JP2009279696A - Method of manufacturing glass substrate - Google Patents

Method of manufacturing glass substrate Download PDF

Info

Publication number
JP2009279696A
JP2009279696A JP2008133154A JP2008133154A JP2009279696A JP 2009279696 A JP2009279696 A JP 2009279696A JP 2008133154 A JP2008133154 A JP 2008133154A JP 2008133154 A JP2008133154 A JP 2008133154A JP 2009279696 A JP2009279696 A JP 2009279696A
Authority
JP
Japan
Prior art keywords
polishing
glass substrate
glass
glass substrates
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008133154A
Other languages
Japanese (ja)
Inventor
Yasuhiro Naka
恭宏 仲
Kunihiro Yamamoto
邦宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008133154A priority Critical patent/JP2009279696A/en
Publication of JP2009279696A publication Critical patent/JP2009279696A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a glass substrate capable of manufacturing, with high productivity, the glass substrate which meets a requirement of a standard value of the minute weave of the main surface thereof. <P>SOLUTION: This method of manufacturing a glass substrate which is used for a recording disk and having a minute weave of 0.6 nm or smaller on the main surface thereof comprises a glass substrate preparation step of preparing a plurality of glass substrates which have disk-like shapes and difference thicknesses, and the thicknesses of 2 μm or smaller, and a glass substrate polishing step of holding the plurality of glass substrates collectively from the upper and lower sides and simultaneously polishing the plurality of glass substrates in such a manner that a set polishing amount for the main surface on one side is 9 μm or larger. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁気ディスク、光ディスク等の記録ディスクに用いられるガラス基板の製造方法に関するものである。   The present invention relates to a method for producing a glass substrate used for a recording disk such as a magnetic disk or an optical disk.

従来より、半導体素子の基板、電界効果型のフラットパネルディスプレイに用いるスペーサ、あるいは磁気ディスク、光ディスク等の記録ディスク基板として、ガラス基板が用いられている。たとえば、磁気ディスク用のガラス基板として、円板の中心部に円孔を有するドーナツ状のガラス基板が用いられる(特許文献1参照)。このガラス基板は、たとえば以下のように製造される。すなわち、はじめに薄く形成したガラス板をコアリングして、ドーナツ状に成形したガラス基板を複数準備する。つぎに、バッチ式の両面研磨装置を用いて、これらのガラス基板を同時に研磨し、表面の面精度を高めるとともにその厚さを所定の規格範囲内に仕上げる(特許文献2参照)。このように複数のガラス基板を同時に研磨することによって生産性を高めている。   Conventionally, glass substrates have been used as semiconductor element substrates, spacers used in field effect flat panel displays, or recording disk substrates such as magnetic disks and optical disks. For example, as a glass substrate for a magnetic disk, a donut-shaped glass substrate having a circular hole at the center of a disk is used (see Patent Document 1). This glass substrate is manufactured as follows, for example. That is, first, a thin glass plate is cored to prepare a plurality of glass substrates formed into a donut shape. Next, using a batch-type double-side polishing apparatus, these glass substrates are simultaneously polished to increase the surface accuracy and finish the thickness within a predetermined standard range (see Patent Document 2). Thus, productivity is improved by simultaneously polishing a plurality of glass substrates.

ここで、磁気ディスク用のガラス基板については、種々の規格値が規定されている。たとえば、直径が2.5インチ(63.5mm)のガラス基板の場合、厚さの規格値は635μm±10μmである。また、主表面の面精度については、たとえば微少うねりの規格値は0.6nm以下である。なお、微少うねりとは、主表面における波長1.5〜5mmの算術平均うねりのことであり、たとえば表面形状測定機(Phase Shift社製 Optiflat)で測定できるものである。   Here, various standard values are defined for the glass substrate for the magnetic disk. For example, in the case of a glass substrate having a diameter of 2.5 inches (63.5 mm), the standard value of the thickness is 635 μm ± 10 μm. As for the surface accuracy of the main surface, for example, the standard value of slight waviness is 0.6 nm or less. In addition, the minute waviness is an arithmetic average waviness having a wavelength of 1.5 to 5 mm on the main surface, and can be measured by, for example, a surface shape measuring machine (Optiflat manufactured by Phase Shift).

特開平6−198530号公報JP-A-6-198530 特開平10−241144号公報JP-A-10-241144

上述したように、磁気ディスク用のガラス基板については、主表面の微少うねりが規格として規定されている。従来の製造方法においては、この規格値を満たすために必要な主表面の研磨量が実験等により事前に決定され、少なくとも決定された研磨量以上研磨してガラス基板を製造している。一方で、生産性の向上のために、同時に研磨するガラス基板の数は近年増大しており、たとえば、直径が63.5mmのガラス基板については、100枚以上のガラス基板が同時に研磨されるようになってきている。   As described above, for a glass substrate for a magnetic disk, a slight waviness on the main surface is defined as a standard. In the conventional manufacturing method, the polishing amount of the main surface necessary for satisfying this standard value is determined in advance by experiments or the like, and the glass substrate is manufactured by polishing at least the determined polishing amount. On the other hand, in order to improve productivity, the number of glass substrates to be polished simultaneously has increased in recent years. For example, for a glass substrate having a diameter of 63.5 mm, 100 or more glass substrates are polished simultaneously. It is becoming.

ところが、同時に研磨するガラス基板の数が増大するにつれて、事前に決定された量に研磨量を設定しても、製造したガラス基板の中に微少うねりが規格値を満たさないものが増大するようになった。したがって、同時に研磨するガラス基板の数を増大しても生産性が高まらないという問題があった。   However, as the number of glass substrates to be polished at the same time increases, even if the polishing amount is set to a predetermined amount, the number of manufactured glass substrates whose fine waviness does not satisfy the standard value increases. became. Therefore, there is a problem that productivity does not increase even if the number of glass substrates to be polished simultaneously is increased.

本発明は、上記に鑑みてなされたものであって、主表面の微少うねりが規格値を満たすガラス基板をより生産性高く製造できるガラス基板の製造方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the manufacturing method of the glass substrate which can manufacture the glass substrate which the slight waviness of a main surface satisfy | fills a specification value with high productivity.

