JP6148345B2 - Manufacturing method of non-magnetic substrate - Google Patents

Manufacturing method of non-magnetic substrate Download PDF

Info

Publication number
JP6148345B2
JP6148345B2 JP2015539434A JP2015539434A JP6148345B2 JP 6148345 B2 JP6148345 B2 JP 6148345B2 JP 2015539434 A JP2015539434 A JP 2015539434A JP 2015539434 A JP2015539434 A JP 2015539434A JP 6148345 B2 JP6148345 B2 JP 6148345B2
Authority
JP
Japan
Prior art keywords
substrate
polishing
magnetic
glass substrate
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015539434A
Other languages
Japanese (ja)
Other versions
JPWO2015046525A1 (en
Inventor
修平 東
修平 東
大西 勝
勝 大西
修 輿水
修 輿水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Publication of JPWO2015046525A1 publication Critical patent/JPWO2015046525A1/en
Application granted granted Critical
Publication of JP6148345B2 publication Critical patent/JP6148345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、非磁性基板の製造方法であって、具体的には、非磁性基板の端面を研磨する工程を含む基板の製造方法に関する。   The present invention relates to a method for manufacturing a nonmagnetic substrate, and more specifically to a method for manufacturing a substrate including a step of polishing an end face of a nonmagnetic substrate.

今日、パーソナルコンピュータ、ノート型パーソナルコンピュータ、あるいはDVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、磁気ディスク用ガラス基板に磁性層が設けられた磁気ディスクが用いられる。磁気ディスクの面上では、この面から僅かに浮上させた磁気ヘッド(DFH(Dynamic Flying Height)ヘッド)で磁気ディスクの磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板には、金属基板等に比べて塑性変形をしにくい性質を持つことから、非磁性基板としてガラス基板が好適に用いられている。   Today, a personal computer, a notebook personal computer, a DVD (Digital Versatile Disc) recording device, or the like has a built-in hard disk device for data recording. In particular, in a hard disk device used for portable equipment such as a notebook personal computer, a magnetic disk having a magnetic layer provided on a magnetic disk glass substrate is used. On the surface of the magnetic disk, magnetic recording information is recorded on or read from the magnetic layer of the magnetic disk by a magnetic head (DFH (Dynamic Flying Height) head) slightly lifted from this surface. As a substrate of this magnetic disk, a glass substrate is suitably used as a non-magnetic substrate because it has a property that it is less likely to undergo plastic deformation than a metal substrate or the like.

今日、ハードディスク装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。これに伴って、磁気ヘッドの磁気記録面からの浮上距離を極めて短くして磁気記録情報エリアを微細化することが行われている。このような磁気ディスク用ガラス基板においては、基板の表面凹凸は可能な限り小さく作製されている。
ハードディスク装置に用いる磁気ヘッドにおいては、磁気ディスクの表面に微小な凹凸があると、公知のサーマルアスペリティ(Thermal Asperity)障害を生じ、再生に誤動作を生じ、あるいは再生が不可能になる虞がある。このサーマルアスペリティ障害の原因は、ガラス基板上の異物によって磁気ディスクの表面に形成された凸部が磁気ディスクの高速回転によりヘッドの近傍の空気の断熱圧縮および断熱膨張を発生させ、磁気ヘッドが発熱することに起因する。すなわち、サーマルアスペリティ障害は、磁気ヘッドが磁気ディスクに接触しない場合においても発生し得る。
したがって、このサーマルアスペリティ障害を防止するためには、磁気ディスクの表面は、極めて平滑で、かつ、異物の無い高清浄化された面に仕上げておく必要がある。
Today, in response to a request for an increase in storage capacity in a hard disk device, the density of magnetic recording is being increased. Along with this, the magnetic recording information area is miniaturized by extremely shortening the flying distance from the magnetic recording surface of the magnetic head. In such a glass substrate for a magnetic disk, the surface unevenness of the substrate is made as small as possible.
In a magnetic head used in a hard disk device, if there are minute irregularities on the surface of the magnetic disk, there is a risk that a known thermal asperity failure will occur, causing a malfunction in reproduction or making reproduction impossible. The cause of this thermal asperity failure is that the convex portion formed on the surface of the magnetic disk by foreign matter on the glass substrate causes adiabatic compression and expansion of the air near the head due to high-speed rotation of the magnetic disk, and the magnetic head generates heat. Due to That is, the thermal asperity failure can occur even when the magnetic head does not contact the magnetic disk.
Therefore, in order to prevent this thermal asperity failure, the surface of the magnetic disk needs to be finished to a very smooth surface free from foreign matter.

磁気ディスク用ガラス基板の表面に異物が付着する原因としては、ガラス基板の表面形状のみならず、ガラス基板の端面の表面形状が考えられている。すなわち、磁気ディスク用ガラス基板の端部が尖鋭な場合、若しくは端面の表面形状が平滑でない場合には、端部が樹脂製ケースの壁面などを擦過し、この擦過によって樹脂やガラスの微粒子(パーティクル)が発生する。そして、このような微粒子や雰囲気中の微粒子は、磁気ディスク用ガラス基板の端面に捕捉され蓄積されてしまう。磁気ディスク用ガラス基板の端面に蓄積された微粒子は、後工程において、あるいは、ハードディスク装置に搭載された後において、発塵源となり、ディスク基板の表面に異物が付着する原因となっている。
そのため、磁気ディスク用ガラス基板を製造するときには、円形状のガラス基板の主表面と側壁面に間に面取面を形成し、さらに側壁面と面取面とを研磨する処理が行われている。
As a cause of foreign matter adhering to the surface of the magnetic disk glass substrate, not only the surface shape of the glass substrate but also the surface shape of the end surface of the glass substrate is considered. That is, when the edge of the glass substrate for magnetic disks is sharp or the surface shape of the edge is not smooth, the edge is rubbed against the wall surface of the resin case and the like. ) Occurs. Such fine particles and fine particles in the atmosphere are captured and accumulated on the end face of the magnetic disk glass substrate. The fine particles accumulated on the end surface of the magnetic disk glass substrate become a source of dust generation in a later process or after being mounted on a hard disk device, causing foreign matter to adhere to the surface of the disk substrate.
For this reason, when manufacturing a glass substrate for a magnetic disk, a chamfered surface is formed between the main surface and the side wall surface of the circular glass substrate, and the side wall surface and the chamfered surface are further polished. .

ところで、アルミニウムやガラス等の非磁性材料の被加工面上に磁気感応性研磨剤および第1の磁石をこの順に載置するとともに、非磁性材料の下方に第2の磁石を配し、第1の磁石を、上記第2の磁石との間に発生する磁力を介して被加工面の上方を自転させながら公転させ、磁気感応性研磨剤を被加工面に対して相対運動させる磁気研磨方法が知られている(特許文献1)。このような磁気研磨方法は、被加工面の面精度と形状精度を簡素な方法で同時に向上させることができる、とされている。   By the way, a magnetically sensitive abrasive and a first magnet are placed in this order on a work surface of a nonmagnetic material such as aluminum or glass, and a second magnet is disposed below the nonmagnetic material. A magnetic polishing method in which the magnet is revolved while rotating above the processing surface via a magnetic force generated between the second magnet and the magnetically sensitive abrasive is moved relative to the processing surface. Known (Patent Document 1). Such a magnetic polishing method is said to be able to simultaneously improve the surface accuracy and shape accuracy of the work surface by a simple method.

また、円形状のガラス基板の端面を研磨する方法として、磁気研磨法が知られている。例えば特許文献2には、ガラス基板の内周端面を研磨する工程において、中央の円孔の内周側に磁場を形成し、この円孔内において磁場により磁性粒子と研磨砥粒とを含む研磨剤を保持させ、磁場を円孔の内周側端面に対して移動させることにより、研磨剤を円孔の内周側端面に対して移動させて円孔の内周側端面を研磨する磁気研磨法によって研磨を行うことが記載されている。このような磁気研磨法によれば、ガラス基板の中心部の円孔の内周側端面を簡易に、かつ、良好に研磨することができる、とされている。   Further, a magnetic polishing method is known as a method for polishing an end face of a circular glass substrate. For example, in Patent Document 2, in a step of polishing an inner peripheral end face of a glass substrate, a magnetic field is formed on the inner peripheral side of a central circular hole, and polishing including magnetic particles and abrasive grains is performed in the circular hole by the magnetic field. Magnetic polishing that holds the agent and moves the magnetic field with respect to the inner peripheral side end surface of the circular hole, thereby moving the abrasive with respect to the inner peripheral side end surface of the circular hole to polish the inner peripheral side end surface of the circular hole It is described that polishing is performed by a method. According to such a magnetic polishing method, it is said that the inner peripheral side end face of the circular hole at the center of the glass substrate can be easily and satisfactorily polished.

