JP5473818B2 - Polishing apparatus and polishing method - Google Patents

Polishing apparatus and polishing method Download PDF

Info

Publication number
JP5473818B2
JP5473818B2 JP2010170012A JP2010170012A JP5473818B2 JP 5473818 B2 JP5473818 B2 JP 5473818B2 JP 2010170012 A JP2010170012 A JP 2010170012A JP 2010170012 A JP2010170012 A JP 2010170012A JP 5473818 B2 JP5473818 B2 JP 5473818B2
Authority
JP
Japan
Prior art keywords
polishing
film thickness
processed
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010170012A
Other languages
Japanese (ja)
Other versions
JP2012033585A (en
Inventor
勝義 小島
安代 紫垣
将行 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlobalWafers Japan Co Ltd
Original Assignee
GlobalWafers Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GlobalWafers Japan Co Ltd filed Critical GlobalWafers Japan Co Ltd
Priority to JP2010170012A priority Critical patent/JP5473818B2/en
Publication of JP2012033585A publication Critical patent/JP2012033585A/en
Application granted granted Critical
Publication of JP5473818B2 publication Critical patent/JP5473818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、研磨装置及び研磨方法に関し、例えばSOI(シリコン・オン・インシュレータ)ウエハに形成された活性層等の被処理膜を有する基板表面を研磨する研磨装置及び研磨方法に関する。   The present invention relates to a polishing apparatus and a polishing method, for example, a polishing apparatus and a polishing method for polishing a substrate surface having a film to be processed such as an active layer formed on an SOI (silicon on insulator) wafer.

SOIウエハは、高耐性、低消費電力といった特性を得ることができ、パワーデバイスやMEMS(マイクロ・エレクトロ・メカニカル・システム)等に幅広く採用されている。図5に示すように、SOIウエハ50は、単結晶シリコンからなる支持体用ウエハ51上に絶縁膜52が形成され、その上に単結晶シリコンからなる薄膜状の活性層(SOI層)53が形成された構造を有する。   SOI wafers can obtain characteristics such as high durability and low power consumption, and are widely used in power devices, MEMS (micro electro mechanical systems), and the like. As shown in FIG. 5, in the SOI wafer 50, an insulating film 52 is formed on a support wafer 51 made of single crystal silicon, and a thin film active layer (SOI layer) 53 made of single crystal silicon is formed thereon. It has a formed structure.

従来、このSOIウエハ50の製造においては、例えば、図6(a)に示すように、先ず、支持体用ウエハ51に、例えば熱酸化により形成したシリコン酸化膜(絶縁膜52)を介し、活性層用ウエハ53を貼り合わせて接着させる。
そして、この活性層用ウエハ53を研削・研磨して薄膜化し、図6(b)に示すように活性層53とすることにより得ることができる。
Conventionally, in manufacturing the SOI wafer 50, for example, as shown in FIG. 6A, first, the support wafer 51 is activated through a silicon oxide film (insulating film 52) formed by, for example, thermal oxidation. The layer wafer 53 is bonded and bonded.
Then, the active layer wafer 53 can be ground and polished to form a thin film, which can be obtained as the active layer 53 as shown in FIG.

ところで、このSOIウエハの研磨にあっては、被処理基板である複数のウエハを連続的に研磨する場合、研磨布の表面状況(目詰まり等)や研磨液の成分等の条件が変化すると、研磨レート(所定時間当たりの研磨量)が大きく変動し、研磨する研磨量のばらつきが大きくなるという課題があった。
このような課題に対し、半導体ウエハの研磨後に該研磨における研磨時間、目標膜厚値、半導体ウエハの研磨前の測定膜厚値及び研磨後の測定膜厚値から最適研磨時間を半導体ウエハの研磨毎に算出し、該研磨毎に算出した最適研磨時間を次回以降の半導体ウエハの研磨に適用し、前記1ロットの半導体ウエハの全枚数が終了するまで継続する研磨方法が知られている(例えば、特許文献1)。
By the way, in polishing of this SOI wafer, when continuously polishing a plurality of wafers that are substrates to be processed, if the conditions such as the surface condition of the polishing cloth (clogging, etc.) and the composition of the polishing liquid change, There has been a problem that the polishing rate (polishing amount per predetermined time) fluctuates greatly, resulting in large variations in the polishing amount to be polished.
For such a problem, after polishing the semiconductor wafer, the polishing time in the polishing, the target film thickness value, the measured film thickness value before polishing of the semiconductor wafer, and the measured film thickness value after polishing, the optimal polishing time is polished. There is known a polishing method in which the optimum polishing time calculated for each polishing is applied to the subsequent polishing of the semiconductor wafer and continued until the total number of semiconductor wafers in one lot is completed (for example, Patent Document 1).

特開平10−106984号公報JP-A-10-106984

しかしながら、特許文献1に開示の研磨方法にあっては、連続して研磨される各ウエハ間の研磨前の膜厚に差(研磨する膜厚の研磨量に差)がある場合には、連続して研磨する各ウエハ間の研磨時間が異なることになるため、ウエハ毎に研磨レートが変化する場合があり、研磨後の膜厚の目標値からのずれ量が大きくなるという課題があった。
一方、研磨精度を向上させるには、各ウエハに対し複数回の研磨や測定作業を実施することが好ましいが、その場合にはロット単位での処理時間が長くなり、生産性が低下するという課題があった。
However, in the polishing method disclosed in Patent Document 1, when there is a difference in the film thickness before polishing between the wafers to be polished continuously (difference in the polishing amount of the film thickness to be polished), Since the polishing time between the wafers to be polished differs, the polishing rate may vary from wafer to wafer, and there is a problem that the amount of deviation from the target value of the film thickness after polishing becomes large.
On the other hand, in order to improve the polishing accuracy, it is preferable to carry out polishing and measurement operations a plurality of times for each wafer, but in that case, the processing time in lot units becomes long, and the productivity is lowered. was there.

本発明は、前記したような事情の下になされたものであり、複数の被処理基板に対し連続的に研磨を行う研磨装置及び研磨方法において、生産性を低下することなく、研磨後の膜厚の目標値からのずれ量を小さくすることができ、高精度な研磨を行うことができる研磨装置及び研磨方法を提供することを目的とする。   The present invention has been made under the circumstances as described above, and in a polishing apparatus and a polishing method for continuously polishing a plurality of substrates to be processed, a film after polishing without reducing productivity. It is an object of the present invention to provide a polishing apparatus and a polishing method capable of reducing the amount of deviation from the target value of thickness and performing highly accurate polishing.