上述した課題を解決し、目的を達成するために、本発明に係るガラス基板の製造方法は、記録ディスクに用いられる主表面の微少うねりが0.6nm以下のガラス基板の製造方法であって、円板状の形状を有し、互いの厚さが異なり、かつその差が2μm以下である複数のガラス基板を準備するガラス基板準備工程と、前記複数のガラス基板を上下から一括して研磨パッドで挟圧し、片側の主表面に対する設定研磨量が9μm以上になるように該複数のガラス基板を同時に研磨するガラス基板研磨工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a method for producing a glass substrate according to the present invention is a method for producing a glass substrate having a microwaviness of 0.6 nm or less on a main surface used for a recording disk, A glass substrate preparation step of preparing a plurality of glass substrates having a disk-like shape, different thicknesses, and a difference of 2 μm or less, and the plurality of glass substrates from above and below in a lump And a glass substrate polishing step of simultaneously polishing the plurality of glass substrates so that the set polishing amount with respect to the main surface on one side is 9 μm or more.

また、本発明に係るガラス基板の製造方法は、上記の発明において、前記ガラス基板準備工程は、母材ガラス板を加熱して軟化し所望の厚さに延伸するリドロー法を用いてガラス板を形成するガラス板準備工程と、前記形成したガラス板から前記複数のガラス基板を成形するガラス基板成形工程と、を含むことを特徴とする。   Moreover, the manufacturing method of the glass substrate which concerns on this invention WHEREIN: In said invention, the said glass substrate preparatory process heats and softens a base material glass plate, A glass plate is used using the redraw method extended to desired thickness. And a glass substrate forming step of forming the plurality of glass substrates from the formed glass plate.

本発明によれば、主表面の微少うねりが規格値を満たすガラス基板をより生産性高く製造できるという効果を奏する。   According to the present invention, there is an effect that a glass substrate satisfying a standard value with a slight waviness on the main surface can be produced with higher productivity.

以下に、図面を参照して本発明に係るガラス基板の製造方法の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a glass substrate manufacturing method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態)
図1は、本発明の実施の形態に係るガラス基板の製造方法のフロー図である。本実施の形態に係るガラス基板の製造方法は、直径63.5mmの磁気ディスク用のガラス基板の製造方法であって、図1に示すように、はじめに、ガラス基板準備工程として、互いの厚さの差が2μm以下であるガラス板を複数枚準備し(ステップS101)、準備した各ガラス板をコアリングして、各ガラス板からドーナツ状のガラス基板を複数枚成形する(ステップS102)。これによって、互いの厚さの差が異なり、かつその差が2μm以下である複数のガラス基板を準備する。つぎに、ガラス基板研磨工程として、ステップS102において成形した各ガラス基板を、上下から一括して研磨パッドで挟圧し該複数のガラス基板を同時に研磨する粗研磨工程を行い、つづいて、ステップS103において研磨した各ガラス基板をさらに同時に研磨する精密研磨工程を行い(ステップS104)、製品となるガラス基板を製造する。
(Embodiment)
FIG. 1 is a flowchart of a method for manufacturing a glass substrate according to an embodiment of the present invention. The method for manufacturing a glass substrate according to the present embodiment is a method for manufacturing a glass substrate for a magnetic disk having a diameter of 63.5 mm. First, as shown in FIG. A plurality of glass plates having a difference of 2 μm or less are prepared (step S101), each prepared glass plate is cored, and a plurality of donut-shaped glass substrates are formed from each glass plate (step S102). Thus, a plurality of glass substrates having different thickness differences and having a difference of 2 μm or less are prepared. Next, as a glass substrate polishing step, a rough polishing step is performed in which the glass substrates formed in step S102 are collectively clamped from above and below with a polishing pad to simultaneously polish the plurality of glass substrates, and then in step S103. A precision polishing step is further performed to simultaneously polish each polished glass substrate (step S104), and a glass substrate to be a product is manufactured.

ここで、本実施の形態においては、粗研磨工程として、片側の主表面に対する設定研磨量が9μm以上になるように研磨を行う。これによって、同時研磨に供されるすべてのガラス基板が、確実に所定の研磨量、すなわち主表面の微少うねりが規格値を満たすようにするのに必要な研磨量だけ研磨される。その結果、主表面の微少うねりが規格値を満たすガラス基板をより生産性高く製造できる。なお、研磨時間をできるだけ減らし、さらに生産性をあげるためには、粗研磨工程における設定研磨量が10μm以下になるように研磨することが好ましい。   Here, in the present embodiment, as the rough polishing step, polishing is performed so that the set polishing amount for the main surface on one side is 9 μm or more. As a result, all the glass substrates subjected to simultaneous polishing are polished by a predetermined polishing amount, that is, a polishing amount necessary to ensure that the slight waviness of the main surface satisfies the standard value. As a result, it is possible to manufacture a glass substrate that satisfies the standard value with minute waviness on the main surface with higher productivity. In order to reduce the polishing time as much as possible and further increase the productivity, it is preferable to perform polishing so that the set polishing amount in the rough polishing step is 10 μm or less.

以下、各工程について具体的に説明する。まず、ステップS101のガラス板の準備については、たとえば、フロート法等を用いて製造した母材ガラス板を加熱して軟化し、所望の厚さに延伸するリドロー法を用いれば、厚さのばらつきが小さいガラス板を比較的容易に製造できるので、互いの厚さの差が2μm以下であるガラス板を容易に準備できるので好ましい。   Hereinafter, each step will be specifically described. First, with respect to the preparation of the glass plate in step S101, for example, if a redraw method is used in which a base glass plate manufactured using a float method or the like is heated to soften and stretched to a desired thickness, the thickness varies. Since a glass plate having a small thickness can be relatively easily produced, a glass plate having a difference in thickness of 2 μm or less can be easily prepared.

図2は、リドロー法を実施するための加熱延伸装置の一例の模式的な斜視図である。この加熱延伸装置100は、ヒータ101a〜101cを有し母材ガラス板1を加熱する加熱炉101と、加熱炉101に母材ガラス板1を送り込む母材送り機構102と、加熱炉101からガラス条2を引き出す引き取り機構103a、103bと、ガラス条2の表面に溝を形刻して切断し、所定の長さのガラス板3を成形するためのカッター104とを備える。ガラス板3は、母材ガラス板1を加熱炉101によって加熱、延伸して所定の厚さに形成したガラス条2を、所定の長さに切断して成形される。   FIG. 2 is a schematic perspective view of an example of a heating and stretching apparatus for performing the redraw method. The heating and stretching apparatus 100 includes a heating furnace 101 having heaters 101 a to 101 c for heating the base glass plate 1, a base material feeding mechanism 102 for feeding the base glass plate 1 to the heating furnace 101, and a glass from the heating furnace 101. A take-out mechanism 103a, 103b for drawing out the strip 2 and a cutter 104 for forming a glass plate 3 having a predetermined length by cutting and cutting a groove on the surface of the glass strip 2 are provided. The glass plate 3 is formed by cutting the glass strip 2 formed to have a predetermined thickness by heating and stretching the base glass plate 1 with a heating furnace 101 into a predetermined length.

