JP5650522B2 - Method for manufacturing glass substrate for magnetic recording medium - Google Patents

Method for manufacturing glass substrate for magnetic recording medium Download PDF

Info

Publication number
JP5650522B2
JP5650522B2 JP2010293772A JP2010293772A JP5650522B2 JP 5650522 B2 JP5650522 B2 JP 5650522B2 JP 2010293772 A JP2010293772 A JP 2010293772A JP 2010293772 A JP2010293772 A JP 2010293772A JP 5650522 B2 JP5650522 B2 JP 5650522B2
Authority
JP
Japan
Prior art keywords
glass substrate
polishing
thickness
plate thickness
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010293772A
Other languages
Japanese (ja)
Other versions
JP2012142050A (en
Inventor
典子 島津
典子 島津
遠藤 毅
毅 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2010293772A priority Critical patent/JP5650522B2/en
Publication of JP2012142050A publication Critical patent/JP2012142050A/en
Application granted granted Critical
Publication of JP5650522B2 publication Critical patent/JP5650522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気記録媒体に用いるためのガラス基板の製造方法に関する。   The present invention relates to a method for producing a glass substrate for use in a magnetic recording medium.

例えば、ハードディスクドライブ(HDD)に内蔵されるハードディスク(HD)等の磁気記録媒体に用いるためのガラス基板は、ガラス素材を溶融するガラス溶融工程、溶融したガラス素材を金型でプレス成形することにより円盤状のガラス基板を作製するプレス成形工程、得られたガラス基板の中心に円孔を形成するコアリング工程、得られた環状のガラス基板の主面(記録面)を研削加工してガラス基板の厚み(板厚)や平坦度等を予備調整する第1ラッピング工程、ガラス基板の内周端面及び外周端面を研削加工してガラス基板の外径寸法や真円度等を微調整する端面研削工程、ガラス基板の内周端面及び外周端面を研磨して平滑化する端面研磨工程、ガラス基板の主面を再び研削加工してガラス基板の板厚や平坦度等を微調整する第2ラッピング工程、ガラス基板の主面を粗研磨して平滑化する第1ポリッシング工程(粗研磨工程)、ガラス基板の表面を強化する化学強化工程、ガラス基板の板厚を測定する板厚測定工程、ガラス基板の主面を精密研磨してさらに平滑化する第2ポリッシング工程(精密研磨工程)、ガラス基板を洗浄する最終洗浄工程、及び、ガラス基板の板厚や平坦度等を検査する検査工程等を経て製造される。   For example, a glass substrate for use in a magnetic recording medium such as a hard disk (HD) incorporated in a hard disk drive (HDD) is a glass melting process for melting a glass material, and by pressing the molten glass material with a mold. Press forming process for producing a disk-shaped glass substrate, coring process for forming a circular hole at the center of the obtained glass substrate, and grinding the main surface (recording surface) of the obtained annular glass substrate to obtain a glass substrate First lapping step to preliminarily adjust the thickness (plate thickness), flatness, etc., end surface grinding to finely adjust the outer diameter size, roundness, etc. of the glass substrate by grinding the inner and outer peripheral end surfaces of the glass substrate Process, end surface polishing process for polishing and smoothing the inner and outer peripheral end surfaces of the glass substrate, and grinding the main surface of the glass substrate again to fine-tune the thickness and flatness of the glass substrate. 2 lapping step, first polishing step (rough polishing step) for roughing and smoothing the main surface of the glass substrate, chemical strengthening step for strengthening the surface of the glass substrate, plate thickness measuring step for measuring the plate thickness of the glass substrate , A second polishing step (precise polishing step) in which the main surface of the glass substrate is precisely polished and further smoothed, a final cleaning step in which the glass substrate is cleaned, and an inspection step in which the thickness and flatness of the glass substrate are inspected And so on.

なお、ガラス基板の主面と端面との間の角部の欠け(チッピング)等を抑制するために、例えば端面研削工程等において、ガラス基板の内周端面及び外周端面が面取り加工される場合がある(面取り加工で形成された面をチャンファ面という)。また、化学強化工程と板厚測定工程とは順序が逆でもよい。   In addition, in order to suppress chipping (chipping) or the like between corners between the main surface and the end surface of the glass substrate, the inner peripheral end surface and the outer peripheral end surface of the glass substrate may be chamfered, for example, in an end surface grinding process. There is (the surface formed by chamfering is called chamfer surface). The chemical strengthening step and the plate thickness measuring step may be reversed in order.

近年、HD等の磁気記録媒体は、高密度化に伴い、非常に高い平滑性(平坦性が良くかつ表面粗さが小さいこと)が求められている。そのため、磁気記録媒体用ガラス基板においても、非常に高い平滑性が求められている。最終的に得られるガラス基板の平滑性は第2ポリッシング工程で決定する。第2ポリッシング工程は、一般に、両面研磨装置を用いて行われる。両面研磨装置は、対向面が相互に平行で回転方向が相互に逆向きの円柱状の上定盤及び下定盤を備えている。各定盤の対向面にガラス基板の主面を研磨するための研磨パッドが貼り付けられている。ガラス基板が上下の定盤の研磨パッドで挟み付けられ、この状態で研磨パッドとガラス基板とが回転して面方向に相対移動することにより、ガラス基板の研磨が実行される。   In recent years, magnetic recording media such as HD are required to have very high smoothness (good flatness and small surface roughness) as the density increases. Therefore, very high smoothness is also required for a glass substrate for a magnetic recording medium. The smoothness of the glass substrate finally obtained is determined in the second polishing step. The second polishing process is generally performed using a double-side polishing apparatus. The double-side polishing apparatus includes a cylindrical upper surface plate and a lower surface plate whose opposing surfaces are parallel to each other and whose rotation directions are opposite to each other. A polishing pad for polishing the main surface of the glass substrate is attached to the opposing surface of each surface plate. The glass substrate is sandwiched between upper and lower polishing plates, and in this state, the polishing pad and the glass substrate rotate and move relative to each other in the plane direction, whereby the glass substrate is polished.

第2ポリッシング工程では、複数(例えば100枚等)のガラス基板を一度に研磨するのが通例である。その際、例えば研磨量(研磨代)が0.5〜2μm等に設定される。したがって、複数のガラス基板の板厚のバラツキがこの研磨量(0.5〜2μm)未満に納まっている必要がある。さもないと、複数のガラス基板のうち、板厚が相対的に厚いガラス基板のみが上下の研磨パッドで挟み付けられて研磨され、板厚が相対的に薄いガラス基板は上下の研磨パッドで挟み付けられずに研磨されないからである。第2ポリッシング工程で研磨がされなかった、あるいは十分でなかったガラス基板は、平滑性が不良となるので、ガラス基板の製造収率が低下してしまう。そのため、前述のように、第2ポリッシング工程の前に、複数のガラス基板の板厚を測定する板厚測定工程が行われる。そして、この板厚測定工程の測定結果に基いて、複数のガラス基板をランク分けし、複数のガラス基板の板厚のバラツキが第2ポリッシング工程の研磨量未満に納まっているガラス基板同士を同じグループ(例えば100枚等)に分けて、グループに分けた複数のガラス基板をグループ毎に一度に精密研磨する。   In the second polishing step, it is usual to polish a plurality of (for example, 100) glass substrates at a time. At this time, for example, the polishing amount (polishing allowance) is set to 0.5 to 2 μm or the like. Therefore, it is necessary that the variation in the thickness of the plurality of glass substrates is within this polishing amount (0.5 to 2 μm). Otherwise, among the plurality of glass substrates, only the glass substrate having a relatively large thickness is sandwiched between the upper and lower polishing pads and polished, and the glass substrate having a relatively smaller thickness is sandwiched between the upper and lower polishing pads. It is because it is not attached and is not polished. Since the glass substrate that has not been polished or is not sufficiently polished in the second polishing step has poor smoothness, the production yield of the glass substrate is reduced. Therefore, as described above, a plate thickness measuring step for measuring the plate thickness of the plurality of glass substrates is performed before the second polishing step. And based on the measurement result of this plate thickness measurement process, a plurality of glass substrates are ranked, and the glass substrates in which the variation in the thickness of the plurality of glass substrates is less than the polishing amount of the second polishing step are the same. A plurality of glass substrates divided into groups (for example, 100 sheets or the like) are precisely polished at once for each group.

したがって、板厚測定工程の測定精度が収率に大きく影響する。例えば第2ポリッシング工程の研磨量が1μmであれば、0.1μmのレベルでガラス基板の板厚を管理する必要がある。この板厚測定精度が低いと、グループの中に板厚が他よりも厚過ぎる又は薄過ぎるガラス基板が混じることになり、第2ポリッシング工程で十分に研磨されない平滑性不良のガラス基板ができてしまう。   Therefore, the measurement accuracy of the plate thickness measurement process greatly affects the yield. For example, if the polishing amount in the second polishing step is 1 μm, it is necessary to manage the thickness of the glass substrate at a level of 0.1 μm. If the plate thickness measurement accuracy is low, glass substrates with a plate thickness that is too thick or too thin than the others will be mixed in the group, and a glass substrate with poor smoothness that is not sufficiently polished in the second polishing step will be created. End up.