前記した課題を解決するために、本発明に係る研磨装置は、複数の被処理基板に対し、各基板の表面に形成された被処理膜を連続して研磨する研磨装置であって、前記各基板における被処理膜の初期膜厚を測定する初期膜厚測定手段と、前記初期膜厚の測定結果に基づき、連続して研磨される各基板間の被処理膜の初期膜厚差が所定値以下となるように前記複数の基板を前記初期膜厚の厚さ順に並べ替えるソート手段と、前記並べ替えられた前記複数の基板の被処理膜を、予め定められた研磨時間により前記初期膜厚の厚さ順に1次研磨する第1研磨手段と、前記1次研磨された研磨後の被処理膜の膜厚を測定する研磨後膜厚測定手段と、前記測定した初期膜厚と研磨後の被処理膜の膜厚、及びその時の研磨時間に基づき前記1次研磨における研磨レートを算出し、更に前記算出した研磨レートと前記測定した次に1次研磨する基板の初期膜厚、及び研磨後の被処理膜の膜厚の目標値に基づき研磨時間を算出し、該研磨時間を次に1次研磨する基板の研磨時間としてフィードバックする制御を前記初期膜厚の厚さ順に逐次行う制御手段と、を備えることを特徴とする。
尚、前記ソート手段は、連続して研磨される各基板間の被処理膜の初期膜厚差が0.2μm以下となるように前記複数の基板を前記初期膜厚の厚さ順に並べ替えることが望ましい。
In order to solve the above-described problems, a polishing apparatus according to the present invention is a polishing apparatus that continuously polishes a target film formed on the surface of each substrate with respect to a plurality of target substrates. An initial film thickness measuring means for measuring an initial film thickness of the film to be processed on the substrate, and an initial film thickness difference of the film to be processed between the substrates to be continuously polished based on the measurement result of the initial film thickness is a predetermined value Sorting means for rearranging the plurality of substrates in the order of thickness of the initial film thickness so that the initial film thicknesses of the rearranged films of the plurality of substrates are determined according to a predetermined polishing time. A first polishing means for performing primary polishing in the order of the thickness, a post-polishing film thickness measuring means for measuring a film thickness of the processed film after the primary polishing, and the measured initial film thickness and post-polishing In the primary polishing based on the film thickness of the film to be processed and the polishing time at that time. A polishing rate is calculated, and further, a polishing time is calculated based on the calculated polishing rate, the measured initial film thickness of the substrate to be first polished next, and a target value of the film thickness of the processed film after polishing, And control means for sequentially performing control for feeding back the polishing time as the polishing time of the substrate to be subjected to primary polishing next in order of the thickness of the initial film thickness.
The sorting means rearranges the plurality of substrates in the order of the thickness of the initial film thickness so that the initial film thickness difference of the film to be processed between the substrates polished continuously is 0.2 μm or less. Is desirable.

このような構成によれば、連続して研磨される基板間において、被処理膜の初期膜厚のずれ量が小さいため、研磨後の膜厚の目標値からのずれ量を小さくすることができる。したがって、生産性を低下することなく、研磨精度を向上することができる。   According to such a configuration, since the deviation amount of the initial film thickness of the film to be processed is small between the substrates that are continuously polished, the deviation amount from the target value of the film thickness after polishing can be reduced. . Therefore, polishing accuracy can be improved without reducing productivity.

また、前記した課題を解決するために、本発明に係る研磨方法は、複数の被処理基板に対し、各基板の表面に形成された被処理膜を連続して研磨する研磨方法であって、前記各基板における被処理膜の初期膜厚を測定する第1ステップと、前記初期膜厚の測定結果に基づき、連続して研磨される各基板間の被処理膜の初期膜厚差が所定値以下となるように前記複数の基板を前記初期膜厚の厚さ順に並べ替える第2ステップと、前記並べ替えられた前記複数の基板の被処理膜を、予め定められた研磨時間により前記初期膜厚の厚さ順に1次研磨する第3ステップと、前記1次研磨された研磨後の被処理膜の膜厚を測定する第4ステップと、前記測定した初期膜厚と研磨後の被処理膜の膜厚、及びその時の研磨時間に基づき前記1次研磨における研磨レートを算出し、更に前記算出した研磨レートと前記測定した次に1次研磨する基板の初期膜厚、及び研磨後の被処理膜の膜厚の目標値に基づき研磨時間を算出し、該研磨時間を次に1次研磨する基板の研磨時間としてフィードバックする制御を前記初期膜厚の厚さ順に逐次行う第5ステップと、を含むことを特徴とする。
尚、前記第2ステップは、連続して研磨される各基板間の被処理膜の初期膜厚差が0.2μm以下となるように前記複数の基板を前記初期膜厚の厚さ順に並べ替えることが望ましい。
In order to solve the above-described problems, a polishing method according to the present invention is a polishing method for continuously polishing a film to be processed formed on the surface of each substrate with respect to a plurality of substrates to be processed. Based on the first step of measuring the initial film thickness of the processed film on each substrate and the measurement result of the initial film thickness, the initial film thickness difference of the processed film between the substrates to be continuously polished is a predetermined value A second step of rearranging the plurality of substrates in the order of the thickness of the initial film thickness so as to satisfy the following: the initial film on the processed films of the plurality of the rearranged substrates according to a predetermined polishing time; A third step of primary polishing in order of thickness; a fourth step of measuring the film thickness of the processed film after the primary polishing; and the measured initial film thickness and the processed film after polishing. In the primary polishing based on the film thickness and the polishing time at that time A polishing rate is calculated, and further, a polishing time is calculated based on the calculated polishing rate, the measured initial film thickness of the substrate to be first polished next, and a target value of the film thickness of the processed film after polishing, And a fifth step of sequentially performing control for feeding back the polishing time as the polishing time of the substrate to be subjected to primary polishing next in order of the thickness of the initial film thickness.
In the second step, the plurality of substrates are rearranged in the order of the thickness of the initial film thickness so that the initial film thickness difference of the film to be processed between the substrates polished continuously is 0.2 μm or less. It is desirable.

このような方法によれば、連続して研磨される基板間において、被処理膜の初期膜厚のずれ量が小さいため、研磨後の膜厚の目標値からのずれ量を小さくすることができる。したがって、生産性を低下することなく、研磨精度を向上することができる。   According to such a method, since the deviation amount of the initial film thickness of the film to be processed is small between the substrates to be polished continuously, the deviation amount from the target value of the film thickness after polishing can be reduced. . Therefore, polishing accuracy can be improved without reducing productivity.

本発明によれば、複数の被処理基板に対し連続的に研磨を行う研磨装置及び研磨方法において、生産性を低下することなく、研磨後の膜厚の目標値からのずれ量を小さくすることができ、高精度な研磨を行うことができる研磨装置及び研磨方法を得ることができる。   According to the present invention, in a polishing apparatus and a polishing method for continuously polishing a plurality of substrates to be processed, the amount of deviation from the target value of the film thickness after polishing can be reduced without reducing productivity. Thus, a polishing apparatus and a polishing method capable of performing high-precision polishing can be obtained.

図1は、本発明の研磨装置の構成を模式的に示すブロック図である。FIG. 1 is a block diagram schematically showing the configuration of the polishing apparatus of the present invention. 図2は、図1の研磨装置において、被処理基板である各ウエハの活性層に対する研磨加工の流れを示すフロー図である。FIG. 2 is a flowchart showing the flow of polishing processing for the active layer of each wafer as a substrate to be processed in the polishing apparatus of FIG. 図3は、本発明の実施例の結果を示すグラフである。FIG. 3 is a graph showing the results of the example of the present invention. 図4は、比較例の結果を示すグラフである。FIG. 4 is a graph showing the results of the comparative example. 図5は、SOIウエハの構造を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining the structure of the SOI wafer. 図6は、SOIウエハの製造工程を説明するための断面図である。FIG. 6 is a cross-sectional view for explaining an SOI wafer manufacturing process. 図7は、SOIウエハの活性層の測定ポイント(9点)の一例を示す平面図である。FIG. 7 is a plan view showing an example of measurement points (9 points) of the active layer of the SOI wafer.