特開2008−290162号公報JP 2008-290162 A 特開2005−50501号公報JP 2005-50501 A

本願の発明者が、磁場発生手段を用いて前記ガラス基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させ、ガラス基板の端面を磁気機能性流体と接触させた状態で磁気機能性流体に対して相対移動させることにより、ガラス基板の端面研磨処理を行ったところ、加工レートが高く、かつ端面の表面性状に優れたものが得られることが確認された。
しかし、上記端面研磨処理を多くのガラス基板を対象として枚葉式の処理により連続的に行った場合には、特に面取面の加工レートが次第に低下していくことがわかった。この問題は、ガラス基板に限らず他の材料(例えば、アルミニウム合金)を用いた非磁性基板についても同様に発生すると考えられる。
The inventor of the present application forms a magnetic field so that a magnetic force line advances in the thickness direction of the glass substrate using a magnetic field generating means, and holds the magnetic functional fluid including abrasive grains in the magnetic field, and the end surface of the glass substrate When the glass substrate end face polishing treatment was performed by moving it relative to the magnetic functional fluid in contact with the magnetic functional fluid, the processing rate was high and the surface properties of the end face were excellent. It was confirmed that it was obtained.
However, it has been found that the chamfered surface processing rate gradually decreases particularly when the above-described end surface polishing treatment is performed continuously by a single wafer processing for many glass substrates. This problem is considered to occur not only in the glass substrate but also in a nonmagnetic substrate using another material (for example, an aluminum alloy).

そこで、本発明は、基板の端面を連続的に研磨する際、面取面の加工レートの低下を抑制することができる基板の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of a board | substrate which can suppress the fall of the processing rate of a chamfering surface, when polishing the end surface of a board | substrate continuously.

本願の発明者は、磁気機能性流体を用いてガラス基板の端面研磨処理を連続的に行う場合に、ガラス基板の端面の加工レートが低下していく原因を鋭意検討した。その結果、加工レートが低下していく原因は、以下の通り推定された。すなわち、上記端面研磨処理では、ガラス基板の端面の一部が磁力線を横切る領域において磁束密度が低下する。そのような領域では、磁場による磁気機能性流体に対する保持力が低下しやすくなる。すなわち、基板の被加工部に対する磁気機能性流体の押圧力が小さくなりやすい。このような傾向は、基板の端部において側壁面と面取面とが形成されている場合、面取面においてより顕著になる。他方、研磨に寄与する研磨砥粒は非磁性であるため、基本的には磁場で保持されないが、磁性粒子と被加工基板との間の押圧力によって保持されている。そのため、当該押圧力が低下すると、研磨砥粒が磁気機能性流体から抜け易くなる。また、経時的にも、押圧力が少ない部分における研磨砥粒の濃度は徐々に低下していく。結果として、研磨の加工レートが低下していくと推定された。また、面取面に対する前記押圧力は側壁面よりも低くなる傾向にあるため、面取面に対して特に顕著に現れると推定された。この推定原因に基づき本願の発明者はさらに研究を推し進め、本発明に係る磁気ディスク用ガラス基板の製造方法によって、端面研磨において面取面の加工レートの低下を抑制できることを見出した。   The inventor of the present application diligently studied the cause of a decrease in the processing rate of the end surface of the glass substrate when the end surface polishing treatment of the glass substrate is continuously performed using a magnetic functional fluid. As a result, the cause of the decrease in the processing rate was estimated as follows. That is, in the end surface polishing process, the magnetic flux density decreases in a region where a part of the end surface of the glass substrate crosses the magnetic field lines. In such a region, the holding force against the magnetic functional fluid by the magnetic field tends to be reduced. That is, the pressing force of the magnetic functional fluid on the processed part of the substrate tends to be small. Such a tendency becomes more prominent in the chamfered surface when the side wall surface and the chamfered surface are formed at the end of the substrate. On the other hand, since the abrasive grains that contribute to polishing are non-magnetic, they are basically not held by a magnetic field, but are held by a pressing force between the magnetic particles and the substrate to be processed. For this reason, when the pressing force decreases, the abrasive grains easily escape from the magnetic functional fluid. In addition, over time, the concentration of the abrasive grains in the portion where the pressing force is small gradually decreases. As a result, it was estimated that the polishing processing rate would decrease. Moreover, since the said pressing force with respect to a chamfering surface tends to become lower than a side wall surface, it was estimated that it appeared especially notably with respect to a chamfering surface. Based on this presumed cause, the inventor of the present application has further pursued research and found that the method for manufacturing a glass substrate for a magnetic disk according to the present invention can suppress a reduction in the chamfered surface processing rate in end face polishing.

本発明の第1の態様は、側壁面および主表面と側壁面との間に形成された面取面を有する板状の非磁性基板の端面を研磨する端面研磨処理を含む非磁性基板の製造方法である。
前記端面研磨処理は、磁場発生手段を用いて前記基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させた状態で、前記基板の端面と前記磁気機能性流体とを接触させて、基板と前記磁気機能性流体とを相対移動させることにより、前記基板の端面を研磨する処理である。ここで、端面研磨処理中に前記磁気機能性流体に対して前記研磨砥粒を供給することを特徴とする。
なお、磁気機能性流体は、磁場に応答する機能性流体であればよく、例えばMRF(磁気粘性流体;Magneto-rheological Fluid)、MF(磁性流体;Magnetic Fluid)、MCF(磁気混合流体;Magnetic Compound Fluid)などであってもよい。
1st aspect of this invention manufactures the nonmagnetic board | substrate including the end surface grinding | polishing process which grind | polishes the end surface of the plate-shaped nonmagnetic board | substrate which has a side wall surface and the chamfering surface formed between the main surface and the side wall surface. Is the method.
In the end surface polishing treatment, the substrate is formed in a state in which a magnetic field is formed using magnetic field generation means so that magnetic lines of force advance in the thickness direction of the substrate, and the magnetic functional fluid including abrasive grains is held in the magnetic field. The end surface of the substrate is polished by bringing the end surface of the substrate into contact with the magnetic functional fluid and relatively moving the substrate and the magnetic functional fluid. Here, the abrasive grains are supplied to the magnetic functional fluid during the end face polishing process.
The magnetic functional fluid may be any functional fluid that responds to a magnetic field. For example, MRF (Magneto-rheological Fluid), MF (Magnetic Fluid), MCF (Magnetic Compound Fluid) Fluid) or the like.

その際、上記端面研磨処理中に研磨砥粒を含む液体を供給することによって、前記研磨砥粒を供給してもよい。   In that case, you may supply the said abrasive grain by supplying the liquid containing an abrasive grain during the said end surface grinding | polishing process.

上記端面研磨処理中に供給する前記液体の温度は、室温以下であってもよい。   The temperature of the liquid supplied during the end surface polishing process may be room temperature or lower.

上記端面研磨処理において、前記基板の端面が前記磁気機能性流体と接触する位置に向けて、かつ前記磁気機能性流体と接触する基板の端面の移動方向に沿って、前記研磨砥粒を供給してもよい。供給方法としては、研磨砥粒、または、研磨砥粒を含む液体を上記位置に向けて流出させる方法(例えば噴射する方法)や滴下する方法などが挙げられる。   In the end face polishing process, the polishing abrasive grains are supplied toward a position where the end face of the substrate is in contact with the magnetic functional fluid and along a moving direction of the end face of the substrate in contact with the magnetic functional fluid. May be. Examples of the supply method include a method of flowing out abrasive grains or a liquid containing the abrasive grains toward the position (for example, a method of spraying), a method of dropping, and the like.

本発明の第2の態様は、側壁面および主表面と側壁面との間に形成された面取面を有する板状の非磁性基板の端面を研磨する端面研磨処理を含む非磁性基板の製造方法である。
前記端面研磨処理は、研磨砥粒を含む磁気機能性流体と前記基板を、研磨砥粒を含む液体に浸漬させた状態で、磁場発生手段を用いて前記基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させた状態で、前記基板の端面と前記磁気機能性流体とを接触させて、基板と前記磁気機能性流体とを相対移動させることにより、前記基板の端面を研磨することを特徴とする。
According to a second aspect of the present invention, there is provided a nonmagnetic substrate including an end surface polishing process for polishing an end surface of a plate-like nonmagnetic substrate having a side wall surface and a chamfered surface formed between the main surface and the side wall surface. Is the method.
In the end surface polishing treatment, the magnetic functional fluid including polishing abrasive grains and the substrate are immersed in a liquid including polishing abrasive grains so that the lines of magnetic force advance in the thickness direction of the substrate using the magnetic field generating means. In the state where the magnetic functional fluid containing abrasive grains is held in the magnetic field, the substrate and the magnetic functional fluid are brought into contact with each other by bringing the end surface of the substrate into contact with the magnetic functional fluid. The end face of the substrate is polished by relative movement.

本発明の第1または第2の態様において、前記磁場発生手段は、前記基板の厚さ方向に、N極の面とS極の面が互いに対向するように離間した状態で配置された磁石の対を含むようにしてもよい。   In the first or second aspect of the present invention, the magnetic field generating means is a magnet arranged in a state where the N-pole surface and the S-pole surface are spaced apart from each other in the thickness direction of the substrate. A pair may be included.

