WO2021230022A1 - Double-sided polishing method - Google Patents
Double-sided polishing method Download PDFInfo
- Publication number
- WO2021230022A1 WO2021230022A1 PCT/JP2021/016109 JP2021016109W WO2021230022A1 WO 2021230022 A1 WO2021230022 A1 WO 2021230022A1 JP 2021016109 W JP2021016109 W JP 2021016109W WO 2021230022 A1 WO2021230022 A1 WO 2021230022A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surface plate
- wafers
- carriers
- wafer
- double
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 51
- 235000012431 wafers Nutrition 0.000 claims abstract description 188
- 239000000969 carrier Substances 0.000 claims abstract description 86
- 239000002002 slurry Substances 0.000 claims abstract description 67
- 238000005086 pumping Methods 0.000 claims abstract description 19
- 230000000052 comparative effect Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000007517 polishing process Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/07—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
- B24B37/08—Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/27—Work carriers
- B24B37/28—Work carriers for double side lapping of plane surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B57/00—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
- B24B57/02—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
Definitions
- the present invention relates to a double-sided polishing method.
- One of the typical supply methods of slurry in double-sided polishing is a pressure feeding method in which the slurry is sent to the polished surface while applying pressure via a rotary joint.
- the side of the upper surface plate 1a where the slurry supply hole 6b is provided is displaced downward, and the polishing pressure on the wafer 20b at this portion increases.
- a difference in polishing strength occurs between the wafer 20a and the wafer 20b, and the wafer 20a is convex, while the wafer 20b is concave, which causes variation in the flatness of the double-sided polished wafer group. Will end up.
- Patent Document 1 proposes to keep the slurry flow rate distribution from the supply hole of the surface plate uniform in the pumping method.
- Patent Document 2 discloses a non-revolving double-sided polishing method capable of reducing the thickness variation of the wafer after polishing.
- Patent Document 3 in order to polish the workpiece on both sides with the same polishing efficiency, the positions of the rotation axis of the first and second polishing surface plates are different, and the workpiece is sandwiched between the two.
- a double-sided simultaneous polishing apparatus including a mechanism for rotating the position of the rotation axis of a flat plate-shaped workpiece in the same direction is disclosed.
- Patent Document 1 can reduce the variation in the flatness of the wafer group processed especially in the pressure feeding method.
- the present inventor has found that even with such a method, the flatness of the wafer group after double-sided polishing may vary.
- FIG. 7 is a schematic cross-sectional view of an example double-sided polishing apparatus 100 for double-sided polishing of wafers 20a and 20b according to the method disclosed in Patent Document 1. In the example shown in FIG.
- the thickness of the wafer 20a arranged on the slurry supply hole 6a side is considerably larger than the thickness of the wafer 20b arranged on the slurry supply hole 6b side.
- the slurry flow is blocked and clogged on the slurry supply hole 6a side due to the thickness of the wafer 20a, resulting in high pressure.
- the pumped slurry easily flows and the voltage becomes low.
- the portion of the upper surface plate 1a on the slurry supply hole 6a side receives a larger buoyancy than the portion on the slurry supply hole 6b side and floats.
- the upper surface plate 1a itself is tilted as shown by the broken line. If polishing is continued in this state, the polishing strength from the upper surface plate 1a changes between the slurry supply hole 6a side and the slurry supply hole 6b side. As a result, the flatness of the wafer group after double-sided polishing varies.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a slurry pressure feeding type double-sided polishing method capable of providing a wafer group in which variations in flatness after double-sided polishing are reduced. And.
- a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and one or more carriers are installed in each of the plurality of carriers.
- the arrangement of the wafers held by the plurality of carriers is as follows. Select a reference carrier from the plurality of carriers, and select a reference carrier.
- One or two carriers having the maximum angle ⁇ formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
- the double-sided polishing of the wafer is performed so that the difference between the average thickness A ⁇ m of the wafer arranged on the reference carrier and the average thickness B ⁇ m of the wafer arranged on the symmetrical carrier is 1.0 ⁇ m or less.
- a characteristic double-sided polishing method is provided.
- a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and each of the plurality of carriers holds one or more wafers.
- the method of polishing both sides of the wafer while supplying the slurry by the pumping method, Prepare multiple wafers, including at least one set of wafers of different thickness.
- the plurality of wafers are arranged in descending order of thickness, numbered, and numbered.
- the arrangement of the wafers held by the plurality of carriers is as follows. Select a reference carrier from the plurality of carriers, and select a reference carrier. One or two carriers having the maximum angle ⁇ formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers. Both sides of the wafer are polished so that the difference between the average thickness A ⁇ m of the wafer arranged on the reference carrier and the average thickness B ⁇ m of the wafer arranged on the symmetrical carrier is 1.0 ⁇ m or less.
- the plurality of wafers are arranged in the plurality of carriers in order from the first wafer so that the difference between the average thickness A ⁇ m and the average thickness B ⁇ m is 1.0 ⁇ m or less, but by arranging the wafers, the plurality of wafers are arranged.
- a double-sided polishing method characterized in that the arrangement of wafers in which the difference between the average thickness A ⁇ m and the average thickness B ⁇ m exceeds 1.0 ⁇ m is postponed.
- the double-sided polishing method of the present invention it is possible to polish both sides of the wafer while preventing the surface plate from tilting due to the pumping of the slurry, and as a result, the variation in flatness after double-sided polishing is reduced.
- a group can be provided.
- the plurality of carriers are four or more, and the four or more carriers are installed at equal intervals along a circle centered on the center of the surface plate.
- the double-sided polishing method of the present invention can provide a wafer group in which variations in flatness after double-sided polishing are reduced.
- a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and each of the plurality of carriers holds one or more wafers.
- the arrangement of the wafers held by the plurality of carriers is as follows. Select a reference carrier from the plurality of carriers, and select a reference carrier.
- One or two carriers having the maximum angle ⁇ formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
- the double-sided polishing of the wafer is performed so that the difference between the average thickness A ⁇ m of the wafer arranged on the reference carrier and the average thickness B ⁇ m of the wafer arranged on the symmetrical carrier is 1.0 ⁇ m or less.
- This is a double-sided polishing method.
- a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and each of the plurality of carriers holds one or more wafers.
- the method of polishing both sides of the wafer while supplying the slurry by the pumping method, Prepare multiple wafers, including at least one set of wafers of different thickness.
- the plurality of wafers are arranged in descending order of thickness, numbered, and numbered.
- the arrangement of the wafers held by the plurality of carriers is as follows. Select a reference carrier from the plurality of carriers, and select a reference carrier. One or two carriers having the maximum angle ⁇ formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers. Both sides of the wafer are polished so that the difference between the average thickness A ⁇ m of the wafer arranged on the reference carrier and the average thickness B ⁇ m of the wafer arranged on the symmetrical carrier is 1.0 ⁇ m or less.
- the plurality of wafers are arranged in the plurality of carriers in order from the first wafer so that the difference between the average thickness A ⁇ m and the average thickness B ⁇ m is 1.0 ⁇ m or less, but by arranging the wafers, the plurality of wafers are arranged.
- a double-sided polishing method characterized in that the arrangement of wafers in which the difference between the average thickness A ⁇ m and the average thickness B ⁇ m exceeds 1.0 ⁇ m is postponed.
- the double-sided polishing apparatus 100 shown in FIG. 1 includes a rotary surface plate 10.
- the rotary surface plate 10 includes an upper surface plate 1 and a lower surface plate 2 facing the upper surface plate 1.
- a polishing cloth (pad) is attached to the surface of the upper surface plate 1 facing the lower surface plate 2.
- a polishing cloth is attached to the surface of the lower surface plate 2 facing the upper surface plate 1.
- the polishing pad for example, a foamed polyurethane pad can be used, but the polishing cloth is not particularly limited.
- the rotating surface plate 10 has a surface plate center 5 that passes through the center of the upper surface plate 1 and the center of the lower surface plate 2.
- the upper surface plate 1 and the lower surface plate 2 can rotate around the center 5 of the surface plate by a drive unit connected to each of them.
- the upper surface plate 1 and the lower surface plate 2 define a processing space 4 between them.
- a plurality of carriers 3 are installed in this processing space 4.
- the plurality of carriers 3 are installed around the surface plate center 5 so that the distance from the surface plate center 5 is the same.
- the distance from the surface plate center 5 refers to the distance from the surface plate center 5 to the center of each carrier 3.
- the number of carriers 3 is not particularly limited.
- the number of carriers 3 may be, for example, 2 to 7.
- the carrier 3 is not particularly limited.
- Each of the plurality of carriers 3 is configured to hold one or more wafers 20.
- the carrier 3 may be provided with a holding hole (work hole) in which the wafer 20 can be fitted and held. It is preferable to provide a resin insert material on the inner peripheral portion of the holding hole.
- the upper surface plate 1 is provided with a plurality of slurry supply holes 6.
- the slurry supply hole 6 may be provided in the lower surface plate 2 instead of the upper surface plate 1, or may be provided in both the upper surface plate 1 and the lower surface plate 2.
- the slurry supply hole 6 is configured to supply the polishing slurry to the processing space 4.
- the double-sided polishing of the wafer 20 can be performed while pumping the slurry to the processing space 4 via, for example, the slurry supply hole 6 and the rotary joint.
- the double-sided polishing apparatus 100 shown in FIG. 1 includes a sun gear 7 having a shaft 7a arranged along the center 5 of the surface plate and an internal gear 8 having a base 8a located so as to surround the circumference of the lower surface plate 2. Further equipped.
- the sun gear 7 and the internal gear 8 can rotate around the center 5 of the surface plate by a drive unit connected to each of them.
- the sun gear 7 further includes an engaging portion 7b protruding upward from the shaft 7a.
- the internal gear 8 further includes an engaging portion 8b protruding upward from the base portion 8a.
- the engaging portion 7b of the sun gear 7 and the engaging portion 8b of the internal gear 8 are engaged with a plurality of carriers 3. These engagements may be due to gear meshing or may be non-gear engagements.
- the double-sided polishing apparatus 100 shown in FIG. 1 the upper surface plate 1, the lower surface plate 2, the sun gear 7 and the internal gear 8 are driven and the slurry is pumped and supplied to the processing space 4 while being held by the carrier 3. Both sides of the wafer 20 can be polished. That is, the double-sided polishing apparatus 100 shown in FIG. 1 is a 4-way type double-sided polishing apparatus having each drive unit of the upper surface plate 1, the lower surface plate 2, the sun gear 7, and the internal gear 8.
- the double-sided polishing method of the present invention Arrangement of wafers held by multiple carriers, Select a reference carrier from multiple carriers and select With the center of the surface plate as the center of the angle, one or two carriers that maximize the angle ⁇ formed with the center of the surface plate and the reference carrier are defined as symmetric carriers.
- the wafer is double-sided polished so that the difference between the average thickness A ⁇ m of the wafer placed on the reference carrier and the average thickness B ⁇ m of the wafer placed on the symmetrical carrier is 1.0 ⁇ m or less. ..
- FIG. 2 is shown as a plan view of the rotary surface plate 10 shown in FIG. 1 with the upper surface plate 1 removed and observed from above. Therefore, FIG. 2 shows how the four carriers 3a, 3b, 3x and 3y are installed on the lower platen 2.
- a symmetric carrier that maximizes the angle ⁇ formed by the surface plate center 5 and the reference carrier 3a with the surface plate center 5 as the angle center is obtained from the carriers 3b, 3x, and 3y other than the reference carrier 3a.
- the two straight lines forming the angle ⁇ are a straight line passing through the center 5 of the surface plate and the center 3ac of the reference carrier 3a, and a straight line passing through the center 5 of the surface plate and the center of the symmetrical carrier.
- the angle ⁇ formed by the surface plate center 5, the center 3ac of the reference carrier 3a, and the center 3bc of the carrier 3b shown at the bottom in FIG. 2 is 180 ° C. with the surface plate center 5 as the angle center. Is the maximum. Therefore, in the example shown in FIG. 2, the carrier 3b shown at the bottom, that is, the carrier 3b sitting at a position point-symmetrical with the reference carrier 3a with respect to the center of the surface plate 5 corresponds to the symmetric carrier.
- the difference between the average thickness A ⁇ m of the wafer arranged on the reference carrier 3a and the average thickness B ⁇ m of the wafer arranged on the symmetric carrier 3b is 1.0 ⁇ m.
- a ⁇ m is set as the average thickness A and a'.
- three wafers having an average thickness of a ⁇ m, b ⁇ m and c ⁇ m are arranged on the reference carrier 3a, and three wafers having an average thickness of a' ⁇ m, b' ⁇ m and c' ⁇ m are arranged on the symmetric carrier 3b, respectively.