以下、本発明の研磨装置及び研磨方法に係る実施の形態について、図面に基づき詳細に説明する。図1は、本発明の研磨装置の構成を模式的に示すブロック図である。
図示する研磨装置1は、例えば、ロット単位で処理される複数枚のSOIウエハW(以下、単にウエハWと呼ぶ)を被処理基板とし、この被処理基板を研磨する装置である。より具体的には、各ウエハWの表面に形成された被処理膜である活性層(SOI層)を連続して研磨し、所定の膜厚とするための装置である。
Hereinafter, embodiments according to a polishing apparatus and a polishing method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram schematically showing the configuration of the polishing apparatus of the present invention.
The illustrated polishing apparatus 1 is an apparatus for polishing a substrate to be processed using, for example, a plurality of SOI wafers W (hereinafter simply referred to as wafers W) processed in lot units. More specifically, it is an apparatus for continuously polishing an active layer (SOI layer), which is a film to be processed, formed on the surface of each wafer W to obtain a predetermined film thickness.

この研磨装置1は、例えばカセット収容された複数枚のウエハWを所定の基準に沿って並べ替えるソータ部2と、このソータ部2において並べ替えられた複数のウエハWの活性層を順に研磨する研磨部3とで構成される。   The polishing apparatus 1 sequentially polishes, for example, a sorter unit 2 that rearranges a plurality of wafers W accommodated in a cassette along a predetermined reference, and an active layer of the plurality of wafers W rearranged in the sorter unit 2. And a polishing unit 3.

前記ソータ部2は、被処理基板である複数のウエハWを収容したカセット5と、カセット5に収容された各ウエハWに対して、その活性層の初期膜厚(研磨前膜厚)を測定する膜厚測定部6(初期膜厚測定手段)とを有する。さらにソータ部2は、前記膜厚測定されたウエハWをそれぞれロット単位で収容する例えば2つのカセット7、8を有する。
尚、膜厚測定部6において膜厚測定されたウエハWは、全て一旦カセット5に戻される。そして、全てのウエハWについて測定終了後、コンピュータからなる制御部20(制御手段)の制御により搬送ロボット10が駆動され、各ウエハWは、カセット7、或いはカセット8に所定の並び順で収容されるようになされている。このように制御部20と搬送ロボット10とによりソート手段が構成されている。
また、ソータ部2は、ウエハWが収容されたカセット7、8を研磨部3に搬送するための搬送ロボット12を備えている。
The sorter unit 2 measures the initial film thickness (film thickness before polishing) of the active layer for each of the wafers 5 accommodated in the cassette 5 and the wafers 5 accommodated in the cassette 5. A film thickness measuring unit 6 (initial film thickness measuring means). Further, the sorter unit 2 has, for example, two cassettes 7 and 8 for storing the wafers W whose film thickness has been measured in units of lots.
Note that all the wafers W whose film thickness has been measured by the film thickness measuring unit 6 are once returned to the cassette 5. After all the wafers W have been measured, the transfer robot 10 is driven under the control of the control unit 20 (control means) comprising a computer, and the wafers W are accommodated in the cassette 7 or the cassette 8 in a predetermined arrangement order. It is made so that. In this way, the control unit 20 and the transfer robot 10 constitute a sorting unit.
The sorter unit 2 includes a transfer robot 12 for transferring the cassettes 7 and 8 containing the wafers W to the polishing unit 3.

また、研磨部3は、前記ソータ部2から搬送ロボット12により搬送されたカセット7又はカセット8が設置されてなる搬入部カセット13と、搬入部カセット13から順に取り出されたウエハWに対し1次研磨を施す第1研磨部14(第1研磨手段)を有する。また、第1研磨部14により研磨された活性層の膜厚測定を行う膜厚測定部15(研磨後膜厚測定手段)と、各ウエハWに対し仕上げ研磨を施す第2研磨部16(第2研磨手段)と、第2研磨部16により研磨されたウエハWを収容する搬出部カセット17とを有する。
この研磨部3は、前記ソータ部2と同様に、制御部20によって、その動作が制御されるように構成されている。
Further, the polishing unit 3 performs primary processing on the loading unit cassette 13 in which the cassette 7 or the cassette 8 transferred from the sorter unit 2 by the transfer robot 12 is installed, and the wafer W sequentially taken out from the loading unit cassette 13. It has the 1st grinding | polishing part 14 (1st grinding | polishing means) which grind | polishes. Further, a film thickness measuring unit 15 (film thickness measuring means after polishing) for measuring the film thickness of the active layer polished by the first polishing unit 14 and a second polishing unit 16 (first film) for performing final polishing on each wafer W. 2 polishing means) and a carry-out section cassette 17 for storing the wafer W polished by the second polishing section 16.
Similar to the sorter unit 2, the polishing unit 3 is configured such that its operation is controlled by the control unit 20.

次に、前述した各部(各手段)について、より詳しく説明する。
ソータ部2における膜厚測定部6は、カセット5に収容された各ウエハWに対し、例えば反射分光膜厚計(近赤外光(波長900nm〜1600nm))を用いて、その活性層の初期膜厚(研磨前膜厚)を測定するものである。
尚、ウエハ面内においては、活性層の厚さに微少なばらつきがあるため、例えば、9つの測定ポイント(例えば、ウエハ中心、R/2(半径)、外周部(外周から3mm):図7参照)が設定されて各ポイントの膜厚測定が行われ、その測定結果が制御部20に出力される。
制御部20では、それら測定値の平均値又は測定した9点における(最大値+最小値)/2で得られる値が、活性層の初期膜厚値となされる。また、測定が終了したウエハWは一旦、カセット5に戻される。
Next, each part (each means) described above will be described in more detail.
The film thickness measurement unit 6 in the sorter unit 2 uses, for example, a reflection spectral film thickness meter (near infrared light (wavelength 900 nm to 1600 nm)) for each wafer W accommodated in the cassette 5 to start the active layer. The film thickness (film thickness before polishing) is measured.
Since the thickness of the active layer varies slightly within the wafer surface, for example, nine measurement points (for example, wafer center, R / 2 (radius), outer periphery (3 mm from the outer periphery): FIG. Reference) is set to measure the film thickness at each point, and the measurement result is output to the control unit 20.
In the control unit 20, an average value of these measured values or a value obtained by (maximum value + minimum value) / 2 at nine measured points is set as an initial film thickness value of the active layer. In addition, the wafer W that has been measured is once returned to the cassette 5.