本発明の第1または第2の態様において、前記磁石の対の前記N極の面と前記S極の面との間には、非磁性体からなるスペーサが設けられていてもよい。   In the first or second aspect of the present invention, a spacer made of a non-magnetic material may be provided between the N pole surface and the S pole surface of the magnet pair.

前記基板は、円形状の内孔を有する円板形状であってもよい。このとき、前記磁場発生手段は、前記基板の前記内孔内に設けられて、前記内孔の側壁面である内周端面の周りで、前記基板の厚さ方向に進む内周側磁力線が進むように磁場を形成する内周側手段、および/または、前記基板の外周側に設けられて、前記基板の外周端面の周りで、前記基板の厚さ方向に外周側磁力線が進むように磁場を形成する外周側手段、を有してもよい。さらに、前記基板の内周端面および/または外周端面を、前記内周側手段および/または前記外周側手段のそれぞれによって形成される磁場に前記磁気機能性流体を保持させた状態で、前記基板の内周端面および/または外周端面の両方を研磨してもよい。   The substrate may have a disk shape having a circular inner hole. At this time, the magnetic field generating means is provided in the inner hole of the substrate, and an inner peripheral side magnetic field line that advances in the thickness direction of the substrate advances around an inner peripheral end surface that is a side wall surface of the inner hole. And / or an inner peripheral means for forming a magnetic field and / or an outer peripheral side surface of the substrate, and a magnetic field is applied around the outer peripheral end surface of the substrate so that outer peripheral magnetic lines of force advance in the thickness direction of the substrate. You may have the outer peripheral side means to form. Further, the inner peripheral end face and / or the outer peripheral end face of the substrate is held in the state where the magnetic functional fluid is held in a magnetic field formed by each of the inner peripheral side means and / or the outer peripheral side means. Both the inner peripheral end face and / or the outer peripheral end face may be polished.

また、本願の発明者は、上記とは別の観点からも、磁気機能性流体を用いてガラス基板の端面研削処理を連続的に行う場合に、ガラス基板の面取面の加工レートが低下していく原因を鋭意検討した。その結果、ガラス基板の面取面の加工レートが低下していく原因は、以下の通り推定された。すなわち、上記端面研磨処理において、ガラス基板の端面のうち側壁面は、平面視でガラス基板が磁力線を横切らない領域(「領域A1」という。)にある磁気機能性流体の塊によって研磨される。領域A1にある磁気機能性流体の塊は、磁力線が断ち切られないため磁場による塊の保持力が高く、研磨砥粒によって安定的に研磨が行われるため、研磨の加工レートが高い。一方、ガラス基板の端面のうち面取面は、平面視でガラス基板が磁力線を横切る領域(「領域A2」という。)にある磁気機能性流体の塊によって研磨される。この領域A2にある磁気機能性流体の塊は、磁力線が少なくとも部分的に断ち切られるため磁場による保持力が相対的に弱く、塊が崩れて変形(塑性変形)し、ガラス基板に対する押圧力が低下しやすくなっている。そのため、領域A2では研磨砥粒によって安定的に研磨が行われ難いため、面取面の研磨の加工レートが側壁面の場合よりも低くなると考えられた。この推定原因に基づき本願の発明者はさらに研究を推し進め、基板と接触することにより変形した磁気機能性流体の形状を、基板に対する押圧力を一定に維持するように修正することで、面取面の加工レートの低下を抑制できることを見出した。   In addition, from the viewpoint different from the above, the inventor of the present application also decreases the processing rate of the chamfered surface of the glass substrate when the end surface grinding process of the glass substrate is continuously performed using the magnetic functional fluid. We studied the cause of this. As a result, the reason why the processing rate of the chamfered surface of the glass substrate decreased was estimated as follows. That is, in the above-described end surface polishing treatment, the side wall surface of the end surface of the glass substrate is polished by a lump of magnetic functional fluid in a region (referred to as “region A1”) where the glass substrate does not cross the lines of magnetic force in plan view. The mass of the magnetic functional fluid in the region A1 has a high holding power of the mass due to the magnetic field because the magnetic field lines are not cut off, and the polishing is performed stably by the abrasive grains, so that the polishing processing rate is high. On the other hand, the chamfered surface of the end surface of the glass substrate is polished by a mass of a magnetic functional fluid in a region (referred to as “region A <b> 2”) where the glass substrate crosses the lines of magnetic force in plan view. The mass of the magnetic functional fluid in the region A2 has a relatively weak holding force due to the magnetic field because the magnetic field lines are at least partially cut off, and the mass collapses and deforms (plastic deformation), and the pressing force on the glass substrate decreases. It is easy to do. For this reason, since it is difficult to stably perform polishing with the abrasive grains in the region A2, it is considered that the processing rate of the chamfered surface is lower than that of the side wall surface. Based on this presumed cause, the inventor of the present application has further researched and modified the shape of the magnetic functional fluid deformed by contact with the substrate so that the pressing force against the substrate is kept constant, thereby chamfering the surface. It was found that a reduction in the processing rate of the steel can be suppressed.

本発明の第3の態様は、側壁面および主表面と側壁面との間に形成された面取面を有する板状の非磁性基板の端面を研磨する端面研磨処理を含む非磁性基板の製造方法である。
前記端面研磨処理は、磁場発生手段を用いて前記基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させることによって前記磁気機能性流体の塊を形成し、前記基板の端面と前記磁気機能性流体の塊とを接触させて、基板と前記磁気機能性流体の塊とを相対移動させることにより、前記基板の端面を研磨する処理である。ここで、基板と接触することにより変形した磁気機能性流体の塊の形状を、基板に対する押圧力を一定に維持するように修正することを特徴とする。
According to a third aspect of the present invention, there is provided a nonmagnetic substrate including an end surface polishing process for polishing an end surface of a plate-like nonmagnetic substrate having a side wall surface and a chamfered surface formed between the main surface and the side wall surface. Is the method.
The end surface polishing treatment uses the magnetic field generating means to form a magnetic field so that a magnetic line of force advances in the thickness direction of the substrate, and to hold the magnetic functional fluid containing abrasive grains in the magnetic field. A process of polishing the end face of the substrate by forming a fluid mass, bringing the end surface of the substrate into contact with the mass of the magnetic functional fluid, and moving the substrate and the mass of the magnetic functional fluid relative to each other. It is. Here, the shape of the mass of the magnetic functional fluid deformed by contact with the substrate is corrected so as to maintain a constant pressing force against the substrate.

その際、変形した前記磁気機能性流体に対して治具を接触させることによって、前記磁気機能性流体の塊の形状を修正してもよい。また、追加の磁気機能性流体の塊を供給することによって、前記磁気機能性流体の塊の形状を修正してもよい。   At that time, the shape of the mass of the magnetic functional fluid may be corrected by bringing a jig into contact with the deformed magnetic functional fluid. Also, the shape of the magnetic functional fluid mass may be modified by supplying additional magnetic functional fluid mass.

本発明の第4の態様は、側壁面および主表面と側壁面との間に形成された面取面を有する板状の非磁性基板の端面を研磨する端面研磨処理含む非磁性基板の製造方法である。
前記端面研磨処理は、磁場発生手段を用いて前記基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させることによって前記磁気機能性流体の塊を形成し、前記基板の端面と前記磁気機能性流体の塊とを接触させて、基板と前記磁気機能性流体の塊とを相対移動させることにより、前記基板の端面を研磨する処理であり、
前記基板と接触することにより変形した磁気機能流体の塊の形状を、元の形状に戻すように修正することを特徴とする。
According to a fourth aspect of the present invention, there is provided a nonmagnetic substrate manufacturing method including an end surface polishing process for polishing an end surface of a plate-like nonmagnetic substrate having a side wall surface and a chamfered surface formed between the main surface and the side wall surface. It is.
The end surface polishing treatment uses the magnetic field generating means to form a magnetic field so that a magnetic line of force advances in the thickness direction of the substrate, and to hold the magnetic functional fluid containing abrasive grains in the magnetic field. A process of polishing the end face of the substrate by forming a fluid mass, bringing the end surface of the substrate into contact with the mass of the magnetic functional fluid, and moving the substrate and the mass of the magnetic functional fluid relative to each other. And
The shape of the mass of the magnetic functional fluid deformed by contact with the substrate is corrected so as to return to the original shape.