- ⁇ (a + b + c) / 3 ⁇ ⁇ m is defined as an average thickness A
- ⁇ (a'+ b'+ c') / 3 ⁇ ⁇ m is defined as an average thickness B.
- FIG. 3 shows another example of the installation of the carrier 3.
- six carriers 3a, 3b, 3x, 3y, 3z and 3w are installed at equal intervals along a circle centered on the surface plate center 5.
- the symmetric carrier is one carrier 3b that sits at a position point-symmetrical to the reference carrier 3a with respect to the surface plate center 5 as in the example of FIG.
- the symmetrical carriers are seated at a position point-symmetrical to the reference carrier 3a with respect to the center 5 of the surface plate, as in the example of FIG. One carrier 3b to do.
- FIG. 4 shows an example in which five carriers 3a, 3c, 3d, 3e and 3f are installed at equal intervals along a circle centered on the surface plate center 5.
- the carrier 3a is used as a reference carrier.
- the angle ⁇ formed by the surface plate center 5, the center 3ac of the reference carrier 3a, and the center 3cc of the carrier 3c seated at the lower left in FIG. 4 is maximized with the surface plate center 5 as the angle center. Further, with the surface plate center 5 as the angle center, the angle ⁇ formed by the surface plate center 5, the center 3ac of the reference carrier 3a, and the center 3dc of the carrier 3d seated at the lower right in FIG. 4 is similarly maximized. Therefore, the symmetrical carriers with respect to the reference carrier 3a are the carriers 3c and 3d seated at the lower left and the lower right in FIG. 4, respectively.
- the difference between the reference carrier 3a and the symmetric carriers 3c and 3d thus selected between the average thickness A ⁇ m of the wafer arranged on the reference carrier and the average thickness B ⁇ m of the wafer arranged on the symmetric carrier is 1.0 ⁇ m.
- one wafer having an average thickness of a ⁇ m is placed on the reference carrier 3a, one wafer having an average thickness of a' ⁇ m is placed on the symmetric carrier 3c, and the average thickness is b' ⁇ m on the symmetric carrier 3d.
- a ⁇ m is defined as an average thickness A
- ⁇ (a'+ b') / 2 ⁇ ⁇ m is defined as an average thickness B.
- three wafers having an average thickness of a ⁇ m, b ⁇ m, and c ⁇ m are arranged on the reference carrier 3a, and three wafers having an average thickness of a' ⁇ m, b' ⁇ m, and c' ⁇ m are arranged on the symmetric carrier 3c, respectively.
- ⁇ (a + b + c) / 3 ⁇ ⁇ m is defined as the average thickness A and ⁇ ( Let a'+ b'+ c'+ d'+ e'+ f') / 6 ⁇ ⁇ m be the average thickness B.
- the symmetrical carriers are two carriers as in the example of FIG.
- the thickness of the wafer arranged on the carrier is obtained.
- Double-sided polishing of the wafer can be performed while reducing the unevenness of the distribution, whereby double-sided polishing can be performed while preventing the rotary surface plate 10 (for example, the upper surface plate 1) from tilting due to the pumping of the slurry.
- the double-sided polishing method of the present invention it is possible to suppress variations in polishing strength for a plurality of wafers, thereby providing a wafer group in which variations in flatness after double-sided polishing are reduced. ..
- the wafer on the carrier so that the difference between the average thickness A ⁇ m and the average thickness B ⁇ m is 0.8 ⁇ m or less for polishing, and arrange the wafer on the carrier so that the above difference is 0.5 ⁇ m or less. It is more preferable to perform polishing. The smaller the difference is, the more the wafer 20 group can be provided in which the variation in flatness after double-sided polishing is further reduced. The smaller the difference, the more preferable it is, but the lower limit can be, for example, 0 ⁇ m.
- the wafers are arranged so that the difference between the average thickness A ⁇ m and the average thickness B ⁇ m of the present invention is 1.0 ⁇ m or less. Is preferable. By doing so, it is possible to reduce or eliminate the unevenness of the thickness distribution of the wafer over all the carriers 3, and thereby it is possible to further suppress the inclination of the surface plate during slurry pumping. As a result, according to this preferred embodiment, it is possible to provide a wafer group in which the variation in flatness after double-sided polishing is further reduced.
- Twenty wafers whose thickness was measured are arranged in descending order of thickness and numbered 1, 2, 3 ... 20. These are arranged on five carriers 3a, 3c, 3d, 3e and 3f in the order of carrier 3a, carrier 3c, carrier 3f, carrier 3e, carrier 3d, carrier 3a ... From the first wafer. Arrange the wafers so that the difference between the thickness A ⁇ m and the average thickness B ⁇ m is 1.0 ⁇ m or less, and if it exceeds this, select a wafer for which the arrangement is postponed. Wafers that have not been placed may be polished in another batch. This is just an example of how to arrange them.
- the number of wafers arranged on one carrier is not particularly limited.
- one to four wafers can be arranged on one carrier. It is preferable that the number of wafers arranged on the reference carrier and the number of wafers arranged on the symmetrical carrier are the same. It is particularly preferred to place the same number of wafers for all carriers.
- the slurry used in the double-sided polishing method of the present invention is not particularly limited, but for example, an inorganic alkaline aqueous solution containing colloidal silica can be used.
- the particle size and concentration of the abrasive grains, the pH of the aqueous solution, and the alkali used are not particularly limited.
- the total flow rate of the slurry to be pumped and supplied to the double-sided polishing apparatus 100 can be, for example, 12 l / min or less. It is more preferable that the total flow rate of the slurry supplied by pressure feeding to the double-side polishing apparatus 100 is 6 l / min or more and 10 l / min or less.
- Example 1 double-sided polishing of the wafer 20 was performed using AC2000 of Lapmaster Walters having the same configuration as the double-sided polishing apparatus 100 shown in FIG.
- polishing pad a foamed polyurethane pad having a shore A hardness of 80 was used.
- a SUS substrate coated with DLC was used as a base material, and PVDF, which is a fluororesin, was used as an insert material for a work hole.
- Each carrier 3 has 3 work holes and 5 input carriers.
- a KOH aqueous solution having a pH of 10.5 containing colloidal silica having an average particle size of 35 nm at an abrasive grain concentration of 1.0 wt% was used as the slurry.
- a rotary joint and a pump for pumping slurry were connected to the slurry supply hole 6.
- each wafer 20 was measured by sandwiching it with a capacitance type displacement meter. For the data, two diameter profiles were acquired in 1 mm increments, and the average value of all the data was taken as the thickness.
- the 20 wafers 20 whose thickness was measured were arranged in order from the one with the largest thickness, and numbered 1, 2, 3 ... 20. These are transferred to five carriers 3a, 3c, 3d, 3e and 3f in the order of carrier 3a, carrier 3c, carrier 3f, carrier 3e, carrier 3d, carrier 3a ... Placed.
- the carrier 3a, the carrier 3c, and the carrier 3f are used as reference carriers, respectively, and the maximum value of the difference between the average thickness A ⁇ m and the average thickness B ⁇ m described above does not exceed 1.0 ⁇ m, and 20 wafers are used. Of the 20 wafers, the wafers for which the arrangement was forgotten were selected.
- Example 1 the arrangement of the 5th, 7th, 14th, 15th, and 20th wafers 20 is postponed, and a total of 15 wafers 20 from the 1st to 19th wafers other than these are used. Three carriers were placed and held on each of the five carriers 3a, 3c, 3d, 3e and 3f. At this time, the maximum value of the difference between the average thickness A ⁇ m and the average thickness B ⁇ m was 0.22 ⁇ m.
- the wafers 20 arranged in this way were subjected to double-sided polishing under the following conditions.
- the total flow rate of the slurry supplied to the double-sided polishing apparatus 100 was set to 8.0 l / min.
- the processing load was set to 150 gf / cm 2.
- the machining time was set by back calculation from the polishing rate so that the batch average value of the center thickness of the wafer 20 was within 775 ⁇ 0.3 ⁇ m.
- the rotation speed of each drive unit was set to upper surface plate: 23.0 rpm; lower surface plate: -20.0 rpm; sun gear: -23.9 rpm; internal gear: 7.7 rpm.
- Example 2 and 3 the wafer 20 is arranged on the carrier 3 so that the maximum value of the difference between the average thickness A ⁇ m and the average thickness B ⁇ m described above is 0.73 ⁇ m and 0.95 ⁇ m, respectively, and the wafer 20 is arranged.
- the wafer 20 was polished on both sides in the same procedure as in Example 1 except that the wafer 20 was polished on both sides.
- Comparative Examples 1 and 2 In Comparative Examples 1 and 2, the wafer 20 is arranged on the carrier 3 so that the maximum value of the difference between the average thickness A ⁇ m and the average thickness B ⁇ m described above is 1.08 ⁇ m and 1.24 ⁇ m, respectively, and the wafer 20 is arranged.
- the wafer 20 was polished on both sides in the same procedure as in Example 1 except that the wafer 20 was polished on both sides.
- Comparative Example 3 In Comparative Example 3, the 5 carriers 3a, 3c, 3d, in the order shown above, are the first to fifteenth wafers 20 without considering the difference between the average thickness A ⁇ m and the average thickness B ⁇ m described above.
- the wafer 20 was double-sided polished by the same procedure as in Example 1 except that three wafers were arranged on each of 3e and 3f and the wafer 20 was double-sided polished.
- the maximum value of the difference between the average thickness A ⁇ m and the average thickness B ⁇ m described above was 1.89 ⁇ m.
- the horizontal axis is a numerical value obtained by dividing the GBIR Range when the slurry supply method is processed by the pressure feeding method by the GBIR Range when the same unit is processed by changing to the gravity drop type in which buoyancy does not occur.
- FIG. 5 is a graph plotted on the horizontal axis and the vertical axis. In FIG. 5, the results of Examples 1 to 3 and Comparative Examples 1 to 3 are plotted in order from the left side to the right side.
- the wafers were arranged so that the difference between the average thickness A ⁇ m and the average thickness B ⁇ m was 1.0 ⁇ m or less, and both sides of these wafers were polished.
- the variation in flatness after double-sided polishing equal to or less than that of the gravity drop method could be achieved.
- the wafers were arranged so that the difference in thickness was 1.0 ⁇ m or less, and both sides were polished, so that the inclination of the upper surface plate due to slurry pressure feeding could be suppressed.
- the variation in polishing strength for 15 wafers could be suppressed, and thus the variation in flatness after double-sided polishing could be reduced.
- Comparative Examples 1 to 3 the wafers were arranged and double-sided polished without making the difference in thickness less than 1.0 ⁇ m, so that the upper surface plate was tilted by the slurry pressure feeding, and as a result, 15 wafers were formed. It is considered that the polishing strength was unevenly distributed with respect to the wafer.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
The present invention provides a double-sided polishing method in which a plurality of carriers are installed between an upper surface plate and a lower surface plate of a rotating surface plate having a surface plate center, one or more wafers are held by each of the plurality of carriers, and both sides of the wafers are polished while a slurry is supplied by a pumping process, the double-sided polishing method being characterized in that: the placement of the wafers held by the plurality of carriers is carried out such that the difference between the average thickness A μm of wafers positioned on a reference carrier and the average thickness B μm of wafers positioned on a symmetrically positioned carrier is 1.0 μm or less, where the reference carrier is selected from among the plurality of carriers, and the symmetrically positioned carrier is the one or two carriers for which the angle α formed relative to the reference carrier and the surface plate center, with the surface plate center as the angle center, is maximized; and the double-sided polishing of the wafers is carried out. This makes it possible to provide a pumped slurry double-sided polishing method with which it is possible to provide a wafer group in which variations in flatness after double-sided polishing have been reduced.
Description
本発明は、両面研磨方法に関する。
The present invention relates to a double-sided polishing method.
両面研磨におけるスラリの代表的な供給方法の一つに、ロータリージョイントを介して圧力をかけながらスラリを研磨面に送る圧送方式がある。
One of the typical supply methods of slurry in double-sided polishing is a pressure feeding method in which the slurry is sent to the polished surface while applying pressure via a rotary joint.