また、搬送ロボット10は、カセット5内の全てのウエハWに対し、初期膜厚の測定が終了すると、前記測定結果に基づき、制御部20の制御により駆動してカセット5内のウエハWを取り出し、カセット7或いはカセット8内に新たな並び順(研磨順)で収容するようになされている。この並び順は、連続して研磨される各ウエハ間の被処理膜の初期膜厚差が所定値以下となるように前記複数のウエハWを前記初期膜厚の厚さ順に並べ替えて収容される。   Further, when the measurement of the initial film thickness is completed for all the wafers W in the cassette 5, the transfer robot 10 is driven by the control of the control unit 20 based on the measurement result and takes out the wafers W in the cassette 5. The cassettes 7 or 8 are accommodated in a new arrangement order (polishing order). This arrangement order is accommodated by arranging the plurality of wafers W in the order of the thickness of the initial film thickness so that the initial film thickness difference of the film to be processed between the wafers to be polished continuously becomes a predetermined value or less. The

また、研磨部3において、第1研磨部14は、所定回転数で回転可能な定盤14aと、ウエハWを下端に保持可能な研磨ヘッド14bとを有する。
定盤14aには研磨布が設けられ、この定盤14aに対向して研磨ヘッド14bが回転可能に配置されている。
この第1研磨部14においてウエハWを研磨する際には、制御部20により予め定められた研磨時間により、定盤14a及び研磨ヘッド14bがそれぞれ所定回転数で回転され、1次研磨用の研磨剤(図示せず)が供給される。そして、ウエハWを保持する研磨ヘッド14bが定盤14aの研磨布に対して所定圧で押圧され、並べ替えられた前記複数のウエハWの被処理膜に対し、前記初期膜厚の厚さ順に1次研磨が行われる。
In the polishing unit 3, the first polishing unit 14 includes a surface plate 14 a that can rotate at a predetermined number of revolutions and a polishing head 14 b that can hold the wafer W at the lower end.
A polishing pad is provided on the surface plate 14a, and a polishing head 14b is rotatably disposed facing the surface plate 14a.
When the first polishing unit 14 polishes the wafer W, the surface plate 14a and the polishing head 14b are rotated at a predetermined number of revolutions by the control unit 20 for a predetermined polishing time. An agent (not shown) is supplied. Then, the polishing head 14b holding the wafer W is pressed with a predetermined pressure against the polishing cloth of the surface plate 14a, and the processed films of the plurality of wafers W rearranged are in the order of the thickness of the initial film thickness. Primary polishing is performed.

また、膜厚測定部15では、近赤外光(波長900nm〜1600nm)を用いた反射分光膜厚計を用いて、所定の雰囲気内或いは水中環境で前記1次研磨された研磨後のウエハWの活性層の膜厚測定がなされる。
尚、ウエハ面内においては、活性層の厚さに微少なばらつきがあるため、例えば、ソータ部2の膜厚測定部6と同じ9つの測定ポイント(例えば、図7参照)が設定されて各ポイントの膜厚測定が行われ、その測定結果が制御部20に出力される。
制御部20では、それら測定値の平均値、または測定した9点における(最大値+最小値)/2で得られる値が、1次研磨後の活性層の膜厚となされる。
また、膜厚測定部15は、研磨部3上に設けられた搬送路18に沿って移動自在となされており、後段の第2研磨部16に対し、膜厚測定後のウエハWを受け渡し可能に構成されている。
Further, the film thickness measuring unit 15 uses the reflection spectral film thickness meter using near infrared light (wavelength 900 nm to 1600 nm) to perform the first polished polishing wafer W in a predetermined atmosphere or underwater environment. The thickness of the active layer is measured.
In the wafer plane, since the thickness of the active layer varies slightly, for example, the same nine measurement points (for example, see FIG. 7) as the film thickness measurement unit 6 of the sorter unit 2 are set and each is set. The film thickness of the point is measured, and the measurement result is output to the control unit 20.
In the control unit 20, an average value of these measured values or a value obtained by (maximum value + minimum value) / 2 at nine measured points is set as the thickness of the active layer after the primary polishing.
Further, the film thickness measuring unit 15 is movable along a transfer path 18 provided on the polishing unit 3 and can transfer the wafer W after film thickness measurement to the second polishing unit 16 at the subsequent stage. It is configured.

また、仕上げ研磨を行う第2研磨部16は、第1研磨部14と同様に、所定回転数で回転可能な定盤16aと、ウエハWを下端に保持可能な研磨ヘッド16bとを有する。
この第2研磨部16においてウエハWを研磨する際には、制御部20により予め設定された研磨時間に基づいて、定盤16a及び研磨ヘッド16bがそれぞれ所定回転数で回転され、仕上げ研磨用の研磨剤(図示せず)が供給される。そして、ウエハWを保持する研磨ヘッド16bが定盤16aに対して所定圧力で押圧され、仕上げ研磨が行われる構成となっている。
Similarly to the first polishing unit 14, the second polishing unit 16 that performs finish polishing includes a surface plate 16 a that can rotate at a predetermined number of revolutions, and a polishing head 16 b that can hold the wafer W at the lower end.
When polishing the wafer W in the second polishing unit 16, the surface plate 16a and the polishing head 16b are rotated at a predetermined number of rotations based on the polishing time set in advance by the control unit 20, respectively. Abrasive (not shown) is supplied. Then, the polishing head 16b holding the wafer W is pressed against the surface plate 16a with a predetermined pressure, and finish polishing is performed.

制御部20は、膜厚測定部6により測定した初期膜厚と、膜厚測定部15により測定した研磨後の膜厚、及びその時の研磨時間に基づき、第1研磨部14での1次研磨における研磨レートを算出する。更に、前記算出した研磨レートと、膜厚測定部6により測定した次に1次研磨するウエハWの初期膜厚、及び研磨後の被処理膜の膜厚の目標値に基づき、新たな研磨時間を算出する。そして、該算出した研磨時間を前記次に1次研磨するウエハWの研磨時間としてフィードバックする制御を、前記初期膜厚の厚さ順に逐次行うようになされている。   The control unit 20 performs the primary polishing in the first polishing unit 14 based on the initial film thickness measured by the film thickness measurement unit 6, the film thickness after polishing measured by the film thickness measurement unit 15, and the polishing time at that time. The polishing rate at is calculated. Furthermore, based on the calculated polishing rate, the initial film thickness of the wafer W to be subjected to primary polishing next measured by the film thickness measuring unit 6, and the target value of the film thickness of the film to be processed, a new polishing time is obtained. Is calculated. The control for feeding back the calculated polishing time as the polishing time of the wafer W to be subjected to the next primary polishing is sequentially performed in the order of the thickness of the initial film thickness.