本発明の第5の態様は、側壁面および主表面と側壁面との間に形成された面取面を有する板状の非磁性基板の端面を研磨する端面研磨処理含む非磁性基板の製造方法である。
前記端面研磨処理は、磁場発生手段を用いて前記基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させることによって前記磁気機能性流体の塊を形成し、前記基板の端面と前記磁気機能性流体の塊とを接触させて、基板と前記磁気機能性流体の塊とを相対移動させることにより、前記基板の端面を研磨する処理であり、
前記磁気機能流体の塊に治具を接触させることで前記磁気機能流体の塊の形を変えることを特徴とする。
According to a fifth aspect of the present invention, there is provided a nonmagnetic substrate manufacturing method including an end surface polishing process for polishing an end surface of a plate-like nonmagnetic substrate having a side wall surface and a chamfered surface formed between the main surface and the side wall surface. It is.
The end surface polishing treatment uses the magnetic field generating means to form a magnetic field so that a magnetic line of force advances in the thickness direction of the substrate, and to hold the magnetic functional fluid containing abrasive grains in the magnetic field. A process of polishing the end face of the substrate by forming a fluid mass, bringing the end surface of the substrate into contact with the mass of the magnetic functional fluid, and moving the substrate and the mass of the magnetic functional fluid relative to each other. And
The shape of the magnetic functional fluid mass is changed by bringing a jig into contact with the magnetic functional fluid mass.

前記治具の先端を前記磁気機能性流体の塊に差し込むようにして、前記磁気機能性流体の塊に対して前記治具を接触させてもよい。   The jig may be brought into contact with the mass of the magnetic functional fluid so that the tip of the jig is inserted into the mass of the magnetic functional fluid.

本発明の第3〜第5の態様において、前記磁場発生手段は、前記基板の厚さ方向に、N極の面とS極の面が互いに対向するように離間した状態で配置された磁石の対を含むようにしてもよい。   In the third to fifth aspects of the present invention, the magnetic field generating means is a magnet arranged in a state where the N-pole surface and the S-pole surface are spaced apart from each other in the thickness direction of the substrate. A pair may be included.

本発明の第3〜第5の態様において、前記磁石の対の前記N極の面と前記S極の面との間には、非磁性体からなるスペーサが設けられことが好ましい。   In the third to fifth aspects of the present invention, it is preferable that a spacer made of a nonmagnetic material is provided between the N pole surface and the S pole surface of the pair of magnets.

本発明の第3〜第5の態様において、前記基板は、円形状の内孔を有する円板形状であってもよい。このとき、前記磁場発生手段は、前記基板の前記内孔内に設けられて、前記内孔の側壁面である内周端面の周りで、前記基板の厚さ方向に進む内周側磁力線が進むように磁場を形成する内周側手段、および/または、前記基板の外周側に設けられて、前記基板の外周端面の周りで、前記基板の厚さ方向に外周側磁力線が進むように磁場を形成する外周側手段、を有してもよい。さらに、前記基板の内周端面および/または外周端面を、前記内周側手段および/または前記外周側手段のそれぞれによって形成される磁場に前記磁気機能性流体の塊を保持させた状態で、前記基板の内周端面および/または外周端面の両方を研磨してもよい。   In the third to fifth aspects of the present invention, the substrate may have a disk shape having a circular inner hole. At this time, the magnetic field generating means is provided in the inner hole of the substrate, and an inner peripheral side magnetic field line that advances in the thickness direction of the substrate advances around an inner peripheral end surface that is a side wall surface of the inner hole. And / or an inner peripheral means for forming a magnetic field and / or an outer peripheral side surface of the substrate, and a magnetic field is applied around the outer peripheral end surface of the substrate so that outer peripheral magnetic lines of force advance in the thickness direction of the substrate. You may have the outer peripheral side means to form. Further, the inner peripheral end face and / or the outer peripheral end face of the substrate is held in a state where the mass of the magnetic functional fluid is held in a magnetic field formed by each of the inner peripheral means and / or the outer peripheral means. Both the inner peripheral end surface and / or the outer peripheral end surface of the substrate may be polished.

第1の実施形態の磁気ディスク用ガラス基板の外観形状を示す図。The figure which shows the external appearance shape of the glass substrate for magnetic discs of 1st Embodiment. 第1の実施形態の磁気ディスク用ガラス基板の外周側の端部の拡大断面図。The expanded sectional view of the edge part of the outer peripheral side of the glass substrate for magnetic discs of 1st Embodiment. 磁気ディスク用ガラス基板の製造方法の一実施形態のフローを示す図。The figure which shows the flow of one Embodiment of the manufacturing method of the glass substrate for magnetic discs. 第1の実施形態の端面研磨の研磨方法を説明する図。The figure explaining the grinding | polishing method of the end surface grinding | polishing of 1st Embodiment. 第1の実施形態の端面研磨の研磨方法を説明する図。The figure explaining the grinding | polishing method of the end surface grinding | polishing of 1st Embodiment. 第1の実施形態の端面研磨の研磨方法を説明する図。The figure explaining the grinding | polishing method of the end surface grinding | polishing of 1st Embodiment. 第1の実施形態の端面研磨の研磨方法を説明する図。The figure explaining the grinding | polishing method of the end surface grinding | polishing of 1st Embodiment. 第1の実施形態の変形例に係る端面研磨の研磨方法を説明する図。The figure explaining the grinding | polishing method of the end surface grinding | polishing which concerns on the modification of 1st Embodiment. 第1の実施形態の変形例に係る端面研磨の研磨方法を説明する図。The figure explaining the grinding | polishing method of the end surface grinding | polishing which concerns on the modification of 1st Embodiment. 第2の実施形態において、ガラス基板の端面研磨において研磨流体の形状を修正しない場合に、面取面の加工レートが低下する理由について説明する図。The figure explaining the reason for which the processing rate of a chamfering surface falls, when not correcting the shape of polishing fluid in the end surface grinding | polishing of a glass substrate in 2nd Embodiment. 第2の実施形態において、形状修正装置を用いて研磨流体の形状を修正する場合の構成例を示す図。The figure which shows the structural example in the case of correcting the shape of polishing fluid using a shape correction apparatus in 2nd Embodiment. 第2の実施形態において、形状修正装置を用いた研磨流体の形状修正処理を説明する図。The figure explaining the shape correction process of the polishing fluid using the shape correction apparatus in 2nd Embodiment. 第2の実施形態において、供給装置を用いて研磨流体の形状を修正する場合の構成例を示す図。The figure which shows the structural example in the case of correcting the shape of polishing fluid using a supply apparatus in 2nd Embodiment. 第2の実施形態において、積層体を構成するガラス基板の端面を研磨するときに、供給装置を用いて研磨流体の形状を修正する場合の構成例を示す図。The figure which shows the structural example in the case of correcting the shape of a polishing fluid using a supply apparatus, when grind | polishing the end surface of the glass substrate which comprises a laminated body in 2nd Embodiment. 側壁面と面取面との間の部分の形状の曲率半径をもとめる方法について説明する図。The figure explaining the method of calculating | requiring the curvature radius of the shape of the part between a side wall surface and a chamfering surface.

(第1の実施形態)
以下、本発明の非磁性基板の製造方法の一実施形態として、磁気ディスク用基板の製造方法について詳細に説明する。なお、以下の説明では、磁気ディスク用基板としてガラス基板を用いる場合について説明するが、それに限られずアルミニウム合成基板であってもよい。
[磁気ディスク用ガラス基板]
本実施形態における磁気ディスク用ガラス基板の材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平坦度および基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。
(First embodiment)
Hereinafter, a method for manufacturing a magnetic disk substrate will be described in detail as an embodiment of the method for manufacturing a nonmagnetic substrate of the present invention. In the following description, a case where a glass substrate is used as the magnetic disk substrate will be described. However, the present invention is not limited to this, and an aluminum synthetic substrate may be used.
[Magnetic disk glass substrate]
Aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used as the material for the magnetic disk glass substrate in the present embodiment. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in flatness of the main surface and strength of the substrate can be produced.

本実施形態の磁気ディスク用ガラス基板に用いられるガラス材料の組成を限定するものではないが、本実施形態のガラス基板は好ましくは、必須成分として、SiO、LiO、NaO、ならびに、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上のアルカリ土類金属酸化物を含み、MgO、CaO、SrOおよびBaOの合計含有量に対するCaOの含有量のモル比(CaO/(MgO+CaO+SrO+BaO))が0.20以下であって、ガラス転移温度が650℃以上であるアモルファスのアルミノシリケートガラスであってもよい。
また、酸化物基準の質量%で、SiO:45.60〜60%、およびAl:7〜20%、およびB:1.00〜8%未満、およびP:0.50〜7%、およびTiO:1〜15%、およびROの合計量:5〜35%(ただしRはZnおよびMg)の各成分を含有し、CaOの含有量が3.00%以下、BaOの含有量が4%以下であり、PbO成分、As成分およびSb成分およびCl、NO、SO2−、F成分を含有せず、主結晶相としてRAl、RTiO、(ただしRはZn、Mgから選択される1種類以上)から選ばれる一種以上を含有し、主結晶相の結晶粒径が0.5nm〜20nmの範囲であり、結晶化度が15%以下であり、比重が2.95以下であることを特徴とする結晶化ガラスであってもよい。
Although the composition of the glass material used for the glass substrate for magnetic disk of the present embodiment is not limited, the glass substrate of the present embodiment is preferably composed of SiO 2 , Li 2 O, Na 2 O, and And at least one alkaline earth metal oxide selected from the group consisting of MgO, CaO, SrO and BaO, and the molar ratio of the content of CaO to the total content of MgO, CaO, SrO and BaO (CaO / (MgO + CaO + SrO + BaO )) Is 0.20 or less, and an amorphous aluminosilicate glass having a glass transition temperature of 650 ° C. or more may be used.
Also, in terms of% by mass on the oxide basis, SiO 2: 45.60 to 60%, and Al 2 O 3: 7~20%, and B 2 O 3: less than 1.00 to 8%, and P 2 O 5 : 0.50 to 7%, and TiO 2 : 1 to 15%, and the total amount of RO: 5 to 35% (wherein R is Zn and Mg), and the content of CaO is 3.00 %, BaO content is 4% or less, PbO component, As 2 O 3 component and Sb 2 O 3 component and Cl , NO , SO 2− , F component are not contained, and the main crystal phase RAl 2 O 4 , R 2 TiO 4 (where R is one or more selected from Zn and Mg), and the crystal grain size of the main crystal phase is in the range of 0.5 nm to 20 nm. The crystallinity is 15% or less and the specific gravity is 2.95 or less. It may be a crystallized glass characterized by the following.

