示意性实施例而言,在实际涂胶过程中,如图4所示,胶枪在机器人带动下在A点开始提速下降接近待涂胶物体,在B点保持接近待涂胶物体状态并开启胶枪,经过C、D、E点后到达F点关闭胶枪抬高远离带涂胶物体,后经过G、H、I、J点,则A点为开枪提前点,B点为开胶枪点,C、D、E点为胶线轨迹点,F点为关胶枪点,G点为结束延伸点。本领域技术人员可以根据本公开的教导作用从不同角度对相关实施例中的各点进行理解。然而需要强调的是,本公开的保护范围,必不一定包括以上所列举全部点,以及必不一定包括以上点所对应体现的全部特征。对于包括以上部分点的情况,以及包括以上部分点所对应部分特征的情况,也列为本公开所保护范围之内。
对于各点的设置,在部分实施例中可依据胶量需求,在相应需求路径上以相应数量、点间距进行相应密度设置。部分实施例中,对于不同类别的点,可以分开按照不同数量、间距要求来设置,当然也可以统一按照相同的数量、间距设置。
部分实施例中,轨迹信息包括本公开所提供的、发送至机器人的、使得机器人按照相应路径需求、以默认或非默认机器人运动学参数进行移动所形成的轨迹的信息。具体阐述见下述相关实施例。部分实施例中轨迹信息用于涂胶操作,即为涂胶轨迹信息。
部分实施例中,轨迹信息包括轨迹上各轨迹点的坐标信息;部分实施例中 轨迹点的坐标信息包括二维坐标进而在二维平面内严格依据相应需求路径进行涂胶。
另一些实施例中轨迹点的坐标信息包括三维坐标进而在依据相应需求路径进行涂胶的基础上,使得涂胶操作根据待涂胶物体表面的波动进行上下移动。部分实施例中,具体可以根据待涂胶物体模板的深度信息识别其表面的波动程度,在波动处,例如弧面、呈阶梯形状的表面,综合所需求的涂胶量生成相应数量、或者相应间隔的轨迹点。
部分实施例中,轨迹信息包括各轨迹点姿态信息,具体实施例中姿态信息可以体现为在某一轨迹点的工具相对于物体表面的朝向,例如预生成过程中胶枪相对于待涂胶物体模板表面的朝向,或者实际涂胶操作过程中胶枪相对于待涂胶物体表面的朝向。可选地朝向体现为胶枪出胶口所在平面与上述表面间的夹角,或者胶枪出胶口轴向与上述表面法向间的夹角等,或者其他任何可以体现胶枪姿态、胶枪朝向的信息。
部分实施例中,姿态信息可以根据物体表面所呈现的波动确定。例如,若实际涂胶过程中在胶枪向前移动过程中物体表面向下凹陷,则适当在下凹处相应点调整胶枪面对物体表面的朝向,可选地调整胶枪与物体表面切向(或者法向)间的夹角,用来保证胶枪与该表面的垂直,或者用来保证胶枪与该表面间呈某一所需求的角度。
部分实施例中,轨迹信息包括机器人轨迹移动运动学参数信息。在轨迹信息不包括轨迹移动运动学参数信息的情况下,机器人按照其默认的相关运动学信息进行轨迹移动,而在部分较佳实施例中,为提高机器人的智能程度使其顺应各种涂胶需求,在轨迹信息相关点上对机器人运动学参数进行相关设定调整,例如在某一轨迹点调整机器人移动速度、或者在某一轨迹点调整机器人转弯半径等;或者,通过调整设定相应轨迹点间隔、数量的方式间接调整机器人加速度等。
S103,将各待涂胶物体模板以及相应轨迹信息对应存储到路径-物体映射集合。
部分实施例中,存储一映射集合用于记载相关映射关系,映射集合可以体现为某一用于存储标识的存储区域与另一部分用于存储轨迹的存储区域的关联,例如存储各待涂胶物体模板相关信息的区域与存储相应轨迹信息区域间的关联,该关联具体可以体现为映射表。
需要说明的是,上述相关实施例中集合名称“路径-物体映射集合”,必不一定用来存储路径与物体之间的映射关系,该名称意在指明映射集合用于在确定相应物体的相关需求路径后依从需求路径进行的相关涂胶操作。
在部分实施例中,映射集合中的标识可以体现为待涂胶物体模板的相关信息,轨迹可以为所确定的相应轨迹信息。部分实施例中,待涂胶物体模板的相关信息可以为预定义的该模板的编码、标签,或者为该模板的边缘轮廓。
在依据相关实施例确定了各待涂胶物体模板对应的轨迹信息之后,将全部待涂胶物体模板相关信息及其相应轨迹信息对应地存储到该路径-物体映射集合中,即可获得包含不同待涂胶物体模板的相应轨迹信息。这样,在后续实际涂胶操作过程中,若需要对某一待涂胶物体进行涂胶操作,在该路径-物体映射集合中依据该物体相关信息查找相应轨迹信息即可。
根据本公开实施例的一种可选实现方式,基于各需求路径生成相应轨迹信息,可以包括如图5a所示的步骤。针对各需求路径中的目标需求路径生成目标轨迹信息:
S501:在目标需求路径上生成胶线轨迹点;
S502:在目标需求路径的结束端生成关胶枪点,或者S503:在目标需求路径的结束端生成结束延伸点;
S504:在目标需求路径的起始端生成开胶枪点,或者S505:在目标需求路径的提前端生成开枪提前点。
直至生成所有需求路径的轨迹信息。
相关实施例中的目标需求路径,是各待涂胶物体模板中某一未生成轨迹信息的模板的需求路径,在针对一个模板的轨迹信息生成过程中,基于目标需求路径对应生成目标轨迹信息,针对多个模板循环往复相关生成过程的相关实施 例,进而完成所有模板的轨迹信息生成。具体过程可如图5a所示。
需要说明的是,图5a相关实施例的部分实施例中,步骤S501,步骤S502(或者步骤S503),步骤S504(或者步骤S505)间,不一定必须按照图示顺序执行。另外,图5a相关实施例对应不同轨迹信息生成结果,相关结果如图5b-图5e中所示,图5a中不同实施例可实现胶线起始端、结束端的不同形状,进而满足不同涂胶工艺要求。
需要说明的是,图5b-图5e意在说明需求路径与轨迹信息所包括的各点的位置关系,相关图示内容对需求路径不起到限制作用,相关图示内容同时也不限定需求路径与各点对应涂胶胶量之间的大小关系,同时不限定需求路径长度与各点的数量关系。具体图5b对应图5a中最左支系步骤实施例的执行结果,该实施例实现同步开胶枪、同步关胶枪操作;图5c对应图5a中左二支系步骤实施例的执行结果,该实施例实现提前开胶枪、同步关胶枪操作;图5d对应图5a中右二支系步骤实施例的执行结果,该实施例实现同步开胶枪、提前关胶枪操作;图5e对应图5a中最右支系步骤实施例的执行结果,该实施例实现提前开胶枪、提前关胶枪操作。不同实施例,配合不同的机器人带动胶枪移动过程的机器人运动参数,可满足胶线两端不同形状要求。例如,提前开胶枪并加速可使胶线逐渐变粗,同步开胶枪匀速可使胶线宽度相同等,对于关胶枪可采取类似方式。