従来、ガラス基板の板厚は、例えばマイクロメータ等の接触式の測定器を用いて測定していた。しかし、測定レベルが10μm程度であり、近年の精密な板厚管理には対応できなくなった。また、測定のためにガラス基板を1枚1枚製造工程から抜き取らなければならず、ガラス基板が乾燥して不良品となる可能性もあった。さらに、メータのヘッドがガラス基板に接触するため、ガラス基板を傷付ける可能性もあった。   Conventionally, the thickness of a glass substrate has been measured using a contact-type measuring instrument such as a micrometer. However, the measurement level is about 10 μm, and it has become impossible to cope with the recent precise thickness management. Moreover, the glass substrates must be extracted from the manufacturing process one by one for measurement, and the glass substrates may be dried to become defective products. Furthermore, since the meter head contacts the glass substrate, the glass substrate may be damaged.

特許文献1には、ガラス基板を水中に保持した状態で、ガラス基板の板厚を光を用いて非接触で測定する技術が開示されている。これによれば、板厚測定時のガラス基板の乾燥及び傷付けを回避することができる。しかし、この測定原理は、水槽に浸漬したガラス基板に発光部から斜めにレーザー光を照射し、ガラス基板の表面から斜めに反射した光と裏面から斜めに反射した光とを受光部で受光し、その受光位置の差に基き板厚を求めるものであるから、ガラス基板に対する光の照射角度及びガラス基板からの光の反射角度が測定結果に大きく影響する。そのため、機械的な要因で測定誤差が生じ易く、例えば受光部に配置された受光素子の配列が僅かでも乱れていると、それが増幅されて大きな誤差となって測定結果に表れてくる。したがって、近年の精密な板厚管理に対応するためには、なお測定精度が十分ではない。また、ガラス基板に対する光の照射角度を一定とするために、ガラス基板を製造工程から抜き取って水槽に固定しなければならず、すべてのガラス基板の板厚を測定していると生産性が大幅に低下するという不具合もある。さらに、特許文献1に開示されている板厚測定は、精密研磨の終了後に行われるものであり、板厚測定結果に基いて精密研磨を行うものではない。   Patent Document 1 discloses a technique for measuring the thickness of a glass substrate in a non-contact manner using light while the glass substrate is held in water. According to this, drying and scratching of the glass substrate at the time of measuring the plate thickness can be avoided. However, this measurement principle is that the glass substrate immersed in the water tank is irradiated with laser light obliquely from the light emitting part, and the light reflected obliquely from the surface of the glass substrate and the light reflected obliquely from the back surface are received by the light receiving part. Since the plate thickness is obtained based on the difference between the light receiving positions, the light irradiation angle to the glass substrate and the light reflection angle from the glass substrate greatly affect the measurement result. For this reason, measurement errors are likely to occur due to mechanical factors. For example, if the arrangement of the light receiving elements arranged in the light receiving portion is slightly disturbed, it is amplified and becomes a large error and appears in the measurement result. Therefore, the measurement accuracy is still not sufficient to cope with the recent precise plate thickness management. In addition, in order to make the light irradiation angle to the glass substrate constant, the glass substrate must be extracted from the manufacturing process and fixed to the water tank, and productivity is greatly improved when the thickness of all glass substrates is measured. There is also a problem that it drops. Furthermore, the plate thickness measurement disclosed in Patent Document 1 is performed after the completion of precision polishing, and is not performed based on the plate thickness measurement result.

特開2009−59427号公報(段落0013、0034〜0037、0041、0042)JP 2009-59427 A (paragraphs 0013, 0034 to 0037, 0041, 0042)

本発明の目的は、複数のガラス基板の板厚測定結果に基いて複数のガラス基板を一度に精密研磨する磁気記録媒体用ガラス基板の製造方法において、ガラス基板を製造工程から抜き取ることなく、ガラス基板の板厚を非接触で精度よく測定することである。   An object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic recording medium, in which a plurality of glass substrates are precisely polished at once based on the thickness measurement results of a plurality of glass substrates. It is to measure the thickness of the substrate accurately without contact.

本発明は、複数のガラス基板の板厚を測定する板厚測定工程と、板厚測定工程の測定結果に基いて複数のガラス基板をグループに分け、グループに分けた複数のガラス基板をグループ毎に一度に精密研磨する精密研磨工程とを含む磁気記録媒体用ガラス基板の製造方法であって、板厚測定工程では、ガラス基板に板厚方向に所定の波長帯域を有する光を照射し、ガラス基板の表面で板厚方向に反射した光と裏面で板厚方向に反射した光との干渉光を受光し、受光した干渉光を波長毎に分析することにより、光を照射したガラス基板の板厚を分光干渉によって測定することを特徴とする。   The present invention relates to a plate thickness measurement step for measuring the plate thickness of a plurality of glass substrates, a plurality of glass substrates divided into groups based on the measurement results of the plate thickness measurement step, and a plurality of glass substrates divided into groups for each group. A method of manufacturing a glass substrate for a magnetic recording medium including a precision polishing step of precisely polishing at a time, and in the plate thickness measurement step, the glass substrate is irradiated with light having a predetermined wavelength band in the plate thickness direction, The substrate of the glass substrate irradiated with light by receiving the interference light between the light reflected in the thickness direction on the surface of the substrate and the light reflected in the thickness direction on the back surface, and analyzing the received interference light for each wavelength The thickness is measured by spectral interference.

この構成によれば、ガラス基板に板厚方向に光を照射し、ガラス基板の表面での板厚方向の反射光と裏面での板厚方向の反射光との干渉光を受光し、受光した干渉光に基いてガラス基板の板厚を分光干渉によって測定するので、ガラス基板に対する光の照射角度やガラス基板からの光の反射角度が測定結果に何等影響しない。そのため、機械的な要因で測定誤差が生じることがなく、近年の精密な板厚管理に十分対応し得るだけの精度でガラス基板の板厚を測定することができる。その結果、精密研磨工程ですべてのガラス基板が十分に精密研磨され、平滑性が良好となるので、ガラス基板の製造収率が低下することがない。また、板厚を測定するためにガラス基板を特定の場所へ移動させる必要がないから、ガラス基板を製造工程に置いたままで板厚を測定でき、ガラス基板が乾燥したり、生産性が低下することもない。また、ガラス基板の板厚を光を用いて非接触で測定するので、板厚測定時にガラス基板を傷付けることもない。   According to this configuration, the glass substrate is irradiated with light in the thickness direction, and the interference light between the reflected light in the thickness direction on the surface of the glass substrate and the reflected light in the thickness direction on the back surface is received and received. Since the thickness of the glass substrate is measured by spectral interference based on the interference light, the irradiation angle of light with respect to the glass substrate and the reflection angle of light from the glass substrate have no influence on the measurement result. Therefore, a measurement error does not occur due to mechanical factors, and the thickness of the glass substrate can be measured with an accuracy sufficient to cope with the recent precise thickness management. As a result, all glass substrates are sufficiently precisely polished in the precision polishing step and smoothness is improved, so that the production yield of the glass substrate is not lowered. In addition, since it is not necessary to move the glass substrate to a specific location in order to measure the plate thickness, the plate thickness can be measured while the glass substrate is left in the manufacturing process, and the glass substrate is dried or productivity is lowered. There is nothing. Further, since the thickness of the glass substrate is measured in a non-contact manner using light, the glass substrate is not damaged during the thickness measurement.

本発明においては、板厚測定工程では、複数のガラス基板を積載したキャリアをガラス基板の板厚方向に移動させ、分光干渉の光学系の構成によって決定される板厚測定が可能な測定範囲に複数のガラス基板を順次移動させることにより、複数のガラス基板の板厚を連続的に順次測定することが好ましい。通常の生産作業を行いつつ板厚測定を行うので、板厚測定のために生産性が低下する問題がより一層確実に抑制されるからである。また、例えば、ガラス基板に光を照射する機器や、ガラス基板からの干渉光を受光する機器等をガラス基板の移動方向の下流側に配置しておけば、これらの機器を移動させなくても、板厚方向の移動によって近付いて来るガラス基板に対して板厚方向に光を照射し、板厚方向に反射してきた干渉光を受光して、ガラス基板を1枚1枚板厚測定できるという利点もある。   In the present invention, in the plate thickness measurement step, the carrier carrying a plurality of glass substrates is moved in the plate thickness direction of the glass substrate, so that the plate thickness measurement can be performed as determined by the configuration of the optical system for spectral interference. It is preferable to continuously measure the thickness of the plurality of glass substrates sequentially by moving the plurality of glass substrates sequentially. This is because the plate thickness measurement is performed while performing a normal production operation, so that the problem of a decrease in productivity due to the plate thickness measurement is more reliably suppressed. In addition, for example, if a device that irradiates light on a glass substrate or a device that receives interference light from the glass substrate is disposed downstream in the moving direction of the glass substrate, these devices need not be moved. The glass substrate approaching by movement in the thickness direction is irradiated with light in the thickness direction, and the interference light reflected in the thickness direction is received to measure the thickness of each glass substrate one by one. There are also advantages.

本発明においては、精密研磨工程の前に、ガラス基板の表面を強化する化学強化工程が行われ、精密研磨工程では、ガラス基板の主面に化学強化層が残るように研磨することが好ましい。化学強化層によって、最終的に得られるガラス基板の耐衝撃性、耐振動性及び耐熱性等が向上するからである。また、精密研磨工程で研磨が十分でなかったガラス基板は、平滑性が不良となるのみならず、化学強化層の厚みが斑に残ることになる。そして、化学強化層には圧縮応力がかかっているから、そのような化学強化層が斑に残るとガラス基板に歪が生じるという問題が併発する。よって、精密研磨工程ですべてのガラス基板が十分に精密研磨されることにより、そのような歪の問題も併せて解消されるという利点もある。   In the present invention, a chemical strengthening step for strengthening the surface of the glass substrate is performed before the precision polishing step, and in the precision polishing step, it is preferable to perform polishing so that the chemical strengthening layer remains on the main surface of the glass substrate. This is because the chemically strengthened layer improves the impact resistance, vibration resistance, heat resistance, and the like of the finally obtained glass substrate. In addition, the glass substrate that has not been sufficiently polished in the precision polishing step not only has poor smoothness, but also the thickness of the chemically strengthened layer remains in spots. And since a compressive stress is applied to the chemically strengthened layer, if such a chemically strengthened layer remains in spots, there arises a problem that the glass substrate is distorted. Therefore, when all the glass substrates are sufficiently precisely polished in the precision polishing step, there is an advantage that such a problem of distortion is also eliminated.