続いて、このように構成された研磨装置1における各ウエハWの活性層に対する研磨の流れについて図2に基づき更に具体的に説明する。
先ず、ソータ部2において、カセット5に収容された各ウエハWに対し、その活性層の初期膜厚(研磨前膜厚)が、例えば、ウエハ面内の9箇所を測定ポイント(図7参照)として、膜厚測定部6により測定される。そして、有効な各測定ポイントの測定データ(膜厚)の平均値、又は測定した9点における(最大値+最小値)/2で得られる値が算出され、その活性層の初期膜厚とされる(図2のステップS1)。尚、測定終了したウエハWは、再びカセット5の同じ収容位置に戻される。
Next, the flow of polishing of the active layer of each wafer W in the polishing apparatus 1 configured as described above will be described more specifically with reference to FIG.
First, in the sorter unit 2, for each wafer W accommodated in the cassette 5, the initial film thickness (film thickness before polishing) of the active layer is, for example, nine measurement points in the wafer surface (see FIG. 7). As shown in FIG. Then, an average value of measurement data (film thickness) at each effective measurement point or a value obtained by (maximum value + minimum value) / 2 at 9 measured points is calculated and set as the initial film thickness of the active layer. (Step S1 in FIG. 2). The wafer W that has been measured is returned to the same accommodation position in the cassette 5 again.

膜厚測定部6による測定結果は、制御部20により取得される。制御部20では、測定したウエハWの活性層の厚さによって、新たな処理順(並び順)が決定される。
制御部20は、搬送ロボット10を駆動し、前記決定した処理順となるようカセット5内の各ウエハWをカセット7又はカセット8に搬送し、連続して研磨される各ウエハ間の被処理膜の初期膜厚差が所定値以下となるように、測定した複数のウエハWを初期膜厚の厚さ順に並べ替えて収容する(図2のステップS2)。
並べ替えられた複数のウエハWを収容するカセット7又はカセット8は、搬送ロボット12により研磨部3に搬送され、搬入部カセット13として設置される。
The measurement result by the film thickness measuring unit 6 is acquired by the control unit 20. In the control unit 20, a new processing order (arrangement order) is determined according to the measured thickness of the active layer of the wafer W.
The control unit 20 drives the transfer robot 10 to transfer each wafer W in the cassette 5 to the cassette 7 or 8 so that the determined processing order is obtained, and a film to be processed between the wafers to be continuously polished. A plurality of measured wafers W are rearranged and accommodated in the order of the thickness of the initial film thickness so that the initial film thickness difference becomes equal to or less than a predetermined value (step S2 in FIG. 2).
The cassette 7 or the cassette 8 that accommodates the rearranged wafers W is transferred to the polishing unit 3 by the transfer robot 12 and installed as a loading unit cassette 13.

次いで、制御部20では、1次研磨が施されるウエハWに対し、予め研磨時間を設定する(図2のステップS3)。この研磨時間の設定においては、前述したように、基本的には、1つ前に1次研磨されたウエハWの研磨レートに基づき設定される。
但し、搬入部カセット13から取り出される1枚目のウエハWに関しては、測定した初期膜厚と研磨後の被処理膜の膜厚の目標値との差分より目標研磨量を算出し、既知の研磨レートで除することで研磨時間を設定して1次研磨が行われる。
カセット13から順に取り出されるウエハWは、それぞれに設定された研磨時間に基づき、第1研磨部14において、活性層の1次研磨が施される(図2のステップS4)。
Next, the control unit 20 sets a polishing time in advance for the wafer W to be subjected to primary polishing (step S3 in FIG. 2). As described above, the polishing time is basically set based on the polishing rate of the wafer W that has been subjected to the primary polishing one time before.
However, for the first wafer W taken out from the carry-in cassette 13, the target polishing amount is calculated from the difference between the measured initial film thickness and the target value of the film thickness of the processed film after polishing, and the known polishing amount is calculated. The primary polishing is performed by setting the polishing time by dividing by the rate.
The wafers W sequentially taken out from the cassette 13 are subjected to primary polishing of the active layer in the first polishing unit 14 based on the polishing time set for each (step S4 in FIG. 2).

1次研磨が施されたウエハWは、膜厚測定部15において活性層の膜厚が測定される。この膜厚測定においては、例えば、初期膜厚の測定と同じく、ウエハ面内の9箇所が測定ポイント(図7参照)となされる。そして、各測定ポイントの活性層膜厚が測定され、その測定結果が制御部20に出力される(図2のステップS5)。   The film thickness of the active layer is measured in the film thickness measuring unit 15 on the wafer W subjected to the primary polishing. In this film thickness measurement, for example, nine points in the wafer surface are used as measurement points (see FIG. 7), as in the measurement of the initial film thickness. And the active layer film thickness of each measurement point is measured, and the measurement result is output to the control part 20 (step S5 of FIG. 2).

研磨後の活性層の膜厚測定が終了すると、制御部20では、有効な各測定ポイントの測定データ(膜厚)の平均値、又は測定した9点における(最大値+最小値)/2で得られる値を算出して、研磨後の活性層の膜厚とする(図2のステップS6)。   When the measurement of the thickness of the active layer after polishing is completed, the control unit 20 calculates the average value of effective measurement data (film thickness) at each measurement point or (maximum value + minimum value) / 2 at nine measured points. The obtained value is calculated as the thickness of the active layer after polishing (step S6 in FIG. 2).

次いで、制御部20は、ステップ1で求められた初期膜厚と、ステップS6で求められた研磨後の活性層の膜厚との差分(取り代)を、ステップ3で行った研磨時間で除することにより、新たな研磨レートを算出する(図2のステップS7)。
算出された研磨レートは、その値が有効な範囲内にあるか(異常値ではないか)否かがチェックされる(図2のステップS8)。
Next, the control unit 20 divides the difference (removal allowance) between the initial film thickness obtained in Step 1 and the thickness of the active layer after polishing obtained in Step S6 by the polishing time performed in Step 3. Thus, a new polishing rate is calculated (step S7 in FIG. 2).
It is checked whether or not the calculated polishing rate is within an effective range (is not an abnormal value) (step S8 in FIG. 2).

ここで、算出された研磨レートが有効なもの(Yes)であれば、研磨レートが更新され(図2のステップS9)、次に1次研磨するウエハWのステップ1で測定した初期膜厚と研磨後の膜厚の目標値の差分(研磨代)を前記更新された研磨レートで除することで、次のウエハWの1次研磨時間が算出され、ステップS3にフィードバックされる。(ステップS10)。
一方、算出された研磨レートが有効範囲内ではなく無効なもの(No)であれば、研磨レートは更新されず、次に1次研磨するウエハWに対しても、ステップ3において同じ研磨レートが引用される(ステップS11)。
Here, if the calculated polishing rate is valid (Yes), the polishing rate is updated (step S9 in FIG. 2), and the initial film thickness measured in step 1 of the wafer W to be subjected to primary polishing next is determined. The primary polishing time of the next wafer W is calculated by dividing the difference (polishing allowance) of the target value of the film thickness after polishing by the updated polishing rate, and is fed back to step S3. (Step S10).
On the other hand, if the calculated polishing rate is not within the effective range and is invalid (No), the polishing rate is not updated, and the same polishing rate is also obtained in step 3 for the wafer W to be subjected to primary polishing next. Quoted (step S11).