部分实施例中,需求路径形状可以包括:直线段路径、折线段路径。简单示意性实施例如图2各图以及图3所示。进而图5a所示的单个轨迹信息生成过程中,目标需求路径形状也包括直线段路径、折线段路径。部分实施例中,对于包括折线段路径的目标需求路径,可以在折点处生成胶线轨迹点,或者可以在非折点处以预设距离生成相应数量胶线轨迹点。部分实施例中,对于包括直线段路径的目标需求路径,该目标需求路径不包括折点,进而可以理解到,非折点处遍布路径全程,需要在该路径上以预设距离生成相应数量胶线轨迹点。当然,部分实施例中目标需求路径还包括直线段路径以及折线段路径的组合情况,此时可以组合相关实施例进行胶线轨迹点的生成。
部分实施例中,对于开枪提前点(和/或结束延伸点)可以以相应需求距离生成相应需求数量的点。
部分实施例中,若折线段路径的某一折角程度大于预设值,则缩小胶枪的转弯半径。本领域技术人员可以理解到的是,在根据相关路径规划好对应轨迹信息后,后续机器人基于轨迹信息,在折线的弯折处并不一定会严格按照相应折线路径进行转弯移动,现实情况依据图5f进行解释说明。对于图5f中虚线所示具有一定弯折程度的路径,若生成如A、B、C点的轨迹信息,机器人默认实际移动轨迹将由A经过图5f实线所示的弧线到达C。这一弧线与B点的贴近程度由一机器人运动学参数决定,即转弯半径。如此,部分实施例中,判断折点处的折角程度,若折角程度大于预设值以至于使机器人在到达折点之前进行转弯,则对折点转弯处的转弯半径进行减小设置,使机器人持胶枪的实际走位轨迹严格按照折线路径进行,即严格按照A-B-C的路径移动。部分实施例中,折角程度体现为折线路径上相应线段的夹角,例如图5f中的折线段ABC的夹角为90°,若折线段ABC的夹角缩小为50°,称其折角程度增大;另一些实施例中,折角程度体现为折点处路径弯折方向偏离其原始方向的夹角,例如图5f中的折线段ABC,其原始方向为A→B,折点处弯折方向为B→C,则其偏离角度为90°,若偏离角度增大弯折后方向变为图5g中的B→C`,则称其折角程度增大。部分实施例中转弯半径的缩小程度,可选地,可将其缩小至毫米量级,具体可以为5毫米、6毫米、7毫米、或是其间的非整数值。
需要说明的是,本公开部分实施例中关于转弯半径的调整,不止可以应用在需求路径所包括的折角、弯折、转弯处,该调整过程还可以应用在本公开相关涂胶操作的其他移动的相关处。例如在某些实施例中,B恰好是开胶枪点,或者B恰好是关胶枪点,或者B恰好是结束延伸点,则可以按照相同的转弯半径调整方式保证实际胶枪的轨迹与所需要的移动轨迹相匹配。
依据上述步骤依次生成每个需求路径对应的轨迹信息,直至生成该待涂胶物体模板上的全部需求路径的轨迹信息,即为生成了该待涂胶物体模板的轨迹信息。
在实际涂胶过程中,不同需求路径的结束动作略有不同,这与每个需求路径的涂胶应用需求有关。本公开的部分实施例中,按照每条需求路径的轨迹信息,机器人持胶枪按照位置顺序依次经过开枪提前点、开胶枪点、胶线轨迹点、关胶枪点和结束延伸点,完成上述移动过程,在经过结束延伸点后,胶枪可以通过后退再次经过结束延伸点,实现胶线收缩,使胶线呈宽度一致的线条状。
在另一些实施例中,轨迹信息还可以包括拉丝点,拉丝点位于结束延伸点之后,胶枪按位置顺序依次经过开枪提前点、开胶枪点、胶线轨迹点、关胶枪点、结束延伸点,之后到达拉丝点实现胶线的拉丝效果。本公开通过不同的实施例及其组合,进而满足不同的胶线尾部形状需要。拉丝点的示意性实施例可如图4中点H、I、J所示。
一些实施例中,结束延伸点与待涂胶物体模板的距离大于该待涂胶物体模板与胶线轨迹点的距离,也就是说,机器人持胶枪在经过结束延伸点时实现抬高,防止胶枪碰撞已经涂胶完成的胶线,具体抬高距离可依据需求设定。
一些实施例中,可以设置胶线拉丝夹角的角度,即设置所拉申出的胶丝所在直线在相应视角上与需求路径上胶线间的角度,进而确定拉丝点所在的直线,接着根据相应间距、数量进行拉丝点的生成。
部分实施例中,拉丝点与待涂胶物体模板的距离大于该待涂胶物体模板与胶线轨迹点的距离,也就是说,机器人持胶枪在经过拉丝点时实现抬高,进而远离待涂胶物体模板。
在部分实施例中,路径需求包括多段子路径,针对一个待涂胶物体模板,其开枪提前点距该待涂胶物体模板的距离大于该待涂胶物体模板距胶线轨迹点的距离,以保证胶枪在开枪提前点实现抬高,防止胶枪在针对某段子路径进行涂胶时,破坏之前涂好的其他子路径的胶线。
部分实施例中,胶枪在开枪提前点的移动速度不同于在胶线轨迹点的移动速度。可选地,胶枪在开枪提前点的移动速度V1可大于胶枪在胶线轨迹点的移动速度V2;可选地V1可小于V2,进而满足不同的涂胶速度需求,同时使得机器人在开枪提前点提前进行速度改变,进而加速度不至于过大,保证机器人移 动的安全,进一步提高机器人智能程度。当然,基于本公开部分实施例基础上,对于V1等于V2的情况,也应列入到本公开保护范围之内。需要说明的是,部分实施例中开枪提前点的数量唯一,则在该开枪提前点时使得机器人开始进行相应速度改变,以使得其以相应速度沿着需求路径涂胶。另一部分实施例中,开枪提前点数量众多,则在第一个开枪提前点开始驱使进行相关速度改变。部分实施例中开枪提前点的移动速度包括机器人从第一个开枪提前点至开胶枪点过程中的最大(或最小)速度,或者开枪提前点的移动速度包括当胶枪无限接近于开胶枪点时胶枪速度变化的极限值。可选地,胶线轨迹点的移动速度可以包括胶枪在各点间移动的平均速度。
根据本公开实施例的一种具体实现方式,需求路径包括多段子路径,轨迹信息包括各段子路径的子路径轨迹信息、以及各子路径轨迹信息在轨迹信息内的排列顺序,其中,排列顺序中不同子路径的首尾相近使得跨越不同子路径间的综合距离最短。
部分实施例中,需求路径包括多段子路径,则需求路径对应的轨迹信息也包括各段子路径的子路径轨迹信息,以及各子路径轨迹信息在轨迹信息内的排列顺序,指示胶枪在移动过程中所经过的子路径的先后顺序。对于各子路径的顺序,为节省不必要的空走操作,确定排列顺序时,需要遍历全部子路径排序方式以获取综合距离最短的方案,较佳可通过使不同子路径的首尾相近的方式确定综合距离最短的方案,以使得跨越不同子路径之间的综合距离最短。进而使得相邻子路径之间的衔接合理,机器人尽量少的空走,且尽量避免重复移动。距离最短方案的确定,可依据现有技术中相关算法解决,此处不再赘述。需要说明的是,部分实施例中,各段子路径的子路径轨迹信息与本公开相关实施例中所说明的轨迹信息具有相同属性,例如各子路径轨迹信息包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结束延伸点位于关胶枪点之后。此外,其他相关实施例中的子路径信息的属性,也相应应用到子路径轨迹信息上。