本発明においては、精密研磨工程の研磨量は、0.5〜1μmであることが好ましい。ガラス基板の板厚を精密に管理することができるので、精密研磨工程の研磨量をこの程度まで小さな値に設定することができるからである。   In this invention, it is preferable that the grinding | polishing amount of a precision grinding | polishing process is 0.5-1 micrometer. This is because the thickness of the glass substrate can be precisely controlled, and the amount of polishing in the precision polishing step can be set to a small value to this extent.

本発明においては、板厚測定工程では、ガラス基板を液中に配置してガラス基板の板厚を測定することが好ましい。ガラス基板が乾燥して汚れが固着するのを防ぐことができるからである。   In this invention, it is preferable to arrange | position a glass substrate in a liquid and measure the plate | board thickness of a glass substrate at a plate | board thickness measurement process. This is because it is possible to prevent the glass substrate from drying and soiling.

本発明によれば、複数のガラス基板の板厚測定結果に基いて複数のガラス基板を一度に精密研磨する磁気記録媒体用ガラス基板の製造方法において、ガラス基板を製造工程から抜き取ることなく、ガラス基板の板厚を非接触で精度よく測定することが可能となる。そのため、精密研磨工程ですべてのガラス基板が十分に精密研磨されるので、ガラス基板の製造収率が低下することがない。そして、平滑性の高いガラス基板が得られるので、磁気記録媒体の高密度化に寄与することができる。   According to the present invention, in a method for manufacturing a glass substrate for a magnetic recording medium in which a plurality of glass substrates are precisely polished at once based on the thickness measurement results of a plurality of glass substrates, the glass substrate is not extracted from the manufacturing process. It becomes possible to accurately measure the thickness of the substrate without contact. Therefore, since all the glass substrates are sufficiently precisely polished in the precision polishing step, the production yield of the glass substrate does not decrease. And since a glass substrate with high smoothness is obtained, it can contribute to density increase of a magnetic recording medium.

本発明の実施形態に係る磁気記録媒体用ガラス基板の製造工程図である。It is a manufacturing-process figure of the glass substrate for magnetic recording media which concerns on embodiment of this invention. 本発明の実施形態に係る磁気記録媒体用ガラス基板の断面斜視図である。It is a cross-sectional perspective view of the glass substrate for magnetic recording media which concerns on embodiment of this invention. 本発明の実施形態に係る板厚測定工程で行われるガラス基板の板厚測定の原理の説明図である。It is explanatory drawing of the principle of the plate | board thickness measurement of the glass substrate performed at the plate | board thickness measurement process which concerns on embodiment of this invention. 本発明の実施形態に係る板厚測定工程が行われる具体的状況の説明図である。It is explanatory drawing of the specific condition in which the plate | board thickness measurement process which concerns on embodiment of this invention is performed. 本発明の実施形態に係る板厚測定工程が行われる別の具体的状況の説明図である。It is explanatory drawing of another specific situation where the plate | board thickness measurement process which concerns on embodiment of this invention is performed. 本発明の実施形態に係る第2ポリッシング工程で用いられ得る両面研磨装置の主要部の構成を示す部分側面図である。It is a partial side view which shows the structure of the principal part of the double-side polish apparatus which can be used at the 2nd polishing process which concerns on embodiment of this invention. 図6のA−A線に沿う矢視図である。It is an arrow line view which follows the AA line of FIG.

以下、図面を参照しつつ、本発明の実施形態を説明する。図1は、本実施形態に係る磁気記録媒体用ガラス基板の製造工程図、図2は、本実施形態に係る磁気記録媒体用ガラス基板の断面斜視図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a manufacturing process diagram of a glass substrate for a magnetic recording medium according to this embodiment, and FIG. 2 is a cross-sectional perspective view of the glass substrate for a magnetic recording medium according to this embodiment.

本実施形態では、磁気記録媒体用ガラス基板10は、ガラス溶融工程(ステップS1)、プレス成形工程(ステップS2)、コアリング工程(ステップS3)、第1ラッピング工程(ステップS4)、端面研削工程(ステップS5)、端面研磨工程(ステップS6)、第2ラッピング工程(ステップS7)、第1ポリッシング工程(ステップS8)、化学強化工程(ステップS9)、板厚測定工程(ステップS10)、第2ポリッシング工程(ステップS11)、最終洗浄工程(ステップS12)、及び、検査工程(ステップS13)を経て製造される。   In this embodiment, the glass substrate 10 for magnetic recording media includes a glass melting step (Step S1), a press forming step (Step S2), a coring step (Step S3), a first lapping step (Step S4), and an end surface grinding step. (Step S5), end face polishing step (Step S6), second lapping step (Step S7), first polishing step (Step S8), chemical strengthening step (Step S9), plate thickness measurement step (Step S10), second It is manufactured through a polishing process (step S11), a final cleaning process (step S12), and an inspection process (step S13).

ガラス溶融工程(S1)では、ガラス素材を溶融する。ガラス素材は、二酸化ケイ素(SiO)を主成分とするガラス組成物で構成される。ガラス組成物は、マグネシウム、カルシウム及び/又はセリウムを含んでも含まなくてもよい。代表的なガラス組成物は、例えば、SiO、Al、B、LiO、NaO、KO、MgO、CaO、BaO、SrO、ZnO等を含む。 In the glass melting step (S1), the glass material is melted. Glass material is composed of a glass composition whose main component is silicon dioxide (SiO 2). The glass composition may or may not contain magnesium, calcium and / or cerium. Exemplary glass compositions include, for example, SiO 2, Al 2 O 3 , B 2 O 3, Li 2 O, Na 2 O, K 2 O, MgO, CaO, BaO, SrO, and ZnO, and the like.

プレス成形工程(S2)では、溶融したガラス素材を金型に流し込んでプレス成形することにより円盤状のガラス基板を作製する。このときのガラス基板の大きさとしては、例えば、外径が2.5インチ、1.8インチ、1.0インチ、0.8インチ等、板厚が、2mm、1mm、0.63mm等である。   In the press molding step (S2), a molten glass material is poured into a mold and press molded to produce a disk-shaped glass substrate. As the size of the glass substrate at this time, for example, the outer diameter is 2.5 inches, 1.8 inches, 1.0 inches, 0.8 inches, and the plate thickness is 2 mm, 1 mm, 0.63 mm, etc. is there.

コアリング工程(S3)では、得られたガラス基板の中心に例えばダイヤモンドコアドリルを用いて円孔を形成する。第1ラッピング工程(S4)では、得られた環状のガラス基板10の主面(記録面)11,12を研削加工してガラス基板10の板厚や平行度及び平坦度等を予備調整する。第1ラッピング工程の研削加工には、例えばダイヤモンドペレットが貼り付けられた研削板を備える両面研削装置が用いられる。   In the coring step (S3), a circular hole is formed in the center of the obtained glass substrate using, for example, a diamond core drill. In the first lapping step (S4), the main surfaces (recording surfaces) 11 and 12 of the obtained annular glass substrate 10 are ground to preliminarily adjust the plate thickness, parallelism, flatness, and the like of the glass substrate 10. For the grinding process in the first lapping step, for example, a double-sided grinding apparatus including a grinding plate on which diamond pellets are attached is used.

端面研削工程(S5)では、ガラス基板10の内周端面13及び外周端面14を研削加工してガラス基板10の外径寸法や真円度等を微調整する。端面研削工程では、また、ガラス基板10の内周端面13及び外周端面14を例えばダイヤモンド砥石を用いて面取り加工し、チャンファ面16を形成する。内周端面13及び外周端面14において、チャンファ面16,16に挟まれた部分を側壁面15と呼ぶ。   In the end surface grinding step (S5), the inner peripheral end surface 13 and the outer peripheral end surface 14 of the glass substrate 10 are ground to finely adjust the outer diameter size, roundness, etc. of the glass substrate 10. In the end surface grinding step, the inner peripheral end surface 13 and the outer peripheral end surface 14 of the glass substrate 10 are chamfered using, for example, a diamond grindstone to form a chamfer surface 16. In the inner peripheral end surface 13 and the outer peripheral end surface 14, a portion sandwiched between the chamfer surfaces 16 and 16 is referred to as a side wall surface 15.

端面研磨工程(S6)では、ガラス基板10の内周端面13及び外周端面14を研磨して平滑化する。第2ラッピング工程(S7)では、ガラス基板10の主面11,12を再び研削加工してガラス基板10の板厚や平行度及び平坦度等を微調整する。第2ラッピング工程の研削加工には、例えばダイヤモンドペレットが貼り付けられた研削板を備える両面研削装置が用いられる。   In the end surface polishing step (S6), the inner peripheral end surface 13 and the outer peripheral end surface 14 of the glass substrate 10 are polished and smoothed. In the second lapping step (S7), the main surfaces 11 and 12 of the glass substrate 10 are again ground to finely adjust the plate thickness, parallelism, flatness and the like of the glass substrate 10. For the grinding process in the second lapping step, for example, a double-sided grinding device including a grinding plate on which diamond pellets are attached is used.