圧送方式の場合、例えば図6に示すように、回転定盤10のスラリ供給孔6aからのスラリ流量がスラリ供給孔6bからのスラリ流量よりも大きいと、上定盤1aのスラリ供給孔6aが設けられている側が浮き上がり、この部分でのウェーハ20aに対する研磨圧力が小さくなる。一方、上定盤1aは、下定盤2に、定盤中心5を中心として回転可能に配置されるので、スラリ供給孔6aが設けられている側が浮き上がると、全体が傾く。それにより、上定盤1aのスラリ供給孔6bが設けられている側は下方に変位し、この部分でのウェーハ20bに対する研磨圧力が大きくなる。これらの結果、ウェーハ20aとウェーハ20bとの間で研磨強度の差が生じ、ウェーハ20aが凸化する一方、ウェーハ20bが凹化し、それにより、両面研磨されたウェーハ群のフラットネスにばらつきが生じてしまう。
In the case of the pressure feeding method, for example, as shown in FIG. 6, when the slurry flow rate from the slurry supply hole 6a of the rotary surface plate 10 is larger than the slurry flow rate from the slurry supply hole 6b, the slurry supply hole 6a of the upper surface plate 1a is opened. The provided side is lifted, and the polishing pressure on the wafer 20a at this portion is reduced. On the other hand, since the upper surface plate 1a is rotatably arranged on the lower surface plate 2 with the surface plate center 5 as the center, the entire surface plate tilts when the side provided with the slurry supply hole 6a rises. As a result, the side of the upper surface plate 1a where the slurry supply hole 6b is provided is displaced downward, and the polishing pressure on the wafer 20b at this portion increases. As a result, a difference in polishing strength occurs between the wafer 20a and the wafer 20b, and the wafer 20a is convex, while the wafer 20b is concave, which causes variation in the flatness of the double-sided polished wafer group. Will end up.
このような問題に対し、例えば特許文献1では、圧送方式において、定盤が有する供給孔からのスラリ流量分布を均一に保つことが提案されている。
For such a problem, for example, Patent Document 1 proposes to keep the slurry flow rate distribution from the supply hole of the surface plate uniform in the pumping method.
また、特許文献2には、研磨後のウェーハの厚みばらつきを低減することが可能な非公転式の両面研磨方法が開示されている。
Further, Patent Document 2 discloses a non-revolving double-sided polishing method capable of reducing the thickness variation of the wafer after polishing.
そして、特許文献3には、加工物を両面において全面均一の等しい研磨能率で研磨するために、第1と第2の研磨定盤の回転軸心の位置を異ならすとともに、両者の間に挟持される平板状加工物の回転軸心の位置を同じ向きに回転させる機構を具えた両面同時研磨装置が開示されている。
Further, in Patent Document 3, in order to polish the workpiece on both sides with the same polishing efficiency, the positions of the rotation axis of the first and second polishing surface plates are different, and the workpiece is sandwiched between the two. A double-sided simultaneous polishing apparatus including a mechanism for rotating the position of the rotation axis of a flat plate-shaped workpiece in the same direction is disclosed.
従来の方策のうち、特許文献1に開示されたような方法は、特に圧送方式において加工されたウェーハ群のフラットネスのばらつきを低減できる。しかしながら、本発明者は、鋭意研究していく中で、このような方法でも、両面研磨後のウェーハ群のフラットネスにばらつきが生じてしまうことがあることが分かった。
Among the conventional measures, the method disclosed in Patent Document 1 can reduce the variation in the flatness of the wafer group processed especially in the pressure feeding method. However, as a result of diligent research, the present inventor has found that even with such a method, the flatness of the wafer group after double-sided polishing may vary.
例えば、スラリ供給孔からのスラリ流量分布を均一にした状態であっても、投入するウェーハの厚み分布に大きな偏りが存在すると、圧送による浮力に差が生じ、定盤の傾きが顕在化され、両面研磨後のフラットネスばらつきを増大してしまうことが分かった。具体例を図7を参照しながら説明する。図7は、特許文献1に開示された方法に従ってウェーハ20a及び20bを両面研磨するための一例の両面研磨装置100の概略断面図である。図7に示した例では、スラリ供給孔6a側に配置したウェーハ20aの厚みが、スラリ供給孔6b側に配置したウェーハ20bの厚みよりもかなり大きい。このような場合、スラリ供給孔6a及び6bから同様の流量でスラリを圧送すると、スラリ供給孔6a側ではウェーハ20aの厚みのせいでスラリの流れが滞って詰まり、高圧となる。一方で、スラリ供給孔6b側では、圧送されたスラリが流れやすく、低圧となる。その結果、上定盤1aのうちスラリ供給孔6a側の部分が、スラリ供給孔6b側の部分よりも大きな浮力を受け、浮き上がる。その結果、破線で示したように上定盤1a自体が傾く。この状態で研磨を続行すると、上定盤1aからの研磨強度が、スラリ供給孔6a側とスラリ供給孔6b側とで変わってしまう。これらの結果、両面研磨後のウェーハ群のフラットネスにばらつきが生じてしまう。
For example, even if the slurry flow rate distribution from the slurry supply hole is uniform, if there is a large deviation in the thickness distribution of the wafer to be charged, a difference in buoyancy due to pumping will occur, and the inclination of the surface plate will become apparent. It was found that the variation in flatness after double-sided polishing was increased. A specific example will be described with reference to FIG. 7. FIG. 7 is a schematic cross-sectional view of an example double-sided polishing apparatus 100 for double-sided polishing of wafers 20a and 20b according to the method disclosed in Patent Document 1. In the example shown in FIG. 7, the thickness of the wafer 20a arranged on the slurry supply hole 6a side is considerably larger than the thickness of the wafer 20b arranged on the slurry supply hole 6b side. In such a case, when the slurry is pumped from the slurry supply holes 6a and 6b at the same flow rate, the slurry flow is blocked and clogged on the slurry supply hole 6a side due to the thickness of the wafer 20a, resulting in high pressure. On the other hand, on the slurry supply hole 6b side, the pumped slurry easily flows and the voltage becomes low. As a result, the portion of the upper surface plate 1a on the slurry supply hole 6a side receives a larger buoyancy than the portion on the slurry supply hole 6b side and floats. As a result, the upper surface plate 1a itself is tilted as shown by the broken line. If polishing is continued in this state, the polishing strength from the upper surface plate 1a changes between the slurry supply hole 6a side and the slurry supply hole 6b side. As a result, the flatness of the wafer group after double-sided polishing varies.
本発明は、上記問題を解決するためになされたものであり、両面研磨後のフラットネスのばらつきが低減されたウェーハ群を提供することができるスラリ圧送方式の両面研磨方法を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a slurry pressure feeding type double-sided polishing method capable of providing a wafer group in which variations in flatness after double-sided polishing are reduced. And.
上記課題を解決するために、本発明では、定盤中心を有する回転定盤の上定盤と下定盤との間に複数枚のキャリアを設置し、前記複数枚のキャリアの各々に一枚以上のウェーハを保持させ、圧送方式でスラリを供給しながら前記ウェーハの両面を研磨する方法において、
前記複数枚のキャリアに保持される前記ウェーハの配置を、
前記複数枚のキャリアから基準キャリアを選択し、
前記定盤中心を角度中心として該定盤中心及び前記基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
前記基準キャリアに配置されるウェーハの平均厚みAμmと、前記対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、前記ウェーハの両面研磨を行うことを特徴とする両面研磨方法を提供する。
特に、本発明では、定盤中心を有する回転定盤の上定盤と下定盤との間に複数枚のキャリアを設置し、前記複数枚のキャリアの各々に一枚以上のウェーハを保持させ、圧送方式でスラリを供給しながら前記ウェーハの両面を研磨する方法において、
厚みが互いに異なる少なくとも一組のウェーハを含む複数のウェーハを準備し、
前記複数のウェーハを厚みの大きな順に並べて、番号を付け、
前記複数枚のキャリアに保持される前記ウェーハの配置を、
前記複数枚のキャリアから基準キャリアを選択し、
前記定盤中心を角度中心として該定盤中心及び前記基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
前記基準キャリアに配置されるウェーハの平均厚みAμmと、前記対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、前記ウェーハの両面研磨を行い、
前記ウェーハの配置において、
前記複数のウェーハを、1番目のウェーハから順に、前記平均厚みAμmと前記平均厚みBμmとの差が1.0μm以下となるように前記複数枚のキャリアに配置し、ただし、配置することにより前記平均厚みAμmと前記平均厚みBμmとの差が1.0μmを超えるウェーハは配置を見合わせることを特徴とする両面研磨方法を提供する。 In order to solve the above problems, in the present invention, a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and one or more carriers are installed in each of the plurality of carriers. In the method of polishing both sides of the wafer while holding the wafer and supplying the slurry by the pumping method.
The arrangement of the wafers held by the plurality of carriers is as follows.
Select a reference carrier from the plurality of carriers, and select a reference carrier.
One or two carriers having the maximum angle α formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
The double-sided polishing of the wafer is performed so that the difference between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetrical carrier is 1.0 μm or less. A characteristic double-sided polishing method is provided.
In particular, in the present invention, a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and each of the plurality of carriers holds one or more wafers. In the method of polishing both sides of the wafer while supplying the slurry by the pumping method,
Prepare multiple wafers, including at least one set of wafers of different thickness.
The plurality of wafers are arranged in descending order of thickness, numbered, and numbered.
The arrangement of the wafers held by the plurality of carriers is as follows.
Select a reference carrier from the plurality of carriers, and select a reference carrier.
One or two carriers having the maximum angle α formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
Both sides of the wafer are polished so that the difference between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetrical carrier is 1.0 μm or less.
In the arrangement of the wafer,
The plurality of wafers are arranged in the plurality of carriers in order from the first wafer so that the difference between the average thickness Aμm and the average thickness Bμm is 1.0 μm or less, but by arranging the wafers, the plurality of wafers are arranged. Provided is a double-sided polishing method characterized in that the arrangement of wafers in which the difference between the average thickness A μm and the average thickness B μm exceeds 1.0 μm is postponed.
前記複数枚のキャリアに保持される前記ウェーハの配置を、
前記複数枚のキャリアから基準キャリアを選択し、
前記定盤中心を角度中心として該定盤中心及び前記基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
前記基準キャリアに配置されるウェーハの平均厚みAμmと、前記対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、前記ウェーハの両面研磨を行うことを特徴とする両面研磨方法を提供する。
特に、本発明では、定盤中心を有する回転定盤の上定盤と下定盤との間に複数枚のキャリアを設置し、前記複数枚のキャリアの各々に一枚以上のウェーハを保持させ、圧送方式でスラリを供給しながら前記ウェーハの両面を研磨する方法において、
厚みが互いに異なる少なくとも一組のウェーハを含む複数のウェーハを準備し、
前記複数のウェーハを厚みの大きな順に並べて、番号を付け、
前記複数枚のキャリアに保持される前記ウェーハの配置を、
前記複数枚のキャリアから基準キャリアを選択し、
前記定盤中心を角度中心として該定盤中心及び前記基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
前記基準キャリアに配置されるウェーハの平均厚みAμmと、前記対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、前記ウェーハの両面研磨を行い、
前記ウェーハの配置において、
前記複数のウェーハを、1番目のウェーハから順に、前記平均厚みAμmと前記平均厚みBμmとの差が1.0μm以下となるように前記複数枚のキャリアに配置し、ただし、配置することにより前記平均厚みAμmと前記平均厚みBμmとの差が1.0μmを超えるウェーハは配置を見合わせることを特徴とする両面研磨方法を提供する。 In order to solve the above problems, in the present invention, a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and one or more carriers are installed in each of the plurality of carriers. In the method of polishing both sides of the wafer while holding the wafer and supplying the slurry by the pumping method.
The arrangement of the wafers held by the plurality of carriers is as follows.
Select a reference carrier from the plurality of carriers, and select a reference carrier.
One or two carriers having the maximum angle α formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
The double-sided polishing of the wafer is performed so that the difference between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetrical carrier is 1.0 μm or less. A characteristic double-sided polishing method is provided.
In particular, in the present invention, a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and each of the plurality of carriers holds one or more wafers. In the method of polishing both sides of the wafer while supplying the slurry by the pumping method,
Prepare multiple wafers, including at least one set of wafers of different thickness.
The plurality of wafers are arranged in descending order of thickness, numbered, and numbered.
The arrangement of the wafers held by the plurality of carriers is as follows.
Select a reference carrier from the plurality of carriers, and select a reference carrier.
One or two carriers having the maximum angle α formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
Both sides of the wafer are polished so that the difference between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetrical carrier is 1.0 μm or less.
In the arrangement of the wafer,
The plurality of wafers are arranged in the plurality of carriers in order from the first wafer so that the difference between the average thickness Aμm and the average thickness Bμm is 1.0 μm or less, but by arranging the wafers, the plurality of wafers are arranged. Provided is a double-sided polishing method characterized in that the arrangement of wafers in which the difference between the average thickness A μm and the average thickness B μm exceeds 1.0 μm is postponed.