このガラス板3は、研磨工程を簡略化、短時間化するためには、表面が鏡面であるものが好ましい。たとえば、ガラス板3の平均表面粗さであるRaが100nm以下であれば表面が鏡面であり好ましく、さらに、Raが10nm以下、特には1nm以下であることが一層好ましい。なお、リドロー法を用いれば、このようなRaが小さいガラス板3を比較的容易に製造できる。なお、本明細書において平均表面粗さとは、JIS B0601:2001の粗さ曲線の算術平均高さによるものである。また、母材ガラス板1の材料としては、アモルファスガラスや結晶化ガラスなどのガラスセラミックスを用いることができる。なお、成形性や加工性の観点からアモルファスガラスを用いることが好ましく、たとえば、アルミノケイ酸ガラス、ソーダライムガラス、ソーダアルミノケイ酸ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス、風冷または液冷等の処理を施した物理強化ガラス、化学強化ガラスなどを用いることが好ましい。   The glass plate 3 preferably has a mirror surface in order to simplify and shorten the polishing process. For example, if Ra, which is the average surface roughness of the glass plate 3, is 100 nm or less, the surface is preferably a mirror surface, and Ra is more preferably 10 nm or less, particularly 1 nm or less. In addition, if the redraw method is used, such a glass plate 3 with small Ra can be manufactured comparatively easily. In this specification, the average surface roughness is based on the arithmetic average height of the roughness curve of JIS B0601: 2001. Further, as a material of the base glass plate 1, glass ceramics such as amorphous glass and crystallized glass can be used. In addition, it is preferable to use amorphous glass from the viewpoint of formability and workability. For example, aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, air cooling, liquid cooling, or the like It is preferable to use physically tempered glass or chemically tempered glass that has been subjected to.

つぎに、ステップS102のドーナツ状のガラス基板の成形については、たとえば特許文献1に開示された公知のコアリング工程によってガラス板3をコアリングすることによって実施することができる。その結果、図3に上面および側断面を示すような、主表面4a、4bを有し、中央部に円孔4cが形成されたドーナツ状のガラス基板4が成形される。ここで、ガラス基板4の厚さt1はたとえば645〜647μmであり、その平均厚さは646μmであり、互いの厚さの差が2μm以下である。   Next, the shaping | molding of the doughnut-shaped glass substrate of step S102 can be implemented by coring the glass plate 3 by the well-known coring process disclosed by patent document 1, for example. As a result, a doughnut-shaped glass substrate 4 having main surfaces 4a and 4b and having a circular hole 4c formed in the center as shown in FIG. Here, the thickness t1 of the glass substrate 4 is, for example, 645 to 647 μm, the average thickness is 646 μm, and the difference between the thicknesses is 2 μm or less.

つぎに、ステップS103の粗研磨工程においては、たとえば図4、5に示す市販のバッチ式の両面同時研磨機を用いて実施することができる。ここで、図4は両面同時研磨機の側面の一部を示す概略図である。図4に示すように、この両面同時研磨機200は、鋳鉄製の上定盤201および下定盤202と、複数のガラス基板4を上定盤201と下定盤202との間に保持するキャリアー205と、上定盤201および下定盤202のガラス基板4との接触面に取り付けられた、ポリウレタン等からなる研磨パッド203、204とを備える。   Next, the rough polishing process in step S103 can be performed using, for example, a commercially available batch-type double-sided simultaneous polishing machine shown in FIGS. Here, FIG. 4 is a schematic view showing a part of the side surface of the double-sided simultaneous polishing machine. As shown in FIG. 4, the double-sided simultaneous polishing machine 200 includes an upper surface plate 201 and a lower surface plate 202 made of cast iron, and a carrier 205 that holds a plurality of glass substrates 4 between the upper surface plate 201 and the lower surface plate 202. And polishing pads 203 and 204 made of polyurethane or the like attached to the contact surfaces of the upper surface plate 201 and the lower surface plate 202 with the glass substrate 4.

そして、この両面同時研磨機200は、キャリアー205によって上定盤201と下定盤202との間に複数のガラス基板4を保持し、上定盤201と下定盤202とによって各ガラス基板4を所定の加工圧力で挟圧する。すると、各ガラス基板4は上下から一括して研磨パッド203、204によって挟圧される。つぎに、研磨パッド203、204と各ガラス基板4との間に研磨液を所定の供給量で供給しながら、上定盤201と下定盤202とを軸Aを回転軸として互いに異なる向きに回転させる。これによって、ガラス基板4は研磨パッド203、204の表面を摺動し、両表面を同時に研磨する。   The double-sided simultaneous polishing machine 200 holds a plurality of glass substrates 4 between an upper surface plate 201 and a lower surface plate 202 by a carrier 205, and each glass substrate 4 is predetermined by the upper surface plate 201 and the lower surface plate 202. Clamp with the processing pressure of. Then, each glass substrate 4 is clamped by the polishing pads 203 and 204 collectively from above and below. Next, the upper surface plate 201 and the lower surface plate 202 are rotated in different directions with the axis A as the rotation axis while supplying a predetermined amount of polishing liquid between the polishing pads 203 and 204 and each glass substrate 4. Let Thereby, the glass substrate 4 slides on the surfaces of the polishing pads 203 and 204 and polishes both surfaces simultaneously.

図5は、上定盤201を取り外した状態の両面同時研磨機200の平面概略図である。図5に示すように、本実施の形態では、15枚のガラス基板4を保持できるキャリアー205を10個用いており、150枚のガラス基板4を同時にセットできる。なお、同時研磨の枚数は、150枚以下で適宜設定でき、キャリアー等を変更すれば、150枚より多くすることもできる。また、キャリアー205の外周部に設けられた歯車は、太陽車206の外周部に設けられた歯車とインターナルギア207とに噛合している。その結果、各キャリアー205はその中心を軸として回転しながら、軸Aを中心として太陽車206の周囲を移動し、キャリアー205に保持された150枚のガラス基板4は両表面が一様に同時研磨される。   FIG. 5 is a schematic plan view of the double-sided simultaneous polishing machine 200 with the upper surface plate 201 removed. As shown in FIG. 5, in this embodiment, ten carriers 205 that can hold 15 glass substrates 4 are used, and 150 glass substrates 4 can be set simultaneously. Note that the number of simultaneous polishings can be appropriately set to 150 or less, and can be increased to more than 150 by changing the carrier or the like. A gear provided on the outer peripheral portion of the carrier 205 meshes with a gear provided on the outer peripheral portion of the sun wheel 206 and the internal gear 207. As a result, each carrier 205 moves around the sun wheel 206 around the axis A while rotating around the center thereof, and the 150 glass substrates 4 held by the carrier 205 have both surfaces uniformly and simultaneously. Polished.