对于子路径排序的简单示意性实施例可参见图6,图6中点阵填充部分为待涂胶物体模板。例如图6中需求路径,包括a、b、c、d、e、f多条子路径,各子路径排序可包括以下可选方案。方案一,机器人持胶枪首先由左至右经过子路径a,而后由右至左经过子路径b,再后由上至下经过子路径e,接着由左至右经过子路径d,再接着由下至上经过子路径c,最后由右至左经过子路径f。方案二,机器人持胶枪首先由上至下经过子路径c,而后由右至左经过子路径d,再后由下至上经过子路径e,接着由左至右经过子路径a,再接着由右至左经过子路径b,最后由左至右经过子路径f。方案三,机器人持胶枪首先由右至左经过子路径d,而后由下至上经过子路径e,再后由左至右经过子路径a,接着由右至左经过子路径b,再接着由左至右经过子路径f,最后由下至上经过子路径c。部分实施例中,对于相同距离方案的选择,可根据机器人持胶枪所在的初始位置决定。
部分实施例中,规划好各子路径的顺序后,可在各子路径间的衔接处设置过渡点,用以使机器人在各子路径间移动,实现多路径涂胶。可以理解的是,过渡点只是用于机器人在各子路径间移动,该移动过程中不进行涂胶,因此过渡点上胶枪处于关闭状态。一些实施例中,过渡点设置在前一个子路径的结束延伸点之后,后一个子路径的开枪提前点之前。一些实施例中,过渡点设置在前一个子路径的拉丝点之后,后一个子路径的开枪提前点之前。较佳地,过渡点与待涂胶物体模板间的距离大于该待涂胶物体模板与胶线轨迹点件的距离,用以保证胶枪在不同子路径间的移动不会碰撞到已经涂好的胶线。
部分实施例中,过渡点的确定具体根据各子路径间衔接的路线并依据相应点间距离(或者相应点数量)而定。举例而言,若在图6中,机器人持胶枪从左至右沿子路径f移动后,接着由上至下沿子路径c移动,则可在子路径f的右端与子路径c的上端连线上生成相应数量(或相应点间距)的过渡点。
在本公开的部分实施例中,提供轨迹信息的离散点吸附功能,具体离散点可以包括本公开相关实施例中任意形式的点。基于虚拟场景进行轨迹信息显示后,若操作人员认为需要对某一直线进行离散点吸附,则可以针对相关直线开 启相关功能;或者无需开启,在生成一个待涂胶物体模板的轨迹信息后直接对各直线进行吸附检索。具体若一直线周围某一范围内存在偏离的离散点,则将该范围内的点调整至该直线上。或者,针对某一转角进行离散点吸附,将该转角相应数值范围内的离散点调整至该拐角上。
部分应用场景中,现场环境可能影响需求路径的识别,对于需求路径为直线段或者折线段的情况,可能会导致轨迹信息中部分点偏离需求路径。因此部分实施例中将离散点吸附功能应用在目标需求路径上所生成的胶线轨迹点上:任意胶线轨迹点偏离相应目标需求路径在预设数值内,则将该胶线轨迹点调整至目标需求路径上。这样,可以有效减小涂胶操作的误差。
本公开部分实施例中,若由于各种原因导致实际需要在边缘轮廓的两部位中间的需求路径发生偏离,进而导致所生成的轨迹信息未位于边缘轮廓两部位的中间,则部分实施例中的等间距校正功能可以进行校正。具体可以在显示相关轨迹信息后,等待现场操作人员的指令开启等间距校正需求。
部分实施例中,若检测到等间距校正需求,则将离相应涂胶物体模板上相应两参考部位距离不等的胶线轨迹点进行调整。一些实施例中,参考部位具体可以是待涂胶物体模板的边缘轮廓某一部分的边,具体可以参见图7。图7中点阵填充部分为待涂胶物体模板,目前子路径e不在图示的外侧轮廓边和内测轮廓边中间,若需要将子路径e调节至外侧轮廓边与内侧轮廓边的中间位置,则可以首先确定两轮廓边的中间线位置,接着确定中间线与子路径e间的偏移量,进而根据偏移量将子路径e旋转或者平移至中间线上。
本公开实施例提供一种涂胶路径获取方法,通过图像识别待涂胶物体模板的需求路径后,再基于需求路径生成相应轨迹信息并对应存储,这样既可以获得多个待涂胶物体模板与相应轨迹信息的映射集合,如此,基于本公开实施例的路径-物体映射集合,便可以满足多种物体的多样涂胶工艺需求。此外,可以实现胶枪的状态与沿需求路径移动过程的精准匹配,有效提高了涂胶操作的精度、准确度,提高生产效率进而实现机器人智能化、批量化涂胶。
第二方面,本公开提供一种涂胶方法。
参见图8a,为本公开实施例提供的一种涂胶方法的流程示意图。
S801,图像识别待涂胶物体;
S802,基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作。
本公开实施例提供一种涂胶方法,对待涂胶物体进行识别,基于预设的路径-物体映射集合中相应物体的轨迹信息进行涂胶操作,轨迹信息包括各种轨迹点,这样,可以满足多种物体的多样涂胶工艺需求,有效实现自动涂胶操作方案,节省了人力成本。此外,实现胶枪的状态与路径需求间的精准匹配,有效提高了涂胶操作的精度、准确度,提高生产效率。
相关实施例中的待涂胶物体表面被预先规划为需涂胶区域和空白区域,需涂胶区域即需要涂胶的区域,空白区域则为不需要涂胶的区域,本公开实施例通过对待涂胶物体的识别,在预设路径-物体映射集合中查找相应轨迹信息进行涂胶操作,进而在待涂胶物体的需涂胶区域上进行涂胶。预设路径-物体映射集合的说明请见本公开第一方面的相关实施例。
部分实施例中,步骤S801中的图像识别可以通过采集待涂胶物体的图像信息进行,进而可以将图像信息作为该待涂胶物体的标识信息,标识信息用于步骤S802中在预设路径-物体映射集合中查找与该待涂胶物体匹配的轨迹信息。图像信息可选地可以体现为边缘轮廓。进而,在部分实施例中步骤S801中的图像识别的过程为对物体的某一视角的平面边缘轮廓图像进行识别的过程;或者一些可选实施例中,图像识别过程包括同时对平面边缘轮廓以及物体的深度信息进行识别的过程,也就是说对物体的三维边缘轮廓图像进行识别。
