JPH03130602A - Optical film-thickness measuring apparatus - Google Patents

Optical film-thickness measuring apparatus

Info

Publication number
JPH03130602A
JPH03130602A JP26618589A JP26618589A JPH03130602A JP H03130602 A JPH03130602 A JP H03130602A JP 26618589 A JP26618589 A JP 26618589A JP 26618589 A JP26618589 A JP 26618589A JP H03130602 A JPH03130602 A JP H03130602A
Authority
JP
Japan
Prior art keywords
wafer
light
measurement
measuring
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26618589A
Other languages
Japanese (ja)
Inventor
Junichi Fukunaga
福永 純一
Osamu Shiba
柴 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26618589A priority Critical patent/JPH03130602A/en
Publication of JPH03130602A publication Critical patent/JPH03130602A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve measuring reproducibility, to exclude dust and to reduce a providing area by supporting a measuring optical system with a supporting post, holding a wafer surface in parallel with the vertical direction, and adopting a longitudinal state. CONSTITUTION:Stage 8 and 9 are moved. A wafer 5 is moved to a position facing an objective lens. At this time, the light emitted from a light source 2 is projected on the wafer 5 through the lens 3. The incident light becomes the upper-surface reflected light and the bottom-surface reflected light. Interference occurs between the two reflected light beams. Then, the interference light is inputted into a measuring system 1 through the lens 3 again. The interference light is spliet in the measuring system 1 and projected on a line sensor. The reflectivity of the projected interference light is measured as the output voltage of each element of the line sensor in response to each wavelength. The rigidity is enhanced with a vertically supporting post 11 for supporting the measuring system 1 and the light source 2 from the lower side. Therefore, the effect of vibration is decreased, and the measurement is performed with high measuring reproducibility.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光干渉方式によってウェハ上の膜の厚さを
測定する光学式膜厚測定手段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical film thickness measuring means for measuring the thickness of a film on a wafer using an optical interference method.

[従来の技術] 従来、光学式膜厚測定装置は、第2図に示す様に、ウェ
ハ5をチャッキングするチャック6、チャック6を水平
8動させるX−Yステージ8゜10、ウェハ5上に位置
する測定系1と光源2、および測定系1と光源2を支え
ているアーム12により構成されている。
[Prior Art] Conventionally, as shown in FIG. 2, an optical film thickness measuring device includes a chuck 6 that chucks the wafer 5, an X-Y stage 8°10 that moves the chuck 6 horizontally, and a It consists of a measurement system 1 and a light source 2 located at , and an arm 12 that supports the measurement system 1 and light source 2 .

このような膜厚測定装置に於て重視される性能としては
、算出される膜厚値の絶対精度と測定における再現性が
あげられる。その重要な性能の1つである測定再現性の
強い要因になるのが、測定系(分光器)1の振動と光源
2の振動がある。
The performance that is important in such a film thickness measuring device is the absolute accuracy of the calculated film thickness value and the reproducibility of the measurement. Vibrations of the measurement system (spectroscope) 1 and vibrations of the light source 2 are strong factors in measurement reproducibility, which is one of its important performances.

[発明が解決しようとする課題] しかしながら、上記従来例においては、測定系1と光源
2をアーム12により片持支持している構造であるため
、外部からの振動(強制振動)やウェハ移動時の振!(
自助振動)に対して影響を受は易く、伝達された振動に
より測定再現性が悪くなるという欠点があった。さらに
、今後、X−Yステージ8.10が6インチウェハから
、8インチウェハへと対応して大きくなるに従い、アー
ムの長さも長くなっていく為、より振動対策を重視する
必要が生じてきた。
[Problems to be Solved by the Invention] However, in the conventional example described above, since the measurement system 1 and the light source 2 are cantilever-supported by the arm 12, vibrations from the outside (forced vibration) and when the wafer is moved No swing! (
It has the disadvantage that it is easily affected by self-supporting vibrations, and the transmitted vibrations deteriorate measurement reproducibility. Furthermore, as the X-Y stage 8.10 grows from 6-inch wafers to 8-inch wafers in the future, the arm length will also become longer, making it necessary to place greater emphasis on vibration countermeasures. .