つぎに、ステップS104の精密研磨工程については、両面同時研磨機200の研磨パッド203、204を、より軟質の精密研磨用の研磨パッドに取り替え、粒径がより小さいたとえばコロイダルシリカからなる研磨砥粒を含む研磨液を供給しながら、上記研磨パットを用いてガラス基板4を研磨する。これによって、ガラス基板4の主表面は鏡面に研磨される。なお、精密研磨工程における研磨量は1μm程度であり、ガラス基板4の微小うねりはステップS103の粗研磨工程でほぼ決定される。   Next, in the precision polishing process of step S104, the polishing pads 203 and 204 of the double-sided simultaneous polishing machine 200 are replaced with softer polishing pads for precision polishing, and polishing grains made of colloidal silica having a smaller particle size, for example. The glass substrate 4 is polished by using the polishing pad while supplying the polishing liquid containing. As a result, the main surface of the glass substrate 4 is polished to a mirror surface. Note that the polishing amount in the precision polishing step is about 1 μm, and the fine waviness of the glass substrate 4 is almost determined in the rough polishing step in step S103.

ここで、ステップS103においては、片側の主表面に対する合計の設定研磨量が9μm以上になるように研磨を行う。なお、設定研磨量とは、厚さのばらつきがほとんどない複数のガラス基板または単一のガラス基板において事前に実験等により得られた研磨速度より算出される主表面の研磨量であり、研磨時間を調整することによってこの設定研磨量を調整することができる。上述したように、各ガラス基板4は、互いの厚さの差が2μm以下であるため、設定研磨量が9μm以上になるように研磨を行うことによって、各ガラス基板4の主表面の微少うねりが確実に0.6nm以下となる。その理由について以下に説明する。   Here, in step S103, polishing is performed so that the total set polishing amount for the main surface on one side is 9 μm or more. The set polishing amount is the polishing amount of the main surface calculated from the polishing rate obtained by experiments or the like in advance on a plurality of glass substrates or a single glass substrate with little variation in thickness. This set polishing amount can be adjusted by adjusting. As described above, since each glass substrate 4 has a thickness difference of 2 μm or less, by performing polishing so that the set polishing amount is 9 μm or more, a slight undulation of the main surface of each glass substrate 4 is achieved. Is surely 0.6 nm or less. The reason will be described below.

図6は、研磨パッド203、204が厚さの異なるガラス基板41、42を挟圧する状態を模式的に示す図である。図6に示すように、ガラス基板41、42は厚さがそれぞれ厚さt11、t12であるが、厚さにばらつきがあり、差Δtだけ異なっているとする。ここで、図6に示すように、研磨パッド203、204は所定の弾性を有するため、ガラス基板41、42の厚さに応じてその表面形状が変形する。また、このような研磨パッド203、204の弾性のため、上定盤201と下定盤202とによって所定の加工圧力を印加しても、より厚いガラス基板42の方がより高い加工圧力を受ける。その結果、より厚いガラス基板42が先に研磨され、ガラス基板42が差Δt程度研磨されてガラス基板41、42の厚さが同程度になった後で、ガラス基板41が研磨されることとなる。その結果、差Δtが大きいと、より薄いガラス基板41の研磨量が、設定した研磨量よりも小さくなるため、ガラス基板41は、研磨量の不足によって主表面の微少うねりが規格値を満たさないものとなる。また、同時研磨するガラス基板の枚数が増大すると、これにともなってガラス基板の厚さのばらつきも通常大きくなるため、研磨量が不足するガラス基板も増大する。   FIG. 6 is a diagram schematically illustrating a state in which the polishing pads 203 and 204 sandwich the glass substrates 41 and 42 having different thicknesses. As shown in FIG. 6, the glass substrates 41 and 42 have thicknesses t11 and t12, respectively. However, the thicknesses vary and are different by a difference Δt. Here, as shown in FIG. 6, since the polishing pads 203 and 204 have predetermined elasticity, the surface shape thereof is deformed according to the thickness of the glass substrates 41 and 42. Further, due to the elasticity of the polishing pads 203 and 204, even when a predetermined processing pressure is applied by the upper surface plate 201 and the lower surface plate 202, the thicker glass substrate 42 receives a higher processing pressure. As a result, the thicker glass substrate 42 is polished first, the glass substrate 42 is polished by a difference Δt, and the thickness of the glass substrates 41 and 42 becomes the same, and then the glass substrate 41 is polished. Become. As a result, if the difference Δt is large, the polishing amount of the thinner glass substrate 41 becomes smaller than the set polishing amount, and therefore the glass substrate 41 has a slight waviness on the main surface that does not satisfy the standard value due to insufficient polishing amount. It will be a thing. In addition, when the number of glass substrates to be simultaneously polished increases, the variation in the thickness of the glass substrate usually increases accordingly, and the number of glass substrates with insufficient polishing amount also increases.

しかしながら、本実施の形態のように、互いの厚さの差が2μm以下である複数のガラス基板を準備し、これを上下から一括して研磨パッドで挟圧し、片側の主表面に対する設定研磨量が9μm以上になるように同時に研磨することによって、同時研磨に供されるすべてのガラス基板が、確実に所定の研磨量、すなわち主表面の微少うねりが規格値を満たすようにするのに必要な研磨量だけ研磨される。その結果、主表面の微少うねりが規格値を満たすガラス基板をより生産性高く製造できる。なお、後述する本発明者らの実験によれば、厚さのばらつきがほとんどない複数のガラス基板を微少うねりが0.6nm以下となるように研磨する場合、上記所定の研磨量は5μm程度である。   However, as in the present embodiment, a plurality of glass substrates having a thickness difference of 2 μm or less are prepared, and these are collectively clamped with a polishing pad from above and below, and the set polishing amount for the main surface on one side By simultaneously polishing so as to be 9 μm or more, all the glass substrates subjected to simultaneous polishing are necessary to ensure that a predetermined polishing amount, that is, a slight waviness of the main surface satisfies the standard value. Polished by the polishing amount. As a result, it is possible to manufacture a glass substrate that satisfies the standard value with minute waviness on the main surface with higher productivity. According to the experiments of the present inventors described later, when polishing a plurality of glass substrates having almost no thickness variation so that the slight waviness is 0.6 nm or less, the predetermined polishing amount is about 5 μm. is there.