第1ポリッシング工程(粗研磨工程:S8)では、ガラス基板10の主面11,12を粗研磨して平滑化する。第1ポリッシング工程の研磨には、例えば研磨パッドとして発泡ウレタンパッドが貼り付けられた上下一対の定盤を備える両面研磨装置が用いられ、研磨液として酸化セリウムを砥粒として含む研磨液が用いられる。   In the first polishing step (rough polishing step: S8), the main surfaces 11 and 12 of the glass substrate 10 are rough polished and smoothed. For polishing in the first polishing step, for example, a double-side polishing apparatus having a pair of upper and lower surface plates with a foamed urethane pad attached as a polishing pad is used, and a polishing liquid containing cerium oxide as abrasive grains is used as the polishing liquid. .

化学強化工程(S9)では、ガラス基板10の表面に化学強化層を形成する。例えば、ガラス基板10をナトリウムイオンやカリウムイオンの存在する溶液に浸漬することにより、ガラス基板10の表層に存在するリチウムイオンやナトリウムイオンが溶液中のナトリウムイオンやカリウムイオンと置換され、ガラス基板10の表層が化学強化層となる。化学強化層には圧縮応力がかかっている。このような化学強化層を形成することにより、最終的に得られるガラス基板10の耐衝撃性、耐振動性及び耐熱性等が向上する。   In the chemical strengthening step (S9), a chemical strengthening layer is formed on the surface of the glass substrate 10. For example, by immersing the glass substrate 10 in a solution containing sodium ions and potassium ions, lithium ions and sodium ions present on the surface layer of the glass substrate 10 are replaced with sodium ions and potassium ions in the solution. The surface layer is a chemically strengthened layer. A compressive stress is applied to the chemically strengthened layer. By forming such a chemically strengthened layer, the impact resistance, vibration resistance, heat resistance, and the like of the finally obtained glass substrate 10 are improved.

板厚測定工程(S10)では、複数のガラス基板10の板厚を測定する。この測定結果に基いて、ガラス基板10をランク分けし、ガラス基板10の板厚のバラツキが次の第2ポリッシング工程の研磨量未満に納まっているガラス基板10同士を同じグループ(例えば1バッチ100枚等)に分ける。   In the plate thickness measurement step (S10), the plate thicknesses of the plurality of glass substrates 10 are measured. Based on the measurement results, the glass substrates 10 are ranked, and the glass substrates 10 in which the variation in the thickness of the glass substrates 10 is less than the polishing amount of the next second polishing step are grouped together (for example, one batch 100). Etc.).

第2ポリッシング工程(精密研磨工程:S11)では、ガラス基板10の主面11,12を精密研磨してさらに平滑化する。第2ポリッシング工程の研磨には、例えば研磨パッドとしてポリウレタン製のスウェードパッドが貼り付けられた上下一対の定盤を備える両面研磨装置が用いられ、研磨液としてシリカ(コロイダルシリカ)を砥粒として含む研磨液が用いられる。この精密研磨は、板厚測定工程の測定結果に基いて分けられたグループ毎に一度に行う。第2ポリッシング工程の研磨量は、例えば、0.5〜1μmである。第2ポリッシング工程では、化学強化工程で形成された化学強化層がガラス基板10の主面11,12に残るように精密研磨を行う。   In the second polishing step (precision polishing step: S11), the main surfaces 11 and 12 of the glass substrate 10 are precisely polished and further smoothed. For polishing in the second polishing step, for example, a double-side polishing apparatus including a pair of upper and lower surface plates to which a polyurethane suede pad is attached as a polishing pad is used, and silica (colloidal silica) is included as abrasive grains as polishing liquid. A polishing liquid is used. This precise polishing is performed at once for each group divided based on the measurement result of the plate thickness measurement process. The polishing amount in the second polishing process is, for example, 0.5 to 1 μm. In the second polishing process, precision polishing is performed so that the chemical strengthening layer formed in the chemical strengthening process remains on the main surfaces 11 and 12 of the glass substrate 10.

最終洗浄工程(S12)では、ガラス基板10に付着している異物を、例えば、フィルタリングした純水、イオン交換水、超純水、酸性洗剤、中性洗剤、アルカリ性洗剤、有機溶剤、界面活性剤を含んだ各種洗浄剤等を用いて、洗浄し、除去する。   In the final cleaning step (S12), for example, the filtered foreign water, ion-exchanged water, ultrapure water, acidic detergent, neutral detergent, alkaline detergent, organic solvent, and surfactant are removed from the foreign substances adhering to the glass substrate 10. Wash and remove using various cleaning agents containing

検査工程(S13)では、最終的に得られたガラス基板10の板厚や平坦度等を検査する。そして、検査に合格したガラス基板10のみが、ハードディスク(HD)等の磁気記録媒体の製造に用いられ、主面11,12に磁気層が形成される。   In the inspection step (S13), the plate thickness and flatness of the finally obtained glass substrate 10 are inspected. Only the glass substrate 10 that has passed the inspection is used for manufacturing a magnetic recording medium such as a hard disk (HD), and a magnetic layer is formed on the main surfaces 11 and 12.

次に、本実施形態の特徴部分である板厚測定工程(S10)を詳しく説明する。図3は、本実施形態に係る板厚測定工程で行われるガラス基板10の板厚測定の原理の説明図である。ガラス基板10の製造ラインに分光ユニット20が備えられている。分光ユニット20は、光源と、分光器と、FFT処理部とを有する。   Next, the plate thickness measurement step (S10) which is a characteristic part of the present embodiment will be described in detail. FIG. 3 is an explanatory diagram of the principle of measuring the thickness of the glass substrate 10 performed in the thickness measuring step according to the present embodiment. A spectroscopic unit 20 is provided in the production line of the glass substrate 10. The spectroscopic unit 20 includes a light source, a spectroscope, and an FFT processing unit.

光源は、SLD(Super Luminescent Diode:高輝度ダイオード)光源であり、広波長帯域の赤外光L、例えば、波長帯域が0.70〜1.0μm程度、中心波長が0.83μm程度の近赤外光を生成する。生成された赤外光Lは偏波保持ファイバ21を通り、センサヘッド22からガラス基板10に照射される。このとき、赤外光Lはガラス基板10に対して板厚方向に照射される。   The light source is an SLD (Super Luminescent Diode) light source, which is an infrared light L in a wide wavelength band, for example, near red having a wavelength band of about 0.70 to 1.0 μm and a center wavelength of about 0.83 μm. Generate outside light. The generated infrared light L passes through the polarization maintaining fiber 21 and is irradiated from the sensor head 22 to the glass substrate 10. At this time, the infrared light L is applied to the glass substrate 10 in the thickness direction.

照射された赤外光Lは、一部がガラス基板10の表面で板厚方向に反射し、反射光aとなってセンサヘッド22に戻る。残りの一部がガラス基板10の裏面で板厚方向に反射し、反射光bとなってセンサヘッド22に戻る。2つの反射光a,bは波長毎に互いに干渉し合う。この干渉光が偏波保持ファイバ21を通り、分光ユニット20に戻る。つまり、干渉光が受光される。   A part of the irradiated infrared light L is reflected in the thickness direction on the surface of the glass substrate 10 and returns to the sensor head 22 as reflected light a. The remaining part is reflected in the thickness direction on the back surface of the glass substrate 10 and returns to the sensor head 22 as reflected light b. The two reflected lights a and b interfere with each other for each wavelength. The interference light passes through the polarization maintaining fiber 21 and returns to the spectroscopic unit 20. That is, the interference light is received.

分光ユニット20に戻った干渉光は、分光器で波長毎に分析される。すなわち、回折格子で分光され、CCD(Charge Coupled Device)の受光波形から波長毎に光強度が検出され、光強度スペクトル分布が得られる。   The interference light returned to the spectroscopic unit 20 is analyzed for each wavelength by the spectroscope. That is, the light intensity is detected for each wavelength from the received light waveform of a CCD (Charge Coupled Device) after being dispersed by a diffraction grating, and a light intensity spectrum distribution is obtained.

得られた光強度スペクトル分布は、FFT処理部でFFT(Fast Fourier Transform:高速フーリエ変換)処理等の波形解析が行われ、赤外光Lを照射したガラス基板10の板厚が分光干渉によって測定される。   The obtained light intensity spectrum distribution is subjected to waveform analysis such as FFT (Fast Fourier Transform) processing in the FFT processing unit, and the thickness of the glass substrate 10 irradiated with the infrared light L is measured by spectral interference. Is done.

以上により、板厚測定工程において、複数のガラス基板10の板厚が測定される。   As described above, the plate thicknesses of the plurality of glass substrates 10 are measured in the plate thickness measurement step.

以上のような、分光ユニット20、偏波保持ファイバ21及びセンサヘッド22を含む板厚測定装置としては、例えば、特開2009−270939号公報や特開2010−121977号公報に開示されるような、キーエンス社製の板厚測定装置(センサヘッド「SI−F80」、分光ユニット「SI−F80U」)を採用することができる。   Examples of the plate thickness measuring device including the spectroscopic unit 20, the polarization maintaining fiber 21, and the sensor head 22 as described above are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2009-270939 and 2010-121977. A plate thickness measuring device (sensor head “SI-F80”, spectroscopic unit “SI-F80U”) manufactured by Keyence Corporation can be employed.

