WO2021232366A1 - 摄像机稳定装置及控制方法 - Google Patents

摄像机稳定装置及控制方法 Download PDF

Info

Publication number
WO2021232366A1
WO2021232366A1 PCT/CN2020/091610 CN2020091610W WO2021232366A1 WO 2021232366 A1 WO2021232366 A1 WO 2021232366A1 CN 2020091610 W CN2020091610 W CN 2020091610W WO 2021232366 A1 WO2021232366 A1 WO 2021232366A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer ring
stabilizing
axis
camera
motor
Prior art date
Application number
PCT/CN2020/091610
Other languages
English (en)
French (fr)
Inventor
徐红兵
Original Assignee
深圳市莫孚康技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010433314.6A external-priority patent/CN111594723A/zh
Priority claimed from CN202020858256.7U external-priority patent/CN212745763U/zh
Application filed by 深圳市莫孚康技术有限公司 filed Critical 深圳市莫孚康技术有限公司
Publication of WO2021232366A1 publication Critical patent/WO2021232366A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories

Definitions

  • This application relates to the technical field of cameras, and in particular to a camera stabilization device and a control method of the camera stabilization device.
  • a camera stabilization device (also called a pan-tilt) mostly uses an attitude sensor such as a gyroscope to cooperate with a drive motor to drive the camera to realize the stabilization function of the camera.
  • the attitude sensor is usually fixedly connected to the camera, and the drive motor is controlled to work in reverse based on the real-time attitude sensing of the attitude sensor, so as to ensure that the camera stabilization device maintains the camera's attitude stability.
  • the real-time attitude sensed by the attitude sensor needs to be electrically connected with the controller of the camera stabilization device to transmit data.
  • wired transmission is mostly used in the prior art to realize the communication between the attitude sensor and the controller.
  • Such a wired connection method will limit the rotation angle of the camera in the stabilization device, and it cannot achieve an angle rotation of 360 degrees and above in the camera stabilization device.
  • the cameraman is limited by the rotation angle of the camera and cannot carry out preset shooting operations, which increases the difficulty of shooting.
  • a camera stabilizing device including:
  • the outer ring is a body of revolution along a first axis and is rotatably connected to the support portion along a second axis, and the first axis and the second axis are arranged non-parallel;
  • the inner ring is rotatably connected to the outer ring along the first axis, and the inner ring is also provided with a base for fixing and connecting the camera;
  • a first stabilizing motor fixed to the outer ring and drivingly connected to the inner ring;
  • An attitude sensor which is fixed on the outer ring or the support part, and is used to sense the spatial attitude of the outer ring or the support part;
  • a stabilizing part fixed to the supporting part and drivingly connected to the outer ring, the stabilizing part is used to drive the outer ring to rotate relative to the supporting part to maintain a stable posture of the outer ring;
  • the controller is electrically connected to the first stabilizing motor, the attitude sensor, and the stabilizing part.
  • the controller is simultaneously based on the spatial attitude sensed by the attitude sensor, and the stabilizing part drives the external
  • the rotation angle of the ring is used to calculate the rotation posture of the inner ring relative to the outer ring, and then the first stabilizing motor is controlled to drive the inner ring to rotate to maintain the posture of the camera stable.
  • the first axis is perpendicular to the second axis.
  • the support portion includes a support frame
  • the stabilization portion includes a second stabilizing motor fixedly connected to the support frame
  • the outer ring is rotatably connected to the support frame along the second axis and is simultaneously connected to the support frame.
  • the second stabilizing motor drive connection is provided.
  • the support frame includes lugs arranged on both sides of the outer ring along the second axis and rotatably connected to the outer ring, and the second stabilizing motor is fixed on one of the lugs.
  • the first stabilizing motor is accommodated in the other lug on which the second stabilizing motor is not fixed by the supporting frame.
  • the attitude sensor is fixed on the outer ring.
  • the distance between the attitude sensor and the two lugs is equal.
  • the supporting part further includes a base rotatably connected with the supporting frame along a third axis
  • the stabilizing part further includes a third stabilizing motor
  • the third axis is respectively connected to the first axis and the second axis.
  • the axes are arranged non-parallel, and the third stabilizing motor is fixed on the base and in transmission connection with the support frame, or
  • the third stabilization motor is fixed on the support frame and is in transmission connection with the base, and the third stabilization motor is used to maintain a stable posture of the support frame.
  • first axis and the second axis are perpendicular to each other, and the third axis is perpendicular to the first axis and the second axis at the same time.
  • the attitude sensor is fixed on the support frame or the base.
  • the third stabilizing motor is detachably fixed to the base or the supporting frame, and the base and the supporting frame can be directly fixedly connected.
  • This application also relates to a method for controlling a camera stabilization device, which includes the following steps:
  • the first stabilizing motor is controlled based on the rotation posture to drive the inner ring to rotate relative to the outer ring to maintain a stable posture of the camera fixedly connected to the inner ring.
  • the stabilizing portion includes a second stabilizing motor and a third stabilizing motor
  • the supporting portion further includes a supporting frame and a base
  • the second stabilizing motor is used to maintain a stable attitude of the outer ring relative to the supporting frame
  • the third stabilizing motor is used to maintain a stable attitude of the support frame relative to the base, and the synchronous acquisition of the rotation angle of the outer ring or the support part driven by the stabilizing part in the process of maintaining the stable attitude
  • the camera is fixed by the inner ring, and the inner ring is maintained relative to the outer ring by the outer ring and a first stabilizing motor fixed on the outer ring
  • the attitude is stable.
  • the camera stabilizing device provided by the present application also maintains the stable posture of the outer ring through the cooperation of the supporting part and the stabilizing part.
  • the attitude sensor is arranged on the outer ring or the supporting part, so that the rotation angle between the inner ring and the outer ring is not restricted, and the rotation at any angle can be realized.
  • the camera stabilization device of the present application is also based on the spatial posture of the outer ring or the support part sensed by the posture sensor, and the angle at which the stabilizing part drives the outer ring to rotate when the posture is stable, To calculate the rotation posture of the inner ring relative to the outer ring, and then control the first stabilizing motor to drive the inner ring to rotate to maintain a stable posture of the camera. While realizing the stabilization function of the camera, the camera stabilization device of the present application liberates the degree of freedom of rotation of the camera relative to the stabilization device, can realize stable shooting operations in 360-degree rotation or even multi-circle continuous rotation scenes, and expands the application range of the camera.
  • the camera stabilization device control method provided by the present application also adopts an attitude sensor setting method similar to the above-mentioned camera stabilization device, and determines the rotation attitude of the inner ring relative to the outer ring through a joint solution to achieve The effect of liberating the degree of freedom of rotation of the camera while maintaining the stability of the camera posture.
  • FIG. 1 is a schematic structural diagram of a camera stabilizing device according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for controlling a camera stabilization device according to an embodiment of the present invention
  • Fig. 3 is a flowchart of a method for controlling a camera stabilization device according to another embodiment of the present invention.
  • the camera stabilizing device 100 provided by one embodiment of the present invention shown in FIG. 1. It includes a support frame 4, an outer ring 6, an inner ring 10, a first stabilizing motor 7, an attitude sensor 12, a second stabilizing motor 5, and a controller (not shown in the figure).
  • the supporting frame 4 can be used as a supporting part of the camera stabilizing device 100
  • the second stabilizing motor 5 can be used as a stabilizing part.
  • the outer ring 6 is in the shape of a revolving body along the first axis 001, and the outer ring 6 is also rotatably connected with the support frame 4 along the second axis 002 through the bearing 8 and/or the second stabilizing motor 5.
  • the first axis 001 and the second axis 002 are in a non-parallel relationship, and the camera stabilization device 100 of this embodiment realizes the function of biaxial stabilization.
  • the first axis 001 is perpendicular to the second axis 002.
  • the inner ring 10 is sleeved inside the outer ring 6, and the inner ring 10 can rotate relative to the outer ring 6 along the first axis 001.
  • the inner ring 10 is also in the shape of a revolving body. In other embodiments, the inner ring 10 may also be in a semicircular shape or an arc shape at any angle, etc. As long as the inner ring 10 can rotate relative to the outer ring 6 along the first axis 001, it falls within the scope of protection claimed by the present application.
  • a base 11 is also provided on the inner ring 10, and the base 11 is used for fixed connection with a camera (not shown in the figure). It can be understood that, in the illustrated embodiment, the base 11 adopts a sliding rail structure, and the camera is clamped on the base 11 along the sliding rail, which facilitates the fixation of the relative position between the camera and the inner ring 10.
  • the inner ring 10 is also provided with a fixing member 13 for assisting the base 11 to fix the camera, so as to further stabilize the fixed connection between the camera and the inner ring 11.