図7は、粗研磨後のガラス基板5の上面および側断面を示す図である。図7に示すように、このガラス基板5は、主表面5a、5bを有し、中央部に円孔5cが形成されたドーナツ状のガラス基板であり、厚さt2は精密研磨後に635μm±10μmとなるような厚さであり、主表面5a、5bの微少うねりは0.6nm以下となっている。   FIG. 7 is a view showing an upper surface and a side cross section of the glass substrate 5 after rough polishing. As shown in FIG. 7, the glass substrate 5 is a donut-shaped glass substrate having main surfaces 5a and 5b and a circular hole 5c formed in the center, and the thickness t2 is 635 μm ± 10 μm after precision polishing. The small waviness of the main surfaces 5a and 5b is 0.6 nm or less.

なお、ステップS103において、研磨パッド203、204として、硬度(アスカーC)が85以上の硬質の材質、たとえばポリウレタンからなる硬質研磨パッドを用い、研磨液として、粒径が0.1〜0.8μmのたとえば酸化セリウムからなる研磨砥粒を含むものを用いることができる。このような粒径の研磨砥粒と硬質研磨パッドとを組み合わせることによって、ガラス基板4のダブオフ値を0〜9nm程度に抑制しながら、基板の面精度および平坦度とを改善できる研磨を行うことができる。ここで、ダブオフ値とは、ガラス基板の外周端部における主表面の隆起または沈降(ダブオフ)を示す値である。なお、硬度(アスカーC)とは日本ゴム協会標準規格(準拠規格:SRIS0101)に定める測定方法で測定した値である。以降、本明細書における硬度は、特に記載のない限りこれに準ずるものとする。また、用いる研磨パッド203、204は、ポリウレタンに限らず、硬度が85以上の硬質の材質からなるものであればよい。さらに研磨中の表面欠陥の発生を考慮すれば、硬度95以下が好ましい。さらに、これにつづいて、ステップS104において、硬度が60〜80の材質、たとえば発泡ウレタンからなる軟質の研磨パッドを用い、粒径が0.01〜0.1μmのたとえばコロイダルシリカからなる研磨砥粒を含む研磨液を用いれば、ガラス基板4のダブオフ値をより良好なものとできる。   In step S103, a hard material having a hardness (Asker C) of 85 or more, for example, a hard polishing pad made of polyurethane, is used as the polishing pads 203 and 204, and the particle size is 0.1 to 0.8 μm as the polishing liquid. For example, those containing abrasive grains made of cerium oxide can be used. By combining such abrasive grains and a hard polishing pad, polishing that can improve the surface accuracy and flatness of the substrate while suppressing the dub-off value of the glass substrate 4 to about 0 to 9 nm. Can do. Here, the dub-off value is a value indicating the bulge or settling (dub off) of the main surface at the outer peripheral edge of the glass substrate. The hardness (Asker C) is a value measured by a measurement method defined in the Japan Rubber Association standard (compliant standard: SRIS0101). Henceforth, the hardness in this specification shall apply to this unless otherwise indicated. Further, the polishing pads 203 and 204 to be used are not limited to polyurethane but may be made of a hard material having a hardness of 85 or more. Further, considering the occurrence of surface defects during polishing, a hardness of 95 or less is preferable. Further, subsequently, in step S104, a soft abrasive pad made of a material having a hardness of 60 to 80, for example, urethane foam, and an abrasive grain made of, for example, colloidal silica having a particle size of 0.01 to 0.1 μm. If the polishing liquid containing is used, the dub-off value of the glass substrate 4 can be made better.

以上説明したように、本実施の形態に係るガラス基板の製造方法によれば、主表面の微少うねりが規格値を満たすガラス基板をより生産性高く製造できる。   As described above, according to the method for manufacturing a glass substrate according to the present embodiment, it is possible to manufacture a glass substrate satisfying the standard value with a slight undulation on the main surface with higher productivity.

以下に、本発明の実施例、比較例、および参考例を示す。なお、これによりこの発明が限定されるものではない。以下の各例では、リドロー法を用いて、幅90mm、長さ10m以上のアルミノシリケートガラスからなるガラス板を製造し、このガラス板をコアリングして、外径が65mm、円孔の内径が20mmのドーナツ状のガラス基板を成形した。さらに、成形したガラス基板の中からガラス基板を所定枚数選別し、これらのガラス基板を図4、5に示す両面同時研磨機にセットし、上記実施の形態と同様の粗研磨工程を各例ごとに同時に行った。   Examples of the present invention, comparative examples, and reference examples are shown below. Note that the present invention is not limited thereby. In each of the following examples, a glass plate made of aluminosilicate glass having a width of 90 mm and a length of 10 m or more is manufactured using the redraw method, and the glass plate is cored to have an outer diameter of 65 mm and an inner diameter of the circular hole. A 20 mm donut-shaped glass substrate was formed. Further, a predetermined number of glass substrates are selected from the molded glass substrates, and these glass substrates are set in the double-sided simultaneous polishing machine shown in FIGS. At the same time.

なお、粗研磨工程においては、硬度が87のウレタン研磨パッド(浜井産業社製:HPC−90D)と、粒径が0.1〜0.4μmで平均粒径が0.19μmの酸化セリウム研磨砥粒に水を加えて遊離砥粒とした研磨液とを用いた。また、粗研磨工程におけるその他の研磨条件としては、研磨定盤の回転数を25rpm、研磨液供給速度を1500cc/分、加工圧力を120g/cmとした。このとき、研磨速度は0.32μm/minであった。なお、研磨速度は、研磨前後のガラス基板の重量差により片面あたりの研磨した厚さを求め、そこから研磨時間を用いて換算したものである。 In the rough polishing step, a urethane polishing pad having a hardness of 87 (manufactured by Hamai Sangyo Co., Ltd .: HPC-90D) and a cerium oxide polishing abrasive having a particle size of 0.1 to 0.4 μm and an average particle size of 0.19 μm. A polishing liquid was prepared by adding water to the grains to form free abrasive grains. In addition, as other polishing conditions in the rough polishing step, the rotation speed of the polishing platen was 25 rpm, the polishing liquid supply speed was 1500 cc / min, and the processing pressure was 120 g / cm 2 . At this time, the polishing rate was 0.32 μm / min. The polishing rate is obtained by calculating the polished thickness per one side based on the difference in weight of the glass substrate before and after polishing, and converting the thickness using the polishing time.

図8は、各実施例、比較例、および参考例の製造条件、特性、微少うねりについての良否の判断等を示した図である。以下、図8に基づいて各例を説明する。   FIG. 8 is a diagram showing the quality of the manufacturing conditions, characteristics, and slight waviness of each example, comparative example, and reference example. Hereinafter, each example will be described with reference to FIG.