在另一些实施例中,先将边缘轮廓与该待涂胶物体的型号相绑定,再以型号作为标识信息用于步骤S802中查找相匹配的轨迹信息。部分实施例中,物体型号可体现为编码、标签等。进而,图像识别的过程包括对编码、标签的图像识别过程。
一些实施例中,图像识别可以基于工业相机采集的待涂胶物体的图像信息 进行。另一些实施例中,图像识别可以基于3D相机所采集的待涂胶物体的建模所需信息进行。再一些实施例中,图像识别可以基于读码器采集的码型进行。
一些实施例中,待涂胶物体可以为任意材质,示例性地可以为金属材质、木质、塑料制品等;另一些实施例中,待涂胶物体可以为任意形状,示例性地可以包括不规则矩形、不规则框架等。待涂胶物体形状的简单示意性实施例,如图2a-图2e所示。
本公开相关实施例中,轨迹信息包括:开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点;部分实施例中具体进行涂胶操作时,机器人带动胶枪从开枪提前点调速移动;在到达开胶枪点时开启胶枪,并沿胶线轨迹点向关胶枪点移动;在到达关胶枪点时关闭胶枪经过结束延伸点后,回退再次经过结束延伸点。另一些实施例中,机器人带动胶枪从开枪提前点下降移动(或者同时调速移动);在到达开胶枪点时开启胶枪,并沿胶线轨迹点向关胶枪点移动;在到达关胶枪点时关闭胶枪经过结束延伸点抬高后,保持抬高状态回退再次经过结束延伸点。
在上述相关实施例基础上,部分实施例中轨迹信息还包括拉丝点:进而机器人携带胶枪沿结束延伸点抬高后,并沿拉丝点进行相应角度的拉丝。
如图4所示,涂胶轨迹如箭头所示,机器人在开枪提前点开始调速或者下降,同时向开胶枪点移动,到达开胶枪点时开启胶枪,顺着胶线轨迹点进行涂胶并向关胶枪点移动,在到达关胶枪点时关闭涂胶机的胶枪,再经过结束延伸点时可以退回结束延伸点使胶线呈宽度一致的线条状,也可以沿着结束延伸点抬高再沿着拉丝点拉丝。
部分应用场景中,待涂胶物体的摆放姿态、位置不定,因此,在部分实施例中,需要根据待涂胶物体的位置姿态调整轨迹信息,并发送调整后结果至机器人使其带动胶枪执行涂胶操作。具体可以获取待涂胶物体的当前位置姿态,并将当前位置姿态与相应模板的标准位置姿态比较,根据比较差值来调整步骤S802中所匹配的轨迹信息,使得调整后的轨迹信息与当前位置姿态匹配。再将调整后的轨迹信息发送至机器人,使得机器人带动胶枪执行与待涂胶物体的当 前位置姿态匹配的涂胶操作,以进一步优化涂胶效果。
部分实施例中,基于在预设路径-物体映射集合中所匹配的轨迹信息,机器人持胶枪在转弯处以较小的转弯半径进行转弯。需要说明的是,若基于本公开的相关实施例,机器人以较大的转弯半径进行转弯,也在本公开的保护范围之内。
以下通过图8b-图8d说明本公开实施例的涂胶效果。
本发明可识别量级为米级的待涂胶物体,具体可以为如图8b所示的2.2m×0.8m,图8b为待涂胶物体原始图片,其中较亮部分为待涂胶物体;将图8b以200%的缩放比放大后得到图8c,可见至其边缘的胶线,例如所圈出A部分处,胶线依据本公开实施例进行涂胶操作所得出。对于量极为米的待涂胶物体,本公开实施例可实现胶线间距为毫米量级的涂胶操作,将图8b的A部分以600%的缩放比放大后得到图8d,可清晰分辨毫米级胶线间距。
上述本公开实施例提供的涂胶方法,对待涂胶物体进行识别,基于预设的路径-物体映射集合中相应物体的轨迹信息进行涂胶操作,轨迹信息包括各种轨迹点,这样,可以满足多种物体的多样涂胶工艺需求,有效实现自动涂胶操作方案,节省了人力成本。此外,实现胶枪的状态与路径需求间的精准匹配,有效提高了涂胶操作的精度、准确度,提高生产效率。
综上所述,本公开实施例提供的涂胶轨迹的获取方法及涂胶方法,能适用任意型号的框型物体的复杂轨迹涂胶,对于每个型号的物体,只需进行一次轨迹点生成,便可进行高精度、高效率的轨迹涂胶。
与上面的方法实施例相对应,本公开实施例还提供了一种涂胶轨迹的获取装置。如图9所示,所述涂胶轨迹的获取装置90包括:
识别模块901,用于图像识别各待涂胶物体模板的需求路径;
处理模块902,用于基于各需求路径生成相应轨迹信息,其中,轨迹信息包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前, 结束延伸点位于关胶枪点之后;
存储模块903,用于将各待涂胶物体模板以及相应轨迹信息对应存储到路径-物体映射集合。
可选的,所述处理模块902可以用于:
针对各需求路径中的目标需求路径生成目标轨迹信息:
直至生成所有需求路径的轨迹信息;其中,
针对各需求路径中的目标需求路径生成目标轨迹信息,包括:
在所述目标需求路径上生成胶线轨迹点;
在所述目标需求路径的结束端生成关胶枪点,或者在所述目标需求路径的结束端生成结束延伸点;
在所述目标需求路径的起始端生成开胶枪点,或者在所述目标需求路径的提前端生成开胶枪点。
可选的,所述胶枪按位置顺序经过开枪提前点、开胶枪点、胶线轨迹点、关胶枪点、结束延伸点;
胶枪经过结束延伸点后回退,再次经过结束延伸点,或者;
所述轨迹信息还包括拉丝点,拉丝点位于结束延伸点之后。
可选的,针对一个待涂胶物体模板,
开枪提前点距该待涂胶物体模板的距离大于该待涂胶物体距胶线轨迹点的距离;和/或
胶枪在开枪提前点的移动速度不同于在胶线轨迹点的移动速度。
可选的,需求路径包括:
直线段路径、折线段路径;
所述处理模块902具体用于:
在折点处生成胶线轨迹点;和/或
在非折点处以预设距离生成相应数量胶线轨迹点。
可选的,所述处理模块还用于:
若折线段路径的某一折角程度大于预设值,则缩小胶枪的转弯半径。
可选的,需求路径包括多段子路径,轨迹信息包括各段子路径的子路径轨迹信息、以及各子路径轨迹信息在轨迹信息内的排列顺序,其中,排列顺序中不同子路径的首尾相近使得跨越不同子路径间的综合距离最短。
可选的,所述处理模块902还用于:
若任意胶线轨迹点偏离所述目标需求路径在预设数值内,则将该胶线轨迹点调整至所述目标需求路径上;或者
若检测到等间距校正需求,则将离相应涂胶物体模板上相应两参考部位距离不等的胶线轨迹点进行调整。
此外,参见图10,本实施例还提供了一种涂胶装置100,包括:
识别模块1001,用于图像识别待涂胶物体;
执行模块1002,用于基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作。