図1Aに、実施形態の磁気ディスク用ガラス基板1の外観形状を示す。図1Aに示すように、本実施形態における磁気ディスク用ガラス基板1は、内孔2が形成された、ドーナツ型の薄板のガラス基板である。磁気ディスク用ガラス基板のサイズは問わないが、例えば、公称直径2.5インチの磁気ディスク用ガラス基板として好適である。
図1Bは、実施形態の磁気ディスク用ガラス基板の外周側の端部の断面を拡大して示す図である。図1Bに示すように、磁気ディスク用ガラス基板は、一対の主表面1pと、一対の主表面1pに対して直交する方向に沿って配置された側壁面1tと、一対の主表面1pと側壁面1tとの間に配置された一対の面取面1cとを有する。図示しないが、磁気ディスク用ガラス基板の内周側の端部についても同様に、側壁面と面取面が形成されている。側壁面1tを基準として各面取面1cのなす角度(面取り角)は同一であり、例えば40〜50度である。面取り角は典型的には図示するように45度である。なお、面取面は、断面視において円弧状に形成されていてもよい。
FIG. 1A shows the appearance of the magnetic disk glass substrate 1 of the embodiment. As shown in FIG. 1A, a glass substrate 1 for a magnetic disk in the present embodiment is a donut-shaped thin glass substrate in which an inner hole 2 is formed. Although the size of the glass substrate for magnetic disks is not ask | required, for example, it is suitable as a glass substrate for magnetic disks with a nominal diameter of 2.5 inches.
FIG. 1B is an enlarged view showing a cross section of an end portion on the outer peripheral side of the glass substrate for magnetic disk of the embodiment. As shown in FIG. 1B, the magnetic disk glass substrate includes a pair of main surfaces 1p, side wall surfaces 1t arranged along a direction orthogonal to the pair of main surfaces 1p, and a pair of main surfaces 1p and sides. It has a pair of chamfered surfaces 1c arranged between the wall surface 1t. Although not shown, a side wall surface and a chamfered surface are similarly formed on the inner peripheral side end of the magnetic disk glass substrate. The angle (chamfer angle) formed by each chamfered surface 1c with respect to the side wall surface 1t is the same, for example, 40 to 50 degrees. The chamfer angle is typically 45 degrees as shown. Note that the chamfered surface may be formed in an arc shape in a sectional view.

本実施形態の磁気ディスク用ガラス基板の板厚は、特に限定されるものではないが、例えば、公称2.5インチの磁気ディスク用ガラス基板の場合には、例えば0.8mm、0.635mm、0.5mmであり、公称3.5インチの磁気ディスク用ガラス基板の場合には、例えば0.5〜3.0mmである。なお、非磁性基板としてアルミニウム合金基板を使用する場合についても同様である。   The thickness of the magnetic disk glass substrate of the present embodiment is not particularly limited. For example, in the case of a magnetic disk glass substrate having a nominal size of 2.5 inches, for example, 0.8 mm, 0.635 mm, In the case of a glass substrate for a magnetic disk having a nominal diameter of 3.5 inches, it is, for example, 0.5 to 3.0 mm. The same applies to the case where an aluminum alloy substrate is used as the nonmagnetic substrate.

[磁気ディスク用ガラス基板の製造方法]
次に、図2を参照して、磁気ディスク用ガラス基板の製造方法のフローを説明する。図2は、磁気ディスク用ガラス基板の製造方法の一実施形態のフローを示す図である。
図2に示すように、先ず、一対の主表面を有する板状のガラスブランクを成形する(ステップS10)。次に、成形されたガラスブランクをスクライブして、円環状のガラス基板を作製する(ステップS20)。これにより、中心部分に円孔の貫通孔を有する磁気ディスク用ガラス基板(以降単にガラス基板という)が得られる。次に、スクライブされたガラス基板に対して形状加工(チャンファリング加工)を行う(ステップS30)。次に、ガラス基板に対して固定砥粒による研削を施す(ステップS40)。次に、ガラス基板の端面研磨を行う(ステップS50)。次に、ガラス基板の主表面に第1研磨を施す(ステップS60)。次に、第1研磨後のガラス基板に対して化学強化を施す(ステップS70)。次に、化学強化されたガラス基板に対して第2研磨を施す(ステップS80)。以上の処理を経て、要求された表面凹凸を満足する磁気ディスク用ガラス基板が得られる。なお、ガラスブランク成形処理(ステップS10)から形状加工処理(ステップS30)までの処理により、ガラスブランクから円形状のガラス基板が作製される。以下、各処理について、詳細に説明する。
[Method of manufacturing glass substrate for magnetic disk]
Next, with reference to FIG. 2, the flow of the manufacturing method of the glass substrate for magnetic discs is demonstrated. FIG. 2 is a diagram showing a flow of an embodiment of a method for manufacturing a glass substrate for magnetic disk.
As shown in FIG. 2, first, a plate-shaped glass blank having a pair of main surfaces is formed (step S10). Next, the formed glass blank is scribed to produce an annular glass substrate (step S20). As a result, a magnetic disk glass substrate (hereinafter simply referred to as a glass substrate) having a circular through hole at the center is obtained. Next, shape processing (chambering processing) is performed on the scribed glass substrate (step S30). Next, the glass substrate is ground with fixed abrasive grains (step S40). Next, the end surface of the glass substrate is polished (step S50). Next, 1st grinding | polishing is performed to the main surface of a glass substrate (step S60). Next, chemical strengthening is performed on the glass substrate after the first polishing (step S70). Next, the second polishing is performed on the chemically strengthened glass substrate (step S80). Through the above processing, a magnetic disk glass substrate that satisfies the required surface irregularities can be obtained. In addition, a circular glass substrate is produced from a glass blank by the process from a glass blank shaping | molding process (step S10) to a shape processing process (step S30). Hereinafter, each process will be described in detail.

(a)ガラスブランク成形処理(ステップS10)
例えばフロート法によって板状ガラスを形成した後、この板状ガラスから、磁気ディスク用ガラス基板の元となる所定形状のガラス素板が切り出される。フロート法の代わりに、例えば上型と下型を用いたプレス成形によってガラス素板(ガラスブランク)を成形してもよい。なお、ガラス素板は、これらの方法に限らず、ダウンドロー法、リドロー法、フュージョン法などの公知の製造方法を用いて製造することもできる。
なお、ガラス素板の両主表面に対して、必要に応じて、粗研削処理を行ってもよい。
(A) Glass blank forming process (step S10)
For example, after a plate glass is formed by a float method, a glass base plate having a predetermined shape that is a base of a magnetic disk glass substrate is cut out from the plate glass. Instead of the float process, for example, a glass blank (glass blank) may be formed by press molding using an upper mold and a lower mold. In addition, a glass base plate can also be manufactured not only using these methods but using well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method.
In addition, you may perform a rough grinding process with respect to both the main surfaces of a glass base plate as needed.

(b)スクライブ処理(ステップS20)
次に、スクライブ処理について説明する。ガラスブランク成形処理の後、スクライブ処理では、成形されたガラスブランクに対してスクライバを用いたスクライブ処理が行い、円形状の内孔が形成された円環状のガラス基板が得られる。なお、ガラスブランクに対してコアドリル等を用いて円形状の内孔を形成することにより円環状のガラス基板を得ることもできる。
(B) Scribe process (step S20)
Next, the scribe process will be described. In the scribing process after the glass blank forming process, the formed glass blank is subjected to a scribing process using a scriber to obtain an annular glass substrate in which circular inner holes are formed. An annular glass substrate can also be obtained by forming a circular inner hole on the glass blank using a core drill or the like.