  • the first stabilizing motor 7 is fixedly connected to the outer ring 6, and at the same time, the first stabilizing motor 7 is also drivingly connected to the inner ring 10 for driving the inner ring 10 to rotate relative to the outer ring 6.
  • the first stabilizing motor 7 and the inner ring 10 are connected by a belt drive.
  • the first stabilizing motor 7 can also be connected to the inner ring 10 by means of chain transmission, gear transmission and the like. It is understandable that when the outer ring 6 rotates along the first axis 001, the first stabilizing motor 7 can drive the inner ring 10 to rotate in the opposite direction relative to the outer ring 6 along the first axis 001 through the transmission connection with the inner ring 10. Furthermore, it is ensured that the base 11 maintains a stable posture in the rotation direction of the first axis 001, and realizes the function of stabilizing the camera.
  • the second stabilizing motor 5 as the stabilizing part is fixed on the support frame 4 as the supporting part.
  • the second stabilizing motor 5 is also drivingly connected with the outer ring 6 for driving the outer ring 6 to face each other along the second axis 002 Due to the rotation of the support frame 4, the posture of the outer ring 6 relative to the support frame 4 is maintained stable. It is understandable that when the support frame 4 rotates along the second axis 002, the second stabilizing motor 5 can drive the outer ring 6 to rotate in the opposite direction along the second axis 002, thereby ensuring that the outer ring 6 is maintained in the direction of rotation of the second axis 002. The posture is stable, and the stabilization function of the camera is realized.
  • the camera stabilizing device 100 of the present application can realize the dual-axis stabilization function of the camera through the cooperative driving of the first stabilizing motor 7 and the stabilizing part (the second stabilizing motor 5).
  • the first axis 001 is perpendicular to the second axis 002, which facilitates orthogonal decomposition of the rotation angle of the inner ring 10 relative to the support portion (support frame 4) during the biaxial stabilization process.
  • the first axis 001 and the second axis 002 can also be set at any angle that intersects in space. As long as the first axis 001 and the second axis 002 are in a non-parallel spatial relationship, the camera stabilization device of the present application can be realized. Dual-axis stabilization function for 100 pairs of cameras.
  • the attitude sensor 12 is fixed on the outer ring 6.
  • the posture sensor 12 can sense the spatial posture of the outer ring 6 and transmit the sensed spatial posture of the outer ring 6 to an electrically connected controller.
  • the controller is usually fixed on the supporting part, and the controller is also electrically connected to the first stabilizing motor 7 and the second stabilizing motor 5 respectively.
  • the controller can drive and control the second stabilizing motor 5 through the received spatial attitude of the outer ring 6, so that the second stabilizing motor 5 drives the outer ring 6 relative to the support frame 4 along the second axis 002 based on the spatial attitude of the outer ring 6.
  • the rotation is performed to maintain the stable posture of the outer ring 6 in the rotation direction of the second axis 002.
  • the controller obtains the rotation angle of the rotation of the outer ring 6 driven by the second stabilizing motor 5, and combines the spatial attitude of the outer ring 6 to calculate the first axis of the inner ring 10 driven by the outer ring 6 001
  • the angular offset in the rotation direction that is, the controller also calculates the relative position of the inner ring 10 relative to the outer ring 6 based on the spatial attitude of the outer ring 6 sensed by the attitude sensor 12 and the rotation angle of the outer ring 6 driven by the second stabilizing motor 5
  • the controller can control the first stabilizing motor 7 to drive the inner ring 10 to rotate relative to the outer ring 6 along the first axis 001, and maintain the inner ring 10 in the two rotation directions of the first axis 001 and the second axis 002 at the same time.
  • the posture on the board is stable. It is understandable that because the camera is fixedly connected to the inner ring 10 through the base 11, the camera stabilization device 100 of the present application realizes the function of stabilizing the camera in the biaxial state.
  • the attitude sensor 12 may also be arranged on the support part (in this embodiment, it is represented as the support frame 4), and the controller is also based on the spatial attitude of the support frame 4 sensed by the attitude sensor 12 in combination with the second
  • the stabilizing motor drives the rotation angle of the outer ring 6 to calculate the real-time rotation posture of the inner ring 10 relative to the outer ring 6, and the first stabilizing motor 7 drives the inner ring 10 to rotate relative to the outer ring 6 along the first axis 001 , It can also achieve the effect of maintaining the posture stability of the inner ring in the two rotation directions of the first axis 001 and the second axis 002.
  • the attitude sensor 12 is usually fixedly connected to the camera, and the controller receives the spatial attitude of the camera sensed by the attitude sensor 12 through wired transmission to control the drive motors in the two axis directions respectively. Maintain the stability of the camera. And because the attitude sensor 12 and the controller fixed on the supporting part are connected and communicated by wire, the data transmission line of the attitude sensor 12 fixed on the inner ring 10 connected to the controller actually restricts the inner ring 10 relative to the outer The angle of rotation of the ring 6.
  • the attitude sensor 12 is fixed on the outer ring 6 or the support part, the data transmission line between the inner ring 10 and the outer ring 6 or the support part is omitted, and the inner ring 10 is released to face each other.
  • the degree of freedom of rotation of the outer ring 6 allows the inner ring 10 to rotate at any angle relative to the outer ring 6 under the drive of the first stabilizing motor 7.
  • the camera stabilization device 100 of the present application realizes the function of stabilizing the camera, and at the same time, the camera can be rotated at an angle of 360 degrees or more in the camera stabilization device 100 to expand
  • the application scenario of the camera stabilization device 100 reduces the difficulty of shooting and meets the requirements of some special shooting scenarios.
  • the support frame 4 is used to support the outer ring 6 and the second stabilizing motor 5, and the support frame 4 is also provided with two lugs 9.
  • Two lugs 9 are arranged on both sides of the outer ring 6 at intervals along the second axis 002, and each lug 9 is fixedly supported by two parallel support rods 41.
  • the end of the support rod 41 that is not connected to the lug 9 is connected to one side of the outer ring 6 and fixed to one side of the outer ring 6 to form the support frame 4, and to leave a movement track for the rotation of the outer ring 6 relative to the support frame 4 along the second axis 002 space.
  • the outer ring 6 is rotatably connected to the two lugs 9 through the bearing 8 and/or the second stabilizing motor 5, respectively.
  • the number of lugs 9 can also be one, and one lug 9 is rotatably connected to the outer ring 6 along the direction of the second axis 002, and the second stabilizing motor 5 is connected between the lug 9 and the outer ring 6. .
  • the second stabilizing motor 5 drives the outer ring 6 to rotate with the second axis 002 as the center of rotation, which can improve the driving accuracy of the second stabilizing motor 5 to the outer ring 6.
  • connection of a single lug 9 with the outer ring 6 will form a cantilever beam structure.
  • the rotation of the outer ring 6 relative to the support frame 4 under this structure is likely to cause disturbances and affect the stability accuracy of the camera stabilizer 100. Therefore, in the embodiment of FIG. 1, the structure of two lugs 9 is used to support the two sides of the outer ring 6 separately, which can improve the supporting rigidity of the outer ring 6.
  • the two lugs 9 are arranged at intervals along the second axis 002, which can further ensure that the outer ring 6 rotates smoothly along the second axis 002.
  • the second stabilizing motor 5 is fixed on one of the lugs 9, and further, the first stabilizing motor 7 can also be accommodated in the other lug 9.
  • the first stabilization motor 7 is fixedly connected to the outer ring 6, and the first stabilization motor 7 is housed in the support frame 4 without fixing the second stabilization motor 5 in the lugs 9 to control the overall volume of the camera stabilization device 100 of the present application
  • the trajectory space required by the first stabilizing motor 7 during the rotation of the outer ring 6 along the second axis 002 is also compressed to a minimum.
  • such a structure facilitates sealing and protection of the first stabilizing motor 7, and concealing the first stabilizing motor 7 in the lug 9 is also beneficial to improving the appearance consistency of the camera stabilizing device 100 of the present application.
  • the distance between the attitude sensor 12 and the two lugs 9 is equal, that is, the attitude sensor 12 is located on the extension line of the midpoint of the two lugs 9.
  • the two lugs 9 are arranged on both sides of the outer ring 6 along the horizontal direction (the direction of the axis 002), and the attitude sensor 12 can be arranged at the top or bottom of the outer ring 6. In this way, the distances between the first stabilizing motor 7 and the second stabilizing motor 5 and the attitude sensor 12 are equal, which can prevent the first stabilizing motor 7 or the second stabilizing motor 5 from being too close to the attitude sensor 12 and causing electromagnetic interference to the attitude sensor 12.
  • the posture sensor 12 is arranged at the bottom of the outer ring 6 to compress the volume of the camera stabilization device 100 of the present application, and at the same time, the posture sensor 12 is accommodated in the space formed by the support rod 41, which has a certain protective effect on the posture sensor 12.
  • the support frame 4 can be used as a support part of the camera stabilization device 100 of the present application.
  • the supporting part may further include a base (not shown in the figure) that is rotatably connected to the supporting frame 4 along the third axis 003, and the stabilizing part may also include a third stabilizing motor 1.