可选的,所述轨迹信息包括:开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点;
所述执行模块1002具体用于:
从所述开枪提前点下降移动、和/或调速移动至所述开胶枪点;
在到达所述开胶枪点时开启胶枪,并沿所述胶线轨迹点向所述关胶枪点移动;
在到达所述关胶枪点时关闭胶枪经过所述结束延伸点后,回退再次经过所述结束延伸点;或,
所述轨迹信息还包括拉丝点:
沿所述结束延伸点抬高,并沿所述拉丝点进行拉丝。
可选的,所述执行模块1002还用于:
所述基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作,包括:
根据所述待涂胶物体的位置姿态调整所述轨迹信息,发送结果至所述机器人使其带动胶枪执行涂胶操作。
此外,本发明实施例还提供了一种涂胶轨迹生成系统,其特征在于,包括标记模板、电子设备;
所述标记模板表面覆盖差异强化纸条,所述差异强化纸条表面标记与需求路径相匹配的标记线;
所述电子设备用于生成路径-物体映射集合;
其中:所述路径-物体映射集合中包括应用所述标记模板的各待涂胶物体模板的轨迹信息;各轨迹信息分别包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结束延伸点位于关胶枪点之后;各轨迹信息用于使得机器人带动胶枪按照相应轨迹信息在相应待涂胶物体模板对应的待涂胶物体上自动涂胶。
上述装置及系统可以对应的执行上述方法实施例中的内容,本实施例未详细描述的部分,参照上述方法实施例中记载的内容,在此不再赘述。
此外,本公开实施例还提供了一种电子设备,该电子设备包括:
至少一个处理器;以及,
与该至少一个处理器通信连接的存储器;其中,
该存储器存储有可被该至少一个处理器执行的指令,该指令被该至少一个处理器执行,以使该至少一个处理器能够执行前述方法实施例中的涂胶方法。
本公开实施例还提供了一种非暂态计算机可读存储介质,该非暂态计算机可读存储介质存储计算机指令,该计算机指令用于使该计算机执行前述方法实施例中的涂胶方法。
本公开实施例还提供了一种计算机程序产品,该计算机程序产品包括存储在非暂态计算机可读存储介质上的计算程序,该计算机程序包括程序指令,当该程序指令被计算机执行时,使该计算机执行前述方法实施例中的的涂胶方法。
在本公开的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少 一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本领域技术人员可以理解到的是,可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定这应被本公开的实施例所属技术领域的技术人员所理解。也要注意的是,框图和/或流程图中 的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
在以上实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
Claims (14)
- 一种涂胶轨迹的获取方法,其特征在于,所述方法包括:图像识别各待涂胶物体模板的需求路径;基于各需求路径生成相应轨迹信息,其中,轨迹信息包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结束延伸点位于关胶枪点之后;将各待涂胶物体模板以及相应轨迹信息对应存储到路径-物体映射集合。
- 根据权利要求1所述的方法,其特征在于,所述基于各需求路径生成相应轨迹信息,包括:针对各需求路径中的目标需求路径生成目标轨迹信息:直至生成所有需求路径的轨迹信息;其中,针对各需求路径中的目标需求路径生成目标轨迹信息,包括:在所述目标需求路径上生成胶线轨迹点;在所述目标需求路径的结束端生成关胶枪点,或者在所述目标需求路径的结束端生成结束延伸点;在所述目标需求路径的起始端生成开胶枪点,或者在所述目标需求路径的提前端生成开胶枪点。
- 根据权利要求2所述的方法,其特征在于,胶枪按位置顺序经过开枪提前点、开胶枪点、胶线轨迹点、关胶枪点、结束延伸点;胶枪经过结束延伸点后回退,再次经过结束延伸点,或者;所述轨迹信息还包括拉丝点,拉丝点位于结束延伸点之后。
- 根据权利要求3所述的方法,其特征在于,针对一个待涂胶物体模板,开枪提前点距该待涂胶物体模板的距离大于该待涂胶物体距胶线轨迹点的距离;和/或胶枪在开枪提前点的移动速度不同于在胶线轨迹点的移动速度。
- 根据权利要求4所述的方法,其特征在于,需求路径包括:直线段路径、折线段路径;所述在所述目标需求路径上生成胶线轨迹点,包括:在折点处生成胶线轨迹点;和/或在非折点处以预设距离生成相应数量胶线轨迹点。
- 根据权利要求5所述的方法,其特征在于,所述方法还包括:若折线段路径的某一折角程度大于预设值,则缩小胶枪的转弯半径。
- 根据权利要求6所述的方法,其特征在于,需求路径包括多段子路径,轨迹信息包括各段子路径的子路径轨迹信息、以及各子路径轨迹信息在轨迹信息内的排列顺序,其中,排列顺序中不同子路径的首尾相近使得跨越不同子路径间的综合距离最短。
- 根据权利要求2-7任一项所述的方法,其特征在于,所述在所述目标需求路径上生成胶线轨迹点,包括:若任意胶线轨迹点偏离所述目标需求路径在预设数值内,则将该胶线轨迹点调整至所述目标需求路径上;或者若检测到等间距校正需求,则将离相应涂胶物体模板上相应两参考部位距离不等的胶线轨迹点进行调整。
- 一种涂胶方法,其特征在于,包括:图像识别待涂胶物体;基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作。
- 根据权利要求9所述的方法,其特征在于,所述轨迹信息包括:开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点;所述机器人带动胶枪按需执行涂胶操作,包括:从所述开枪提前点下降移动、和/或调速移动至所述开胶枪点;在到达所述开胶枪点时开启胶枪,并沿所述胶线轨迹点向所述关胶枪点移动;在到达所述关胶枪点时关闭胶枪经过所述结束延伸点后,回退再次经过所述结束延伸点;或,所述轨迹信息还包括拉丝点:沿所述结束延伸点抬高,并沿所述拉丝点进行拉丝。