(c)形状加工処理(ステップS30)
次に、形状加工処理について説明する。形状加工処理では、スクライブ処理後のガラス基板の端部に対するチャンファリング加工(外周端面および内周端面の面取り加工)を含む。チャンファリング加工は、スクライブ処理後のガラス基板の外周端面および内周端面において、ダイヤモンド砥石により面取りを施す形状加工である。面取りの傾斜角度は、主表面に対して例えば40〜50度であり、略45度であることが好ましい。この形状加工によって、所定の断面形状をしたガラス基板が作製される。
(C) Shape processing (step S30)
Next, shape processing will be described. The shape processing includes chamfering (chamfering of the outer peripheral end surface and the inner peripheral end surface) for the end portion of the glass substrate after the scribe processing. A chamfering process is a shape process which chamfers with a diamond grindstone in the outer peripheral end surface and inner peripheral end surface of the glass substrate after a scribe process. The chamfering inclination angle is, for example, 40 to 50 degrees with respect to the main surface, and is preferably about 45 degrees. By this shape processing, a glass substrate having a predetermined cross-sectional shape is produced.

(d)精研削処理(ステップS40)
精研削処理では、上定盤、下定盤、インターナルギヤ、キャリヤ、太陽ギヤを備えた公知の遊星歯車機構を持った両面研削装置を用いて、ガラス基板の主表面に対して研削加工を行う。具体的には、ガラス基板の外周端面が、両面研削装置の保持部材に設けられた保持孔内に保持されながらガラス基板の両側の主表面の研削が行われる。研削による取り代は、例えば数μm〜100μm程度である。精研削処理に用いられる固定砥粒の粒子サイズは、例えば10μm程度である。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。ガラス基板の挟持は、円板状のキャリヤに設けられた保持孔にガラス基板が保持された状態で、キャリヤが上定盤および下定盤の間に挟まれる。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面を研削することができる。
(D) Precision grinding process (step S40)
In the fine grinding process, the main surface of the glass substrate is ground using a double-side grinding machine having a known planetary gear mechanism with an upper surface plate, a lower surface plate, an internal gear, a carrier, and a sun gear. . Specifically, the main surface on both sides of the glass substrate is ground while the outer peripheral end surface of the glass substrate is held in the holding hole provided in the holding member of the double-side grinding apparatus. The machining allowance by grinding is, for example, about several μm to 100 μm. The particle size of the fixed abrasive used for the fine grinding process is, for example, about 10 μm. The double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. The glass substrate is sandwiched between the upper surface plate and the lower surface plate in a state where the glass substrate is held in a holding hole provided in the disk-shaped carrier. And by moving either the upper surface plate or the lower surface plate, or both, the glass substrate and each surface plate can be moved relatively to grind both main surfaces of the glass substrate. it can.

(e)端面研磨処理(ステップS50)
次に、端面研磨処理を説明する。端面研磨では、磁場発生手段を用いてガラス基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体(以下、「研磨流体」という。)を保持させ、ガラス基板の端面を研磨流体と接触させた状態で研磨流体に対して相対移動させることにより、ガラス基板の端面を研磨する。研磨流体は、磁場において塊を形成している。研磨流体に含まれる研磨砥粒として、例えば、酸化セリウムや酸化ジルコニウム等の微粒子が用いられる。また、端面研磨による取り代は、10μm以下であり、より好ましくは5μm以下である。端面研磨を行うことにより、ガラス基板の端面での塵埃等が付着した汚染、傷等の損傷の除去を行うことにより、サーマルアスペリティ障害の発生の防止や、ナトリウムやカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる。本実施形態の端面研磨は、従来の端面研磨の方式、例えばブラシを用いて研磨スラリでガラス基板の端面を研磨する従来の磁気研磨の方式に比べて短時間に研磨することができ、極めて生産効率がよい。端面研磨については後述する。
(E) End face polishing process (step S50)
Next, the end face polishing process will be described. In end surface polishing, a magnetic field is formed by using magnetic field generating means so that magnetic lines of force advance in the thickness direction of the glass substrate, and a magnetic functional fluid (hereinafter referred to as “polishing fluid”) containing abrasive grains in the magnetic field. The end surface of the glass substrate is polished by being held and moved relative to the polishing fluid in a state where the end surface of the glass substrate is in contact with the polishing fluid. The polishing fluid forms a lump in the magnetic field. As the abrasive grains contained in the polishing fluid, for example, fine particles such as cerium oxide and zirconium oxide are used. Moreover, the machining allowance by end surface grinding | polishing is 10 micrometers or less, More preferably, it is 5 micrometers or less. By polishing the end face, removing contamination such as dirt and scratches on the end face of the glass substrate will prevent the occurrence of thermal asperity failure and cause corrosion such as sodium and potassium. The occurrence of ion precipitation can be prevented. The end surface polishing of this embodiment can be polished in a shorter time than the conventional end surface polishing method, for example, the conventional magnetic polishing method of polishing the end surface of the glass substrate with a polishing slurry using a brush. Efficiency is good. The end face polishing will be described later.

(f)第1研磨処理(ステップS60)
次に、ガラス基板の主表面に第1研磨処理が施される。第1研磨処理では、遊星歯車機構を備えた両面研磨装置を用いてガラス基板の両側の主表面に対して研磨を行う。第1研磨処理では、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒などの遊離砥粒と、樹脂ポリッシャが用いられる。第1研磨によって、例えば精研削処理を行った場合に主表面に残留したクラックや歪みを除去する。
(F) First polishing process (step S60)
Next, a first polishing process is performed on the main surface of the glass substrate. In the first polishing process, the main surfaces on both sides of the glass substrate are polished using a double-side polishing apparatus equipped with a planetary gear mechanism. In the first polishing process, for example, loose abrasive grains such as cerium oxide abrasive grains or zirconia abrasive grains and a resin polisher are used. The first polishing removes cracks and distortions remaining on the main surface when, for example, fine grinding is performed.

(g)化学強化処理(ステップS70)
ガラス基板は適宜化学強化することができる。化学強化液として、例えば硝酸カリウム,硝酸ナトリウム、またはそれらの混合物を加熱して得られる溶融液を用いることができる。そして、ガラス基板を化学強化液に浸漬することによって、ガラス基板の表層にあるガラス組成中のリチウムイオンやナトリウムイオンが、それぞれ化学強化液中のイオン半径が相対的に大きいナトリウムイオンやカリウムイオンにそれぞれ置換されることで表層部分に圧縮応力層が形成され、ガラス基板が強化される。
化学強化処理を行うタイミングは、適宜決定することができるが、化学強化処理の後に研磨処理を行うようにすると、表面の平滑化とともに化学強化処理によってガラス基板の表面に固着した異物を取り除くことができるので特に好ましい。また、化学強化処理は、必要に応じて行われればよく、行われなくてもよい。
(G) Chemical strengthening process (step S70)
The glass substrate can be appropriately chemically strengthened. As the chemical strengthening liquid, for example, a molten liquid obtained by heating potassium nitrate, sodium nitrate, or a mixture thereof can be used. Then, by immersing the glass substrate in the chemical strengthening solution, lithium ions and sodium ions in the glass composition on the surface of the glass substrate are converted into sodium ions and potassium ions having relatively large ion radii in the chemical strengthening solution, respectively. By replacing each, a compressive stress layer is formed in the surface layer portion, and the glass substrate is strengthened.
The timing of performing the chemical strengthening treatment can be determined as appropriate. However, if the polishing treatment is performed after the chemical strengthening treatment, the foreign matter fixed to the surface of the glass substrate by the chemical strengthening treatment can be removed together with the smoothing of the surface. This is particularly preferable because it can be performed. Further, the chemical strengthening treatment may be performed as necessary, and may not be performed.

(h)第2研磨(最終研磨)処理(ステップS80)
次に、化学強化処理後のガラス基板に第2研磨が施される。第2研磨は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。第2研磨処理では、第1研磨処理よりも、遊離砥粒の粒子サイズと研磨パッドの樹脂ポリッシャの硬度を小さくすることが好ましい。このようにすることで、ガラス基板の表面粗さを極めて小さくすることができる。
(H) Second polishing (final polishing) process (step S80)
Next, 2nd grinding | polishing is given to the glass substrate after a chemical strengthening process. The second polishing is intended for mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. In the second polishing process, it is preferable to make the particle size of the loose abrasive grains and the hardness of the resin polisher of the polishing pad smaller than in the first polishing process. By doing in this way, the surface roughness of a glass substrate can be made extremely small.

第2研磨処理に用いる遊離砥粒として、例えばコロイダルシリカ等の微粒子が用いられる。
第2研磨処理は、必ずしも必須な処理ではないが、ガラス基板の主表面の表面凹凸のレベルをさらに良好なものとすることができる点で実施することが好ましい。この後、洗浄を行うことによって、磁気ディスク用ガラス基板となる。なお、第2研磨処理後のガラス基板の表面粗さの算術平均粗さRaが0.15nm以下となるようにガラス基板が研磨されることが、表面粗さの小さい磁気ディスク用ガラス基板を作製する点で好ましい。
As the free abrasive grains used for the second polishing treatment, for example, fine particles such as colloidal silica are used.
The second polishing process is not necessarily an essential process, but it is preferable that the second polishing process is performed in that the level of surface irregularities on the main surface of the glass substrate can be further improved. Thereafter, by cleaning, a glass substrate for a magnetic disk is obtained. Note that the glass substrate is polished so that the arithmetic average roughness Ra of the surface roughness of the glass substrate after the second polishing treatment is 0.15 nm or less, thereby producing a glass substrate for a magnetic disk having a small surface roughness. This is preferable.