また、ウェハは表面を常に上向きにして移動する為に、
装置可動部から発生し、あるいは空気中を浮遊するごみ
やほこりがウニ八表面に付着し、ウェハの品質低下の原
因となっていた。さらに、ウェハ全面積を測定領域とし
なければならない為、装置全体の設置面積が広くなる等
の欠点があった。
In addition, since the wafer is always moved with its surface facing upward,
Dirt and dust generated from the moving parts of the equipment or floating in the air adhered to the surface of the wafer, causing a decline in the quality of the wafer. Furthermore, since the entire area of the wafer must be used as the measurement area, there is a drawback that the installation area of the entire apparatus becomes large.

本発明の目的は、このような従来技術の問題点に鑑み、
光学式膜厚測定装置において、測定再現性の向上、塵埃
の排除、および設置面積の縮小を図ることにある。
In view of the problems of the prior art, an object of the present invention is to
The purpose of this invention is to improve measurement reproducibility, eliminate dust, and reduce the installation area in an optical film thickness measuring device.

[課題を解決するための手段] 上記目的を達成するため本発明の光学式膜厚測定装置は
、ウェハ面が鉛直方向に平行な状態でウェハを保持する
チャック手段と、チャック手段を鉛直方向および水平−
軸方向に移動させるステージ手段と、チャック手段によ
って保持されたウェハを照明しその反射光を干渉させて
ウェハ面上の膜の厚さに関する情報を光学的に得る測定
光学系と、この測定光学系を鉛直方向に支持する支柱と
を具備する。
[Means for Solving the Problems] In order to achieve the above object, the optical film thickness measuring device of the present invention includes a chuck means for holding a wafer with the wafer surface parallel to the vertical direction, and a chuck means for holding the wafer in a state in which the wafer surface is parallel to the vertical direction. Horizontal -
A stage means for moving in the axial direction; a measurement optical system that illuminates the wafer held by the chuck means and interferes with the reflected light to optically obtain information regarding the thickness of the film on the wafer surface; and the measurement optical system. It is equipped with a pillar that supports the vertical direction.

[作用コ この構成において、ウェハ面上の膜厚測定に際してはウ
ェハは測定位置に搬送されて位置決めされるが、その際
、ウェハ面を、例えば真空吸着により、鉛直方向に平行
にして、すなわちウェハ面を水平方向に向けてウェハを
保持するとともに、ステージ手段によ)て、従来の水平
2軸(X−Y)方向にではなく水平1軸と鉛直(X−Z
)方向に移動するようにしたため、常にウェハ表面は鉛
直方向に平行であり、表面への塵埃の付着が低減された
状態で測定が行なわれる。また、ウェハ表面が鉛直方向
に平行な状態で測定するので、測定方向は水平方向とな
るため、従来のように測定光学系を片持ち支持する必要
はない。すなわち、測定光学系を支柱により直接支持し
ており、高剛性な構造となっているため、外部からの強
制振動やウェハ移動による自助振動の影響が少なく、良
好な測定再現性をもって測定が行なわれる。さらに、チ
ャック手段やステージ手段が縦型であり、あるいは支柱
による測定光学系の支持という特徴から、より少ない設
置面積の装置として構成され得る。
[Operation] In this configuration, when measuring the film thickness on the wafer surface, the wafer is transported to the measurement position and positioned, but at that time, the wafer surface is made parallel to the vertical direction by vacuum suction, that is, the wafer is While holding the wafer with its surface oriented horizontally, the wafer is held in one horizontal axis and one vertical axis (X-Z) instead of the conventional two horizontal (X-Y) directions.
) direction, the wafer surface is always parallel to the vertical direction, and measurements are performed with less dust adhering to the surface. Furthermore, since the measurement is performed with the wafer surface parallel to the vertical direction, the measurement direction is horizontal, so there is no need to cantilever the measurement optical system as in the conventional case. In other words, the measurement optical system is directly supported by a support and has a highly rigid structure, so there is little influence from external forced vibration or self-supported vibration due to wafer movement, and measurements are performed with good measurement reproducibility. . Furthermore, since the chuck means and the stage means are vertical, or the measuring optical system is supported by a column, the apparatus can be constructed with a smaller installation area.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例に係る光学式膜厚測定装置を
示す。図中、1はウェハより反射された干渉光を検知す
る測定系、2は光源、3は対物レンズ、4はTVカメラ
、5は被測定物であるウェハ、6はウェハ面を鉛直方向
(Z方向)に平行にしてウェハをチャッキングするチャ
ック、7は測定装置自体の反射特性を較正するキャリブ
レーションサンプル、8はチャック6をX方向に移動す
るXステージ、9はチャック6をZ方向に8勅するZス
テージ、11は測定系1〜TVカメラ4を含む測定光学
系を支持する為の支柱である。
FIG. 1 shows an optical film thickness measuring device according to an embodiment of the present invention. In the figure, 1 is a measurement system that detects interference light reflected from a wafer, 2 is a light source, 3 is an objective lens, 4 is a TV camera, 5 is a wafer as an object to be measured, and 6 is a measurement system that detects interference light reflected from a wafer. 7 is a calibration sample for calibrating the reflection characteristics of the measuring device itself; 8 is an X stage that moves the chuck 6 in the X direction; 9 is a chuck 6 that moves the chuck 6 in the Z direction; The Z stage 11 is a support for supporting the measurement optical system including the measurement system 1 to the TV camera 4.