(参考例1〜3)
参考例1〜3として、成形したガラス基板の中から、厚さの平均値が643μmであって、厚さの差が略0μm、すなわち厚さのばらつきがほとんどないガラス基板を25枚選別した。研磨前にこれらのガラス基板の微少うねりを測定したところ、それぞれの最大値が4nm(参考例1、2)、0.5nm(参考例3)であった。なお、ここでいう「最大値」とは、ガラス基板1枚の測定領域における平均値の、同条件で研磨した複数のガラス基板中の最大値である。また、微少うねりは、表面形状測定機(Phase Shift社製 Optiflat)で測定したものであり、測定方法の詳細は、特開2000-348330に記載の測定方法と同じである。つぎに、これらのガラス基板を両面同時研磨機にセットし、粗研磨工程を各参考例ごとに行った。なお、片側の主表面に対する設定研磨量をそれぞれ5μm(参考例1)、4μm(参考例2)、3.5μm(参考例3)とした。
(Reference Examples 1-3)
As Reference Examples 1 to 3, 25 glass substrates having an average thickness value of 643 μm and a thickness difference of about 0 μm, that is, almost no thickness variation were selected from the molded glass substrates. When the slight waviness of these glass substrates was measured before polishing, the maximum values were 4 nm (Reference Examples 1 and 2) and 0.5 nm (Reference Example 3), respectively. Here, the “maximum value” is the maximum value among a plurality of glass substrates polished under the same conditions as the average value in the measurement region of one glass substrate. Further, the slight waviness is measured with a surface shape measuring device (Optiflat manufactured by Phase Shift), and the details of the measuring method are the same as the measuring method described in JP-A-2000-348330. Next, these glass substrates were set in a double-sided simultaneous polishing machine, and a rough polishing step was performed for each reference example. The set polishing amounts for the main surface on one side were 5 μm (Reference Example 1), 4 μm (Reference Example 2), and 3.5 μm (Reference Example 3), respectively.

研磨後の各ガラス基板の特性を測定したところ、その厚さはいずれも規格値である635μm±10μmを満たすものであった。なお、厚さの平均値はそれぞれ633μm(参考例1)、635μm(参考例2)、636μm(参考例3)であった。一方、微少うねりについては、参考例1では各ガラス基板の最大値が0.5nmであり全てのガラス基板が規格を満たしていたが、参考例2では最大値が0.7nmであり、規格を満たさないガラス基板があった。すなわち、研磨前のガラス基板の厚さにばらつきが無い場合には、確実に微少うねりが規格を満たすようにするには、設定研磨量の設定値を5μm以上とすべきことが確認された。なお、参考例3では、研磨により微少うねりの最大値が0.5nmから0.6nmに増大している。この結果は、もともとの微少うねりが小さくても、さらに小さくするには設定研磨量をある程度の大きさの値に設定することが好ましいことを示している。   When the characteristics of each glass substrate after polishing were measured, the thicknesses were all satisfying the standard value of 635 μm ± 10 μm. The average thicknesses were 633 μm (Reference Example 1), 635 μm (Reference Example 2), and 636 μm (Reference Example 3), respectively. On the other hand, regarding the slight waviness, in Reference Example 1, the maximum value of each glass substrate was 0.5 nm and all the glass substrates satisfied the standard, but in Reference Example 2, the maximum value was 0.7 nm, and the standard was There was a glass substrate that was not filled. That is, when there is no variation in the thickness of the glass substrate before polishing, it was confirmed that the set polishing amount should be set to 5 μm or more in order to ensure that the slight waviness meets the standard. In Reference Example 3, the maximum value of the slight waviness is increased from 0.5 nm to 0.6 nm by polishing. This result shows that it is preferable to set the set polishing amount to a value of a certain level in order to make it even smaller even if the original slight waviness is small.

(実施例1、2)
実施例1、2として、成形したガラス基板の中から、厚さの平均値が646μmであって、厚さの差の最大値が2μmのガラス基板を150枚選別した。研磨前にこれらのガラス基板の微少うねりを測定したところ、それぞれの最大値がいずれも4nmであった。つぎに、これらのガラス基板を両面同時研磨機にセットし、粗研磨工程を各実施例ごとに行った。なお、片側の主表面に対する設定研磨量をそれぞれ10μm(実施例1)、9μm(実施例2)とした。
(Examples 1 and 2)
As Examples 1 and 2, 150 glass substrates having an average thickness value of 646 μm and a maximum thickness difference of 2 μm were selected from the molded glass substrates. When the slight waviness of these glass substrates was measured before polishing, each maximum value was 4 nm. Next, these glass substrates were set in a double-sided simultaneous polishing machine, and a rough polishing step was performed for each example. The set polishing amounts for the main surface on one side were 10 μm (Example 1) and 9 μm (Example 2), respectively.

研磨後の各ガラス基板の特性を測定したところ、その厚さはいずれも規格値である635μm±10μmを満たすものであった。なお、厚さの平均値はそれぞれ626μm(実施例1)、628μm(実施例2)であった。一方、微少うねりについては、実施例1、2のいずれも最大値が0.5nmであり、全てのガラス基板が規格を満たしていた。   When the characteristics of each glass substrate after polishing were measured, the thicknesses were all satisfying the standard value of 635 μm ± 10 μm. In addition, the average value of thickness was 626 micrometers (Example 1) and 628 micrometers (Example 2), respectively. On the other hand, regarding the slight waviness, the maximum value of both Examples 1 and 2 was 0.5 nm, and all the glass substrates satisfied the standard.

(比較例1)
比較例1として、成形したガラス基板の中から、厚さの平均値が646μmであって、厚さの差の最大値が4μmのガラス基板を150枚選別した。研磨前にこれらのガラス基板の微少うねりを測定したところ、最大値が4nmであった。つぎに、これらのガラス基板を両面同時研磨機にセットし、粗研磨工程を行った。なお、片側の主表面に対する設定研磨量を10μmとした。研磨後の各ガラス基板の特性を測定したところ、その厚さはいずれも規格値である635μm±10μmを満たすものであり、平均値は626μmであったが、微少うねりの最大値は0.8nmであり、規格を満たさないガラス基板があった。
(Comparative Example 1)
As Comparative Example 1, 150 glass substrates having an average thickness value of 646 μm and a maximum thickness difference of 4 μm were selected from the molded glass substrates. When the slight waviness of these glass substrates was measured before polishing, the maximum value was 4 nm. Next, these glass substrates were set in a double-sided simultaneous polishing machine, and a rough polishing process was performed. The set polishing amount for the main surface on one side was set to 10 μm. When the characteristics of each glass substrate after polishing were measured, the thicknesses all satisfy the standard value of 635 μm ± 10 μm, and the average value was 626 μm, but the maximum value of the slight waviness was 0.8 nm. There was a glass substrate that did not meet the standards.