[端面研磨]
ステップS50で行う端面研磨についてより詳細に説明する。図3および図4は、本実施形態の端面研磨の研磨方法を説明する図であり、わかり易く説明した図である。
端面研磨を行う研磨装置10は、磁場発生手段と研磨流体を用いてガラス基板の端面の研磨を行う。図3および図4は、ガラス基板の外周端面の研磨を説明している。端面研磨を行う研磨装置10の概要を説明する。図3に示すように、研磨装置10は、円筒状の永久磁石である一対の磁石12(N極)および磁石14(S極)と、スペーサ16と、を含む。一対の磁石12(N極)および磁石14(S極)の間には、スペーサ16の回りに磁石12から磁石14に磁力線が向かう磁場が形成される。図3に示す例では、ガラス基板Gの厚さ方向に、N極の面とS極の面が互いに対向するように離間した状態で配置された磁石の対が磁場発生手段として用いられる。磁石12,14との間には、磁石12のN極の端面と磁石14のS極の端面との間の離間距離を予め定めた距離とするために、非磁性体からなるスペーサ16が設けられる。
[End polishing]
The end surface polishing performed in step S50 will be described in more detail. FIG. 3 and FIG. 4 are diagrams for explaining a polishing method for end face polishing according to the present embodiment, and are diagrams for easy understanding.
The polishing apparatus 10 that performs end face polishing polishes the end face of the glass substrate using a magnetic field generating means and a polishing fluid. 3 and 4 illustrate polishing of the outer peripheral end face of the glass substrate. An outline of the polishing apparatus 10 that performs end face polishing will be described. As shown in FIG. 3, the polishing apparatus 10 includes a pair of magnets 12 (N poles) and magnets 14 (S poles) that are cylindrical permanent magnets, and a spacer 16. Between the pair of magnets 12 (N pole) and magnet 14 (S pole), a magnetic field is formed around the spacer 16 from which magnetic lines of force are directed from the magnet 12 to the magnet 14. In the example shown in FIG. 3, a pair of magnets arranged in the thickness direction of the glass substrate G so that the N-pole surface and the S-pole surface are spaced apart from each other is used as the magnetic field generating means. A spacer 16 made of a non-magnetic material is provided between the magnets 12 and 14 so that the separation distance between the N pole end face of the magnet 12 and the S pole end face of the magnet 14 is a predetermined distance. It is done.

図4に示すように、研磨装置10を用いて端面研磨を行う場合には、端面研磨の対象となるガラス基板Gは、図示されない回転体によって保持され、中心軸回りに回転させられる。
磁石12から磁石14に向かう磁力線が進むように磁場が形成され、当該磁場に研磨流体の塊Fを保持させた状態で、回転体に保持されるガラス基板Gの外周端部を研磨流体の塊Fに繰り返し接触させて、ガラス基板Gと研磨流体の塊Fとを相対移動させることにより、ガラス基板Gの外周端面を研磨する。図4に示すように、研磨流体の塊Fには、磁性体微粒子5aおよび研磨砥粒5bが含まれる。
研磨装置10、および、ガラス基板Gを保持する図示されない回転体は、図示されない駆動モータと機械的に接続されている。例えば、研磨装置10とガラス基板Gを保持する回転体との回転方向を互いに逆向きに回転させ、研磨装置10と回転体との周速度の相対速度を40〜500m/分として回転させることが好ましい。なお、研磨装置10を固定し、それによって研磨流体の塊Fを固定し、ガラス基板Gを回転させることで、ガラス基板Gの外周端面と研磨流体の塊Fとを相対的に移動させてもよい。
As shown in FIG. 4, when end face polishing is performed using the polishing apparatus 10, the glass substrate G to be end face polished is held by a rotating body (not shown) and rotated around the central axis.
A magnetic field is formed so that the lines of magnetic force directed from the magnet 12 to the magnet 14 advance, and the outer peripheral end of the glass substrate G held by the rotating body is held in the magnetic fluid while the polishing fluid lump F is held in the magnetic field. The outer peripheral end surface of the glass substrate G is polished by repeatedly contacting the glass substrate G and the lump F of the polishing fluid by being brought into contact with F repeatedly. As shown in FIG. 4, the lump F of the polishing fluid includes magnetic fine particles 5a and polishing abrasive grains 5b.
The polishing apparatus 10 and a rotating body (not shown) that holds the glass substrate G are mechanically connected to a driving motor (not shown). For example, the rotating directions of the polishing apparatus 10 and the rotating body that holds the glass substrate G are rotated in opposite directions, and the relative speed of the peripheral speed between the polishing apparatus 10 and the rotating body is rotated at 40 to 500 m / min. preferable. Note that the polishing apparatus 10 is fixed, whereby the lump F of the polishing fluid is fixed, and the glass substrate G is rotated, so that the outer peripheral end surface of the glass substrate G and the lump F of the polishing fluid can be relatively moved. Good.

なお、図3および図4に示す例では、磁場発生手段として永久磁石を用いたが、電磁石を用いることもできる。   In the examples shown in FIGS. 3 and 4, a permanent magnet is used as the magnetic field generating means, but an electromagnet can also be used.

端面研磨に用いる研磨流体として、例えば、0.1〜10μmの平均粒径(D50)のFe(鉄)元素を含む磁性体微粒子を3〜5g/cm3含む非極性オイル、および界面活性剤を含んだ流体が用いられる。非極性オイルあるいは極性オイルは、例えば、室温(20℃)において100〜1000(mPa・秒)の粘度を有する。
磁石12から磁石14に磁力線が向かう磁場によって研磨流体は比較的高い弾性特性を有する塊Fとなるので、ガラス基板の端面を研磨流体の塊に押圧することにより効率よく研磨することができる。すなわち、加工レートを従来よりも高くすることができ、効率よく研磨をすることができる。
As a polishing fluid used for end face polishing, for example, a nonpolar oil containing 3 to 5 g / cm 3 of magnetic fine particles containing Fe (iron) element having an average particle diameter (D50) of 0.1 to 10 μm, and a surfactant are used. The contained fluid is used. Nonpolar oil or polar oil has a viscosity of 100 to 1000 (mPa · sec) at room temperature (20 ° C.), for example.
Since the polishing fluid becomes a lump F having relatively high elastic characteristics due to the magnetic field from the magnet 12 toward the magnet 14, the polishing fluid can be efficiently polished by pressing the end face of the glass substrate against the lump of polishing fluid. That is, the processing rate can be made higher than before, and polishing can be performed efficiently.

研磨流体に含まれる研磨砥粒として、酸化セリウム、コロイダルシリカ、酸化ジルコニア、アルミナ砥粒、ダイヤモンド砥粒等の公知のガラス基板の研磨砥粒を用いることができる。研磨砥粒の平均粒径(D50)については、例えば0.5〜10μmである。この範囲の研磨砥粒を用いることにより、ガラス基板の端面を良好に研磨することができる。研磨砥粒は、研磨流体中に、例えば3〜15[Vol%]含まれる。
なお、平均粒径(D50)とは、体積分率で計算した累積体積頻度が粒径の小さいほうから計算して50%となる粒径を意味している。
As abrasive grains contained in the polishing fluid, known abrasive grains of glass substrates such as cerium oxide, colloidal silica, zirconia oxide, alumina abrasive grains, and diamond abrasive grains can be used. The average particle diameter (D50) of the abrasive grains is, for example, 0.5 to 10 μm. By using the abrasive grains in this range, the end face of the glass substrate can be satisfactorily polished. The abrasive grains are contained in the polishing fluid, for example, 3 to 15 [Vol%].
The average particle size (D50) means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% calculated from the smaller particle size.

研磨流体の粘度は室温(20℃)で1000〜2000[mPa・秒]であることが、研磨流体の塊Fを形成させ、端面研磨を効率よく行う点で好ましい。粘度が低いと塊Fを形成し難くなり、ガラス基板Gの端面に押圧された状態で相対運動させて研磨することは難しい。一方、研磨流体の粘度が過度に高い場合、研磨流体の塊Fが研磨中ガラス基板Gの端部形状に沿って形成され均一な押圧状態が形成し難い。また、磁場発生手段によって発生する磁場の磁束密度は、研磨流体の塊Fを形成させ、端面研磨を効率よく行う点で、0.3〜0.9[テスラ]であることが好ましい。また、磁気機能性流体の降伏応力は、0.4[テスラ]の磁場を印加した状態で30kPa以上であることが好ましく、30〜60kPaであることがより好ましい。   The viscosity of the polishing fluid is preferably 1000 to 2000 [mPa · sec] at room temperature (20 ° C.) in that a lump F of the polishing fluid is formed and end face polishing is efficiently performed. When the viscosity is low, it is difficult to form the lump F, and it is difficult to perform polishing while being relatively moved while being pressed against the end face of the glass substrate G. On the other hand, when the viscosity of the polishing fluid is excessively high, the lump F of the polishing fluid is formed along the shape of the edge of the glass substrate G during polishing, and it is difficult to form a uniform pressed state. Further, the magnetic flux density of the magnetic field generated by the magnetic field generating means is preferably 0.3 to 0.9 [Tesla] in that the polishing fluid lump F is formed and the end face polishing is performed efficiently. Further, the yield stress of the magnetic functional fluid is preferably 30 kPa or more, more preferably 30 to 60 kPa, in a state where a magnetic field of 0.4 [Tesla] is applied.