第3図は第2図の従来装置の測定部の内部を表わしてい
るが、対物レンズ3を垂直に保持している点を除けば、
第1図の本実施例の測定光学系の内部構成および測定原
理と全く変わらない。したがって、第3図をも参照して
、第1図の装置における測定手順を以下に説明する。
FIG. 3 shows the inside of the measuring section of the conventional device shown in FIG. 2, except that the objective lens 3 is held vertically.
The internal configuration and measurement principle of the measurement optical system of this embodiment shown in FIG. 1 are completely the same. Therefore, with reference also to FIG. 3, the measurement procedure in the apparatus of FIG. 1 will be described below.

まず、図示しないウェハ搬送装置によりウェハ5が搬送
されてくると、チャック6がこれを真空吸着する。次に
、ステージ8.9を動かして対物レンズ3の対向位置に
既知の反射率特性をもつキャブレーションサンプル7を
8勤して測定を行い、装置自体がもつ反射特性の較正を
行なう。そして、さらにステージ8,9を動かして対物
レンズ3の対向位置にウェハ5を移動させ、膜厚を測定
する。この測定に際しては、光源2から出た光は対物レ
ンズ3を通して、ウェハ5に照射される。この入射光は
相互に膜厚に比例した位相差をもつ、膜の上面反射光お
よび底面反射光となり、この2つの反射光間で干渉が生
じる。生じた干渉光は再度対物レンズ3を通り、測定系
(ここでは分光器)1に入射される。この干渉光は、分
光器1内でグレーティング13により400〜800n
mの波長に分光して、高反射ミラー14を介してライン
センサ15上に投影される。投影された干渉光の反射率
は、各波長に対応したラインセンサ15の各素子の出力
電圧として測定される。得られた電圧は、キャリブレー
ションサンプル7の場合には、既知の反射率により、電
圧、反射率に対応した係数を算出するのに用いられ、膜
厚測定の場合では、上記の係数と干渉の状態より膜厚が
算出される。
First, when a wafer 5 is transported by a wafer transport device (not shown), the chuck 6 vacuum-chucks it. Next, the stage 8.9 is moved and a calibration sample 7 having a known reflectance characteristic is placed eight times at a position opposite the objective lens 3 for measurement, thereby calibrating the reflection characteristic of the apparatus itself. Then, the stages 8 and 9 are further moved to move the wafer 5 to a position facing the objective lens 3, and the film thickness is measured. During this measurement, the light emitted from the light source 2 is irradiated onto the wafer 5 through the objective lens 3. This incident light becomes light reflected from the top surface of the film and light reflected from the bottom surface of the film, each having a phase difference proportional to the film thickness, and interference occurs between these two reflected lights. The generated interference light passes through the objective lens 3 again and enters the measurement system (here, a spectrometer) 1. This interference light is transmitted to a wavelength of 400 to 800n by a grating 13 within the spectrometer 1.
The light is separated into wavelengths of m and projected onto the line sensor 15 via the high reflection mirror 14. The reflectance of the projected interference light is measured as the output voltage of each element of the line sensor 15 corresponding to each wavelength. In the case of calibration sample 7, the obtained voltage is used to calculate a coefficient corresponding to the voltage and reflectance based on the known reflectance, and in the case of film thickness measurement, it is used to calculate the coefficient corresponding to the above coefficient and the interference factor. The film thickness is calculated from the condition.