尚、研磨レートが有効なものとは、その値が予め設定された被処理膜の研磨を行う上で有効な研磨レートの範囲内に入っていることをいう。この有効な研磨レートの範囲は、研磨装置や研磨条件、使用する研磨布、研磨剤等により適時設定される。
また、研磨レートが無効なものとは、人為的ミスによるウエハWと制御部20に取得されたデータの入れ違いがある場合や、研磨布の表面状況が変化した場合などがこれにあたる。
The term “effective polishing rate” means that the value falls within a range of polishing rates effective for polishing a film to be processed that has been set in advance. The range of this effective polishing rate is set as appropriate depending on the polishing apparatus, polishing conditions, polishing cloth used, polishing agent, and the like.
In addition, the case where the polishing rate is invalid corresponds to a case where there is a mistake in the data acquired in the wafer W and the control unit 20 due to human error, or a change in the surface condition of the polishing cloth.

前記算出された研磨レートのチェック(図2のステップS8)において、隣接するウエハの研磨レート差の比較を行い、研磨レート差が0.1μm/min以内である場合には、算出された研磨レートが有効なもの(Yes)として、研磨レートを更新し(図2のステップS9)、前記研磨レート差が0.1μm/minを超える場合には、当該研磨レートは更新されず、次に1次研磨するウエハWに対しても、ステップ3において同じ研磨レートが引用される(ステップS11)ことが好ましい。
このような構成とすることで、より高精度な研磨を行うことができる。
In the check of the calculated polishing rate (step S8 in FIG. 2), the polishing rate difference between adjacent wafers is compared. If the polishing rate difference is within 0.1 μm / min, the calculated polishing rate is calculated. Is effective (Yes), the polishing rate is updated (step S9 in FIG. 2), and when the difference between the polishing rates exceeds 0.1 μm / min, the polishing rate is not updated, and then the primary For the wafer W to be polished, the same polishing rate is preferably cited in step 3 (step S11).
With such a configuration, more accurate polishing can be performed.

さらに本発明に係る実施形態にあっては、活性層表面をより平滑に且つ1次研磨面のパーティクル除去等を目的として、仕上げ研磨が行われる(図2のステップS12)。
この仕上げ研磨では、先ず、研磨後測定部15での活性層の膜厚測定が終了したウエハWが、搬送路18を経由して第2研磨部16に搬送される。
この第2研磨部16による仕上げ研磨における研磨時間は、一定時間(例えば、2分以上15分以下)に設定されている。
仕上げ研磨が終了すると、ウエハWは搬出部カセット17に順次収容される。
Furthermore, in the embodiment according to the present invention, finish polishing is performed for the purpose of smoothing the active layer surface and removing particles from the primary polishing surface (step S12 in FIG. 2).
In this final polishing, first, the wafer W after the measurement of the thickness of the active layer in the post-polishing measuring unit 15 is transferred to the second polishing unit 16 via the transfer path 18.
The polishing time in the finish polishing by the second polishing unit 16 is set to a certain time (for example, 2 minutes to 15 minutes).
When the finish polishing is completed, the wafers W are sequentially accommodated in the unloading unit cassette 17.

以上のように本発明に係る研磨装置及び研磨方法にあっては、連続して研磨される各ウエハ間の活性層の初期膜厚差が所定値以下となるように、前記複数のウエハWを前記初期膜厚の厚さ順に予め並べ替えること、及び各ウエハWに対する1次研磨後に活性層の膜厚を測定し、その研磨量及び研磨時間に基づきその1次研磨したウエハWの研磨レートを算出後、次の1次研磨するウエハWの研磨時間を算出し、1次研磨の研磨時間としてフィードバックさせることを特徴とする。
即ち、連続して研磨される各ウエハ間において、活性層の初期膜厚のずれ量が小さくなるため、連続して研磨される各ウエハ間の研磨時間及び研磨レートの変動を少なくすることができる。更に、測定結果のフィードバックにより設定された研磨時間の変動も少なくすることができる。
従って、生産性を低下することなく、研磨後の膜厚の目標値からのずれ量を小さくすることができ、高精度な研磨を行うことができる
As described above, in the polishing apparatus and the polishing method according to the present invention, the plurality of wafers W are arranged so that the initial film thickness difference of the active layer between the wafers to be continuously polished is not more than a predetermined value. Rearranging in order of thickness of the initial film thickness, and measuring the film thickness of the active layer after the primary polishing for each wafer W, and based on the polishing amount and polishing time, the polishing rate of the primary polished wafer W is determined. After the calculation, the polishing time of the wafer W to be subjected to the next primary polishing is calculated and fed back as the polishing time of the primary polishing.
That is, since the deviation amount of the initial film thickness of the active layer is small between the wafers that are continuously polished, the fluctuation of the polishing time and the polishing rate between the wafers that are continuously polished can be reduced. . Furthermore, the fluctuation of the polishing time set by feedback of the measurement result can be reduced.
Therefore, the amount of deviation from the target value of the film thickness after polishing can be reduced without reducing productivity, and highly accurate polishing can be performed.

尚、前記研磨装置及び研磨方法における複数のウエハWの並べ替えは、連続して研磨される各ウエハ間の被処理膜の初期膜厚差が0.2μm以下となるように並べ替えることが好ましい。
このような構成とすることで、確実に研磨後の膜厚の目標値からのずれ量を小さくすることができ、高精度な研磨を行うことができる
また、前記初期膜厚差が0.2μm以下となるように並べ替える場合において、連続して研磨される各ウエハ間の被処理膜の初期膜厚差が0.2μmを超えるウエハWが存在する場合は、初期膜厚が次に最も近い順に並べ替えを行なうことが好ましい。
In the polishing apparatus and the polishing method, the plurality of wafers W are preferably rearranged so that the initial film thickness difference of the film to be processed between the wafers to be continuously polished is 0.2 μm or less. .
With such a configuration, it is possible to reliably reduce the deviation from the target value of the film thickness after polishing, and to perform highly accurate polishing. Further, the initial film thickness difference is 0.2 μm. In the case of rearranging so as to be the following, when there is a wafer W in which the initial film thickness difference of the film to be processed between the wafers polished continuously exceeds 0.2 μm, the initial film thickness is the next closest It is preferable to rearrange in order.

また、前記実施の形態においては、ソータ部2で膜厚測定後に並べ替えられ、ロット毎に収容されるカセットを2基(カセット7,8)の構成としたが、それ以上のカセットを有してもよい。即ち、研磨加工部3での処理前に、処理順を並び替えたウエハWをロット単位で予め多数用意しておくことにより、より効率的に研磨部3での処理を行うことができる。   Moreover, in the said embodiment, although it was rearranged after the film thickness measurement by the sorter part 2, and the cassette accommodated for every lot was set as the structure of two sets (cassettes 7 and 8), it has more cassettes than it. May be. That is, by preparing a large number of wafers W in which the processing order is rearranged in advance for each lot before processing in the polishing processing unit 3, the processing in the polishing unit 3 can be performed more efficiently.

本発明に係る研磨装置及び研磨方法について、実施例に基づきさらに説明する。本実施例では、前記実施の形態に従いSOIウエハの活性層の研磨を行い、本発明の効果を検証した。   The polishing apparatus and the polishing method according to the present invention will be further described based on examples. In this example, the effect of the present invention was verified by polishing the active layer of the SOI wafer according to the above embodiment.