  • the third axis 003 is arranged non-parallel to the first axis 001 and the second axis 002, and the third stabilizing motor 1 is connected between the base and the support frame 4 to drive the support frame 4 to rotate relative to the base and maintain the support frame 4 in the first axis.
  • the posture in the rotation direction of the three axis 003 is stable.
  • the third stabilizing motor 1 may be fixed on the base and drivingly connected to the support frame 4, or the third stabilizing motor 1 may be fixed on the supporting frame 4 and drivingly connected to the base.
  • the camera stabilization device 100 of the present application can realize the function of three-axis stabilization for the camera.
  • the third axis 003 can be arranged perpendicular to the first axis 001 and the second axis 002 at the same time, so that the camera stabilizing device 100 of the present application can stabilize the camera from three mutually perpendicular axis directions.
  • the third axis 003 is arranged in a vertical direction, and the first axis 001 and the second axis 002 are perpendicular to each other on the same horizontal plane. This arrangement is beneficial to decompose the movement of the camera stabilization device 100, and the controllers are respectively The driving of the first stabilizing motor 7, the second stabilizing motor 5, and the third stabilizing motor 1 is controlled to ensure the stable posture of the camera.
  • the controller since the stabilizing part includes both the second stabilizing motor 5 and the third stabilizing motor 1, the controller also needs to be electrically connected to the third stabilizing motor 1, and at the same time, the second stabilizing motor 5 needs to be connected to the support of the driving outer ring 6
  • the rotation angle of the frame 4 and the rotation angle of the third stabilizing motor 1 driving the support frame 4 relative to the base combined with the spatial attitude of the outer ring 6 sensed by the attitude sensor 12, to calculate the inner ring 10 relative to the outer ring 6, and control the first stabilizing motor 7 to drive the inner ring 10 to rotate relative to the outer ring 6 to maintain the camera's posture stability.
  • the rotor of the third stabilization motor 1 is fixedly connected to the support frame 4 by bolts 2, and the third stabilization motor 1 drives the rotor to drive the support frame 4 to rotate along the third axis 003.
  • the controller is usually arranged on the support frame 4, the support frame 4 may have a hollow structure inside, and internal circuits for communication between the attitude sensor 12, the first stabilizing motor 7, and the second stabilizing motor 5 respectively and the controller are arranged.
  • a power supply line can also be provided inside the support frame 4 to provide electrical energy for each drive motor and controller.
  • the third stabilizing motor 1 can also be electrically connected to the internal circuit of the support frame 4 through the connector 3 to achieve electrical connection with the controller.
  • the purpose of sexual connection In other embodiments, the third stabilizing motor 1 can also be electrically connected to the internal circuit of the support frame 4 through a pogo-pin connection.
  • the attitude sensor 12 may also be fixed on the support frame 4 or the base.
  • the attitude sensor 12 is used to sense the spatial attitude of the support frame 4 or the base.
  • the rotation angle is used to calculate the real-time rotation posture of the inner ring 10 relative to the outer ring 6, and the first stabilizing motor 7 is controlled to drive the inner ring 10 to rotate relative to the outer ring 6 to maintain a stable posture of the camera.
  • the controller's calculation of the real-time rotation attitude of the inner ring 10 under the three-axis structure is similar to the method for the controller to calculate the real-time rotation attitude of the inner ring 10 under the two-axis structure.
  • an attitude sensor 12 is provided on the support frame. 4 or application basis on the base.
  • the controller can lock one or two drive motors, or lock the mechanical structure, to achieve this Apply for the single-axis stabilization or dual-axis stabilization function of the camera stabilization device 100.
  • the three-axis stabilization function is not required, reducing the number of driving motors put into operation of the camera stabilization device 100 can improve the system accuracy of the camera stabilization device 100 of the present application and provide a better stabilization effect for the camera.
  • the locking of one or two driving motors does not affect the attitude sensing function of the attitude sensor 12.
  • the controller can still calculate the real-time of the inner ring 10 through the rotation angle of the attitude sensor 12 and the outer ring 6 or the stabilizer part. Rotate the attitude and control the drive motor to maintain the camera's attitude stability.
  • the base included in the support part may be a handheld base connected with a handle, or a fixed base connected to other supporting devices, or even a connecting base connected to an aircraft.
  • the third stabilizing motor 1 is further connected between the base and the support frame 4 in a detachable manner. That is, the base can also be directly fixedly connected with the support frame 4, and the camera stabilization device 100 of the present application can be switched to a stabilization device with a dual-axis stabilization function.
  • the third stabilizing motor 1 is used to maintain the posture of the support frame 4, and the support frame 4 also carries a series of components such as the outer ring 6, the inner ring 10, the second stabilizing motor 5, the first stabilizing motor 7, and the camera. Therefore, the third stabilizing motor 1 needs to provide a relatively large torque in the process of maintaining the stable posture of the support frame 4. Especially in the process of high-speed movement of the camera or short-period reciprocating movement, the third stabilizing motor 1 will generate a relatively large workload. These scenarios all result in that the third stable motor 1 needs to have a larger volume and weight compared to the first stable motor 7 and the second stable motor 5.
  • the camera stabilization device 100 of the present application only needs to achieve dual-axis stability, and the cost of the camera stabilization device 100 can be reduced by directly connecting and fixing the base and the support frame 4 after the third stabilization motor 1 is removed.
  • the overall volume and weight of the camera stabilization device 100 of the present application make it easier to hold or support the camera stabilization device 100 of the present application.
  • the detachable function of the third stabilization motor 1 is particularly suitable for shooting scenes where the camera stabilization device 100 is connected to an aircraft. Because the aircraft is more sensitive to the weight of the camera stabilizing device 100, the camera stabilizing device 100 after removing the third stabilizing motor 1 can have a lighter weight and a smaller volume, which further expands the application range of the camera stabilizing device 100 of the present application.
  • This application also relates to a method for controlling a camera stabilization device, which includes the following steps:
  • the control method of the camera stabilization device of the present application can be explained with reference to the embodiment of the camera stabilization device 100 described above. Because the attitude sensor 12 is used to sense the spatial attitude of the outer ring 6 or the support part, it is determined that the attitude sensor 12 is fixed on the outer ring 6 or the support part.
  • the controller can calculate the real-time rotation attitude of the inner ring 10 relative to the outer ring 6, and then based on the solution
  • the calculated real-time rotation posture is used to control the first stabilizing motor 7 to drive the inner ring 10 to rotate relative to the outer ring 6 and maintain the posture of the camera fixed on the inner ring 10 to be stable.
  • the camera stabilization device 100 controlled by this method fixes the attitude sensor 12 on the outer ring 6 or the supporting part, so that data interaction between the inner ring 10 and the outer ring 6 is not required.
  • the camera stabilization device 100 under the control method realizes the function of stabilizing the camera, and can realize the rotation of the inner ring 10 in a larger angular range relative to the outer ring 6, which expands the application scenarios of the camera stabilization device 100, reduces the difficulty of shooting, and satisfies Some special shooting scene requirements.
  • the second stabilizing motor 5 is used to maintain the external
  • the posture of the ring 6 relative to the support frame 4 is stable
  • the third stabilizing motor 1 is used to maintain the posture of the support frame 4 relative to the base.
  • the angle of rotation driven by the stabilizing part may also include:
  • step S20 “calculate the rotation posture of the inner ring 10 relative to the outer ring 6 based on the spatial posture and the rotation angle", it can also be adjusted to:
  • S20a Calculate the rotation posture of the inner ring 10 relative to the outer ring 6 based on the spatial posture, the second rotation angle, and the third rotation angle.
  • this embodiment corresponds to an embodiment in which the camera stabilization device 100 is a three-axis stabilization mode.
  • the controller calculates the rotation posture of the inner ring 10 relative to the outer ring, in addition to the spatial posture of the outer ring 6 or the support part sensed by the posture sensor 12 and the second rotation angle driven by the second stabilizing motor 5, It is also necessary to introduce a third angle of rotation driven by the third stabilizing motor 1 to obtain an accurate result of the rotation posture of the inner ring 10, and subsequently control the first stabilizing motor 7 to drive the inner ring 10 to rotate relative to the outer ring 6 and maintain the fixation in the inner ring.
  • the posture of the camera on the ring 10 is stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种摄像机稳定装置(100)及控制方法。摄像机稳定装置(100)包括支撑部、外环(6)、内环(10)、第一稳定电机(7)、姿态传感器(12)、稳定部以及控制器。内环(10)用于固定摄像机,外环(6)沿第一轴线(001)套设于内环(10)外,外环(6)还沿第二轴线(002)与支撑部转动连接。稳定部用于控制外环(6)相对于支撑部的姿态稳定。姿态传感器(12)固定于外环(6)或支撑部上,控制器同时基于姿态传感器(12)所感应的空间姿态以及稳定部驱动外环(6)的转动角度,解算出内环(10)相对于外环(6)的转动姿态,进而控制第一稳定电机(7)驱动内环(10)转动以维持摄像机的姿态稳定。稳定装置(100)可提供内环(10)在外环(6)内自由无约束转动的条件。