本実施形態では、前記板厚測定装置は、ガラス基板10の製造ラインにおいて、例えば、化学強化工程が行われる場所と、第2ポリッシング工程が行われる場所との間に備えられている。板厚の測定は、枚葉で1枚ずつ行ってもよいが、本実施形態では、図4に示すように、化学強化工程が完了した複数のガラス基板10…10を板厚測定用キャリアC1上に積載して順次板厚を測定することで、ハンドリング回数を減らし、効率のよい板厚測定を行う。   In this embodiment, the said plate | board thickness measuring apparatus is provided in the production line of the glass substrate 10 between the place where a chemical strengthening process is performed, and the place where a 2nd polishing process is performed, for example. The plate thickness may be measured one sheet at a time, but in this embodiment, as shown in FIG. 4, a plurality of glass substrates 10... By stacking on top and measuring the plate thickness sequentially, the number of handling is reduced and the plate thickness is measured efficiently.

SLD光源を用いた板厚測定装置は、分光干渉の光学系の構成によって、センサヘッド22から被測定物までの、板厚測定が可能な測定範囲(図4参照)が決定されるため、被測定物をその測定範囲内に設置する必要がある。一方、測定範囲外において、例えばセンサヘッド22と被測定物との間に他のガラス基板10が存在する場合でも、他のガラス基板10が光透過性に優れること、他のガラス基板10の表面が平滑性に優れ、光の散乱が少ないこと等を条件に、問題なく被測定物の板厚を測定することが可能である。   In the plate thickness measuring apparatus using the SLD light source, the measurement range (see FIG. 4) in which the plate thickness can be measured from the sensor head 22 to the object to be measured is determined by the configuration of the optical system for spectral interference. The object to be measured must be installed within the measurement range. On the other hand, outside the measurement range, for example, even when another glass substrate 10 exists between the sensor head 22 and the object to be measured, the other glass substrate 10 has excellent light transmittance, and the surface of the other glass substrate 10. However, it is possible to measure the thickness of the object to be measured without any problem on the condition that it has excellent smoothness and little light scattering.

これを利用して本実施形態では複数のガラス基板10を積載した板厚測定用キャリアC1を移動させることでセンサヘッド22からの距離で決定される板厚測定が可能な測定範囲に存在するガラス基板10を順次入れ替えることができるように構成している。このように構成することで、キャリアC1の移動と板厚測定を繰り返すことで多数のガラス基板10の板厚を効率よく測定することができる。ここではさらにガラス基板10が乾燥して汚れが固着するのを防ぐためにガラス基板10を液X中に配置し、液X中(液槽50)に浸漬して板厚を測定している。液X中での不純物の付着を抑制するために、浸漬する液Xは不純物が少ない純水が望ましく、またフィルターを通して循環させたり洗剤を含有させることも効果的である。図4に示す例は、ガラス基板10の工程間の保管中に板厚測定を行う例である。   In this embodiment, by utilizing this, glass existing in a measurement range in which the plate thickness measurement determined by the distance from the sensor head 22 can be performed by moving the plate thickness measurement carrier C1 on which a plurality of glass substrates 10 are loaded. The substrate 10 is configured so that it can be sequentially replaced. By comprising in this way, the plate | board thickness of many glass substrates 10 can be measured efficiently by repeating the movement of carrier C1, and plate | board thickness measurement. Here, in order to prevent the glass substrate 10 from further drying and sticking of dirt, the glass substrate 10 is placed in the liquid X and immersed in the liquid X (liquid tank 50) to measure the plate thickness. In order to suppress the adhesion of impurities in the liquid X, the liquid X to be immersed is preferably pure water with few impurities, and it is also effective to circulate it through a filter or to contain a detergent. The example shown in FIG. 4 is an example in which plate thickness measurement is performed during storage of the glass substrate 10 between processes.

なお、板厚測定工程で測定される板厚の値としては、ガラス基板10の所定の1箇所のみを測定して得られた値でもよく、ガラス基板10の複数個所を測定して得られた値の平均値でもよい。複数個所を測定する場合には、測定されるガラス基板10を、板厚方向に平行な方向を軸として回転させたり、板厚方向に垂直な方向に移動させる機構を備えることで、効率よく複数個所を測定することができる。   In addition, as a value of the plate thickness measured in the plate thickness measuring step, a value obtained by measuring only one predetermined position of the glass substrate 10 may be obtained, or obtained by measuring a plurality of locations of the glass substrate 10. It may be an average value. When measuring a plurality of locations, the glass substrate 10 to be measured is efficiently rotated by providing a mechanism for rotating the glass substrate 10 around the direction parallel to the plate thickness direction or moving it in a direction perpendicular to the plate thickness direction. The location can be measured.

以上のようにして板厚測定工程(S10)で行われた複数のガラス基板10の板厚測定の結果に基いて、ガラス基板10をランク分けし、複数のガラス基板10の板厚のバラツキが次の第2ポリッシング工程の研磨量(本実施形態では0.5〜1μm)未満に納まっているガラス基板10同士を同じグループ(例えば1バッチ100枚等)に分ける。   Based on the result of the plate thickness measurement of the plurality of glass substrates 10 performed in the plate thickness measurement step (S10) as described above, the glass substrates 10 are ranked, and the variation in the plate thickness of the plurality of glass substrates 10 is found. The glass substrates 10 that are less than the polishing amount in the second polishing step (0.5 to 1 μm in the present embodiment) are divided into the same group (for example, 100 batches).

また、ガラス基板10の工程間の保管中に板厚測定を行う代わりに、図5に示すように、化学強化工程から第2ポリッシング工程へ向かうガラス基板10の搬送を自動化して工程間の自動搬送中に板厚測定を行ってもよい。化学強化工程を完了したガラス基板10を搬送用キャリアC2に複数積載して搬送し(移動させ)、センサヘッド22を例えば搬送方向の下流側に配置して、板厚方向の搬送によって近づいて来るガラス基板10の板厚を測定範囲内において順次測定することができる。   Further, instead of performing the plate thickness measurement during the storage of the glass substrate 10 between the processes, as shown in FIG. 5, the conveyance of the glass substrate 10 from the chemical strengthening process to the second polishing process is automated, and the process is automatically performed. The plate thickness may be measured during conveyance. A plurality of glass substrates 10 that have completed the chemical strengthening process are stacked and transported (moved) on the transport carrier C2, and the sensor head 22 is disposed, for example, downstream in the transport direction, and approaches by transport in the thickness direction. The thickness of the glass substrate 10 can be sequentially measured within the measurement range.

次に、板厚測定工程の後に行われる第2ポリッシング工程(S11)を詳しく説明する。なお、本実施形態では、ポリッシング工程は、第1ポリッシング工程であれ、第2ポリッシング工程であれ、研磨パッドの種類や研磨液の種類を除いて、ほぼ同様である。   Next, the second polishing step (S11) performed after the plate thickness measurement step will be described in detail. In the present embodiment, the polishing process is substantially the same except for the type of polishing pad and the type of polishing liquid, whether it is the first polishing process or the second polishing process.

図6は、本実施形態に係る第2ポリッシング工程で用いられ得る両面研磨装置の主要部の構成を示す部分側面図、図7は、図6のA−A線に沿う矢視図であって下定盤の平面図である。   FIG. 6 is a partial side view showing the configuration of the main part of the double-side polishing apparatus that can be used in the second polishing step according to the present embodiment, and FIG. 7 is an arrow view along the line AA in FIG. It is a top view of a lower surface plate.

図6に示すように、両面研磨装置30は、上下一対の上定盤31及び下定盤32を備えている。各定盤31,32は円柱状(外径:約1000mm)であり、対向面が相互に平行で回転方向が相互に逆向きである。各定盤31,32の対向面にガラス基板の主面を研磨するための研磨パッド(本実施形態ではポリウレタン製のスウェードパッド)33,34が貼り付けられている。   As shown in FIG. 6, the double-side polishing apparatus 30 includes a pair of upper and lower upper surface plates 31 and a lower surface plate 32. Each of the surface plates 31 and 32 has a cylindrical shape (outer diameter: about 1000 mm), the opposing surfaces are parallel to each other, and the rotation directions are opposite to each other. Polishing pads (polyurethane suede pads in this embodiment) 33 and 34 for polishing the main surface of the glass substrate are attached to the opposing surfaces of the surface plates 31 and 32, respectively.

図7に示すように、下定盤32の研磨パッド34の上に、円盤状のキャリア37が複数(図例では4つ)設置されている。下定盤32の中央部にサンギヤ35が備えられ、下定盤32の周縁部にインターナルギヤ36が備えられている。キャリア37の周縁部にギヤ歯が形成されており、サンギヤ35及びインターナルギヤ36と噛み合っている。このような遊星歯車機構により、サンギヤ35が回転すると、キャリア37は自転しながらサンギヤ35の周囲を公転する。   As shown in FIG. 7, a plurality of disc-shaped carriers 37 (four in the illustrated example) are installed on the polishing pad 34 of the lower surface plate 32. A sun gear 35 is provided at the center of the lower surface plate 32, and an internal gear 36 is provided at the periphery of the lower surface plate 32. Gear teeth are formed on the peripheral portion of the carrier 37 and mesh with the sun gear 35 and the internal gear 36. When the sun gear 35 rotates by such a planetary gear mechanism, the carrier 37 revolves around the sun gear 35 while rotating.