〔実施例〕
実施例では、図2に示すフロー図に基づき、サンプルとして10枚のSOIウエハの活性層の研磨を連続して行い、研磨レートの変動量、目標値からの膜厚ずれ量を測定した。
図3に、実施例における連続するウエハ間での初期膜厚さのずれ量、研磨レートの変動量及び目標値からの膜厚ずれ量をプロットした図を示す。
〔Example〕
In the example, based on the flowchart shown in FIG. 2, the active layer of 10 SOI wafers was continuously polished as a sample, and the amount of polishing rate variation and the amount of film thickness deviation from the target value were measured.
FIG. 3 shows a plot of the amount of deviation of the initial film thickness between successive wafers, the amount of fluctuation of the polishing rate, and the amount of film thickness deviation from the target value in the example.

尚、図3のグラフは、横軸がSOIウエハのサンプル番号(処理順)、左側縦軸が研磨レートの変動量(μm/min)、右側縦軸が目標値からの活性層の膜厚ずれ量(μm)及び連続するウエハ間での初期膜厚さのずれ量(μm)である。
図3に示すように、連続して研磨されるウエハ間において、その活性層の初期膜厚(研磨前の膜厚)の差(ずれ量)は、全て0.2μm以下としている。
この場合、研磨レートは略一定となり、また、活性層膜厚の目標値からのずれ量も全てのウエハについて±0.1μm未満の範囲となることが認められた。
In the graph of FIG. 3, the horizontal axis is the SOI wafer sample number (processing order), the left vertical axis is the polishing rate variation (μm / min), and the right vertical axis is the deviation of the active layer thickness from the target value. The amount (μm) and the deviation amount (μm) of the initial film thickness between successive wafers.
As shown in FIG. 3, the difference (shift amount) in the initial film thickness (film thickness before polishing) of the active layer is set to 0.2 μm or less between continuously polished wafers.
In this case, the polishing rate was substantially constant, and the deviation amount from the target value of the active layer thickness was found to be in a range of less than ± 0.1 μm for all wafers.

〔比較例〕
比較例では、前記実施例1と同様の構成において、連続して研磨されるウエハ間での研磨前の活性層膜厚の差分が大きくなるように9枚のサンプルのウエハ並び順を設定した。
そして、9枚のサンプル(SOIウエハ)に対して活性層研磨加工を連続して行い、研磨レートの変動量、目標値からの膜厚ずれ量を測定した。
図4に、比較例における連続するウエハ間での初期膜厚さのずれ量、研磨レートの変動量及び目標値からの膜厚ずれ量をプロットした図を示す。
[Comparative example]
In the comparative example, the wafer arrangement order of the nine samples was set so that the difference in the thickness of the active layer before polishing between the wafers polished continuously in the same configuration as in Example 1 was increased.
Then, active layer polishing was continuously performed on nine samples (SOI wafers), and the amount of fluctuation in the polishing rate and the amount of film thickness deviation from the target value were measured.
FIG. 4 is a graph plotting the amount of deviation of the initial film thickness between successive wafers, the amount of fluctuation of the polishing rate, and the amount of film thickness deviation from the target value in the comparative example.

尚、図4のグラフは、図3と同様に、横軸がSOIウエハのサンプル番号(処理順)、左側縦軸が研磨レートの変動量(μm/min)、右側縦軸が目標値からの活性層の膜厚ずれ量(μm)及び連続するウエハ間での初期膜厚さのずれ量(μm)である。
図4に示すように、連続して研磨されるウエハ間において、その活性層の初期膜厚(研磨前の膜厚)の差(ずれ量)が大きい場合、研磨レートの変動も大きくなり、更に、研磨レートの変動が大きい場合には、研磨後膜厚と目標値とのずれ量も大きくなることが認められた。
In the graph of FIG. 4, as in FIG. 3, the horizontal axis is the SOI wafer sample number (processing order), the left vertical axis is the polishing rate variation (μm / min), and the right vertical axis is from the target value. These are the film thickness shift amount (μm) of the active layer and the initial film thickness shift amount (μm) between successive wafers.
As shown in FIG. 4, when the difference (deviation amount) in the initial film thickness (film thickness before polishing) of the active layer between the wafers polished continuously is large, the fluctuation of the polishing rate also increases. It was recognized that when the polishing rate fluctuates greatly, the amount of deviation between the post-polishing film thickness and the target value also increases.

1 研磨装置
2 ソータ部
3 研磨加工部
5 カセット
6 膜厚測定部(初期膜厚測定手段)
7 カセット
8 カセット
10 搬送ロボット(ソート手段)
13 搬入部カセット
14 第1研磨部(第1研磨手段)
15 膜厚測定部(研磨後膜厚測定手段)
16 第2研磨部(第2研磨手段)
17 搬出部カセット
20 制御部(制御手段、ソート手段)
W SOIウエハ(被処理基板)
DESCRIPTION OF SYMBOLS 1 Polishing apparatus 2 Sorter part 3 Polishing part 5 Cassette 6 Film thickness measuring part (initial film thickness measuring means)
7 Cassette 8 Cassette 10 Transport robot (sorting means)
13 Carry-in section cassette 14 First polishing section (first polishing means)
15 Film thickness measuring part (film thickness measuring means after polishing)
16 2nd grinding | polishing part (2nd grinding | polishing means)
17 Unloading part cassette 20 Control part (control means, sorting means)
W SOI wafer (substrate to be processed)

Claims (4)