Description

摄像机稳定装置及控制方法 技术领域
本申请涉及摄像机技术领域,尤其涉及一种摄像机稳定装置,以及一种摄像机稳定装置控制方法。
背景技术
现有技术中摄像机稳定装置(又称为云台),多采用如陀螺仪等姿态传感器配合驱动电机传动来实现摄像机的增稳功能。为了保证姿态传感器的感应精度,姿态传感器多与摄像机之间固定连接,并基于姿态传感器的实时姿态传感来反向控制驱动电机工作,保证摄像机稳定装置维持摄像机的姿态稳定。
姿态传感器感应的实时姿态需要与摄像机稳定装置的控制器电性连接以传输数据。为了保证数据传输速率和带宽,现有技术中大多采用有线传输的方式来实现姿态传感器与控制器之间的通信。这样的有线连接方式会导致摄像机在稳定装置内的转动角度受限,其无法在摄像机稳定装置内实现360度及以上的角度旋转。在一些特殊的拍摄场景下,摄像师受限于摄像机的转动角度而无法开展预设的摄影操作,导致拍摄难度增加。
发明内容
本申请的目的在于克服现有技术的不足,提供一种允许摄像机任意角度旋转的摄像机稳定装置,具体包括如下技术方案:
一种摄像机稳定装置,包括:
支撑部;
外环,沿第一轴线呈回转体,且与所述支撑部沿第二轴线转动连接,所述第一轴线与所述第二轴线非平行设置;
内环,沿所述第一轴线旋转连接于所述外环内,所述内环上还设有用于固定连接摄像机的基座;
第一稳定电机,固定于所述外环且与所述内环传动连接;
姿态传感器,固定于所述外环或所述支撑部上,用于感应所述外环或所述 支撑部的空间姿态;
稳定部,固定于所述支撑部且与所述外环传动连接,所述稳定部用于驱动所述外环相对于所述支撑部转动以维持所述外环的姿态稳定;
控制器,分别与所述第一稳定电机、所述姿态传感器和所述稳定部电性连接,所述控制器同时基于所述姿态传感器所感应的空间姿态,以及所述稳定部驱动所述外环的转动角度,以解算出所述内环相对于所述外环的转动姿态,进而控制所述第一稳定电机驱动所述内环转动以维持所述摄像机的姿态稳定。
其中,所述第一轴线垂直于所述第二轴线。
其中,所述支撑部包括支撑架,所述稳定部包括与所述支撑架固定连接的第二稳定电机,所述外环沿所述第二轴线与所述支撑架转动连接并同时与所述第二稳定电机传动连接。
其中,所述支撑架包括沿所述第二轴线分列所述外环两侧且分别与所述外环转动连接的支耳,所述第二稳定电机固定于其中一个所述支耳上。
其中,所述第一稳定电机收容于所述支撑架未固定所述第二稳定电机的另一所述支耳内。
其中,所述姿态传感器固定于所述外环上。
其中,在沿所述第二轴线的方向上,所述姿态传感器分别与两个所述支耳之间的距离相等。
其中,所述支撑部还包括沿第三轴线与所述支撑架转动连接的底座,所述稳定部还包括第三稳定电机,所述第三轴线分别与所述第一轴线和所述第二轴线非平行设置,所述第三稳定电机固定于所述底座上且与所述支撑架传动连接,或
所述第三稳定电机固定于所述支撑架上且与所述底座传动连接,所述第三稳定电机用于维持所述支撑架的姿态稳定。
其中,所述第一轴线与所述第二轴线相互垂直,且所述第三轴线同时垂直于所述第一轴线和所述第二轴线。
其中,所述姿态传感器固定于所述支撑架或所述底座上。
其中,所述第三稳定电机以可拆卸的形式固定于所述底座或所述支撑架上,且所述底座与所述支撑架可以直接固定连接。
本申请还涉及一种摄像机稳定装置控制方法,包括如下步骤:
通过姿态传感器感应外环或支撑部的空间姿态,并同步获取所述外环或所述支撑部在维持姿态稳定过程中经稳定部驱动的转动角度;
基于所述空间姿态和所述转动角度解算出内环相对于所述外环的转动姿态;
基于所述转动姿态控制第一稳定电机驱动所述内环相对于所述外环转动以维持与所述内环固定连接的摄像机的姿态稳定。
其中,所述稳定部包括第二稳定电机和第三稳定电机,所述支撑部还包括支撑架和底座,所述第二稳定电机用于维持所述外环相对于所述支撑架的姿态稳定,所述第三稳定电机用于维持所述支撑架相对于所述底座的姿态稳定,所述同步获取所述外环或所述支撑部在维持姿态稳定过程中经稳定部驱动的转动角度,还包括:
同步获取所述外环在维持姿态稳定过程中经所述第二稳定电机驱动的第二转动角度,以及所述支撑架在维持姿态稳定过程中经所述第三稳定电机驱动的第三转动角度。
本申请提供的摄像机稳定装置,通过所述内环来固定所述摄像机,并通过所述外环以及固定于所述外环上的第一稳定电机来维持所述内环相对于所述外环的姿态稳定。进一步的,本申请提供的摄像机稳定装置还通过所述支撑部和所述稳定部的配合来维持所述外环的姿态稳定。所述姿态传感器被设置于所述外环或所述支撑部上,使得所述内环与所述外环之间的转动角度不受限制,可以实现任意角度的转动。另一方面,本申请摄像机稳定装置还同时基于所述姿态传感器感应到的所述外环或所述支撑部的空间姿态,以及所述稳定部驱动所述外环维持姿态稳定时转动的角度,来解算出所述内环相对于所述外环的转动姿态,进而控制所述第一稳定电机驱动所述内环转动以维持所述摄像机的姿态稳定。本申请摄像机稳定装置在实现摄像机增稳功能的同时,解放了摄像机相对于稳定装置的旋转自由度,可以实现360度旋转甚至多圈连续旋转场景下的稳定拍摄操作,拓展了摄像机的应用范围。
而本申请提供的摄像机稳定装置控制方法,也因为采用了与上述摄像机稳定装置类似的姿态传感器的设置方式,并通过联合解算来确定所述内环相对于 所述外环的转动姿态,达到维持所述摄像机姿态稳定的同时解放摄像机旋转自由度的效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的一实施例摄像机稳定装置的结构示意图;
图2是本发明提供的一实施例摄像机稳定装置控制方法的流程图;
图3是本发明提供的另一实施例的摄像机稳定装置控制方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本发明,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
请参阅图1所示的本发明其中一实施例提供的摄像机稳定装置100。包括支撑架4、外环6、内环10、第一稳定电机7、姿态传感器12、第二稳定电机5以及控制器(图中未示)。在本实施例中,支撑架4可以作为摄像机稳定装置100的支撑部,第二稳定电机5可以作为稳定部。
进一步的,外环6沿第一轴线001呈回转体的形状,外环6还通过轴承8和/或第二稳定电机5与支撑架4沿第二轴线002转动连接。其中第一轴线001 和第二轴线002为非平行的关系,本实施例的摄像机稳定装置100实现了双轴稳定的功能。在本实施例中,还进一步定义第一轴线001垂直于第二轴线002。内环10套设于外环6的内部,内环10可以沿第一轴线001相对于外环6旋转。在本实施例中,内环10也呈回转体的形状。在其余实施例中,内环10还可以呈半圆形状或任意角度圆弧形状等,只要内环10可以沿第一轴线001相对于外环6旋转,都属于本申请所要求保护的范围。内环10上还设有基座11,基座11用于固定连接摄像机(图中未示)。可以理解的,在图示的实施例中,基座11采用了滑轨的结构,摄像机沿滑轨卡设于基座11上,有利于摄像机与内环10之间相对位置的固定。进一步的,内环10上还设置了用于辅助基座11对摄像机进行固定的固定件13,以进一步稳固摄像机与内环11之间的固定连接。