このような本発明の両面研磨方法によると、スラリの圧送によって定盤が傾くのを防ぎながらウェーハの両面研磨をすることができ、その結果、両面研磨後のフラットネスのばらつきが低減されたウェーハ群を提供することができる。
According to the double-sided polishing method of the present invention, it is possible to polish both sides of the wafer while preventing the surface plate from tilting due to the pumping of the slurry, and as a result, the variation in flatness after double-sided polishing is reduced. A group can be provided.
前記複数枚のキャリアを4枚以上とし、前記4枚以上のキャリアを、前記定盤中心を中心とした円に沿って等間隔に設置することが好ましい。
It is preferable that the plurality of carriers are four or more, and the four or more carriers are installed at equal intervals along a circle centered on the center of the surface plate.
このようにキャリアを設置することによって、スラリの圧送によって定盤が傾くことを更に効果的に防ぐことができる。
By installing the carrier in this way, it is possible to more effectively prevent the surface plate from tilting due to the pumping of the slurry.
前記スラリをロータリージョイントを介して圧送しながら、前記ウェーハの両面研磨を行い、圧送する前記スラリの全流量を4l/min以上とすることがより好ましい。
It is more preferable to polish both sides of the wafer while pumping the slurry via a rotary joint so that the total flow rate of the slurry to be pumped is 4 l / min or more.
このようにスラリを圧送することにより、スラリによる潤滑作用をより効果的に利用でき、研磨面が異常な発熱を引き起こすことを防ぐことができる。
By pumping the slurry in this way, the lubrication action of the slurry can be used more effectively, and it is possible to prevent the polished surface from causing abnormal heat generation.
以上のように、本発明の両面研磨方法であれば、両面研磨後のフラットネスのばらつきが低減されたウェーハ群を提供することができる。
As described above, the double-sided polishing method of the present invention can provide a wafer group in which variations in flatness after double-sided polishing are reduced.
上述のように、両面研磨後のフラットネスのばらつきが低減されたウェーハ群を提供することができる両面研磨方法の開発が求められていた。
As described above, there has been a demand for the development of a double-sided polishing method capable of providing a group of wafers in which variations in flatness after double-sided polishing are reduced.
本発明者らは、上記課題について鋭意検討を重ねた結果、ウェーハを一定の法則に従ってキャリアに仕込むことで、定盤の傾きを抑えながら両面研磨ができることを見出し、本発明を完成させた。
As a result of diligent studies on the above problems, the present inventors have found that double-sided polishing can be performed while suppressing the inclination of the surface plate by charging the wafer into the carrier according to a certain rule, and completed the present invention.
即ち、本発明は、定盤中心を有する回転定盤の上定盤と下定盤との間に複数枚のキャリアを設置し、前記複数枚のキャリアの各々に一枚以上のウェーハを保持させ、圧送方式でスラリを供給しながら前記ウェーハの両面を研磨する方法において、
前記複数枚のキャリアに保持される前記ウェーハの配置を、
前記複数枚のキャリアから基準キャリアを選択し、
前記定盤中心を角度中心として該定盤中心及び前記基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
前記基準キャリアに配置されるウェーハの平均厚みAμmと、前記対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、前記ウェーハの両面研磨を行うことを特徴とする両面研磨方法である。
特に、本発明は、定盤中心を有する回転定盤の上定盤と下定盤との間に複数枚のキャリアを設置し、前記複数枚のキャリアの各々に一枚以上のウェーハを保持させ、圧送方式でスラリを供給しながら前記ウェーハの両面を研磨する方法において、
厚みが互いに異なる少なくとも一組のウェーハを含む複数のウェーハを準備し、
前記複数のウェーハを厚みの大きな順に並べて、番号を付け、
前記複数枚のキャリアに保持される前記ウェーハの配置を、
前記複数枚のキャリアから基準キャリアを選択し、
前記定盤中心を角度中心として該定盤中心及び前記基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
前記基準キャリアに配置されるウェーハの平均厚みAμmと、前記対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、前記ウェーハの両面研磨を行い、
前記ウェーハの配置において、
前記複数のウェーハを、1番目のウェーハから順に、前記平均厚みAμmと前記平均厚みBμmとの差が1.0μm以下となるように前記複数枚のキャリアに配置し、ただし、配置することにより前記平均厚みAμmと前記平均厚みBμmとの差が1.0μmを超えるウェーハは配置を見合わせることを特徴とする両面研磨方法である。 That is, in the present invention, a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and each of the plurality of carriers holds one or more wafers. In the method of polishing both sides of the wafer while supplying the slurry by the pumping method,
The arrangement of the wafers held by the plurality of carriers is as follows.
Select a reference carrier from the plurality of carriers, and select a reference carrier.
One or two carriers having the maximum angle α formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
The double-sided polishing of the wafer is performed so that the difference between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetrical carrier is 1.0 μm or less. This is a double-sided polishing method.
In particular, in the present invention, a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and each of the plurality of carriers holds one or more wafers. In the method of polishing both sides of the wafer while supplying the slurry by the pumping method,
Prepare multiple wafers, including at least one set of wafers of different thickness.
The plurality of wafers are arranged in descending order of thickness, numbered, and numbered.
The arrangement of the wafers held by the plurality of carriers is as follows.
Select a reference carrier from the plurality of carriers, and select a reference carrier.
One or two carriers having the maximum angle α formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
Both sides of the wafer are polished so that the difference between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetrical carrier is 1.0 μm or less.
In the arrangement of the wafer,
The plurality of wafers are arranged in the plurality of carriers in order from the first wafer so that the difference between the average thickness Aμm and the average thickness Bμm is 1.0 μm or less, but by arranging the wafers, the plurality of wafers are arranged. A double-sided polishing method characterized in that the arrangement of wafers in which the difference between the average thickness A μm and the average thickness B μm exceeds 1.0 μm is postponed.
前記複数枚のキャリアに保持される前記ウェーハの配置を、
前記複数枚のキャリアから基準キャリアを選択し、
前記定盤中心を角度中心として該定盤中心及び前記基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
前記基準キャリアに配置されるウェーハの平均厚みAμmと、前記対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、前記ウェーハの両面研磨を行うことを特徴とする両面研磨方法である。
特に、本発明は、定盤中心を有する回転定盤の上定盤と下定盤との間に複数枚のキャリアを設置し、前記複数枚のキャリアの各々に一枚以上のウェーハを保持させ、圧送方式でスラリを供給しながら前記ウェーハの両面を研磨する方法において、
厚みが互いに異なる少なくとも一組のウェーハを含む複数のウェーハを準備し、
前記複数のウェーハを厚みの大きな順に並べて、番号を付け、
前記複数枚のキャリアに保持される前記ウェーハの配置を、
前記複数枚のキャリアから基準キャリアを選択し、
前記定盤中心を角度中心として該定盤中心及び前記基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
前記基準キャリアに配置されるウェーハの平均厚みAμmと、前記対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、前記ウェーハの両面研磨を行い、
前記ウェーハの配置において、
前記複数のウェーハを、1番目のウェーハから順に、前記平均厚みAμmと前記平均厚みBμmとの差が1.0μm以下となるように前記複数枚のキャリアに配置し、ただし、配置することにより前記平均厚みAμmと前記平均厚みBμmとの差が1.0μmを超えるウェーハは配置を見合わせることを特徴とする両面研磨方法である。 That is, in the present invention, a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and each of the plurality of carriers holds one or more wafers. In the method of polishing both sides of the wafer while supplying the slurry by the pumping method,
The arrangement of the wafers held by the plurality of carriers is as follows.
Select a reference carrier from the plurality of carriers, and select a reference carrier.
One or two carriers having the maximum angle α formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
The double-sided polishing of the wafer is performed so that the difference between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetrical carrier is 1.0 μm or less. This is a double-sided polishing method.
In particular, in the present invention, a plurality of carriers are installed between the upper surface plate and the lower surface plate of the rotary surface plate having the center of the surface plate, and each of the plurality of carriers holds one or more wafers. In the method of polishing both sides of the wafer while supplying the slurry by the pumping method,
Prepare multiple wafers, including at least one set of wafers of different thickness.
The plurality of wafers are arranged in descending order of thickness, numbered, and numbered.
The arrangement of the wafers held by the plurality of carriers is as follows.
Select a reference carrier from the plurality of carriers, and select a reference carrier.
One or two carriers having the maximum angle α formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
Both sides of the wafer are polished so that the difference between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetrical carrier is 1.0 μm or less.
In the arrangement of the wafer,
The plurality of wafers are arranged in the plurality of carriers in order from the first wafer so that the difference between the average thickness Aμm and the average thickness Bμm is 1.0 μm or less, but by arranging the wafers, the plurality of wafers are arranged. A double-sided polishing method characterized in that the arrangement of wafers in which the difference between the average thickness A μm and the average thickness B μm exceeds 1.0 μm is postponed.
以下、本発明について図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.
(両面研磨装置)
まず、本発明の両面研磨方法を実施することができる一例の両面研磨装置を、図1を参照しながら説明する。しかしながら、本発明の両面研磨方法は、図1に示す両面研磨装置以外の装置を用いて実施することもできる。
なお、図1では、図6及び図7の両面研磨装置100の部材と同様の部材に対し同様の参照符号を付している。 (Double-sided polishing device)
First, an example of a double-sided polishing apparatus capable of carrying out the double-sided polishing method of the present invention will be described with reference to FIG. However, the double-sided polishing method of the present invention can also be carried out by using an apparatus other than the double-sided polishing apparatus shown in FIG.
In addition, in FIG. 1, the same reference numerals are given to the same members as the members of the double-sided polishing apparatus 100 of FIGS. 6 and 7.
まず、本発明の両面研磨方法を実施することができる一例の両面研磨装置を、図1を参照しながら説明する。しかしながら、本発明の両面研磨方法は、図1に示す両面研磨装置以外の装置を用いて実施することもできる。
なお、図1では、図6及び図7の両面研磨装置100の部材と同様の部材に対し同様の参照符号を付している。 (Double-sided polishing device)
First, an example of a double-sided polishing apparatus capable of carrying out the double-sided polishing method of the present invention will be described with reference to FIG. However, the double-sided polishing method of the present invention can also be carried out by using an apparatus other than the double-sided polishing apparatus shown in FIG.
In addition, in FIG. 1, the same reference numerals are given to the same members as the members of the double-
図1に示す両面研磨装置100は、回転定盤10を具備する。
回転定盤10は、上定盤1及び上定盤1に対向した下定盤2を含む。上定盤1の下定盤2に対向した面には、研磨布(パッド)が貼り付けられている。同様に、下定盤2の上定盤1に対向した面には、研磨布が貼り付けられている。研磨布としては、例えば、発泡ポリウレタンパッドを用いることができるが、特に限定されない。 The double-sided polishing apparatus 100 shown in FIG. 1 includes a rotary surface plate 10.
Therotary surface plate 10 includes an upper surface plate 1 and a lower surface plate 2 facing the upper surface plate 1. A polishing cloth (pad) is attached to the surface of the upper surface plate 1 facing the lower surface plate 2. Similarly, a polishing cloth is attached to the surface of the lower surface plate 2 facing the upper surface plate 1. As the polishing pad, for example, a foamed polyurethane pad can be used, but the polishing cloth is not particularly limited.
回転定盤10は、上定盤1及び上定盤1に対向した下定盤2を含む。上定盤1の下定盤2に対向した面には、研磨布(パッド)が貼り付けられている。同様に、下定盤2の上定盤1に対向した面には、研磨布が貼り付けられている。研磨布としては、例えば、発泡ポリウレタンパッドを用いることができるが、特に限定されない。 The double-
The
回転定盤10は、上定盤1の中心及び下定盤2の中心を通る、定盤中心5を有する。上定盤1及び下定盤2は、この定盤中心5を軸として、それぞれに接続された駆動部により自転することができる。
The rotating surface plate 10 has a surface plate center 5 that passes through the center of the upper surface plate 1 and the center of the lower surface plate 2. The upper surface plate 1 and the lower surface plate 2 can rotate around the center 5 of the surface plate by a drive unit connected to each of them.
上定盤1及び下定盤2は、これらの間に処理空間4を定義している。この処理空間4に、複数枚のキャリア3が設置されている。
The upper surface plate 1 and the lower surface plate 2 define a processing space 4 between them. A plurality of carriers 3 are installed in this processing space 4.