複数の被処理基板に対し、各基板の表面に形成された被処理膜を連続して研磨する研磨装置であって、
前記各基板における被処理膜の初期膜厚を測定する初期膜厚測定手段と、
前記初期膜厚の測定結果に基づき、連続して研磨される各基板間の被処理膜の初期膜厚差が所定値以下となるように前記複数の基板を前記初期膜厚の厚さ順に並べ替えるソート手段と、
前記並べ替えられた前記複数の基板の被処理膜を、予め定められた研磨時間により前記初期膜厚の厚さ順に1次研磨する第1研磨手段と、
前記1次研磨された研磨後の被処理膜の膜厚を測定する研磨後膜厚測定手段と、
前記測定した初期膜厚と研磨後の被処理膜の膜厚、及びその時の研磨時間に基づき前記1次研磨における研磨レートを算出し、更に前記算出した研磨レートと前記測定した次に1次研磨する基板の初期膜厚、及び研磨後の被処理膜の膜厚の目標値に基づき研磨時間を算出し、該研磨時間を次に1次研磨する基板の研磨時間としてフィードバックする制御を前記初期膜厚の厚さ順に逐次行う制御手段と、
を備えることを特徴とする研磨装置。
A polishing apparatus for continuously polishing a target film formed on the surface of each substrate for a plurality of target substrates,
An initial film thickness measuring means for measuring an initial film thickness of the film to be processed on each substrate;
Based on the measurement result of the initial film thickness, the plurality of substrates are arranged in the order of the thickness of the initial film so that the initial film thickness difference of the processed film between the substrates to be polished continuously becomes a predetermined value or less. Sorting means to change;
First polishing means for first polishing the rearranged films of the plurality of substrates in order of thickness of the initial film thickness according to a predetermined polishing time;
A post-polishing film thickness measuring means for measuring the film thickness of the film to be processed after the primary polishing;
Based on the measured initial film thickness, the film thickness of the film to be processed after polishing, and the polishing time at that time, a polishing rate in the primary polishing is calculated. Further, the calculated polishing rate and the measured primary polishing Control of calculating the polishing time based on the initial film thickness of the substrate to be processed and the target value of the film thickness of the processed film after polishing, and feeding back the polishing time as the polishing time of the substrate to be subjected to primary polishing next Control means for sequentially performing in order of thickness,
A polishing apparatus comprising:
前記ソート手段は、連続して研磨される各基板間の被処理膜の初期膜厚差が0.2μm以下となるように前記複数の基板を前記初期膜厚の厚さ順に並べ替えることを特徴とする請求項1に記載された研磨装置。   The sorting means rearranges the plurality of substrates in order of the thickness of the initial film thickness so that an initial film thickness difference of a film to be processed between the substrates polished continuously is 0.2 μm or less. The polishing apparatus according to claim 1. 複数の被処理基板に対し、各基板の表面に形成された被処理膜を連続して研磨する研磨方法であって、
前記各基板における被処理膜の初期膜厚を測定する第1ステップと、
前記初期膜厚の測定結果に基づき、連続して研磨される各基板間の被処理膜の初期膜厚差が所定値以下となるように前記複数の基板を前記初期膜厚の厚さ順に並べ替える第2ステップと、
前記並べ替えられた前記複数の基板の被処理膜を、予め定められた研磨時間により前記初期膜厚の厚さ順に1次研磨する第3ステップと、
前記1次研磨された研磨後の被処理膜の膜厚を測定する第4ステップと、
前記測定した初期膜厚と研磨後の被処理膜の膜厚、及びその時の研磨時間に基づき前記1次研磨における研磨レートを算出し、更に前記算出した研磨レートと前記測定した次に1次研磨する基板の初期膜厚、及び研磨後の被処理膜の膜厚の目標値に基づき研磨時間を算出し、該研磨時間を次に1次研磨する基板の研磨時間としてフィードバックする制御を前記初期膜厚の厚さ順に逐次行う第5ステップと、
を含むことを特徴とする研磨方法。
A polishing method for continuously polishing a film to be processed formed on the surface of each substrate for a plurality of substrates to be processed,
A first step of measuring an initial film thickness of a film to be processed on each of the substrates;
Based on the measurement result of the initial film thickness, the plurality of substrates are arranged in the order of the thickness of the initial film so that the initial film thickness difference of the processed film between the substrates to be polished continuously becomes a predetermined value or less. A second step to replace;
A third step of performing primary polishing of the rearranged films of the plurality of substrates in order of thickness of the initial film thickness according to a predetermined polishing time;
A fourth step of measuring a film thickness of the processed film after the primary polishing;
Based on the measured initial film thickness, the film thickness of the film to be processed after polishing, and the polishing time at that time, a polishing rate in the primary polishing is calculated, and the calculated polishing rate and the measured next polishing are then primary polishing. Control of calculating the polishing time based on the initial film thickness of the substrate to be processed and the target value of the film thickness of the processed film after polishing, and feeding back the polishing time as the polishing time of the substrate to be subjected to primary polishing next A fifth step sequentially performed in order of thickness;
A polishing method comprising:
前記第2ステップは、連続して研磨される各基板間の被処理膜の初期膜厚差が0.2μm以下となるように前記複数の基板を前記初期膜厚の厚さ順に並べ替えることを特徴とする請求項3に記載された研磨方法。   In the second step, the plurality of substrates are rearranged in the order of the thickness of the initial film thickness so that an initial film thickness difference of a film to be processed between each substrate polished continuously is 0.2 μm or less. The polishing method according to claim 3, wherein:
JP2010170012A 2010-07-29 2010-07-29 Polishing apparatus and polishing method Active JP5473818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170012A JP5473818B2 (en) 2010-07-29 2010-07-29 Polishing apparatus and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170012A JP5473818B2 (en) 2010-07-29 2010-07-29 Polishing apparatus and polishing method

Publications (2)

Publication Number Publication Date
JP2012033585A JP2012033585A (en) 2012-02-16
JP5473818B2 true JP5473818B2 (en) 2014-04-16

Family

ID=45846689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170012A Active JP5473818B2 (en) 2010-07-29 2010-07-29 Polishing apparatus and polishing method

Country Status (1)

Country Link
JP (1) JP5473818B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081544B2 (en) * 2019-03-22 2022-06-07 株式会社Sumco Work double-sided polishing method and work double-sided polishing device
WO2021024911A1 (en) * 2019-08-02 2021-02-11 株式会社カネカ Solar cell film production method and solar cell film production system
JP6885492B1 (en) * 2020-05-13 2021-06-16 信越半導体株式会社 Double-sided polishing method
JPWO2022113795A1 (en) * 2020-11-27 2022-06-02

Also Published As

Publication number Publication date
JP2012033585A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
TWI599445B (en) Method of manufacturing a composite substrate
TWI462170B (en) Silicon wafer wiping device and silicon wafer manufacturing method and by etching silicon wafer
US5389579A (en) Method for single sided polishing of a semiconductor wafer
JP4689367B2 (en) Method for predicting polishing profile or polishing amount, polishing method and polishing apparatus
JP4915146B2 (en) Wafer manufacturing method
TW200845176A (en) Polishing condition control apparatus and polishing condition control method of CMP apparatus
KR20000048897A (en) A method and system for controlling chemical mechanical polishing thickness removal
JP5473818B2 (en) Polishing apparatus and polishing method
JP2009522126A (en) Method for adjusting the number of substrate treatments in a substrate polishing system
TW200903619A (en) Methods and apparatus for controlling the size of an edge exclusion zone of a substrate
CN110071041B (en) Preparation method of shallow trench isolation structure, chemical mechanical polishing method and system
JP2007220775A (en) Grinder for semiconductor substrate, and method of manufacturing semiconductor device
JP6166383B2 (en) Method for predicting and controlling post-epitaxial warpage
TW201919815A (en) Grinding device, grinding method, program, and computer storage medium
JP5326888B2 (en) Epitaxial wafer manufacturing method
JP5557387B2 (en) Polishing apparatus and polishing method
JP5074845B2 (en) Semiconductor wafer grinding method and semiconductor wafer processing method
TWI806935B (en) Substrate processing system, substrate processing method, substrate processing program, and computer storage medium
JP2010067805A (en) Grinding device, grinding method, and method of manufacturing semiconductor device
TWI611509B (en) Semiconductor device manufacturing method, substrate processing system, substrate processing device, and program
WO2023068066A1 (en) Substrate processing method and substrate processing system
JP2002175961A (en) Method of classifying product and method of manufacturing semiconductor wafer
JP2006313883A (en) Bonded wafer, manufacturing method therefor, and plane grinding apparatus
WO2023106085A1 (en) Substrate processing method and substrate processing system
US20230060918A1 (en) Processing method and processing apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130205

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20130207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250