キャリア37には複数の円孔38…38が形成されており、各円孔38にガラス基板10が1つづつ遊嵌合される。上定盤31及び下定盤32が対接し合うことで、キャリア37…37及びガラス基板10…10が上下の研磨パッド33,34で挟み付けられ、この状態で各定盤31,32及び各キャリア37が回転することにより、研磨パッド33,34とガラス基板10とが面方向に相対移動する。このとき、研磨液(本実施形態ではコロイダルシリカ)が研磨パッド33,34とガラス基板10との間に供給され、ガラス基板10の研磨が実行される。   A plurality of circular holes 38... 38 are formed in the carrier 37, and the glass substrates 10 are loosely fitted into the circular holes 38 one by one. Since the upper surface plate 31 and the lower surface plate 32 are in contact with each other, the carriers 37... 37 and the glass substrate 10... 10 are sandwiched between the upper and lower polishing pads 33 and 34. By rotating 37, the polishing pads 33 and 34 and the glass substrate 10 move relative to each other in the surface direction. At this time, the polishing liquid (colloidal silica in the present embodiment) is supplied between the polishing pads 33 and 34 and the glass substrate 10 to polish the glass substrate 10.

本実施形態では、研磨パッド23,24は、第1ポリッシング工程(S8)では発泡ウレタンパッドが用いられ、第2ポリッシング工程(S11)ではポリウレタン製のスウェードパッドが用いられる。ただし、これに限定されるものではない。   In the present embodiment, the polishing pads 23 and 24 are foamed urethane pads in the first polishing step (S8), and polyurethane suede pads are used in the second polishing step (S11). However, it is not limited to this.

本実施形態では、研磨液は、砥粒(遊離砥粒)を含むスラリーである。砥粒としては、特に限定されず、従来一般にガラス研磨の分野で採用されているものを用いることができる。例えば、酸化セリウム、炭化ケイ素、シリカ(コロイダルシリカ)、ジルコニア、アルミナ等が好ましく用いられ得る。これらの中では、コストや得られる平滑度等の観点から、酸化セリウムがより好ましい。砥粒の粒径は、得られる平滑度等の観点から、平均粒子径が1〜100nmのものが好ましく、1〜80nmのものがより好ましく、1〜50nmのものがさらに好ましく、1〜20nmのものが特に好ましい。   In the present embodiment, the polishing liquid is a slurry containing abrasive grains (free abrasive grains). The abrasive grains are not particularly limited, and those conventionally used generally in the field of glass polishing can be used. For example, cerium oxide, silicon carbide, silica (colloidal silica), zirconia, alumina and the like can be preferably used. Among these, cerium oxide is more preferable from the viewpoints of cost, smoothness obtained, and the like. The particle diameter of the abrasive grains is preferably from 1 to 100 nm, more preferably from 1 to 80 nm, further preferably from 1 to 50 nm, and more preferably from 1 to 20 nm from the viewpoint of the smoothness obtained. Those are particularly preferred.

本実施形態では、研磨液は、第1ポリッシング工程(S8)では酸化セリウムを砥粒として含む研磨液が用いられ、第2ポリッシング工程(S11)ではシリカ(コロイダルシリカ)を砥粒として含む研磨液が用いられる。ただし、これに限定されるものではない。   In the present embodiment, a polishing liquid containing cerium oxide as abrasive grains is used in the first polishing step (S8), and a polishing liquid containing silica (colloidal silica) as abrasive grains in the second polishing step (S11). Is used. However, it is not limited to this.

この第2ポリッシング工程(S11)では、板厚測定工程の測定結果に基いて分けられたグループ(例えば1バッチ100枚等)毎に精密研磨を行う。そのときの研磨量は、例えば、0.5〜1μmである。また、化学強化工程で形成された化学強化層がガラス基板10の主面11,12に残るように精密研磨が行われる。   In the second polishing step (S11), precise polishing is performed for each group (for example, 100 batches) divided based on the measurement result of the plate thickness measurement step. The polishing amount at that time is, for example, 0.5 to 1 μm. In addition, precision polishing is performed so that the chemically strengthened layer formed in the chemical strengthening process remains on the main surfaces 11 and 12 of the glass substrate 10.

なお、本実施形態では、第1ポリッシング工程(S8)の後、化学強化工程、板厚測定工程、第2ポリッシング工程(S11)の順であったが、化学強化工程と板厚測定工程との順序を逆にして、第1ポリッシング工程(S8)の後、板厚測定工程、化学強化工程、第2ポリッシング工程(S11)の順でも構わない。化学強化してもガラス基板10の板厚は変化しないからである。   In this embodiment, after the first polishing step (S8), the chemical strengthening step, the plate thickness measuring step, and the second polishing step (S11) are performed in this order. The order may be reversed, and after the first polishing step (S8), the plate thickness measurement step, the chemical strengthening step, and the second polishing step (S11) may be followed. This is because the thickness of the glass substrate 10 does not change even when chemical strengthening is performed.

以上、具体例を挙げて詳しく説明したように、本実施形態では、複数のガラス基板10の板厚を測定する板厚測定工程(S10)と、板厚測定工程の測定結果に基いて複数のガラス基板10をグループに分け、グループに分けた複数のガラス基板10をグループ毎に一度に精密研磨する第2ポリッシング工程(S11)とを含む磁気記録媒体用ガラス基板の製造方法が提供される。そして、板厚測定工程(S10)では、ガラス基板10に板厚方向に所定の波長帯域を有する光Lを照射し、ガラス基板10の表面で板厚方向に反射した光aと裏面で板厚方向に反射した光bとの干渉光を受光し、受光した干渉光を波長毎に分析することにより、光Lを照射したガラス基板10の板厚を求める。   As described above in detail with specific examples, in this embodiment, a plurality of thickness measurement steps (S10) for measuring the thickness of the plurality of glass substrates 10 and a plurality of measurement results based on the measurement results of the thickness measurement steps. There is provided a method of manufacturing a glass substrate for a magnetic recording medium, which includes a second polishing step (S11) in which the glass substrates 10 are divided into groups and the plurality of glass substrates 10 divided into groups are precisely polished at once for each group. Then, in the plate thickness measurement step (S10), the glass substrate 10 is irradiated with light L having a predetermined wavelength band in the plate thickness direction, and the light a reflected on the surface of the glass substrate 10 in the plate thickness direction and the plate thickness on the back surface. The thickness of the glass substrate 10 irradiated with the light L is obtained by receiving the interference light with the light b reflected in the direction and analyzing the received interference light for each wavelength.

したがって、ガラス基板10に対する光Lの照射角度やガラス基板10からの光a,bの反射角度が測定結果に何等影響しない。そのため、機械的な要因で測定誤差が生じることがなく、近年の精密な板厚管理に十分対応し得るだけの精度でガラス基板10の板厚を測定することができる。その結果、第2ポリッシング工程(S11)ですべてのガラス基板10…10(例えば1バッチ100枚等)が十分に精密研磨され、平滑性が良好となるので、ガラス基板10の製造収率が低下することがない。また、板厚を測定するためにガラス基板10を特定の場所へ移動させる必要がないから、ガラス基板10を製造工程に置いたままで板厚を測定でき、ガラス基板10が乾燥したり、生産性が低下することもない。また、ガラス基板10の板厚を光Lを用いて非接触で測定するので、板厚測定時にガラス基板10を傷付けることもない。   Therefore, the irradiation angle of the light L to the glass substrate 10 and the reflection angles of the light a and b from the glass substrate 10 have no influence on the measurement result. Therefore, a measurement error does not occur due to mechanical factors, and the thickness of the glass substrate 10 can be measured with an accuracy sufficient to cope with recent precise thickness management. As a result, in the second polishing step (S11), all the glass substrates 10 ... 10 (for example, 100 batches) are sufficiently precisely polished to improve the smoothness, so that the production yield of the glass substrate 10 is reduced. There is nothing to do. Moreover, since it is not necessary to move the glass substrate 10 to a specific place in order to measure the plate thickness, the plate thickness can be measured while the glass substrate 10 is placed in the manufacturing process, and the glass substrate 10 can be dried or productivity can be measured. Will not drop. Moreover, since the plate | board thickness of the glass substrate 10 is measured non-contactly using the light L, the glass substrate 10 is not damaged at the time of plate | board thickness measurement.

本実施形態では、板厚測定工程を、複数のガラス基板10…10を板厚方向に並べて板厚方向に移動しながら連続して行う(図4参照)。これにより、通常の生産作業における搬送キャリアからガラス基板を取り出すことなく板厚測定を行うので、板厚測定のために生産性が低下する問題がより一層確実に抑制される。板厚方向の搬送によって近付いて来るガラス基板10に対して板厚方向に赤外光Lを照射したり、板厚方向に反射してきた干渉光を受光することが可能にしているので、センサヘッド22を移動させなくても、ガラス基板10を1枚1枚板厚測定することができる。もっとも、これに限らず、状況に応じて、センサヘッド22のみを移動させて、あるいは、センサヘッド22とガラス基板10とを移動させて、板厚を測定してもよい。また、ガラス基板10のプロセス間の保管中に板厚測定を行う代わりに、化学強化工程から第2ポリッシング工程へ向かうガラス基板10の搬送を自動化して自動搬送中に板厚測定を行ってもよい(図5参照)。化学強化工程を完了したガラス基板10を搬送用キャリアC2に複数積載して移動させ、センサヘッド22を搬送方向の下流側に配置して、板厚方向の搬送によって近づいて来るガラス基板10の板厚を測定範囲内において順次測定することができる。   In the present embodiment, the plate thickness measurement step is continuously performed while arranging a plurality of glass substrates 10... 10 in the plate thickness direction and moving in the plate thickness direction (see FIG. 4). As a result, the plate thickness measurement is performed without taking out the glass substrate from the transport carrier in a normal production operation, so that the problem of a decrease in productivity due to the plate thickness measurement is further reliably suppressed. Since it is possible to irradiate infrared light L in the plate thickness direction to the glass substrate 10 approaching by conveyance in the plate thickness direction and to receive the interference light reflected in the plate thickness direction, the sensor head Even if 22 is not moved, it is possible to measure the thickness of each glass substrate 10 one by one. However, the present invention is not limited to this, and the plate thickness may be measured by moving only the sensor head 22 or moving the sensor head 22 and the glass substrate 10 depending on the situation. Further, instead of performing the plate thickness measurement during storage of the glass substrate 10 during the process, the conveyance of the glass substrate 10 from the chemical strengthening step to the second polishing step may be automated and the plate thickness measurement may be performed during the automatic transfer. Good (see FIG. 5). A plurality of glass substrates 10 on which the chemical strengthening process has been completed are stacked and moved on the carrier C2, and the sensor head 22 is arranged on the downstream side in the conveyance direction, and the plate of the glass substrate 10 approaching by conveyance in the plate thickness direction. The thickness can be measured sequentially within the measurement range.