- 根据权利要求9或10任一项所述的方法,其特征在于,所述基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作,包括:根据所述待涂胶物体的位置姿态调整所述轨迹信息,发送结果至所述机器人使其带动胶枪执行涂胶操作。
- 一种涂胶轨迹的获取装置,其特征在于,包括:识别装置,用于图像识别各待涂胶物体模板的需求路径;处理模块,用于基于各需求路径生成相应轨迹信息,其中,轨迹信息包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结束延伸点位于关胶枪点之后;存储模块,用于将各待涂胶物体模板以及相应轨迹信息对应存储到路径-物体映射集合。
- 一种涂胶装置,其特征在于,包括:识别模块,用于图像识别待涂胶物体;执行模块,用于基于预设路径-物体映射集合中与所述待涂胶物体相匹配的轨迹信息,使得机器人带动胶枪按需执行涂胶操作。
- 一种涂胶轨迹生成系统,其特征在于,包括标记模板、电子设备;所述标记模板表面覆盖差异强化纸条,所述差异强化纸条表面标记与需求路径相匹配的标记线;所述电子设备用于生成路径-物体映射集合;其中:所述路径-物体映射集合中包括应用所述标记模板的各待涂胶物体模板的轨迹信息;各轨迹信息分别包括开胶枪点、胶线轨迹点、关胶枪点、开枪提前点和结束延伸点,在相应轨迹中胶线轨迹点位于开胶枪点和关胶枪点之间,开枪提前点位于开胶枪点之前,结束延伸点位于关胶枪点之后;各轨迹信息用于使得机器人带动胶枪按照相应轨迹信息在相应待涂胶物体模板对应的待涂胶物体上自动涂胶。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010443097.9A CN111617933B (zh) | 2020-05-22 | 2020-05-22 | 涂胶轨迹的获取方法及涂胶方法、装置和涂胶轨迹生成系统 |
CN202010443097.9 | 2020-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021232592A1 true WO2021232592A1 (zh) | 2021-11-25 |
Family
ID=72267749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/105487 WO2021232592A1 (zh) | 2020-05-22 | 2020-07-29 | 涂胶轨迹的获取方法及涂胶方法、装置和涂胶轨迹生成系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111617933B (zh) |
WO (1) | WO2021232592A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115121451A (zh) * | 2022-06-17 | 2022-09-30 | 深圳研控自动化科技股份有限公司 | 点胶机驱控方法、装置、终端设备以及存储介质 |
CN115311452A (zh) * | 2022-09-20 | 2022-11-08 | 深圳市鑫路远电子设备有限公司 | 一种基于机器视觉的精密灌胶评估方法及系统 |
CN115471551A (zh) * | 2022-09-13 | 2022-12-13 | 苏州市凌臣采集计算机有限公司 | 点胶点位的坐标获取方法、装置、计算机设备及可读存储介质 |
CN116637778A (zh) * | 2023-05-31 | 2023-08-25 | 日照皓诚电子科技有限公司 | 一种石英晶体的点胶定位控制方法及系统 |
CN117032151A (zh) * | 2023-10-09 | 2023-11-10 | 深圳正实自动化设备有限公司 | 基于姿态控制的点胶路径规划方法及系统 |
CN117059862A (zh) * | 2023-09-12 | 2023-11-14 | 陕西太瓦时代能源科技有限公司 | 一种电池模组的装配控制方法及系统 |
CN117193226A (zh) * | 2023-11-08 | 2023-12-08 | 深圳市艾姆克斯科技有限公司 | 一种多功能智能工业控制系统及控制方法 |
CN118519470A (zh) * | 2024-07-17 | 2024-08-20 | 深圳市华成工业控制股份有限公司 | 六轴机器人跟踪涂胶控制方法、系统、设备及程序 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112317164B (zh) * | 2020-10-29 | 2021-11-23 | 北京曲线智能装备有限公司 | 一种喷涂机器人轨迹控制方法、装置及电子设备 |
CN112757293A (zh) * | 2020-12-25 | 2021-05-07 | 希美埃(芜湖)机器人技术有限公司 | 基于机器人视觉的多种混合板件的识别与喷涂方法 |
CN112871587B (zh) * | 2021-01-08 | 2021-12-10 | 昂纳工业技术(深圳)有限公司 | 一种基于3d视觉引导的涂胶路径规划方法和涂胶系统 |
CN113304966A (zh) * | 2021-04-26 | 2021-08-27 | 深圳市世宗自动化设备有限公司 | 动态点胶补偿方法、装置、计算机设备及其存储介质 |
CN113459103B (zh) * | 2021-07-09 | 2022-07-12 | 深圳市朗宇芯科技有限公司 | 一种机械手自动运行时的转角轨迹控制方法及装置 |
CN113921956A (zh) * | 2021-09-29 | 2022-01-11 | 东风时代(武汉)电池系统有限公司 | 一种电池涂胶工艺 |
CN113953144B (zh) * | 2021-10-20 | 2022-11-11 | 隆基乐叶光伏科技有限公司 | 打胶方法、打胶装置、设备和存储介质 |