第一稳定电机7与外环6固定连接,同时第一稳定电机7还与内环10之间传动连接,用于驱动内环10相对于外环6转动。在图1实施例中,第一稳定电机7与内环10之间通过带传动实现传动连接。在其余实施例中,第一稳定电机7还可以通过链传动、齿轮传动等方式与内环10实现传动连接。可以理解的,当外环6沿第一轴线001旋转时,第一稳定电机7可以通过与内环10的传动连接,来带动内环10相对于外环6沿第一轴线001反向转动,进而保证基座11在第一轴线001的旋转方向上维持姿态稳定,实现对摄像机的增稳功能。
在本实施例中作为稳定部的第二稳定电机5固定于作为支撑部的支撑架4上,第二稳定电机5还与外环6传动连接,用于驱动外环6沿第二轴线002相对于支撑架4的转动,并维持外环6相对于支撑架4的姿态稳定。可以理解的,当支撑架4沿第二轴线002旋转时,第二稳定电机5可以驱动外环6沿第二轴线002反向转动,进而保证外环6在第二轴线002的旋转方向上维持姿态稳定,实现对摄像机的增稳功能。
也即,本申请摄像机稳定装置100可以通过第一稳定电机7和稳定部(第二稳定电机5)的配合驱动,来实现摄像机的双轴稳定功能。在本实施例中,第一轴线001垂直于第二轴线002,便于在双轴稳定的过程中对内环10相对于支撑部(支撑架4)的旋转角度进行正交分解。在其余实施例中,第一轴线 001和第二轴线002也可以呈空间相交的任意角度设置,只要第一轴线001与第二轴线002为非平行的空间关系,都能够实现本申请摄像机稳定装置100对摄像机的双轴稳定功能。
在本申请实施例中,姿态传感器12固定于外环6上。姿态传感器12可以感应到外环6的空间姿态,并将感应到的外环6的空间姿态传输给电性连接的控制器中。控制器通常固定于支撑部上,控制器还分别与第一稳定电机7和第二稳定电机5电性连接。控制器可以通过接收到的外环6的空间姿态对第二稳定电机5进行驱动控制,使得第二稳定电机5基于外环6的空间姿态驱动外环6沿第二轴线002相对于支撑架4进行旋转,维持外环6在第二轴线002的旋转方向上的姿态稳定。同步的,控制器通过获取第二稳定电机5驱动外环6旋转的转动角度,结合外环6自身的空间姿态,可以解算出内环10在外环6的带动下所产生的沿第一轴线001旋转方向上的角度偏移,即控制器同时基于姿态传感器12所感应的外环6的空间姿态,以及第二稳定电机5驱动外环6的转动角度,来解算出内环10相对于外环6的实时转动姿态。由此,控制器可以控制第一稳定电机7来驱动内环10沿第一轴线001相对于外环6进行旋转,进而同时维持内环10在第一轴线001和第二轴线002两个旋转方向上的姿态稳定。可以理解的,因为摄像机通过基座11固定连接于内环10上,因此本申请摄像机稳定装置100实现了双轴状态下对摄像机的增稳功能。
在另一些实施例中,姿态传感器12还可以设置于支撑部(在本实施例中表现为支撑架4)上,控制器同时基于姿态传感器12所感应的支撑架4的空间姿态,结合第二稳定电机驱动外环6的转动角度,来解算出内环10相对于外环6的实时转动姿态,并通过第一稳定电机7来驱动内环10沿第一轴线001相对于外环6进行旋转,同样可以达到维持内环在第一轴线001和第二轴线002两个旋转方向上的姿态稳定效果。
前述中提到,现有技术中姿态传感器12通常与摄像机之间固定连接,控制器通过有线传输的方式接收姿态传感器12感应到的摄像机的空间姿态来分别控制两个轴线方向的驱动电机工作以维持摄像机的稳定。而因为姿态传感器12与固定于支撑部上的控制器之间通过有线方式连接通信,因此固定于内环10上的姿态传感器12连接于控制器上的数据传输线实际限制了内环10相对 于外环6的转动角度。可以理解的,当内环10相对于外环6的转动角度过大时,受限于数据传输线的长度,内环10无法在第一稳定电机7的驱动下相对于外环6实现匹配的大角度的转动以维持姿态稳定。
而本申请摄像机稳定装置100,因为将姿态传感器12固定于外环6或支撑部上,省去了内环10与外环6或支撑部之间的数据传输线,进而放开了内环10相对于外环6的旋转自由度,使得内环10可以在第一稳定电机7的驱动下相对于外环6进行任意角度旋转。相较于现有技术中摄像机转动角度受限的情况,本申请摄像机稳定装置100在实现对摄像机增稳功能的同时,可以实现摄像机在摄像机稳定装置100内360度及以上的角度旋转,以拓展摄像机稳定装置100的应用场景,降低拍摄难度,满足一些特殊的拍摄场景需求。
一种实施例请继续参见图1,支撑架4用于支撑外环6和第二稳定电机5,支撑架4还设置了两个支耳9。两个支耳9沿第二轴线002间隔设置于外环6的两侧,每个支耳9均由两根平行的支撑杆41进行固定支撑。支撑杆41未与支耳9连接的一端相互连接固定于外环6的一侧,以形成支撑架4,并为外环6沿第二轴线002相对于支撑架4的转动留出运动轨迹的空间。外环6通过轴承8和/或第二稳定电机5分别与两个支耳9转动连接。在其余实施例中,支耳9的数量也可以为一个,一个支耳9沿第二轴线002的方向与外环6转动连接,第二稳定电机5连接于支耳9与外环6之间。第二稳定电机5驱动外环6的转动动作同样以第二轴线002为回转中心,可以提高第二稳定电机5对外环6的驱动精度。
采用单个支耳9与外环6进行连接的形式会形成悬臂梁结构,外环6在该结构下相对于支撑架4的转动容易引起扰动,影响摄像机稳定装置100的稳定精度。因此图1实施例中采用两个支耳9的结构分列外环6两侧进行支撑,可以提高对外环6的支撑刚度。且两个支耳9沿第二轴线002方向间隔设置,可以进一步保证外环6沿第二轴线002的转动平稳。
第二稳定电机5固定于其中一个支耳9上,进一步的,第一稳定电机7还可以收容于另一支耳9内。具体的,第一稳定电机7与外环6固定连接,将第一稳定电机7收容于支撑架4未固定第二稳定电机5的支耳9内,可以控制本申请摄像机稳定装置100的整体体积,第一稳定电机7在随外环6沿第二轴 线002转动的过程中所需留出的轨迹空间也压缩至最小。同时,这样的结构利于对第一稳定电机7实施密封保护,将第一稳定电机7隐藏于支耳9中还有利于提升本申请摄像机稳定装置100的外观一致性。
一种实施例,在沿第二轴线002的方向上,姿态传感器12分别与两个支耳9之间的距离相等,即姿态传感器12位于两个支耳9的中点延长线上。表现在图1的实施例中,两个支耳9沿水平方向(轴线002的方向)分列外环6的两侧,姿态传感器12可以设置于外环6的顶部或底部位置。这样第一稳定电机7和第二稳定电机5与姿态传感器12的距离均相等,可以避免第一稳定电机7或第二稳定电机5因为距离姿态传感器12太近而对姿态传感器12形成电磁干扰。进一步的,姿态传感器12设置于外环6的底部可以压缩本申请摄像机稳定装置100的体积,同时使得姿态传感器12收容于支撑杆41形成的空间内,对姿态传感器12具有一定的保护作用。
前述中提到,支撑架4可以作为本申请摄像机稳定装置100的支撑部。在图1的实施例中,支撑部还可以包括沿第三轴线003与支撑架4转动连接的底座(图中未示),同时稳定部还可以包括第三稳定电机1。第三轴线003分别与第一轴线001和第二轴线002非平行设置,第三稳定电机1连接于底座与支撑架4之间,以驱动支撑架4相对于底座转动并维持支撑架4在第三轴线003旋转方向上的姿态稳定。具体的,第三稳定电机1可以固定于底座上,并与支撑架4传动连接,或第三稳定电机1固定于支撑架4上且与底座传动连接。由此使得本申请摄像机稳定装置100能对摄像机实现三轴稳定的功能。