(比較例2)
比較例2として、成形したガラス基板の中から、厚さの平均値が646μmであって、厚さの差の最大値が2μmのガラス基板を150枚選別した。研磨前にこれらのガラス基板の微少うねりを測定したところ、最大値が4nmであった。つぎに、これらのガラス基板を両面同時研磨機にセットし、粗研磨工程を行った。なお、片側の主表面に対する設定研磨量を8μmとした。研磨後の各ガラス基板の特性を測定したところ、その厚さはいずれも規格値である635μm±10μmを満たすものであり、平均値は630μmであったが、微少うねりの最大値は0.8nmであり、規格を満たさないガラス基板があった。
すなわち、研磨前のガラス基板の厚さにばらつきが無い場合には、確実に微少うねりが規格を満たすようにするには、設定研磨量の設定値を5μm以上とすべきであったが、研磨前のガラス基板の厚さに2μm以内のばらつきがある場合は、設定研磨量の設定値を9μm以上とすべきことが確認された。
(Comparative Example 2)
As Comparative Example 2, 150 glass substrates having an average thickness value of 646 μm and a maximum thickness difference of 2 μm were selected from the molded glass substrates. When the slight waviness of these glass substrates was measured before polishing, the maximum value was 4 nm. Next, these glass substrates were set in a double-sided simultaneous polishing machine, and a rough polishing process was performed. The set polishing amount for the main surface on one side was 8 μm. When the characteristics of each glass substrate after polishing were measured, the thicknesses all satisfy the standard value of 635 μm ± 10 μm, and the average value was 630 μm, but the maximum value of the slight waviness was 0.8 nm. There was a glass substrate that did not meet the standards.
That is, when there is no variation in the thickness of the glass substrate before polishing, the set polishing amount should be set to 5 μm or more in order to ensure that the slight waviness meets the standard. When the thickness of the previous glass substrate has a variation within 2 μm, it was confirmed that the set value of the set polishing amount should be 9 μm or more.

なお、上記実施の形態では、リドロー法を用いて製造したガラス板を用いる場合について説明したが、たとえば溶融ガラスを原料としたフロート法、フュージョン法、ダウンドロー法などの公知の方法を用いて製造したガラス板を用いることもできる。また、ガラス基板の準備工程の追加の一工程として、ガラス基板を成形した後に、ガラス基板の厚さを調整するラッピング工程を行なってもよい。また、上記実施の形態では、互いの厚さの差が2μm以下のガラス板を複数枚準備し、これからガラス基板を成形していたが、ガラス板からガラス基板を複数枚成形した後に、その中から互いの厚さの差が2μm以下であるガラス基板を選別してもよい。また、上記実施の形態では、研磨工程が粗研磨工程と精密研磨工程との2段階の工程を含むものであったが、ガラス基板の他の規格値を満たすために、より多段の研磨工程を含む研磨工程を適宜行ってもよい。   In addition, although the case where the glass plate manufactured using the redraw method was used was demonstrated in the said embodiment, it manufactured using well-known methods, such as the float method, fusion method, down-draw method, etc. which used the molten glass as a raw material, for example. A glass plate can also be used. Moreover, you may perform the lapping process which adjusts the thickness of a glass substrate after shaping | molding a glass substrate as one process of the preparation process of a glass substrate. In the above embodiment, a plurality of glass plates having a thickness difference of 2 μm or less are prepared, and a glass substrate is formed therefrom. After forming a plurality of glass substrates from the glass plate, From the above, glass substrates having a thickness difference of 2 μm or less may be selected. Moreover, in the said embodiment, although the grinding | polishing process included the process of two steps, a rough grinding | polishing process and a precision grinding | polishing process, in order to satisfy | fill other specification values of a glass substrate, a multi-stage grinding | polishing process was performed. You may perform the grinding | polishing process which contains suitably.

また、上記実施の形態は、磁気ディスク用のガラス基板の製造方法に係るものであったが、本発明はこれに限らず、光ディスク、光磁気ディスク等の他の記録ディスク用のガラス基板の製造にも適用できるものである。   The above embodiment relates to a method of manufacturing a glass substrate for a magnetic disk. However, the present invention is not limited to this, and manufacturing of a glass substrate for other recording disks such as an optical disk and a magneto-optical disk. It can also be applied to.

本発明の実施の形態に係るガラス基板の製造方法のフロー図である。It is a flowchart of the manufacturing method of the glass substrate which concerns on embodiment of this invention. リドロー法を実施するための加熱延伸装置の一例の模式的な斜視図である。It is a typical perspective view of an example of the heating drawing apparatus for implementing a redraw method. ガラス基板の上面および側断面を示す図である。It is a figure which shows the upper surface and side cross section of a glass substrate. 両面同時研磨機の側面の一部を示す概略図である。It is the schematic which shows a part of side surface of a double-sided simultaneous grinder. 上定盤を取り外した状態の両面同時研磨機の平面概略図である。It is the plane schematic diagram of the double-sided simultaneous grinder of the state which removed the upper surface plate. 研磨パッドが厚さの異なるガラス基板を挟圧する状態を模式的に示す図である。It is a figure which shows typically the state in which a polishing pad clamps the glass substrate from which thickness differs. 粗研磨後のガラス基板の上面および側断面を示す図である。It is a figure which shows the upper surface and side cross section of the glass substrate after rough polishing. 各実施例、比較例、および参考例の製造条件、特性、微少うねりについての良否の判断等を示した図である。It is the figure which showed the judgment of the quality etc. about the manufacturing conditions of each Example, a comparative example, and a reference example, a characteristic, and slight waviness.

符号の説明Explanation of symbols

1 母材ガラス板
2 ガラス条
3 ガラス板
4、5、41、42 ガラス基板
4a、4b、5a、5b 主表面
4c、5c 円孔
100 加熱延伸装置
101 加熱炉
101a〜101c ヒータ
102 母材送り機構
103a、103b 引き取り機構
104 カッター
200 両面同時研磨機
201 上定盤
202 下定盤
203、204 研磨パッド
205 キャリアー
206 太陽車
207 インターナルギア
A 軸
S101〜S104 ステップ
t1、t2、t11、t12 厚さ
Δt 差
DESCRIPTION OF SYMBOLS 1 Base material glass plate 2 Glass strip 3 Glass plate 4, 5, 41, 42 Glass substrate 4a, 4b, 5a, 5b Main surface 4c, 5c Circular hole 100 Heat-stretching apparatus 101 Heating furnace 101a-101c Heater 102 Base material feed mechanism 103a, 103b Take-up mechanism 104 Cutter 200 Double-sided simultaneous polishing machine 201 Upper surface plate 202 Lower surface plate 203, 204 Polishing pad 205 Carrier 206 Solar wheel 207 Internal gear A-axis S101 to S104 Step t1, t2, t11, t12 Thickness Δt Difference