CN113996510B (zh) * | 2021-10-26 | 2022-10-18 | 蓝思智能机器人(长沙)有限公司 | 非闭合胶路尾部收胶方法和应用 |
CN115228690B (zh) * | 2022-08-08 | 2023-08-08 | 深圳市深赛尔股份有限公司 | 一种基于环保水性卷钢涂料的漆面修补装置和方法 |
CN116116676B (zh) * | 2023-02-23 | 2024-05-28 | 广汽埃安新能源汽车股份有限公司 | 一种电源动力电池涂胶方法、系统及装置 |
CN116532328B (zh) * | 2023-04-21 | 2024-03-29 | 浙江金麦特自动化系统有限公司 | 一种pcb板涂胶方法 |
CN116637781B (zh) * | 2023-04-27 | 2024-07-19 | 深圳市鹏创达自动化有限公司 | 空间曲线的等距点胶方法、装置、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106391397A (zh) * | 2016-09-07 | 2017-02-15 | 广东欧珀移动通信有限公司 | 一种喷胶装置及边框轨迹的确定方法 |
CN106853430A (zh) * | 2016-12-30 | 2017-06-16 | 杭州力视科技有限公司 | 一种基于流水线的自动点胶跟踪方法及装置 |
US20190098147A1 (en) * | 2017-09-27 | 2019-03-28 | Xerox Corporation | Apparatus and method for overcoating a rendered print |
CN110152938A (zh) * | 2019-04-02 | 2019-08-23 | 华中科技大学 | 一种元器件点胶轨迹提取方法及自动控制机器人系统 |
CN111044532A (zh) * | 2018-10-15 | 2020-04-21 | 立普思股份有限公司 | 使用深度影像侦测的加工方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9427874B1 (en) * | 2014-08-25 | 2016-08-30 | Google Inc. | Methods and systems for providing landmarks to facilitate robot localization and visual odometry |
CN105964486B (zh) * | 2015-03-11 | 2019-01-29 | 宁波舜宇光电信息有限公司 | 一种自动涂胶系统及其涂胶方法 |
CN107511287A (zh) * | 2017-10-16 | 2017-12-26 | 佛山沃顿装备技术股份有限公司 | 一种光幕识别喷漆机设备及其喷漆方法 |
CN107931012B (zh) * | 2017-10-25 | 2020-06-19 | 浙江华睿科技有限公司 | 一种提取点胶路径的方法及点胶系统 |
CN109002895B (zh) * | 2018-07-17 | 2021-01-12 | 深圳市雷赛控制技术有限公司 | 一种桌面点胶示教方法及装置 |
CN110421561B (zh) * | 2019-07-18 | 2022-02-22 | 天津大学 | 一种使用协作机器人进行服装喷涂的方法 |
-
2020
- 2020-05-22 CN CN202010443097.9A patent/CN111617933B/zh active Active
- 2020-07-29 WO PCT/CN2020/105487 patent/WO2021232592A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106391397A (zh) * | 2016-09-07 | 2017-02-15 | 广东欧珀移动通信有限公司 | 一种喷胶装置及边框轨迹的确定方法 |
CN106853430A (zh) * | 2016-12-30 | 2017-06-16 | 杭州力视科技有限公司 | 一种基于流水线的自动点胶跟踪方法及装置 |
US20190098147A1 (en) * | 2017-09-27 | 2019-03-28 | Xerox Corporation | Apparatus and method for overcoating a rendered print |
CN111044532A (zh) * | 2018-10-15 | 2020-04-21 | 立普思股份有限公司 | 使用深度影像侦测的加工方法 |
CN110152938A (zh) * | 2019-04-02 | 2019-08-23 | 华中科技大学 | 一种元器件点胶轨迹提取方法及自动控制机器人系统 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115121451A (zh) * | 2022-06-17 | 2022-09-30 | 深圳研控自动化科技股份有限公司 | 点胶机驱控方法、装置、终端设备以及存储介质 |
CN115471551A (zh) * | 2022-09-13 | 2022-12-13 | 苏州市凌臣采集计算机有限公司 | 点胶点位的坐标获取方法、装置、计算机设备及可读存储介质 |
CN115471551B (zh) * | 2022-09-13 | 2023-09-01 | 苏州市凌臣采集计算机有限公司 | 点胶点位的坐标获取方法、装置、计算机设备及可读存储介质 |
CN115311452A (zh) * | 2022-09-20 | 2022-11-08 | 深圳市鑫路远电子设备有限公司 | 一种基于机器视觉的精密灌胶评估方法及系统 |