可以理解的,第三轴线003可以同时垂直于第一轴线001和第二轴线002设置,使得本申请摄像机稳定装置100能从三个相互垂直的轴线方向对摄像机进行稳定。一种实施例中,第三轴线003沿竖直方向设置,第一轴线001和第二轴线002在同一水平面上相互垂直,这样的设置有利于对摄像机稳定装置100的运动进行分解,控制器分别控制第一稳定电机7、第二稳定电机5以及第三稳定电机1的驱动以保证摄像机的姿态稳定。
同时,由于稳定部同时包括了第二稳定电机5和第三稳定电机1,控制器还需要与第三稳定电机1电性连接,并同时获取第二稳定电机5在驱动外环6相对于支撑架4转动的转动角度,以及第三稳定电机1驱动支撑架4相对于底 座转动的转动角度,再结合姿态传感器12所感应到的外环6的空间姿态来解算内环10相对于外环6的转动角度,并控制第一稳定电机7驱动内环10相对于外环6旋转以维持摄像机的姿态稳定。
在图1的示意中,第三稳定电机1的转子通过螺栓2与支撑架4固定连接,第三稳定电机1驱动转子带动支撑架4沿第三轴线003转动。进一步的,因为控制器通常设置于支撑架4上,支撑架4内部可以为中空结构,并布置有姿态传感器12、第一稳定电机7、第二稳定电机5分别与控制器通信的内部线路。支撑架4内部还可以设置供电线路为各驱动电机和控制器提供电能。而为了实现第三稳定电机1与控制器之间的通信和/或电能输送,第三稳定电机1还可以通过连接器3与支撑架4的内部线路实现电性连接,以达到与控制器电性连接的目的。在其余实施例中,第三稳定电机1还可以通过pogo-pin的连接方式来与支撑架4的内部线路电性连接。
一种实施例,姿态传感器12还可以固定于支撑架4或底座上,姿态传感器12用于感应支撑架4或底座的空间姿态,控制器同步基于第二稳定电机5和第三稳定电机1的转动角度来解算内环10相对于外环6的实时转动姿态,并控制第一稳定电机7驱动内环10相对于外环6转动以维持摄像机的姿态稳定。控制器在三轴结构下对内环10实时转动姿态的解算,与控制器在两轴结构下对内环10实时转动姿态的解算方法类似,同时也提供了姿态传感器12设置于支撑架4或底座上的应用基础。
另一方面,对于两轴稳定方式的摄像机稳定装置100,或三轴稳定方式的摄像机稳定装置100,都可以通过控制器对一个或两个驱动电机的锁定,或机械结构的锁定,来实现本申请摄像机稳定装置100单轴稳定或双轴稳定的功能。在一些不需要使用到三轴稳定功能的使用场景下,减少摄像机稳定装置100投入工作的驱动电机的数量,可以提高本申请摄像机稳定装置100的系统精度,对摄像机提供更好的增稳效果。另一方面,一个或两个驱动电机的锁定,并不影响姿态传感器12的姿态感应功能,控制器依然可以通过姿态传感器12和外环6或稳定部的转动角度联合解算出内环10的实时转动姿态,并控制驱动电机维持摄像机的姿态稳定。
支撑部所包括的底座可以为连接有把手的手持式底座,也可以为连接于其 余支撑装置上的固定底座,甚至可以为连接于飞行器上的连接底座等。在一些实施例中,第三稳定电机1还以可拆卸的方式连接于底座与支撑架4之间。即底座还可以直接与支撑架4固定连接,并将本申请摄像机稳定装置100切换为具有双轴稳定功能的稳定装置。
因为第三稳定电机1用于维持支撑架4的姿态稳定,而支撑架4上还承载有外环6、内环10、第二稳定电机5、第一稳定电机7以及摄像机等一系列组件,因此第三稳定电机1在维持支撑架4的姿态稳定过程中所需提供的力矩相对较大。特别是在摄像机高速运动或短周期往复运动的过程中,第三稳定电机1会产生较大的工作负荷。这些场景都导致了第三稳定电机1相对于第一稳定电机7和第二稳定电机5需要具备更大的体积和重量。
而出于拍摄场景和拍摄需求的不同,本申请摄像机稳定装置100在仅需实现双轴稳定的情况下,可以通过拆卸第三稳定电机1之后将底座与支撑架4直接连接固定,来缩减本申请摄像机稳定装置100的整体体积和重量,使得本申请摄像机稳定装置100更易于握持或支撑。第三稳定电机1的可拆卸功能尤其适用于将摄像机稳定装置100连接至飞行器上的拍摄场景。因为飞行器对于摄像机稳定装置100的重量较为敏感,拆除了第三稳定电机1之后的摄像机稳定装置100可以具备更轻便的重量和更小的体积,进一步拓展了本申请摄像机稳定装置100的应用范围。
请参见图2,本申请还涉及一种摄像机稳定装置控制方法,包括如下步骤:
S10、通过姿态传感器12感应外环6或支撑部的空间姿态,并同步获取外环6或支撑部在维持姿态稳定过程中经稳定部驱动的转动角度;
S20、基于空间姿态和转动角度解算出内环10相对于外环6的转动姿态;
S30、基于转动姿态控制第一稳定电机7驱动内环10相对于外环6转动以维持与内环10固定连接的摄像机的姿态稳定。
具体的,本申请摄像机稳定装置控制方法可以参见上述的摄像机稳定装置100的实施例进行解释。因为姿态传感器12用于感应外环6或支撑部的空间姿态,决定了姿态传感器12固定于外环6或支撑部上。然后通过稳定部对外环6的驱动转动角度,结合姿态传感器12感应到的外环6或支撑部的空间姿态,控制器可以解算出内环10相对于外环6的实时转动姿态,然后基于解算 出的实时转动姿态来控制第一稳定电机7驱动内环10相对于外环6转动,并维持固定于内环10上的摄像机的姿态稳定。
采用本方法控制的摄像机稳定装置100因为将姿态传感器12固定于外环6或支撑部上,使得内环10与外环6之间无需进行数据交互,相较于现有技术的方案,本申请控制方法下的摄像机稳定装置100在实现对摄像机的增稳功能同时,可以实现内环10相对于外环6更大角度范围的转动,拓展了摄像机稳定装置100的应用场景,降低拍摄难度,满足一些特殊的拍摄场景需求。
请参见图3的实施例,在对应到稳定部包括第二稳定电机5和第三稳定电机1,以及支撑部还包括支撑架4和底座的实施例时,第二稳定电机5用于维持外环6相对于支撑架4的姿态稳定,第三稳定电机1用于维持支撑架4相对于底座的姿态稳定,在步骤S10中的“同步获取外环6或支撑部在维持姿态稳定过程中经稳定部驱动的转动角度”,还可以包括:
S10a、同步获取外环6在维持姿态稳定过程中经第二稳定电机5驱动的第二转动角度,以及支撑架4在维持姿态稳定过程中经第三稳定电机1驱动的第三转动角度。
相应的,在后续步骤S20“基于空间姿态和转动角度解算出内环10相对于外环6的转动姿态”中,也可以对应调整为:
S20a、基于空间姿态、第二转动角度以及第三转动角度解算出内环10相对于外环6的转动姿态。
可以理解的,本实施例对应到摄像机稳定装置100为三轴稳定方式的实施例。控制器在解算内环10相对于外环的转动姿态过程中,除基于姿态传感器12感应到的外环6或支撑部的空间姿态以及第二稳定电机5驱动的第二转动角度之外,还需要引入第三稳定电机1驱动的第三转动角度才能得到准确的内环10的转动姿态的结果,并后续控制第一稳定电机7驱动内环10相对于外环6转动,维持固定于内环10上的摄像机的姿态稳定。
需要提出的是,本申请摄像机稳定装置控制方法的其余实施例,可以基于上述摄像机稳定装置100中各实施例的描述来展开并对应解释,本申请在此不做一一赘述。
以上是本发明实施例的实施方式,应当指出,对于本技术领域的普通技术 人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (12)