複数枚のキャリア3は、定盤中心5の周囲に、定盤中心5からの距離が同じになるように設置されることが好ましい。なお、本明細書において、定盤中心5からの距離は、定盤中心5から各キャリア3の中心までの距離を指す。
It is preferable that the plurality of carriers 3 are installed around the surface plate center 5 so that the distance from the surface plate center 5 is the same. In the present specification, the distance from the surface plate center 5 refers to the distance from the surface plate center 5 to the center of each carrier 3.
キャリア3の枚数は、特に限定されない。キャリア3の枚数は、例えば、2枚~7枚とすることができる。
The number of carriers 3 is not particularly limited. The number of carriers 3 may be, for example, 2 to 7.
複数枚のキャリア3を4枚以上とし、これらの4枚以上のキャリア3を、定盤中心5を中心とした円に沿って等間隔に設置することが特に好ましい。このようにキャリア3を配置することにより、以下に詳細に説明する、スラリの圧送の際に定盤が傾くことを抑制する作用をより確実に発揮できる。
It is particularly preferable to have four or more carriers 3 and to install these four or more carriers 3 at equal intervals along a circle centered on the center 5 of the surface plate. By arranging the carrier 3 in this way, the effect of suppressing the tilting of the surface plate during pumping of the slurry, which will be described in detail below, can be more reliably exerted.
複数枚のキャリア3としては、例えば金属製のものを用いることができるが、特に限定されない。
As the plurality of carriers 3, for example, those made of metal can be used, but the carrier 3 is not particularly limited.
複数枚のキャリア3の各々は、一枚以上のウェーハ20を保持するように構成されている。例えば、キャリア3は、ウェーハ20をはめ込んで保持できる保持孔(ワークホール)を備えていても良い。保持孔の内周部には、樹脂製のインサート材を設けることが好ましい。
Each of the plurality of carriers 3 is configured to hold one or more wafers 20. For example, the carrier 3 may be provided with a holding hole (work hole) in which the wafer 20 can be fitted and held. It is preferable to provide a resin insert material on the inner peripheral portion of the holding hole.
上定盤1には、複数のスラリ供給孔6が設けられている。スラリ供給孔6は、上定盤1ではなく下定盤2に設けられていても良いし、上定盤1及び下定盤2の両方に設けられていてもよい。
The upper surface plate 1 is provided with a plurality of slurry supply holes 6. The slurry supply hole 6 may be provided in the lower surface plate 2 instead of the upper surface plate 1, or may be provided in both the upper surface plate 1 and the lower surface plate 2.
スラリ供給孔6は、研磨用のスラリを処理空間4に供給するように構成されている。図1に示す両面研磨装置100では、スラリを、例えばスラリ供給孔6及びロータリージョイントを介して、処理空間4に圧送しながら、ウェーハ20の両面研磨を行うことができる。
The slurry supply hole 6 is configured to supply the polishing slurry to the processing space 4. In the double-sided polishing apparatus 100 shown in FIG. 1, the double-sided polishing of the wafer 20 can be performed while pumping the slurry to the processing space 4 via, for example, the slurry supply hole 6 and the rotary joint.
図1に示す両面研磨装置100は、定盤中心5に沿って配置された軸7aを備えたサンギア7と、下定盤2の周囲を囲むように位置する基部8aを備えたインターナルギア8とを更に具備する。
The double-sided polishing apparatus 100 shown in FIG. 1 includes a sun gear 7 having a shaft 7a arranged along the center 5 of the surface plate and an internal gear 8 having a base 8a located so as to surround the circumference of the lower surface plate 2. Further equipped.
サンギア7及びインターナルギア8は、定盤中心5を軸として、それぞれに接続された駆動部によって自転することができる。
The sun gear 7 and the internal gear 8 can rotate around the center 5 of the surface plate by a drive unit connected to each of them.
サンギア7は、軸7aから上方に突出した係合部7bを更に備える。また、インターナルギア8は、基部8aから上方に突出した係合部8bを更に備える。サンギア7の係合部7b及びインターナルギア8の係合部8bは、複数枚のキャリア3に係合している。これらの係合は、ギアの噛合によるものでも良いし、ギアを介さない係合でもよい。
The sun gear 7 further includes an engaging portion 7b protruding upward from the shaft 7a. Further, the internal gear 8 further includes an engaging portion 8b protruding upward from the base portion 8a. The engaging portion 7b of the sun gear 7 and the engaging portion 8b of the internal gear 8 are engaged with a plurality of carriers 3. These engagements may be due to gear meshing or may be non-gear engagements.
複数枚のキャリア3は、サンギア7及びインターナルギア8に係合しているので、サンギア7及びインターナルギア8の自転により、回転することができる。
Since the plurality of carriers 3 are engaged with the sun gear 7 and the internal gear 8, they can rotate by the rotation of the sun gear 7 and the internal gear 8.
図1に示す両面研磨装置100では、上定盤1、下定盤2、サンギア7及びインターナルギア8を駆動させながら、且つスラリを処理空間4に圧送して供給しながら、キャリア3に保持されたウェーハ20の両面研磨を行うことができる。すなわち、図1に示す両面研磨装置100は、上定盤1、下定盤2、サンギア7及びインターナルギア8の各駆動部を有する4way式両面研磨装置である。
In the double-sided polishing apparatus 100 shown in FIG. 1, the upper surface plate 1, the lower surface plate 2, the sun gear 7 and the internal gear 8 are driven and the slurry is pumped and supplied to the processing space 4 while being held by the carrier 3. Both sides of the wafer 20 can be polished. That is, the double-sided polishing apparatus 100 shown in FIG. 1 is a 4-way type double-sided polishing apparatus having each drive unit of the upper surface plate 1, the lower surface plate 2, the sun gear 7, and the internal gear 8.
(ウェーハの配置)
次に、本発明の両面研磨方法におけるウェーハの配置について説明する。 (Wafer placement)
Next, the arrangement of wafers in the double-sided polishing method of the present invention will be described.
次に、本発明の両面研磨方法におけるウェーハの配置について説明する。 (Wafer placement)
Next, the arrangement of wafers in the double-sided polishing method of the present invention will be described.
本発明の両面研磨方法は、
複数枚のキャリアに保持されるウェーハの配置を、
複数枚のキャリアから基準キャリアを選択し、
定盤中心を角度中心としてこの定盤中心及び基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
基準キャリアに配置されるウェーハの平均厚みAμmと、対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、ウェーハの両面研磨を行うことを特徴とする。 The double-sided polishing method of the present invention
Arrangement of wafers held by multiple carriers,
Select a reference carrier from multiple carriers and select
With the center of the surface plate as the center of the angle, one or two carriers that maximize the angle α formed with the center of the surface plate and the reference carrier are defined as symmetric carriers.
The wafer is double-sided polished so that the difference between the average thickness Aμm of the wafer placed on the reference carrier and the average thickness Bμm of the wafer placed on the symmetrical carrier is 1.0 μm or less. ..
複数枚のキャリアに保持されるウェーハの配置を、
複数枚のキャリアから基準キャリアを選択し、
定盤中心を角度中心としてこの定盤中心及び基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
基準キャリアに配置されるウェーハの平均厚みAμmと、対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、ウェーハの両面研磨を行うことを特徴とする。 The double-sided polishing method of the present invention
Arrangement of wafers held by multiple carriers,
Select a reference carrier from multiple carriers and select
With the center of the surface plate as the center of the angle, one or two carriers that maximize the angle α formed with the center of the surface plate and the reference carrier are defined as symmetric carriers.
The wafer is double-sided polished so that the difference between the average thickness Aμm of the wafer placed on the reference carrier and the average thickness Bμm of the wafer placed on the symmetrical carrier is 1.0 μm or less. ..
このような配置を、図2~図4を参照しながら具体例を示して説明する。
Such an arrangement will be described by showing a specific example with reference to FIGS. 2 to 4.
図2に示す例では、4枚のキャリア3a、3b、3x及び3yが、定盤中心5を中心とした円に沿って等間隔に設置されている。図2は、図1に示す回転定盤10の上定盤1を取り外して上から観察した平面図として示している。そのため、図2は、4枚のキャリア3a、3b、3x及び3yが下定盤2上に設置された様子を示している。
In the example shown in FIG. 2, four carriers 3a, 3b, 3x and 3y are installed at equal intervals along a circle centered on the surface plate center 5. FIG. 2 is shown as a plan view of the rotary surface plate 10 shown in FIG. 1 with the upper surface plate 1 removed and observed from above. Therefore, FIG. 2 shows how the four carriers 3a, 3b, 3x and 3y are installed on the lower platen 2.
まず、基準キャリアを選択する。ここでは、4枚のキャリア3の中で、図2で一番上に示したキャリア3aを基準キャリアとして選択する場合の例を説明する。
First, select a reference carrier. Here, an example in which the carrier 3a shown at the top in FIG. 2 is selected as the reference carrier among the four carriers 3 will be described.
次に、定盤中心5を角度中心としてこの定盤中心5と基準キャリア3aとともになす角αが最大になる対称キャリアを、基準キャリア3aを除く他のキャリア3b、3x及び3yから求める。ここで、角αをなす二直線は、定盤中心5と基準キャリア3aの中心3acとを通る直線、及び定盤中心5と対称キャリアの中心とを通る直線とする。
Next, a symmetric carrier that maximizes the angle α formed by the surface plate center 5 and the reference carrier 3a with the surface plate center 5 as the angle center is obtained from the carriers 3b, 3x, and 3y other than the reference carrier 3a. Here, the two straight lines forming the angle α are a straight line passing through the center 5 of the surface plate and the center 3ac of the reference carrier 3a, and a straight line passing through the center 5 of the surface plate and the center of the symmetrical carrier.
図2に示す例では、定盤中心5を角度中心として、定盤中心5、基準キャリア3aの中心3ac、及び図2で一番下に示したキャリア3bの中心3bcがなす角αが180℃で最大となる。よって、図2に示す例では、一番下に示したキャリア3b、すなわち定盤中心5に対して基準キャリア3aと点対称の位置に座するキャリア3bが対称キャリアに相当にする。
In the example shown in FIG. 2, the angle α formed by the surface plate center 5, the center 3ac of the reference carrier 3a, and the center 3bc of the carrier 3b shown at the bottom in FIG. 2 is 180 ° C. with the surface plate center 5 as the angle center. Is the maximum. Therefore, in the example shown in FIG. 2, the carrier 3b shown at the bottom, that is, the carrier 3b sitting at a position point-symmetrical with the reference carrier 3a with respect to the center of the surface plate 5 corresponds to the symmetric carrier.
このようにして選択した基準キャリア3aと対称キャリア3bとに、基準キャリア3aに配置されるウェーハの平均厚みAμmと、対称キャリア3bに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるように、ウェーハを配置する。
For the reference carrier 3a and the symmetric carrier 3b selected in this way, the difference between the average thickness Aμm of the wafer arranged on the reference carrier 3a and the average thickness Bμm of the wafer arranged on the symmetric carrier 3b is 1.0 μm. Arrange the wafers as follows.
例えば、基準キャリア3aに平均厚みがaμmである一枚のウェーハを配置し、対称キャリア3bに平均厚みがa’μmである一枚のウェーハを配置する場合、aμmを平均厚みAとし、a’μmを平均厚みBとする。或いは、基準キャリア3aに平均厚みがそれぞれaμm、bμm及びcμmである3枚のウェーハを配置し、対称キャリア3bに平均厚みがそれぞれa’μm、b’μm及びc’μmである3枚のウェーハを配置する場合、{(a+b+c)/3}μmを平均厚みAとし、{(a’+b’+c’)/3}μmを平均厚みBとする。
For example, when arranging one wafer having an average thickness of aμm on the reference carrier 3a and arranging one wafer having an average thickness of a'μm on the symmetric carrier 3b, aμm is set as the average thickness A and a'. Let μm be the average thickness B. Alternatively, three wafers having an average thickness of aμm, bμm and cμm are arranged on the reference carrier 3a, and three wafers having an average thickness of a'μm, b'μm and c'μm are arranged on the symmetric carrier 3b, respectively. When arranging, {(a + b + c) / 3} μm is defined as an average thickness A, and {(a'+ b'+ c') / 3} μm is defined as an average thickness B.
図3に、キャリア3の設置の他の例を示す。図3では、6枚のキャリア3a、3b、3x、3y、3z及び3wが定盤中心5を中心とした円に沿って等間隔に設置されている。図3に示す例でも、対称キャリアは、図2の例と同様に、定盤中心5に対して基準キャリア3aと点対称の位置に座する1つのキャリア3bである。
FIG. 3 shows another example of the installation of the carrier 3. In FIG. 3, six carriers 3a, 3b, 3x, 3y, 3z and 3w are installed at equal intervals along a circle centered on the surface plate center 5. In the example shown in FIG. 3, the symmetric carrier is one carrier 3b that sits at a position point-symmetrical to the reference carrier 3a with respect to the surface plate center 5 as in the example of FIG.