CN116637778A (zh) * | 2023-05-31 | 2023-08-25 | 日照皓诚电子科技有限公司 | 一种石英晶体的点胶定位控制方法及系统 |
CN116637778B (zh) * | 2023-05-31 | 2023-10-31 | 日照皓诚电子科技有限公司 | 一种石英晶体的点胶定位控制方法及系统 |
CN117059862B (zh) * | 2023-09-12 | 2024-03-08 | 陕西太瓦时代能源科技有限公司 | 一种电池模组的装配控制方法及系统 |
CN117059862A (zh) * | 2023-09-12 | 2023-11-14 | 陕西太瓦时代能源科技有限公司 | 一种电池模组的装配控制方法及系统 |
CN117032151A (zh) * | 2023-10-09 | 2023-11-10 | 深圳正实自动化设备有限公司 | 基于姿态控制的点胶路径规划方法及系统 |
CN117032151B (zh) * | 2023-10-09 | 2023-12-15 | 深圳正实自动化设备有限公司 | 基于姿态控制的点胶路径规划方法及系统 |
CN117193226B (zh) * | 2023-11-08 | 2024-01-26 | 深圳市艾姆克斯科技有限公司 | 一种多功能智能工业控制系统及控制方法 |
CN117193226A (zh) * | 2023-11-08 | 2023-12-08 | 深圳市艾姆克斯科技有限公司 | 一种多功能智能工业控制系统及控制方法 |
CN118519470A (zh) * | 2024-07-17 | 2024-08-20 | 深圳市华成工业控制股份有限公司 | 六轴机器人跟踪涂胶控制方法、系统、设备及程序 |
Also Published As
Publication number | Publication date |
---|---|
CN111617933A (zh) | 2020-09-04 |
CN111617933B (zh) | 2022-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021232592A1 (zh) | 涂胶轨迹的获取方法及涂胶方法、装置和涂胶轨迹生成系统 | |
US9089966B2 (en) | Workpiece pick-up apparatus | |
CN110603122B (zh) | 用于交互式学习应用的自动个性化反馈 | |
EP1537959B1 (en) | A method and a system for programming an industrial robot | |
CN110176078B (zh) | 一种训练集数据的标注方法及装置 | |
CN111275063A (zh) | 一种基于3d视觉的机器人智能抓取控制方法及系统 | |
CN104408408A (zh) | 基于曲线三维重建的机器人喷涂轨迹提取方法及提取装置 | |
Sanz et al. | Vision-guided grasping of unknown objects for service robots | |
CN104881673B (zh) | 基于信息整合的模式识别的方法和系统 | |
CN111085997A (zh) | 基于点云获取和处理的抓取训练方法及系统 | |
JP7388645B2 (ja) | グラフィックオブジェクトを選択するための方法及び対応するデバイス | |
CN108475325B (zh) | 用于识别手写图连接符的系统、方法及计算机可读介质 | |
TW201027288A (en) | Method of teaching robotic system | |
Tokuda et al. | Convolutional neural network-based visual servoing for eye-to-hand manipulator | |
CN113319859B (zh) | 一种机器人示教方法、系统、装置及电子设备 | |
CN113119108B (zh) | 一种二指机械臂抓取方法、系统、装置及存储介质 | |
Huang et al. | A case study of cyber-physical system design: Autonomous pick-and-place robot | |
CN114310954B (zh) | 一种护理机器人自适应升降控制方法和系统 | |
CN116749233A (zh) | 基于视觉伺服的机械臂抓取系统及方法 | |
Lloyd et al. | Programming contact tasks using a reality-based virtual environment integrated with vision | |
CN115018813A (zh) | 一种机器人自主识别与精确定位焊缝的方法 | |
Halim et al. | No-code robotic programming for agile production: A new markerless-approach for multimodal natural interaction in a human-robot collaboration context | |
CN204288242U (zh) | 基于曲线三维重建的机器人喷涂轨迹提取装置 | |
JPH05150835A (ja) | ロボツトによる組み立て装置 | |
CN117437256A (zh) | 工件轮廓的标注方法、装置、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20936997 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/03/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20936997 Country of ref document: EP Kind code of ref document: A1 |