  1. 一种摄像机稳定装置,其特征在于,包括:
    支撑部;
    外环,沿第一轴线呈回转体,且与所述支撑部沿第二轴线转动连接,所述第一轴线与所述第二轴线非平行设置;
    内环,沿所述第一轴线旋转连接于所述外环内,所述内环上还设有用于固定连接摄像机的基座;
    第一稳定电机,固定于所述外环且与所述内环传动连接;
    姿态传感器,固定于所述外环或所述支撑部上,用于感应所述外环或所述支撑部的空间姿态;
    稳定部,固定于所述支撑部且与所述外环传动连接,所述稳定部用于驱动所述外环相对于所述支撑部转动以维持所述外环的姿态稳定;
    控制器,分别与所述第一稳定电机、所述姿态传感器和所述稳定部电性连接,所述控制器同时基于所述姿态传感器所感应的空间姿态,以及所述稳定部驱动所述外环的转动角度,以解算出所述内环相对于所述外环的转动姿态,进而控制所述第一稳定电机驱动所述内环转动以维持所述摄像机的姿态稳定。
  2. 如权利要求1所述的摄像机稳定装置,其特征在于,所述支撑部包括支撑架,所述稳定部包括与所述支撑架固定连接的第二稳定电机,所述外环沿所述第二轴线与所述支撑架转动连接并同时与所述第二稳定电机传动连接。
  3. 如权利要求2所述的摄像机稳定装置,其特征在于,所述支撑架包括沿所述第二轴线分列所述外环两侧且分别与所述外环转动连接的支耳,所述第二稳定电机固定于其中一个所述支耳上。
  4. 如权利要求3所述的摄像机稳定装置,其特征在于,所述第一稳定电机收容于所述支撑架未固定所述第二稳定电机的另一所述支耳内。
  5. 如权利要求2所述的摄像机稳定装置,其特征在于,所述姿态传感器固定于所述外环上。
  6. 如权利要求5所述的摄像机稳定装置,其特征在于,在沿所述第二轴线的方向上,所述姿态传感器分别与两个所述支耳之间的距离相等。
  7. 如权利要求2-4任一项所述的摄像机稳定装置,其特征在于,所述支撑部还包括沿第三轴线与所述支撑架转动连接的底座,所述稳定部还包括第三稳定电机,所述第三轴线分别与所述第一轴线和所述第二轴线非平行设置,所述第三稳定电机固定于所述底座上且与所述支撑架传动连接,或
    所述第三稳定电机固定于所述支撑架上且与所述底座传动连接,所述第三稳定电机用于维持所述支撑架的姿态稳定。
  8. 如权利要求7所述的摄像机稳定装置,其特征在于,所述第一轴线与所述第二轴线相互垂直,且所述第三轴线同时垂直于所述第一轴线和所述第二轴线。
  9. 如权利要求7所述的摄像机稳定装置,其特征在于,所述姿态传感器固定于所述支撑架或所述底座上。
  10. 如权利要求7所述的摄像机稳定装置,其特征在于,所述第三稳定电机以可拆卸的形式固定于所述底座或所述支撑架上,且所述底座与所述支撑架可以直接固定连接。
  11. 一种摄像机稳定装置控制方法,其特征在于,包括如下步骤:
    通过姿态传感器感应外环或支撑部的空间姿态,并同步获取所述外环或所述支撑部在维持姿态稳定过程中经稳定部驱动的转动角度;
    基于所述空间姿态和所述转动角度解算出内环相对于所述外环的转动姿态;
    基于所述转动姿态控制第一稳定电机驱动所述内环相对于所述外环转动以维持与所述内环固定连接的摄像机的姿态稳定。
  12. 如权利要求11所述的摄像机稳定装置控制方法,其特征在于,所述稳定部包括第二稳定电机和第三稳定电机,所述支撑部还包括支撑架和底座,所述第二稳定电机用于维持所述外环相对于所述支撑架的姿态稳定,所述第三稳定电机用于维持所述支撑架相对于所述底座的姿态稳定,所述同步获取所述外环或所述支撑部在维持姿态稳定过程中经稳定部驱动的转动角度,还包括:
    同步获取所述外环在维持姿态稳定过程中经所述第二稳定电机驱动的第二转动角度,以及所述支撑架在维持姿态稳定过程中经所述第三稳定电机驱动的第三转动角度。
PCT/CN2020/091610 2020-05-20 2020-05-21 摄像机稳定装置及控制方法 WO2021232366A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010433314.6 2020-05-20
CN202010433314.6A CN111594723A (zh) 2020-05-20 2020-05-20 摄像机稳定装置及控制方法
CN202020858256.7U CN212745763U (zh) 2020-05-20 2020-05-20 摄像机稳定装置
CN202020858256.7 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021232366A1 true WO2021232366A1 (zh) 2021-11-25