このように、キャリア3が偶数枚であり且つ等間隔で設置されている場合、対称キャリアは、図2の例と同様に、定盤中心5に対して基準キャリア3aと点対称の位置に座する1つのキャリア3bである。
As described above, when the number of carriers 3 is an even number and the carriers 3 are installed at equal intervals, the symmetrical carriers are seated at a position point-symmetrical to the reference carrier 3a with respect to the center 5 of the surface plate, as in the example of FIG. One carrier 3b to do.
次に、キャリア3が奇数枚である具体例を説明する。
図4は、5枚のキャリア3a、3c、3d、3e及び3fが、定盤中心5を中心とした円に沿って等間隔に設置されている例を示している。以下では、キャリア3aを基準キャリアとする場合を説明する。 Next, a specific example in which thecarrier 3 is an odd number will be described.
FIG. 4 shows an example in which five carriers 3a, 3c, 3d, 3e and 3f are installed at equal intervals along a circle centered on the surface plate center 5. Hereinafter, a case where the carrier 3a is used as a reference carrier will be described.
図4は、5枚のキャリア3a、3c、3d、3e及び3fが、定盤中心5を中心とした円に沿って等間隔に設置されている例を示している。以下では、キャリア3aを基準キャリアとする場合を説明する。 Next, a specific example in which the
FIG. 4 shows an example in which five
図4に示す例では、定盤中心5を角度中心として、定盤中心5、基準キャリア3aの中心3ac及び図4における左下に座したキャリア3cの中心3ccがなす角αが、最大になる。また、定盤中心5を角度中心として、定盤中心5、基準キャリア3aの中心3ac及び図4における右下に座したキャリア3dの中心3dcがなす角αが、同様に最大になる。よって、基準キャリア3aに対する対称キャリアは、図4における左下及び右下にそれぞれ座したキャリア3c及び3dである。
In the example shown in FIG. 4, the angle α formed by the surface plate center 5, the center 3ac of the reference carrier 3a, and the center 3cc of the carrier 3c seated at the lower left in FIG. 4 is maximized with the surface plate center 5 as the angle center. Further, with the surface plate center 5 as the angle center, the angle α formed by the surface plate center 5, the center 3ac of the reference carrier 3a, and the center 3dc of the carrier 3d seated at the lower right in FIG. 4 is similarly maximized. Therefore, the symmetrical carriers with respect to the reference carrier 3a are the carriers 3c and 3d seated at the lower left and the lower right in FIG. 4, respectively.
このようにして選択した基準キャリア3aと対称キャリア3c及び3dとに、基準キャリアに配置されるウェーハの平均厚みAμmと、対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるように、ウェーハを配置する。
The difference between the reference carrier 3a and the symmetric carriers 3c and 3d thus selected between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetric carrier is 1.0 μm. Arrange the wafers as follows.
例えば、基準キャリア3aに平均厚みがaμmである一枚のウェーハを配置し、対称キャリア3cに平均厚みがa’μmである一枚のウェーハを配置し、対称キャリア3dに平均厚みb’μmである一枚のウェーハを配置する場合、aμmを平均厚みAとし、{(a’+b’)/2}μmを平均厚みBとする。或いは、基準キャリア3aにそれぞれ平均厚みがaμm、bμm及びcμmである3枚のウェーハを配置し、対称キャリア3cに平均厚みがそれぞれa’μm、b’μm及びc’μmである3枚のウェーハを配置し、対称キャリア3dに平均厚みがそれぞれd’μm、e’μm及びf’μmである3枚のウェーハを配置する場合、{(a+b+c)/3}μmを平均厚みAとし、{(a’+b’+c’+d’+e’+f’)/6}μmを平均厚みBとする。
For example, one wafer having an average thickness of aμm is placed on the reference carrier 3a, one wafer having an average thickness of a'μm is placed on the symmetric carrier 3c, and the average thickness is b'μm on the symmetric carrier 3d. When arranging one wafer, a μm is defined as an average thickness A, and {(a'+ b') / 2} μm is defined as an average thickness B. Alternatively, three wafers having an average thickness of aμm, bμm, and cμm are arranged on the reference carrier 3a, and three wafers having an average thickness of a'μm, b'μm, and c'μm are arranged on the symmetric carrier 3c, respectively. When three wafers having average thicknesses of d'μm, e'μm and f'μm are arranged on the symmetric carrier 3d, {(a + b + c) / 3} μm is defined as the average thickness A and {( Let a'+ b'+ c'+ d'+ e'+ f') / 6} μm be the average thickness B.
このように、キャリア3が奇数枚であり且つ等間隔で設置されている場合には、対称キャリアは、図4の例と同様に、2枚のキャリアとなる。
As described above, when the carriers 3 are an odd number of carriers and are installed at equal intervals, the symmetrical carriers are two carriers as in the example of FIG.
以上のようにしてウェーハをキャリア(基準キャリア3a及び対称キャリア3b、又は基準キャリア3a並びに対称キャリア3c及び3d)に配置して、ウェーハの両面研磨を行うことにより、キャリアに配置されたウェーハの厚み分布の偏りを小さくしながらウェーハの両面研磨を行うことができ、それにより、スラリの圧送によって回転定盤10(例えば上定盤1)が傾くのを防ぎながら両面研磨を行うことができる。その結果、本発明の両面研磨方法によれば、複数のウェーハに対する研磨強度のばらつきを抑えることができ、それにより、両面研磨後のフラットネスのばらつきが低減されたウェーハ群を提供することができる。
By arranging the wafer on the carrier (reference carrier 3a and symmetric carrier 3b, or reference carrier 3a and symmetric carriers 3c and 3d) as described above and polishing both sides of the wafer, the thickness of the wafer arranged on the carrier is obtained. Double-sided polishing of the wafer can be performed while reducing the unevenness of the distribution, whereby double-sided polishing can be performed while preventing the rotary surface plate 10 (for example, the upper surface plate 1) from tilting due to the pumping of the slurry. As a result, according to the double-sided polishing method of the present invention, it is possible to suppress variations in polishing strength for a plurality of wafers, thereby providing a wafer group in which variations in flatness after double-sided polishing are reduced. ..
平均厚みAμmと平均厚みBμmとの差が0.8μm以下になるようにキャリアにウェーハを配置して研磨を行うことが好ましく、上記差を0.5μm以下になるようにキャリアにウェーハを配置して研磨を行うことがより好ましい。上記差が小さいほど、両面研磨後のフラットネスのばらつきが更に低減されたウェーハ20群を提供することができる。上記差は小さければ小さいほど好ましいが、下限値としては例えば0μmとすることができる。
It is preferable to arrange the wafer on the carrier so that the difference between the average thickness A μm and the average thickness B μm is 0.8 μm or less for polishing, and arrange the wafer on the carrier so that the above difference is 0.5 μm or less. It is more preferable to perform polishing. The smaller the difference is, the more the wafer 20 group can be provided in which the variation in flatness after double-sided polishing is further reduced. The smaller the difference, the more preferable it is, but the lower limit can be, for example, 0 μm.
両面研磨装置100が具備する複数枚のキャリア3のいずれを基準キャリアとして選択しても、本発明の平均厚みAμmと平均厚みBμmとの差が1.0μm以下となるようにウェーハを配置することが好ましい。このようにすることで、全てのキャリア3にわたって、ウェーハの厚み分布の偏りを小さく又はなくすことができ、それにより、スラリ圧送の際の定盤の傾きを更に抑制することができる。その結果、この好ましい態様によれば、両面研磨後のフラットネスのばらつきが更に低減されたウェーハ群を提供することができる。
Regardless of which of the plurality of carriers 3 provided in the double-sided polishing apparatus 100 is selected as the reference carrier, the wafers are arranged so that the difference between the average thickness A μm and the average thickness B μm of the present invention is 1.0 μm or less. Is preferable. By doing so, it is possible to reduce or eliminate the unevenness of the thickness distribution of the wafer over all the carriers 3, and thereby it is possible to further suppress the inclination of the surface plate during slurry pumping. As a result, according to this preferred embodiment, it is possible to provide a wafer group in which the variation in flatness after double-sided polishing is further reduced.
次に、ウェーハの配置の具体例を説明する。ここでは、1バッチに必要とするウェーハの枚数が15枚であり、図4に示すような5つのキャリア3a、3c、3d、3e及び3fに、それぞれ3枚ずつウェーハを配置する例を説明する。
Next, a specific example of wafer arrangement will be described. Here, an example is described in which the number of wafers required for one batch is 15, and three wafers are arranged on each of the five carriers 3a, 3c, 3d, 3e, and 3f as shown in FIG. ..
この場合、まず、例えば研磨対象の15枚と調整用の5枚との計20枚のウェーハを準備する。これらのウェーハの厚みを測定する。ウェーハの厚みとしては、点又はラインで測定した厚みの平均値を用いることができる。調製用のウェーハは5枚でなくても良い。
In this case, first, for example, a total of 20 wafers, 15 wafers to be polished and 5 wafers for adjustment, are prepared. Measure the thickness of these wafers. As the thickness of the wafer, the average value of the thickness measured at a point or a line can be used. The number of wafers for preparation does not have to be five.
厚みを測定した20枚のウェーハを厚みの大きなものから順に並べ、1、2、3…20と番号を付ける。これらを、1番目のウェーハから順に、キャリア3a、キャリア3c、キャリア3f、キャリア3e、キャリア3d、キャリア3a…の順で5枚のキャリア3a、3c、3d、3e及び3fに配置するが、平均厚みAμmと平均厚みBμmとの差が1.0μm以下になるように配置し、これを超える場合は配置を見合わせるウェーハを選択する。配置しなかったウェーハは別のバッチで研磨すればよい。なお、これはあくまで一例の並べ方である。
Twenty wafers whose thickness was measured are arranged in descending order of thickness and numbered 1, 2, 3 ... 20. These are arranged on five carriers 3a, 3c, 3d, 3e and 3f in the order of carrier 3a, carrier 3c, carrier 3f, carrier 3e, carrier 3d, carrier 3a ... From the first wafer. Arrange the wafers so that the difference between the thickness A μm and the average thickness B μm is 1.0 μm or less, and if it exceeds this, select a wafer for which the arrangement is postponed. Wafers that have not been placed may be polished in another batch. This is just an example of how to arrange them.
なお、以上では、1枚のキャリアに3枚のウェーハを配置する例を示したが、1枚のキャリアに配置するウェーハの枚数は、特に限定されない。例えば、一枚のキャリアに、1枚~4枚のウェーハを配置することができる。なお、基準キャリアに配置するウェーハの枚数と、対称キャリアに配置するウェーハの枚数とを同じにすることが好ましい。すべてのキャリアに対し、同じ枚数のウェーハを配置することが特に好ましい。
In the above, an example in which three wafers are arranged on one carrier is shown, but the number of wafers arranged on one carrier is not particularly limited. For example, one to four wafers can be arranged on one carrier. It is preferable that the number of wafers arranged on the reference carrier and the number of wafers arranged on the symmetrical carrier are the same. It is particularly preferred to place the same number of wafers for all carriers.
次に、本発明の両面研磨方法で用いることができるスラリについて説明する。
Next, the slurry that can be used in the double-sided polishing method of the present invention will be described.
本発明の両面研磨方法で用いるスラリは、特に限定されないが、例えば、コロイダルシリカを含有した無機アルカリ水溶液を用いることができる。砥粒の粒子径及び濃度、水溶液のpH、並びに用いるアルカリも、特には限定されない。
The slurry used in the double-sided polishing method of the present invention is not particularly limited, but for example, an inorganic alkaline aqueous solution containing colloidal silica can be used. The particle size and concentration of the abrasive grains, the pH of the aqueous solution, and the alkali used are not particularly limited.
スラリをロータリージョイントを介して圧送しながら、ウェーハの両面研磨を行い、圧送するスラリの全流量を4l/min以上とすることがより好ましい。
It is more preferable to polish both sides of the wafer while pumping the slurry through the rotary joint so that the total flow rate of the slurry to be pumped is 4 l / min or more.
このようにスラリを圧送することにより、スラリによる潤滑作用をより効果的に利用でき、研磨面が異常な発熱を引き起こすことを防ぐことができる。
By pumping the slurry in this way, the lubrication action of the slurry can be used more effectively, and it is possible to prevent the polished surface from causing abnormal heat generation.