ここで、従来例では分光器1と光源2はアーム12によ
り片持保持されており、微小振動が伝達され易い構造と
なっているため、分光器1が振動するとウェハ5からの
干渉光の分光器1への入射角度、強度等の入射状態に変
動が生じるため、測定値において、反射率の変化と波長
ずわが起こる。このため、膜厚算出値に誤差が生じ測定
再現性を悪くしていた。また、光源2が振動すると、ウ
ェハ5に照射される光量が変化するため、ウェハからの
干渉光すなわち反射率が変化し、これも測定再現性に影
響していた。
Here, in the conventional example, the spectrometer 1 and the light source 2 are held cantilevered by the arm 12, and the structure is such that minute vibrations are easily transmitted. Therefore, when the spectrometer 1 vibrates, the interference light from the wafer 5 is Since variations occur in the incident conditions such as the incident angle and intensity into the device 1, changes in reflectance and wavelength shift occur in the measured values. For this reason, an error occurs in the calculated value of the film thickness, resulting in poor measurement reproducibility. Further, when the light source 2 vibrates, the amount of light irradiated onto the wafer 5 changes, so the interference light from the wafer, that is, the reflectance changes, which also affects measurement reproducibility.

これに対し、本実施例では第1図に示すように、分光器
1と光源2を鉛直に下方から支持する支柱11によって
剛性が高められているため、強制振動や自助振動による
影響が低減されており、高い測定再現性をもって測定が
行なわれる。
In contrast, in this embodiment, as shown in FIG. 1, the rigidity is increased by the support column 11 that vertically supports the spectrometer 1 and the light source 2 from below, so the effects of forced vibration and self-help vibration are reduced. This allows measurements to be performed with high measurement reproducibility.

本実施例では、ウェハ面を鉛直方向に平行にしてウェハ
をチャッキングするため対物レンズ3が横向きとなるよ
うに構成されるが、これに対しては、従来のX−Yステ
ージ8,10の代わりに縦型x−Zステージ8.9を用
いることで容易に対応がなされている。また、ステージ
8,9をH型にすることで、垂直方向軸の重量を減らし
、ステージの追従性向上を計っている。さらに、この様
にステージを縦型ステージにすることで、ウェハへのご
み付着の問題が大幅に改善され、また装置全体の設置面
積に占るステージの割合が極端に減少される。
In this embodiment, the objective lens 3 is configured to face sideways in order to chuck the wafer with the wafer surface parallel to the vertical direction. Instead, this can be easily handled by using a vertical x-Z stage 8.9. Furthermore, by making the stages 8 and 9 H-shaped, the weight of the vertical axis is reduced and the followability of the stages is improved. Furthermore, by making the stage a vertical stage in this manner, the problem of dust adhesion to the wafer is greatly improved, and the ratio of the stage to the installation area of the entire apparatus is extremely reduced.

[発明の効果] 以上説明したように本発明によれば、測定光学系を支柱
によって支持し、ウェハ面を鉛直方向に平行になるよう
に保持し、かつ縦型のステージを採用するようにしたた
め、測定再現性を向上させ、ウニ八表面への塵埃の付着
を低減し、そして装置の設置面積を減少させることがで
きる。
[Effects of the Invention] As explained above, according to the present invention, the measurement optical system is supported by a support, the wafer surface is held parallel to the vertical direction, and a vertical stage is used. , the measurement reproducibility can be improved, the adhesion of dust to the surface of sea urchins can be reduced, and the installation area of the device can be reduced.

1:測定系、2:光源、3:対物レンズ、4:TV左カ
メラ5:ウェハ、6:チャック、7:キャリブレーショ
ンサンプル、8:Xステージ、9:Zステージ、10:
Yステージ、11:支柱、12:アーム。
1: Measurement system, 2: Light source, 3: Objective lens, 4: TV left camera 5: Wafer, 6: Chuck, 7: Calibration sample, 8: X stage, 9: Z stage, 10:
Y stage, 11: Strut, 12: Arm.