Family

ID=78708978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091610 WO2021232366A1 (zh) 2020-05-20 2020-05-21 摄像机稳定装置及控制方法

Country Status (1)

Country Link
WO (1) WO2021232366A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114301001A (zh) * 2021-12-07 2022-04-08 西安热工研究院有限公司 一种用于前端检测单元的安装装置
WO2024007541A1 (zh) * 2022-07-06 2024-01-11 深圳市唯迹科技有限公司 可切换相机拍摄姿态的相机兔笼

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203010134U (zh) * 2012-12-13 2013-06-19 深圳必威易影视技术有限公司 摄像机水平旋转架
US20150078738A1 (en) * 2013-06-14 2015-03-19 Ian Brooke Track and Bogie Based Optically Centered Gimbal
CN204256344U (zh) * 2014-12-12 2015-04-08 林官明 电子三轴回转稳定仪
DE102015107483A1 (de) * 2015-05-12 2016-11-17 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Kamerastabilisierungsvorrichtung und Kamerahalterungsvorrichtung hierfür
CN109000111A (zh) * 2018-09-13 2018-12-14 江苏叙然信息科技有限公司 一种便捷型摄像机云台
CN110809689A (zh) * 2018-10-31 2020-02-18 深圳市大疆创新科技有限公司 云台、手持云台和手持拍摄装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203010134U (zh) * 2012-12-13 2013-06-19 深圳必威易影视技术有限公司 摄像机水平旋转架
US20150078738A1 (en) * 2013-06-14 2015-03-19 Ian Brooke Track and Bogie Based Optically Centered Gimbal
CN204256344U (zh) * 2014-12-12 2015-04-08 林官明 电子三轴回转稳定仪
DE102015107483A1 (de) * 2015-05-12 2016-11-17 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Kamerastabilisierungsvorrichtung und Kamerahalterungsvorrichtung hierfür
CN109000111A (zh) * 2018-09-13 2018-12-14 江苏叙然信息科技有限公司 一种便捷型摄像机云台
CN110809689A (zh) * 2018-10-31 2020-02-18 深圳市大疆创新科技有限公司 云台、手持云台和手持拍摄装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114301001A (zh) * 2021-12-07 2022-04-08 西安热工研究院有限公司 一种用于前端检测单元的安装装置
WO2024007541A1 (zh) * 2022-07-06 2024-01-11 深圳市唯迹科技有限公司 可切换相机拍摄姿态的相机兔笼

Similar Documents

Publication Publication Date Title
US10240714B2 (en) Stabilizer and angle adjusting method thereof
WO2021232366A1 (zh) 摄像机稳定装置及控制方法
JP6389121B2 (ja) 小型無人航空機に使用するための3軸架台
US11140322B2 (en) Stabilizing platform
CN106015864B (zh) 360度万向节系统
US9789976B2 (en) Carrier having non-orthogonal axes
WO2018064831A1 (zh) 一种云台、无人机及其控制方法
CN106275478B (zh) 一种滑轨式三轴稳定云台
CN108431483B (zh) 主动稳定系统
WO2015149370A1 (zh) 云台驱动装置及采用该驱动装置的云台组装体
JP2001505319A (ja) カメラの如き遠隔制御センサーを安定化するための装置
CN108332023B (zh) 二轴、三轴云台及其拍摄设备
JP3215934U (ja) スタビライザ
JPS60628B2 (ja) 水中探知機の送受波器姿勢制御装置
KR101190294B1 (ko) 이동 로봇용 영상 안정화 장치
CN111594723A (zh) 摄像机稳定装置及控制方法
WO2018223742A1 (zh) 云台、具有该云台的拍摄装置及无人机
CN207242056U (zh) 云台、具有该云台的拍摄装置及无人机
CN212745763U (zh) 摄像机稳定装置
WO2019041188A1 (zh) 光伏组件的el检测设备及无人机
RU2009133042A (ru) Способ управления и стабилизации подвижного носителя, интегрированная система и устройства для его осуществления
WO2019205125A1 (zh) 增稳装置和手持云台装置
CN206575503U (zh) 一种vr拍摄无人机
CN211289372U (zh) 一种用于舞台vcr展示的投影装置
CN217227937U (zh) 一种隐藏式横滚轴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20936922

Country of ref document: EP

Kind code of ref document: A1