Claims (2)

記録ディスクに用いられる主表面の微少うねりが0.6nm以下のガラス基板の製造方法であって、
円板状の形状を有し、互いの厚さが異なり、かつその差が2μm以下である複数のガラス基板を準備するガラス基板準備工程と、
前記複数のガラス基板を上下から一括して研磨パッドで挟圧し、片側の主表面に対する設定研磨量が9μm以上になるように該複数のガラス基板を同時に研磨するガラス基板研磨工程と、
を含むことを特徴とするガラス基板の製造方法。
A method for producing a glass substrate having a minor surface waviness of 0.6 nm or less used for a recording disk,
A glass substrate preparation step of preparing a plurality of glass substrates having a disk-like shape, different thicknesses, and a difference of 2 μm or less;
A glass substrate polishing step of simultaneously polishing the plurality of glass substrates so that the set polishing amount with respect to the main surface on one side is 9 μm or more by sandwiching the plurality of glass substrates from above and below with a polishing pad.
The manufacturing method of the glass substrate characterized by including.
前記ガラス基板準備工程は、母材ガラス板を加熱して軟化し所望の厚さに延伸するリドロー法を用いてガラス板を形成するガラス板準備工程と、前記形成したガラス板から前記複数のガラス基板を成形するガラス基板成形工程と、を含むことを特徴とする請求項1に記載のガラス基板の製造方法。   The glass substrate preparing step includes a glass plate preparing step of forming a glass plate using a redraw method in which a base glass plate is heated and softened and stretched to a desired thickness, and the plurality of glasses are formed from the formed glass plate. A method for producing a glass substrate according to claim 1, further comprising a glass substrate forming step of forming the substrate.
JP2008133154A 2008-05-21 2008-05-21 Method of manufacturing glass substrate Pending JP2009279696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133154A JP2009279696A (en) 2008-05-21 2008-05-21 Method of manufacturing glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133154A JP2009279696A (en) 2008-05-21 2008-05-21 Method of manufacturing glass substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013126756A Division JP5764618B2 (en) 2013-06-17 2013-06-17 Manufacturing method of glass substrate

Publications (1)

Publication Number Publication Date
JP2009279696A true JP2009279696A (en) 2009-12-03

Family

ID=41450704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133154A Pending JP2009279696A (en) 2008-05-21 2008-05-21 Method of manufacturing glass substrate

Country Status (1)

Country Link
JP (1) JP2009279696A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210286A (en) * 2010-02-26 2011-10-20 Asahi Glass Co Ltd Method of manufacturing glass substrate for magnetic recording medium
JP2012142050A (en) * 2010-12-28 2012-07-26 Konica Minolta Advanced Layers Inc Manufacturing method of glass substrate for magnetic recording medium
JP2013025844A (en) * 2011-07-21 2013-02-04 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP6439064B1 (en) * 2018-02-23 2018-12-19 株式会社Uacj Magnetic disk, aluminum composite substrate for magnetic disk, and method for manufacturing the aluminum alloy substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175961A (en) * 2000-12-07 2002-06-21 Rohm Co Ltd Method of classifying product and method of manufacturing semiconductor wafer
JP2003223711A (en) * 2002-01-24 2003-08-08 Nippon Sheet Glass Co Ltd Glass plate for information recording medium and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175961A (en) * 2000-12-07 2002-06-21 Rohm Co Ltd Method of classifying product and method of manufacturing semiconductor wafer
JP2003223711A (en) * 2002-01-24 2003-08-08 Nippon Sheet Glass Co Ltd Glass plate for information recording medium and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210286A (en) * 2010-02-26 2011-10-20 Asahi Glass Co Ltd Method of manufacturing glass substrate for magnetic recording medium
JP2012142050A (en) * 2010-12-28 2012-07-26 Konica Minolta Advanced Layers Inc Manufacturing method of glass substrate for magnetic recording medium
JP2013025844A (en) * 2011-07-21 2013-02-04 Asahi Glass Co Ltd Method for manufacturing glass substrate for magnetic recording medium, and glass substrate for magnetic recording medium
JP6439064B1 (en) * 2018-02-23 2018-12-19 株式会社Uacj Magnetic disk, aluminum composite substrate for magnetic disk, and method for manufacturing the aluminum alloy substrate
JP2019145192A (en) * 2018-02-23 2019-08-29 株式会社Uacj Magnetic disk, and aluminum alloy substrate for magnetic disk, and method of manufacturing aluminum alloy substrate
WO2019163239A1 (en) * 2018-02-23 2019-08-29 株式会社Uacj Magnetic disc, aluminum alloy substrate for magnetic disc, and production method for aluminum alloy substrate
US11211088B2 (en) 2018-02-23 2021-12-28 Uacj Corporation Magnetic disc, aluminum alloy substrate for magnetic disc, and production method for aluminum alloy substrate

Similar Documents

Publication Publication Date Title
JP5005645B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP5305698B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate for magnetic disk
WO2008059931A1 (en) Process for producing glass substrate
US20110189505A1 (en) Method for manufacturing glass substrate for magnetic recording medium
JP5334428B2 (en) Manufacturing method of glass substrate for magnetic disk
WO2004058451A1 (en) Glass substrate for information recording medium and method for producing same
JP5170877B2 (en) Manufacturing method of glass substrate
JP2009279696A (en) Method of manufacturing glass substrate
JP2009289370A (en) Glass substrate for magnetic disk
JP2008188710A (en) Manufacturing method of glass substrate
WO2009128429A1 (en) Method of manufacturing substrate for magnetic recording medium
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2009154232A (en) Method of manufacturing glass substrate for magnetic disk
JP6148345B2 (en) Manufacturing method of non-magnetic substrate
JP5764618B2 (en) Manufacturing method of glass substrate
JP5350853B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP5690540B2 (en) Manufacturing method of glass substrate for information recording medium
JP5461936B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5265429B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
JP5483530B2 (en) Manufacturing method of magnetic disk substrate
JP2011111368A (en) Method for producing glass blank, upper die for glass-pressing, press-molding apparatus, method for producing substrate for information recording medium and method for producing information recording medium
JP2010218643A (en) Method for manufacturing glass substrate, glass substrate and magnetic recording medium
JP2015069685A (en) Production method of magnetic disk glass substrate and magnetic disk
JP4134925B2 (en) Manufacturing method of glass substrate for information recording medium
JP5184298B2 (en) Glass substrate for magnetic disk and method for producing glass substrate for magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319