Claims (1)

【特許請求の範囲】[Claims]  ウェハ面が鉛直方向に平行な状態でウェハを保持する
チャック手段と、チャック手段を鉛直方向および水平−
軸方向に移動させるステージ手段と、チャック手段によ
って保持されたウェハを照明しその反射光を干渉させて
ウェハ面上の膜の厚さに関する情報を光学的に得る測定
光学系と、この光学手段を鉛直方向に支持する支柱とを
具備することを特徴とする光学式膜厚測定装置。
A chuck means for holding a wafer with the wafer surface parallel to the vertical direction, and a chuck means for holding the wafer in a state in which the wafer surface is parallel to the vertical direction;
A stage means for moving in the axial direction, a measurement optical system that illuminates the wafer held by the chuck means and interferes with the reflected light to optically obtain information regarding the thickness of the film on the wafer surface; 1. An optical film thickness measuring device characterized by comprising a pillar supporting in a vertical direction.
JP26618589A 1989-10-16 1989-10-16 Optical film-thickness measuring apparatus Pending JPH03130602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26618589A JPH03130602A (en) 1989-10-16 1989-10-16 Optical film-thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26618589A JPH03130602A (en) 1989-10-16 1989-10-16 Optical film-thickness measuring apparatus

Publications (1)

Publication Number Publication Date
JPH03130602A true JPH03130602A (en) 1991-06-04

Family

ID=17427441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26618589A Pending JPH03130602A (en) 1989-10-16 1989-10-16 Optical film-thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JPH03130602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142050A (en) * 2010-12-28 2012-07-26 Konica Minolta Advanced Layers Inc Manufacturing method of glass substrate for magnetic recording medium
CN102618968A (en) * 2011-12-30 2012-08-01 洛阳理工学院 Aluminum fiber covered by ceramic membrane structure and preparation method thereof
CN104236470A (en) * 2014-09-28 2014-12-24 江苏普世祥光电技术有限公司 Processing technique capable of processing absolute equal-thickness planes within Phi 60

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142050A (en) * 2010-12-28 2012-07-26 Konica Minolta Advanced Layers Inc Manufacturing method of glass substrate for magnetic recording medium
CN102618968A (en) * 2011-12-30 2012-08-01 洛阳理工学院 Aluminum fiber covered by ceramic membrane structure and preparation method thereof
CN104236470A (en) * 2014-09-28 2014-12-24 江苏普世祥光电技术有限公司 Processing technique capable of processing absolute equal-thickness planes within Phi 60

Similar Documents

Publication Publication Date Title
US5486701A (en) Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US7450246B2 (en) Measuring device and method for determining relative positions of a positioning stage configured to be moveable in at least one direction
KR101440762B1 (en) Method and device for monitoring multiple mirror arrays in an illumination system of a microlithographic projection exposure apparatus
US7130056B2 (en) System and method of using a side-mounted interferometer to acquire position information
US20050099627A1 (en) System for measuring periodic structures
JP3183046B2 (en) Foreign particle inspection apparatus and method for manufacturing semiconductor device using the same
TWI807016B (en) Multi-spot analysis system with multiple optical probes
US20070103696A1 (en) Apparatus for measuring the position of an object with a laser interferometer system
JP4184543B2 (en) Optical image detection method and visual inspection apparatus
JP7341221B2 (en) Photomask flatness measurement system and method that reduces gravity-induced errors
JPH03130602A (en) Optical film-thickness measuring apparatus
TW202204848A (en) High sensitivity image-based reflectometry
TW202204849A (en) High sensitivity image-based reflectometry
US20220120559A1 (en) Measuring apparatus and method of wafer geometry
US6734969B2 (en) Vacuum measurement device
JPH06169007A (en) Semiconductor manufacturing device
JPS63201509A (en) Surface roughness measuring instrument
Gonda et al. AFM measurement of linewidth with sub-nanometer scale precision
JP2536059B2 (en) Object surface condition measuring device and surface height measuring device
Daurios et al. Optical metrology devices for high-power laser large optics
JP7453790B2 (en) Exposure device and article manufacturing method
JP3010853B2 (en) Coordinate measuring system
Fujiwara et al. Flatness measurement by reflection moiré technique
US7355729B2 (en) Apparatus and method for measuring a thickness of a substrate
JP2816514B2 (en) Optical measuring device