両面研磨装置100に圧送して供給するスラリの全流量は、例えば12l/min以下とすることができる。両面研磨装置100に圧送して供給するスラリの全流量は、6l/min以上10l/min以下とすることがより好ましい。
The total flow rate of the slurry to be pumped and supplied to the double-sided polishing apparatus 100 can be, for example, 12 l / min or less. It is more preferable that the total flow rate of the slurry supplied by pressure feeding to the double-side polishing apparatus 100 is 6 l / min or more and 10 l / min or less.
この場合、複数のスラリ供給孔からのスラリ流量を均一にしながら両面研磨を行うことが好ましい。
In this case, it is preferable to perform double-sided polishing while making the slurry flow rates from the plurality of slurry supply holes uniform.
以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例1)
実施例1では、図1に示した両面研磨装置100と同様の構成を有するLapmaster WoltersのAC2000を用いて、ウェーハ20の両面研磨を行った。 (Example 1)
In Example 1, double-sided polishing of thewafer 20 was performed using AC2000 of Lapmaster Walters having the same configuration as the double-sided polishing apparatus 100 shown in FIG.
実施例1では、図1に示した両面研磨装置100と同様の構成を有するLapmaster WoltersのAC2000を用いて、ウェーハ20の両面研磨を行った。 (Example 1)
In Example 1, double-sided polishing of the
研磨パッドとしては、ショアA硬度80の発泡ポリウレタンパッドを用いた。
As the polishing pad, a foamed polyurethane pad having a shore A hardness of 80 was used.
キャリア3は、SUS基板にDLCコーティングを行ったものを母材として、フッ素樹脂であるPVDFをワークホール用のインサート材として用いた。各キャリア3のワークホールは3つとし、投入キャリアは5枚とした。
For the carrier 3, a SUS substrate coated with DLC was used as a base material, and PVDF, which is a fluororesin, was used as an insert material for a work hole. Each carrier 3 has 3 work holes and 5 input carriers.
これら5枚のキャリア3を、図4に示したのと同様の配置で、下定盤2上に設置した。
These five carriers 3 were installed on the lower platen 2 in the same arrangement as shown in FIG.
スラリは、砥粒として平均粒径35nmのコロイダルシリカを砥粒濃度1.0wt%で含む、pH10.5のKOH水溶液を用いた。スラリ供給孔6にロータリージョイント及びスラリ圧送用のポンプを接続した。
As the slurry, a KOH aqueous solution having a pH of 10.5 containing colloidal silica having an average particle size of 35 nm at an abrasive grain concentration of 1.0 wt% was used. A rotary joint and a pump for pumping slurry were connected to the slurry supply hole 6.
一方で、被研磨対象の20枚のウェーハ20を準備した。ウェーハ20としては、直径300mmのP型シリコン単結晶ウェーハを用いた。
On the other hand, 20 wafers 20 to be polished were prepared. As the wafer 20, a P-type silicon single crystal wafer having a diameter of 300 mm was used.
各ウェーハ20の厚みを、静電容量式の変位計で挟み込む形で測定した。データは1mm刻みで直径プロファイルを2本取得し、それらの全データの平均値を厚みとした。
The thickness of each wafer 20 was measured by sandwiching it with a capacitance type displacement meter. For the data, two diameter profiles were acquired in 1 mm increments, and the average value of all the data was taken as the thickness.
次に、厚みを測定した20枚のウェーハ20を厚みの大きなものから順に並べ、1、2、3…20と番号を付けた。これらを、1番目のウェーハ20から順に、図4に示すキャリア3a、キャリア3c、キャリア3f、キャリア3e、キャリア3d、キャリア3a…の順で5枚のキャリア3a、3c、3d、3e及び3fに配置した。実施例1では、キャリア3a、キャリア3c及びキャリア3fをそれぞれ基準キャリアとし、先に説明した平均厚みAμmと平均厚みBμmとの差の最大値が1.0μmを超えないようにし、20枚のウェーハ20のうち配置を見合わせるウェーハを選択した。具体的には、実施例1では、5番目、7番目、14番目、15番目及び20番目のウェーハ20の配置を見合わせ、これら以外の1番目から19番目までの計15枚のウェーハ20を、5枚のキャリア3a、3c、3d、3e及び3fの各々に3枚ずつ配置し、保持させた。このとき、平均厚みAμmと平均厚みBμmとの差の最大値は0.22μmであった。
Next, the 20 wafers 20 whose thickness was measured were arranged in order from the one with the largest thickness, and numbered 1, 2, 3 ... 20. These are transferred to five carriers 3a, 3c, 3d, 3e and 3f in the order of carrier 3a, carrier 3c, carrier 3f, carrier 3e, carrier 3d, carrier 3a ... Placed. In the first embodiment, the carrier 3a, the carrier 3c, and the carrier 3f are used as reference carriers, respectively, and the maximum value of the difference between the average thickness Aμm and the average thickness Bμm described above does not exceed 1.0 μm, and 20 wafers are used. Of the 20 wafers, the wafers for which the arrangement was forgotten were selected. Specifically, in Example 1, the arrangement of the 5th, 7th, 14th, 15th, and 20th wafers 20 is postponed, and a total of 15 wafers 20 from the 1st to 19th wafers other than these are used. Three carriers were placed and held on each of the five carriers 3a, 3c, 3d, 3e and 3f. At this time, the maximum value of the difference between the average thickness A μm and the average thickness B μm was 0.22 μm.
このように配置したウェーハ20に対し、以下の条件で両面研磨を行った。
・両面研磨装置100に供給するスラリの全流量を8.0l/minとした。
・加工荷重は150gf/cm2に設定した。
・加工時間はウェーハ20の中心厚みのバッチ平均値が775±0.3μmに収まるように、研磨レートから逆算して設定した。
・各駆動部の回転速度は、上定盤:23.0rpm;下定盤:-20.0rpm;サンギア:-23.9rpm;インターナルギア:7.7rpmに設定した。 Thewafers 20 arranged in this way were subjected to double-sided polishing under the following conditions.
The total flow rate of the slurry supplied to the double-sided polishing apparatus 100 was set to 8.0 l / min.
-The processing load was set to 150 gf / cm 2.
The machining time was set by back calculation from the polishing rate so that the batch average value of the center thickness of thewafer 20 was within 775 ± 0.3 μm.
-The rotation speed of each drive unit was set to upper surface plate: 23.0 rpm; lower surface plate: -20.0 rpm; sun gear: -23.9 rpm; internal gear: 7.7 rpm.
・両面研磨装置100に供給するスラリの全流量を8.0l/minとした。
・加工荷重は150gf/cm2に設定した。
・加工時間はウェーハ20の中心厚みのバッチ平均値が775±0.3μmに収まるように、研磨レートから逆算して設定した。
・各駆動部の回転速度は、上定盤:23.0rpm;下定盤:-20.0rpm;サンギア:-23.9rpm;インターナルギア:7.7rpmに設定した。 The
The total flow rate of the slurry supplied to the double-
-The processing load was set to 150 gf / cm 2.
The machining time was set by back calculation from the polishing rate so that the batch average value of the center thickness of the
-The rotation speed of each drive unit was set to upper surface plate: 23.0 rpm; lower surface plate: -20.0 rpm; sun gear: -23.9 rpm; internal gear: 7.7 rpm.
(実施例2及び3)
実施例2及び3では、先に説明した平均厚みAμmと平均厚みBμmとの差の最大値がそれぞれ0.73μm及び0.95μmとなるように、キャリア3にウェーハ20を配置して、ウェーハ20の両面研磨を行ったこと以外は実施例1と同様の手順で、ウェーハ20の両面研磨を行った。 (Examples 2 and 3)
In Examples 2 and 3, thewafer 20 is arranged on the carrier 3 so that the maximum value of the difference between the average thickness A μm and the average thickness B μm described above is 0.73 μm and 0.95 μm, respectively, and the wafer 20 is arranged. The wafer 20 was polished on both sides in the same procedure as in Example 1 except that the wafer 20 was polished on both sides.
実施例2及び3では、先に説明した平均厚みAμmと平均厚みBμmとの差の最大値がそれぞれ0.73μm及び0.95μmとなるように、キャリア3にウェーハ20を配置して、ウェーハ20の両面研磨を行ったこと以外は実施例1と同様の手順で、ウェーハ20の両面研磨を行った。 (Examples 2 and 3)
In Examples 2 and 3, the
(比較例1及び2)
比較例1及び2では、先に説明した平均厚みAμmと平均厚みBμmとの差の最大値がそれぞれ1.08μm及び1.24μmとなるように、キャリア3にウェーハ20を配置して、ウェーハ20の両面研磨を行ったこと以外は実施例1と同様の手順で、ウェーハ20の両面研磨を行った。 (Comparative Examples 1 and 2)
In Comparative Examples 1 and 2, thewafer 20 is arranged on the carrier 3 so that the maximum value of the difference between the average thickness A μm and the average thickness B μm described above is 1.08 μm and 1.24 μm, respectively, and the wafer 20 is arranged. The wafer 20 was polished on both sides in the same procedure as in Example 1 except that the wafer 20 was polished on both sides.
比較例1及び2では、先に説明した平均厚みAμmと平均厚みBμmとの差の最大値がそれぞれ1.08μm及び1.24μmとなるように、キャリア3にウェーハ20を配置して、ウェーハ20の両面研磨を行ったこと以外は実施例1と同様の手順で、ウェーハ20の両面研磨を行った。 (Comparative Examples 1 and 2)
In Comparative Examples 1 and 2, the
(比較例3)
比較例3では、先に説明した平均厚みAμmと平均厚みBμmとの差を考慮せず、1番目から15番目までのウェーハ20を先に示した順で5枚のキャリア3a、3c、3d、3e及び3fの各々に3枚ずつ配置して、ウェーハ20の両面研磨を行ったこと以外は実施例1と同様の手順で、ウェーハ20の両面研磨を行った。比較例3では、先に説明した平均厚みAμmと平均厚みBμmとの差の最大値が1.89μmであった。 (Comparative Example 3)
In Comparative Example 3, the 5 carriers 3a, 3c, 3d, in the order shown above, are the first to fifteenth wafers 20 without considering the difference between the average thickness Aμm and the average thickness Bμm described above. The wafer 20 was double-sided polished by the same procedure as in Example 1 except that three wafers were arranged on each of 3e and 3f and the wafer 20 was double-sided polished. In Comparative Example 3, the maximum value of the difference between the average thickness A μm and the average thickness B μm described above was 1.89 μm.
比較例3では、先に説明した平均厚みAμmと平均厚みBμmとの差を考慮せず、1番目から15番目までのウェーハ20を先に示した順で5枚のキャリア3a、3c、3d、3e及び3fの各々に3枚ずつ配置して、ウェーハ20の両面研磨を行ったこと以外は実施例1と同様の手順で、ウェーハ20の両面研磨を行った。比較例3では、先に説明した平均厚みAμmと平均厚みBμmとの差の最大値が1.89μmであった。 (Comparative Example 3)
In Comparative Example 3, the 5
[洗浄]
実施例1~3、及び比較例1~3で両面研磨後の全てのウェーハに対し、SC-1洗浄を条件NH4OH:H2O2:H2O=1:1:15で行った。 [Washing]
SC-1 cleaning was performed on all the wafers after double-side polishing in Examples 1 to 3 and Comparative Examples 1 to 3 under the condition NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 15. ..
実施例1~3、及び比較例1~3で両面研磨後の全てのウェーハに対し、SC-1洗浄を条件NH4OH:H2O2:H2O=1:1:15で行った。 [Washing]
SC-1 cleaning was performed on all the wafers after double-side polishing in Examples 1 to 3 and Comparative Examples 1 to 3 under the condition NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 15. ..
[評価]
洗浄後の全てのウェーハ20のフラットネスを、KLA TencorのWafer Sightを用いて、GBIR(Global backside ideal range)値として測定した。GBIR値の算出は、M49 modeの2mm E.E.に設定して行った。更には、15枚のウェーハ20(すなわちバッチ内のウェーハ群)のGBIR値の中から最大値と最小値とを採取して、その差をGBIR Rangeと称し、バラツキの指標とした。 [evaluation]
The flatness of all thewafers 20 after cleaning was measured as a GBIR (Global backside ideal range) value using KLA Tencor's Wafer Signature. The GBIR value is calculated by 2 mm E. of M49 mode. E. I set it to. Further, the maximum value and the minimum value were collected from the GBIR values of the 15 wafers 20 (that is, the wafer group in the batch), and the difference was referred to as GBIR Range and used as an index of variation.