本実施形態では、第2ポリッシング工程(S11)の前に、ガラス基板10の表面を強化する化学強化工程(S9)が行われ、第2ポリッシング工程では、ガラス基板10の主面11,12に化学強化層が残るように研磨する。これにより、最終的に得られるガラス基板10の耐衝撃性、耐振動性及び耐熱性等が化学強化層によって向上する。また、次のような利点もある。すなわち、第2ポリッシング工程で研磨が十分でなかったガラス基板10は、平滑性が不良となるのみならず、化学強化層の厚みが斑に残ることになる。そして、化学強化層には圧縮応力がかかっているから、そのような化学強化層が斑に残るとガラス基板10に歪が生じるという問題が併発する。ところが、本実施形態では、第2ポリッシング工程ですべてのガラス基板10…10が十分に精密研磨されるから、そのような歪の問題も併せて解消される。   In the present embodiment, a chemical strengthening step (S9) for strengthening the surface of the glass substrate 10 is performed before the second polishing step (S11). In the second polishing step, the main surfaces 11 and 12 of the glass substrate 10 are formed. Polish to leave a chemically strengthened layer. Thereby, the impact resistance, vibration resistance, heat resistance, and the like of the finally obtained glass substrate 10 are improved by the chemical strengthening layer. There are also the following advantages. That is, the glass substrate 10 that was not sufficiently polished in the second polishing step not only has poor smoothness, but also the thickness of the chemically strengthened layer remains in spots. And since a compressive stress is applied to the chemically strengthened layer, if such a chemically strengthened layer remains in spots, there arises a problem that the glass substrate 10 is distorted. However, in this embodiment, since all the glass substrates 10... 10 are sufficiently precisely polished in the second polishing step, such a problem of distortion is also eliminated.

本実施形態では、第2ポリッシング工程の研磨量は、0.5〜1μmである。本実施形態では、ガラス基板10の板厚を精密に管理することができるので、第2ポリッシング工程の研磨量をこの程度まで小さな値に設定することが可能である。   In the present embodiment, the polishing amount in the second polishing process is 0.5 to 1 μm. In the present embodiment, the plate thickness of the glass substrate 10 can be precisely managed, and therefore the polishing amount in the second polishing step can be set to a small value to this extent.

本実施形態では、板厚測定工程では、ガラス基板10を液X中に配置してガラス基板10の板厚を測定する(図4参照)。これにより、ガラス基板10が乾燥して汚れが固着するのを防ぐことができる。   In the present embodiment, in the plate thickness measurement step, the glass substrate 10 is placed in the liquid X and the plate thickness of the glass substrate 10 is measured (see FIG. 4). Thereby, it can prevent that the glass substrate 10 dries and a dirt adheres.

以下、実施例を通して、本発明をさらに詳しく説明するが、本発明はこの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail through examples, but the present invention is not limited to these examples.

(ガラス基板の作製)
図1に示した製造工程に従い、下記の組成(質量%)のガラス素材を用いて、ガラス溶融工程(S1)〜検査工程(S13)を行い、外径が約65mm(2.5インチ)、内径(円孔の径)が約20mm、板厚が1mmの環状のアルミノシリケート製ガラス基板を作製した。チャンファ面は形成しなかった。
(Production of glass substrate)
According to the manufacturing process shown in FIG. 1, using a glass material having the following composition (mass%), the glass melting step (S1) to the inspection step (S13) are performed, and the outer diameter is about 65 mm (2.5 inches). An annular aluminosilicate glass substrate having an inner diameter (circular hole diameter) of about 20 mm and a plate thickness of 1 mm was produced. The chamfa surface was not formed.

(ガラス素材の組成)
・SiO:50〜70%
・Al:0.1〜20%
・B:0〜5%
ただし、SiO+Al+B=50〜85%、また、LiO+NaO+KO=0.1〜20%、また、MgO+CaO+BaO+SrO+ZnO=2〜20%である。
(Composition of glass material)
・ SiO 2 : 50 to 70%
· Al 2 O 3: 0.1~20%
・ B 2 O 3 : 0 to 5%
However, SiO 2 + Al 2 O 3 + B 2 O 3 = 50~85%, also, Li 2 O + Na 2 O + K 2 O = 0.1~20%, also a MgO + CaO + BaO + SrO + ZnO = 2~20%.

(実施例)
実施例は、板厚測定工程(S10)を、図3に示した板厚測定装置(キーエンス社製のセンサヘッド「SI−F80」、分光ユニット「SI−F80U」)を用いて行った。また、第2ポリッシング工程(S11)を、図6及び図7に示した両面研磨装置30を用いて行った。1バッチ100枚でガラス基板を作製し、得られたガラス基板の平坦度の評価を行った。
(Example)
In the examples, the plate thickness measuring step (S10) was performed using the plate thickness measuring device (sensor head “SI-F80”, spectroscopic unit “SI-F80U” manufactured by Keyence Corporation) shown in FIG. In addition, the second polishing step (S11) was performed using the double-side polishing apparatus 30 shown in FIGS. A glass substrate was produced with 100 batches, and the flatness of the obtained glass substrate was evaluated.

ガラス基板の平坦度の評価は、Phase Shift Technology社製の「OptiFlat」(光干渉式表面形状測定装置)を用いてTIRを求め、TIRが2μm以上のものを良品と判定し、良品率(収率)を求めた。ここで、TIRとは、ガラス基板の平坦度を表す指標であり、評価面の最小二乗平面から最高点までの距離と、最小二乗平面から最低点までの距離との合計の値である。なお、最高点及び最低点は、評価面上の半径25mmの位置における周方向1周分の測定値から得る。   The flatness of the glass substrate is evaluated by obtaining TIR using “OptiFlat” (optical interference surface shape measuring device) manufactured by Phase Shift Technology, and determining that the TIR is 2 μm or more as non-defective products. Rate). Here, TIR is an index representing the flatness of the glass substrate, and is a total value of the distance from the least square plane of the evaluation surface to the highest point and the distance from the least square plane to the lowest point. The highest point and the lowest point are obtained from the measured values for one round in the circumferential direction at a radius of 25 mm on the evaluation surface.

その結果、実施例では、平坦度の良品率は95%であった(20枚の抜き取り評価)。このことから、実施例は、平滑性の高いガラス基板が高収率で得られることが分かった。これは、第2ポリッシング工程の前のガラス基板の板厚測定精度が良好で、ガラス基板の板厚管理が精密に行われたためと考察される。   As a result, in the example, the non-defective product rate of flatness was 95% (20 sampling evaluation). From this, it was found that the glass substrate having high smoothness was obtained in high yield in the examples. It is considered that this is because the thickness measurement accuracy of the glass substrate before the second polishing step is good and the thickness management of the glass substrate is precisely performed.

(比較例1)
比較例1は、板厚測定工程(S10)を、特許文献1に開示されている板厚測定装置(キーエンス社製の「LK−G15」)を用いて行った他は、実施例と同様にして、ガラス基板を作製し、得られたガラス基板の平坦度の評価を行った。その結果、比較例1では、平坦度の良品率は65%であった(20枚の抜き取り評価)。このことから、比較例1は、平滑性の高いガラス基板の収率が実施例に比べて低いことが分かった。これは、第2ポリッシング工程の前のガラス基板の板厚測定精度が十分でなく、ガラス基板の板厚管理が精密に行われなかったためと考察される。
(Comparative Example 1)
In Comparative Example 1, the thickness measurement step (S10) was performed in the same manner as in the example except that the thickness measurement device disclosed in Patent Document 1 ("LK-G15" manufactured by Keyence Corporation) was used. Then, a glass substrate was produced, and the flatness of the obtained glass substrate was evaluated. As a result, in Comparative Example 1, the non-defective product ratio of flatness was 65% (20 sheets sampling evaluation). From this, it turned out that the comparative example 1 has a low yield of a glass substrate with high smoothness compared with an Example. This is considered because the thickness measurement accuracy of the glass substrate before the second polishing step is not sufficient, and the thickness management of the glass substrate has not been performed accurately.