洗浄後の全てのウェーハ20のフラットネスを、KLA TencorのWafer Sightを用いて、GBIR(Global backside ideal range)値として測定した。GBIR値の算出は、M49 modeの2mm E.E.に設定して行った。更には、15枚のウェーハ20(すなわちバッチ内のウェーハ群)のGBIR値の中から最大値と最小値とを採取して、その差をGBIR Rangeと称し、バラツキの指標とした。 [evaluation]
The flatness of all the
実施例及び比較例の各々に関し、平均厚みAμmと平均厚みBμmとの差の最大値を横軸とした。また、横軸は、スラリ供給方式を圧送方式で加工した場合のGBIR Rangeを、同一号機のままに浮力が生じない重力落下形式に変更して加工した場合のGBIR Rangeで割った数値とした。上記の横軸と縦軸でプロットしたグラフが図5である。図5では、左側から右側にかけて、実施例1~3、及び比較例1~3の結果を順にプロットしている。
For each of the examples and comparative examples, the maximum value of the difference between the average thickness A μm and the average thickness B μm was taken as the horizontal axis. Further, the horizontal axis is a numerical value obtained by dividing the GBIR Range when the slurry supply method is processed by the pressure feeding method by the GBIR Range when the same unit is processed by changing to the gravity drop type in which buoyancy does not occur. FIG. 5 is a graph plotted on the horizontal axis and the vertical axis. In FIG. 5, the results of Examples 1 to 3 and Comparative Examples 1 to 3 are plotted in order from the left side to the right side.
図5に示した結果から明らかなように、本発明に従って、平均厚みAμmと平均厚みBμmとの差が1.0μm以下となるようにウェーハを配置して、これらのウェーハの両面研磨を行った実施例1~3は、重力落下方式と同等以下の両面研磨後のフラットネスのばらつきを達成できた。これは、実施例1~3では、上記厚みの差が1.0μm以下になるようにしてウェーハの配置を行って両面研磨したことにより、スラリ圧送による上定盤の傾きを抑えることができ、その結果、15枚のウェーハに対する研磨強度のばらつきを抑えることができ、それにより、両面研磨後のフラットネスのばらつきを低減することができたと考えられる。
As is clear from the results shown in FIG. 5, according to the present invention, the wafers were arranged so that the difference between the average thickness A μm and the average thickness B μm was 1.0 μm or less, and both sides of these wafers were polished. In Examples 1 to 3, the variation in flatness after double-sided polishing equal to or less than that of the gravity drop method could be achieved. This is because, in Examples 1 to 3, the wafers were arranged so that the difference in thickness was 1.0 μm or less, and both sides were polished, so that the inclination of the upper surface plate due to slurry pressure feeding could be suppressed. As a result, it is considered that the variation in polishing strength for 15 wafers could be suppressed, and thus the variation in flatness after double-sided polishing could be reduced.
一方、比較例1~3では、上記厚みの差が1.0μm以下になるようにせずにウェーハの配置を行って両面研磨したことにより、スラリ圧送によって上定盤が傾き、その結果、15枚のウェーハに対して研磨強度の偏在が起きたと考えられる。
On the other hand, in Comparative Examples 1 to 3, the wafers were arranged and double-sided polished without making the difference in thickness less than 1.0 μm, so that the upper surface plate was tilted by the slurry pressure feeding, and as a result, 15 wafers were formed. It is considered that the polishing strength was unevenly distributed with respect to the wafer.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.
Claims (3)
- 定盤中心を有する回転定盤の上定盤と下定盤との間に複数枚のキャリアを設置し、前記複数枚のキャリアの各々に一枚以上のウェーハを保持させ、圧送方式でスラリを供給しながら前記ウェーハの両面を研磨する方法において、
厚みが互いに異なる少なくとも一組のウェーハを含む複数のウェーハを準備し、
前記複数のウェーハを厚みの大きな順に並べて、番号を付け、
前記複数枚のキャリアに保持される前記ウェーハの配置を、
前記複数枚のキャリアから基準キャリアを選択し、
前記定盤中心を角度中心として該定盤中心及び前記基準キャリアとともになす角αが最大になる一枚又は二枚のキャリアを対称キャリアとし、
前記基準キャリアに配置されるウェーハの平均厚みAμmと、前記対称キャリアに配置されるウェーハの平均厚みBμmとの差が、1.0μm以下となるようにして、前記ウェーハの両面研磨を行い、
前記ウェーハの配置において、
前記複数のウェーハを、1番目のウェーハから順に、前記平均厚みAμmと前記平均厚みBμmとの差が1.0μm以下となるように前記複数枚のキャリアに配置し、ただし、配置することにより前記平均厚みAμmと前記平均厚みBμmとの差が1.0μmを超えるウェーハは配置を見合わせることを特徴とする両面研磨方法。 A plurality of carriers are installed between the upper surface plate and the lower surface plate of a rotary surface plate having a surface plate center, and one or more wafers are held by each of the plurality of carriers, and a slurry is supplied by a pumping method. While polishing both sides of the wafer,
Prepare multiple wafers, including at least one set of wafers of different thickness.
The plurality of wafers are arranged in descending order of thickness, numbered, and numbered.
The arrangement of the wafers held by the plurality of carriers is as follows.
Select a reference carrier from the plurality of carriers, and select a reference carrier.
One or two carriers having the maximum angle α formed with the surface plate center and the reference carrier with the surface plate center as the angle center are defined as symmetric carriers.
Both sides of the wafer are polished so that the difference between the average thickness Aμm of the wafer arranged on the reference carrier and the average thickness Bμm of the wafer arranged on the symmetrical carrier is 1.0 μm or less.
In the arrangement of the wafer,
The plurality of wafers are arranged in the plurality of carriers in order from the first wafer so that the difference between the average thickness Aμm and the average thickness Bμm is 1.0 μm or less, but by arranging the wafers, the plurality of wafers are arranged. A double-sided polishing method characterized in that the arrangement of wafers in which the difference between the average thickness A μm and the average thickness B μm exceeds 1.0 μm is postponed. - 前記複数枚のキャリアを4枚以上とし、前記4枚以上のキャリアを、前記定盤中心を中心とした円に沿って等間隔に設置することを特徴とする請求項1に記載の両面研磨方法。 The double-sided polishing method according to claim 1, wherein the plurality of carriers are four or more, and the four or more carriers are installed at equal intervals along a circle centered on the center of the surface plate. ..
- 前記スラリをロータリージョイントを介して圧送しながら、前記ウェーハの両面研磨を行い、
圧送する前記スラリの全流量を4l/min以上とすることを特徴とする請求項1又は2に記載の両面研磨方法。 While the slurry is pumped through a rotary joint, both sides of the wafer are polished.
The double-sided polishing method according to claim 1 or 2, wherein the total flow rate of the slurry to be pumped is 4 l / min or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227037436A KR20230007344A (en) | 2020-05-13 | 2021-04-21 | Double-sided polishing method |
CN202180030308.9A CN115427193B (en) | 2020-05-13 | 2021-04-21 | Double-sided grinding method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-084316 | 2020-05-13 | ||
JP2020084316A JP6885492B1 (en) | 2020-05-13 | 2020-05-13 | Double-sided polishing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021230022A1 true WO2021230022A1 (en) | 2021-11-18 |
Family
ID=76310123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016109 WO2021230022A1 (en) | 2020-05-13 | 2021-04-21 | Double-sided polishing method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6885492B1 (en) |
KR (1) | KR20230007344A (en) |
CN (1) | CN115427193B (en) |
WO (1) | WO2021230022A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001121412A (en) * | 1999-10-21 | 2001-05-08 | Speedfam Co Ltd | Double side surface polisher |
JP2015069685A (en) * | 2013-09-30 | 2015-04-13 | Hoya株式会社 | Production method of magnetic disk glass substrate and magnetic disk |
WO2019159603A1 (en) * | 2018-02-14 | 2019-08-22 | 信越半導体株式会社 | Double-sided polishing method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10180624A (en) * | 1996-12-19 | 1998-07-07 | Shin Etsu Handotai Co Ltd | Device and method for lapping |
JP2000216119A (en) * | 1999-01-26 | 2000-08-04 | Mitsubishi Materials Silicon Corp | Processing method of wafer of high flatness |
JP2002175961A (en) * | 2000-12-07 | 2002-06-21 | Rohm Co Ltd | Method of classifying product and method of manufacturing semiconductor wafer |
DE102006044367B4 (en) * | 2006-09-20 | 2011-07-14 | Siltronic AG, 81737 | A method of polishing a semiconductor wafer and a process-manufacturable polished semiconductor wafer |
JP5473818B2 (en) * | 2010-07-29 | 2014-04-16 | グローバルウェーハズ・ジャパン株式会社 | Polishing apparatus and polishing method |
JP5650522B2 (en) * | 2010-12-28 | 2015-01-07 | Hoya株式会社 | Method for manufacturing glass substrate for magnetic recording medium |
JP2012143839A (en) | 2011-01-12 | 2012-08-02 | Sumco Corp | Double-side polishing device and double-side polishing method using the same |
KR20150053049A (en) * | 2013-11-07 | 2015-05-15 | 주식회사 엘지실트론 | Double Side Polishing Method for Wafer |
KR102362916B1 (en) * | 2015-06-23 | 2022-02-15 | 주식회사 케이씨텍 | Chemical mechanical polishing apparatus |
JP6649135B2 (en) * | 2016-03-10 | 2020-02-19 | 株式会社東京精密 | Wafer processing apparatus and wafer processing method |
JP6665827B2 (en) * | 2017-04-20 | 2020-03-13 | 信越半導体株式会社 | Wafer double-side polishing method |
JP7104512B2 (en) * | 2017-12-18 | 2022-07-21 | 株式会社ディスコ | Polishing device with holding table and holding table |
-
2020
- 2020-05-13 JP JP2020084316A patent/JP6885492B1/en active Active
-
2021
- 2021-04-21 WO PCT/JP2021/016109 patent/WO2021230022A1/en active Application Filing
- 2021-04-21 CN CN202180030308.9A patent/CN115427193B/en active Active
- 2021-04-21 KR KR1020227037436A patent/KR20230007344A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001121412A (en) * | 1999-10-21 | 2001-05-08 | Speedfam Co Ltd | Double side surface polisher |
JP2015069685A (en) * | 2013-09-30 | 2015-04-13 | Hoya株式会社 | Production method of magnetic disk glass substrate and magnetic disk |
WO2019159603A1 (en) * | 2018-02-14 | 2019-08-22 | 信越半導体株式会社 | Double-sided polishing method |
Also Published As
Publication number | Publication date |
---|---|
TW202147423A (en) | 2021-12-16 |
CN115427193A (en) | 2022-12-02 |
JP2021178380A (en) | 2021-11-18 |
JP6885492B1 (en) | 2021-06-16 |
CN115427193B (en) | 2024-02-13 |
KR20230007344A (en) | 2023-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103889655B (en) | Double-side grinding method | |
US7582221B2 (en) | Wafer manufacturing method, polishing apparatus, and wafer | |
US7867066B2 (en) | Polishing pad | |
CN102712073B (en) | Abrasive head and abrading device | |
US8348720B1 (en) | Ultra-flat, high throughput wafer lapping process | |
CN101528416A (en) | Polishing head and polishing apparatus | |
JP2009289925A (en) | Method of grinding semiconductor wafers, grinding surface plate, and grinding device | |
JP2009285768A (en) | Method and device for grinding semiconductor wafer | |
US11453098B2 (en) | Carrier for double-side polishing apparatus, double-side polishing apparatus, and double-side polishing method | |
KR20230096088A (en) | Wafer polishing method and wafer manufacturing method | |
JP6566112B2 (en) | Double-side polishing method and double-side polishing apparatus | |
WO2021230022A1 (en) | Double-sided polishing method | |
JP5507799B2 (en) | Semiconductor wafer polishing apparatus and polishing method | |
CN101116953A (en) | Chemical mechanism grinding and finishing device | |
KR101328775B1 (en) | Method for producing silicon epitaxial wafer | |
US8662961B2 (en) | Polishing pad seasoning method, seasoning plate, and semiconductor polishing device | |
CN111405963B (en) | Double-side polishing method | |
TWI853163B (en) | Double-sided grinding method | |
JP4781654B2 (en) | Polishing cloth and wafer polishing equipment | |
JP4449905B2 (en) | Polishing cloth, polishing cloth processing method, and substrate manufacturing method using the same | |
JP2008221356A (en) | Double-sided polishing carrier | |
JP2001110763A (en) | Method of planalizing semiconductor wafer, and planalizing device | |
JP2009135180A (en) | Method for manufacturing semiconductor wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21804466 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21804466 Country of ref document: EP Kind code of ref document: A1 |