(比較例2)
比較例2は、板厚測定工程(S10)を、マイクロメータを用いて行った他は、実施例と同様にして、ガラス基板を作製し、得られたガラス基板の平坦度の評価を行った。その結果、比較例2では、平坦度の良品率は25%であった(20枚の抜き取り評価)。このことから、比較例2は、平滑性の高いガラス基板の収率が極めて低いことが分かった。これは、第2ポリッシング工程の前のガラス基板の板厚測定精度が低く、精密なガラス基板の板厚管理に対応できなかったためと考察される。
(Comparative Example 2)
In Comparative Example 2, a glass substrate was prepared in the same manner as in Example except that the plate thickness measurement step (S10) was performed using a micrometer, and the flatness of the obtained glass substrate was evaluated. . As a result, in Comparative Example 2, the non-defective product rate of flatness was 25% (20 sheets sampling evaluation). From this, it was found that in Comparative Example 2, the yield of the glass substrate having high smoothness was extremely low. It is considered that this is because the thickness measurement accuracy of the glass substrate before the second polishing step is low, and it was not possible to cope with precise thickness management of the glass substrate.

10 磁気記録媒体用ガラス基板
11,12 主面(記録面)
13 内周端面
14 外周端面
15 側壁面
16 チャンファ面
20 分光ユニット
21 偏波保持ファイバ
22 センサヘッド
30 両面研磨装置
31,32 定盤
33,34 研磨パッド
37 キャリア
50 液槽
C1 板厚測定用キャリア
C2 搬送用キャリア
L 赤外光
X 液
a,b 反射光
10 Glass substrates for magnetic recording media 11, 12 Main surface (recording surface)
13 inner peripheral end surface 14 outer peripheral end surface 15 side wall surface 16 chamfer surface 20 spectroscopic unit 21 polarization maintaining fiber 22 sensor head 30 double-side polishing apparatus 31, 32 surface plate 33, 34 polishing pad 37 carrier 50 liquid tank C1 plate thickness measurement carrier C2 Carrier L for transportation Infrared light X Liquid a, b Reflected light

Claims (4)

複数のガラス基板の板厚を測定する板厚測定工程と、板厚測定工程の測定結果に基いて複数のガラス基板をグループに分け、グループに分けた複数のガラス基板をグループ毎に一度に精密研磨する精密研磨工程とを含む磁気記録媒体用ガラス基板の製造方法であって、
板厚測定工程では、
複数のガラス基板を積載したキャリアをガラス基板の板厚方向に移動させ、
分光干渉の光学系の構成によって決定される板厚測定が可能な測定範囲に複数のガラス基板を順次移動させることにより、
複数のガラス基板の板厚を連続的に順次測定し、
前記複数のガラス基板の板厚を連続的に順次測定する際の各測定では、
ガラス基板に板厚方向に所定の波長帯域を有する光を照射し、
ガラス基板の表面で板厚方向に反射した光と裏面で板厚方向に反射した光との干渉光を受光し、
受光した干渉光を波長毎に分析することにより、
光を照射したガラス基板の板厚を分光干渉によって測定することを特徴とする磁気記録媒体用ガラス基板の製造方法。
Thickness measurement process for measuring the thickness of multiple glass substrates, and multiple glass substrates are divided into groups based on the measurement results of the thickness measurement process. A method for producing a glass substrate for a magnetic recording medium, comprising a precision polishing step for polishing,
In the plate thickness measurement process,
Move the carrier loaded with multiple glass substrates in the thickness direction of the glass substrate,
By sequentially moving a plurality of glass substrates to a measurement range capable of measuring the plate thickness determined by the configuration of the optical system of spectral interference,
Measure the thickness of multiple glass substrates sequentially and sequentially,
In each measurement when sequentially measuring the thickness of the plurality of glass substrates sequentially,
Irradiate the glass substrate with light having a predetermined wavelength band in the thickness direction,
Receives interference light between the light reflected in the thickness direction on the surface of the glass substrate and the light reflected in the thickness direction on the back surface,
By analyzing the received interference light for each wavelength,
A method for producing a glass substrate for a magnetic recording medium, comprising measuring the thickness of a glass substrate irradiated with light by spectral interference.
精密研磨工程の前に、ガラス基板の表面を強化する化学強化工程が行われ、
精密研磨工程では、ガラス基板の主面に化学強化層が残るように研磨することを特徴とする請求項1に記載の磁気記録媒体用ガラス基板の製造方法。
Before the precision polishing process, a chemical strengthening process to strengthen the surface of the glass substrate is performed,
2. The method for producing a glass substrate for a magnetic recording medium according to claim 1, wherein in the precision polishing step, polishing is performed so that the chemically strengthened layer remains on the main surface of the glass substrate.
精密研磨工程の研磨量は、0.5〜1μmであることを特徴とする請求項1又は2に記載の磁気記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic recording medium according to claim 1 or 2 , wherein the polishing amount in the precision polishing step is 0.5 to 1 µm. 板厚測定工程では、ガラス基板を液中に配置してガラス基板の板厚を測定することを特徴とする請求項1からのいずれか1項に記載の磁気記録媒体用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic recording medium according to any one of claims 1 to 3 , wherein in the plate thickness measurement step, the glass substrate is placed in a liquid and the plate thickness of the glass substrate is measured. .
JP2010293772A 2010-12-28 2010-12-28 Method for manufacturing glass substrate for magnetic recording medium Active JP5650522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293772A JP5650522B2 (en) 2010-12-28 2010-12-28 Method for manufacturing glass substrate for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293772A JP5650522B2 (en) 2010-12-28 2010-12-28 Method for manufacturing glass substrate for magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2012142050A JP2012142050A (en) 2012-07-26
JP5650522B2 true JP5650522B2 (en) 2015-01-07

Family

ID=46678176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293772A Active JP5650522B2 (en) 2010-12-28 2010-12-28 Method for manufacturing glass substrate for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5650522B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034636B2 (en) * 2012-09-27 2016-11-30 Hoya株式会社 Method for manufacturing substrate for magnetic recording medium
JP6628646B2 (en) * 2016-03-11 2020-01-15 Hoya株式会社 Method of manufacturing substrate, method of manufacturing mask blank, and method of manufacturing transfer mask
JP6885492B1 (en) * 2020-05-13 2021-06-16 信越半導体株式会社 Double-sided polishing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2019A (en) * 1841-03-29 goedes
US2000A (en) * 1841-03-12 Improvement in the manufacture of starch
JPH03130602A (en) * 1989-10-16 1991-06-04 Canon Inc Optical film-thickness measuring apparatus
JP3382011B2 (en) * 1993-04-06 2003-03-04 株式会社東芝 Film thickness measuring device, polishing device and semiconductor manufacturing device
JP2972830B1 (en) * 1998-08-31 1999-11-08 株式会社三井金属プレシジョン Method of manufacturing glass substrate for magnetic recording medium
JP2002175961A (en) * 2000-12-07 2002-06-21 Rohm Co Ltd Method of classifying product and method of manufacturing semiconductor wafer
JP4713064B2 (en) * 2002-06-05 2011-06-29 Hoya株式会社 Manufacturing method of glass substrate for information recording medium and glass substrate for information recording medium manufactured by the manufacturing method
JP4833503B2 (en) * 2003-02-28 2011-12-07 パナソニック電工Sunx株式会社 Thickness measuring device
JP5066410B2 (en) * 2007-08-31 2012-11-07 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2009279696A (en) * 2008-05-21 2009-12-03 Furukawa Electric Co Ltd:The Method of manufacturing glass substrate
JPWO2010041537A1 (en) * 2008-10-08 2012-03-08 コニカミノルタオプト株式会社 Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP5256993B2 (en) * 2008-10-23 2013-08-07 富士電機株式会社 Magnetic recording medium and method for manufacturing the same

Also Published As

Publication number Publication date
JP2012142050A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
CN102077279B (en) Substrate for magnetic disc and magnetic disc
JP5338928B2 (en) Glass substrate for magnetic recording media
US9704526B2 (en) Glass substrate for magnetic disk and magnetic recording medium
US8895165B2 (en) Method of manufacturing a glass substrate for a magnetic disk, glass substrate for a magnetic disk, method of manufacturing a magnetic disk, and magnetic disk
JP5650522B2 (en) Method for manufacturing glass substrate for magnetic recording medium
US20100081013A1 (en) Magnetic disk substrate and magnetic disk
CN102930874B (en) Glass base plate for magnetic recording carrier
JP2012033265A (en) Glass substrate for magnetic recording medium and manufacturing method thereof
CN104160444A (en) Production method for glass substrate for information recording medium
JP6138113B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing magnetic disk, and carrier for grinding
JP5084495B2 (en) Manufacturing method of glass substrate for magnetic disk, glass substrate for magnetic disk and magnetic disk
JP2011198428A (en) Glass substrate for magnetic disk and evaluation method thereof
JP4973762B2 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
JP5510030B2 (en) Manufacturing method of glass substrate for magnetic recording medium and glass substrate for magnetic recording medium
WO2014103283A1 (en) Method for manufacturing glass substrate for information recording medium
JP5494747B2 (en) Manufacturing method of glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP6018777B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing magnetic recording medium
JP2010073243A (en) Method for manufacturing glass substrate for magnetic disk
JP5738654B2 (en) Method for manufacturing glass substrate for magnetic recording medium
JP4962598B2 (en) Glass substrate for magnetic recording medium and method for manufacturing the same
CN104798132B (en) The manufacturing method of HDD glass substrate and its manufacturing method and information recording carrier
JP6034636B2 (en) Method for manufacturing substrate for magnetic recording medium
JP2009015915A (en) Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk
JP2009064489A (en) Manufacturing method of glass substrate
CN104170012A (en) Manufacturing method for glass substrate for information recording medium, and information recording medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141113

R150 Certificate of patent or registration of utility model

Ref document number: 5650522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250