ここで、研磨流体、すなわち磁気機能性流体の降伏応力(降伏せん断応力)は、 例えば次の方法により求めることができる。回転粘度計に、0.4[テスラ]の磁場を印加可能な磁場発生手段(永久磁石、電磁石等)を組込んだ装置を用いて、磁気機能性流体のせん断速度とせん断応力の関係を求め、得られたせん断速度とせん断応力の関係を公知のCassonの式を用いて近似することよって、磁気機能性流体の降伏応力を求めることができる。
上記降伏応力は、磁場によって保持された研磨流体とガラス基板の外周端面とが相対移動する際に、ガラス基板が研磨流体から受ける圧力、即ちせん断応力に影響を与える。したがって、研磨流体の降伏応力が高い程(研磨流体流動時のせん断応力が高い程)、研磨砥粒とガラス基板との接触による研磨が効率的に行われ、端面研磨の加工レートを向上させることができる。
Here, the yield stress (yield shear stress) of the polishing fluid, that is, the magnetic functional fluid, can be determined by the following method, for example. Using a rotary viscometer that incorporates magnetic field generation means (permanent magnet, electromagnet, etc.) capable of applying a 0.4 [Tesla] magnetic field, the relationship between the shear rate and shear stress of the magnetic functional fluid is determined. The yield stress of the magnetic functional fluid can be obtained by approximating the relationship between the obtained shear rate and the shear stress using a known Casson equation.
The yield stress affects the pressure that the glass substrate receives from the polishing fluid, that is, shear stress, when the polishing fluid held by the magnetic field and the outer peripheral end surface of the glass substrate move relative to each other. Therefore, the higher the yield stress of the polishing fluid (the higher the shear stress when the polishing fluid flows), the more efficient polishing is achieved by contact between the abrasive grains and the glass substrate, and the end face polishing processing rate is improved. Can do.

上述した研磨流体を用いたガラス基板の端面研磨では、ワークである複数のガラス基板の端面を枚葉式の処理によって連続的に研磨する場合には、加工レートが低下する虞がある。この加工レートが低下する原因について図5を参照して説明する。図5は、ガラス基板Gの外周端面を研磨しているときの磁力線について概念的に示す図である。
ガラス基板の端面研磨中に研磨流体の塊は、研磨装置10の回転に伴って比較的高速で回転しながらガラス基板Gの端部と接触し、その一部が少しずつ外部に排出される。研磨流体の排出によって、磁場によって保持される研磨流体に含まれる研磨砥粒についても外部に放出される。特に、図4に示したように、N極およびS極の磁石の間に非磁性体であるガラス基板の端部を介在させて研磨を行う場合には、研磨流体に含まれる研磨砥粒が外部に放出されやすくなる(つまり、研磨流体中の研磨砥粒の濃度が低下する)が、その理由について図5を参照して説明する。
In the end surface polishing of the glass substrate using the polishing fluid described above, when the end surfaces of a plurality of glass substrates that are workpieces are continuously polished by a single wafer processing, the processing rate may be lowered. The reason why the machining rate is lowered will be described with reference to FIG. FIG. 5 is a diagram conceptually showing the lines of magnetic force when the outer peripheral end surface of the glass substrate G is being polished.
During polishing of the end face of the glass substrate, a lump of polishing fluid contacts the end of the glass substrate G while rotating at a relatively high speed as the polishing apparatus 10 rotates, and a part of the lump is discharged to the outside little by little. As the polishing fluid is discharged, the abrasive grains contained in the polishing fluid held by the magnetic field are also released to the outside. In particular, as shown in FIG. 4, when polishing is performed by interposing an end portion of a glass substrate that is a non-magnetic material between N-pole and S-pole magnets, the abrasive grains contained in the polishing fluid are The reason why it is likely to be released to the outside (that is, the concentration of the abrasive grains in the polishing fluid decreases) will be described with reference to FIG.

図5において、ガラス基板Gを研磨流体に対して押し込み、ガラス基板Gと研磨流体とを相対的に移動させる端面研磨では、N極の磁石12とS極の磁石14の間に発生した磁力線を横切るようにガラス基板の端部が介在する。このとき、図5の領域A1では、研磨流体中の磁性体微粒子が磁力線に沿って配列した状態となっていることから磁場による研磨砥粒の保持力が高く、ガラス基板Gは研磨流体からの反力(つまり、ガラス基板Gに対する押圧力)を受け易い。一方、領域A2では、ガラス基板の端部が磁力線を横切ることにより、研磨流体中の磁性体微粒子の配列が崩れ、それによって磁場による研磨砥粒の保持力が局所的に低下することから、研磨砥粒が外部に放出されやすくなる。
その結果、複数のガラス基板Gについて連続的に端面研磨を行う場合には、磁場による保持力が高い領域A1にある研磨流体については研磨砥粒の濃度が高く維持されるが、磁場による保持力が低下する領域A2にある研磨流体については研磨砥粒の濃度が低下していく。そのため、領域A1に含まれるガラス基板Gの側壁面Co1は、連続的に研磨を行っても加工レートが低下しないが、領域A2に含まれるガラス基板Gの面取面Co2,Co3は、連続的に研磨を行った場合には研磨流体中の研磨砥粒の量が少なくなっていき、それに伴って加工レートが低下していく。
In FIG. 5, in the end surface polishing in which the glass substrate G is pushed into the polishing fluid and the glass substrate G and the polishing fluid are moved relative to each other, lines of magnetic force generated between the N pole magnet 12 and the S pole magnet 14 are used. The edge part of a glass substrate interposes so that it may cross. At this time, in the area A1 of FIG. 5, since the magnetic fine particles in the polishing fluid are arranged along the lines of magnetic force , the holding power of the abrasive grains by the magnetic field is high, and the glass substrate G is removed from the polishing fluid. It is easy to receive a reaction force (that is, a pressing force against the glass substrate G). On the other hand, in the region A2, because the edge of the glass substrate crosses the magnetic field lines, the arrangement of the magnetic fine particles in the polishing fluid collapses, thereby locally reducing the holding power of the abrasive grains by the magnetic field, The abrasive grains are easily released to the outside.
As a result, when end face polishing is continuously performed for a plurality of glass substrates G, the polishing fluid in the region A1 having a high holding power by the magnetic field maintains a high concentration of the abrasive grains, but the holding power by the magnetic field. As for the polishing fluid in the region A2 where the decrease in polishing concentration, the concentration of polishing abrasive grains decreases. Therefore, the side wall surface Co1 of the glass substrate G included in the region A1 does not decrease the processing rate even if the polishing is continuously performed, but the chamfered surfaces Co2 and Co3 of the glass substrate G included in the region A2 are continuous. When polishing is performed, the amount of polishing abrasive grains in the polishing fluid decreases, and the processing rate decreases accordingly.

そこで、本実施形態の端面研磨処理では、研磨中に外部から研磨砥粒を供給しながら行うようにする。すなわち、図5においてスラリ濃度が連続加工において低下しやすい領域A2に対して外部から新たな研磨砥粒を供給することで、連続的に端面研磨を行う場合に面取面の加工レートの低下を抑制することができる。研磨中における研磨砥粒の供給は、研磨砥粒自体を供給することによって行ってもよいし、研磨砥粒を含む液体を供給することによって行ってもよい。供給方法としては、研磨砥粒、または、研磨砥粒を含む液体を領域A2に向けて流出させる方法(例えば噴射する方法)や滴下する方法などが挙げられるが、これらに限定されない。
研磨砥粒を含む液体を供給することによって研磨砥粒を供給する方法の一例を図6に示す。図6は、平面視にて供給装置30のノズルから研磨流体を研磨装置10に供給する例を示している。図6に示す例では、追加の研磨砥粒を含む液体は、磁場に保持されている研磨流体の塊とガラス基板Gの外周端部が接触する位置に向けて供給される。好ましくは、図6に示すように、研磨流体の塊と接触するガラス基板の端面の移動方向に沿って追加の研磨砥粒を含む液体が供給される。なお、上記液体としては例えば水を用いることができる。
Therefore, the end surface polishing process of this embodiment is performed while supplying abrasive grains from the outside during polishing. That is, by supplying new abrasive grains from the outside to the area A2 in which the slurry concentration is likely to decrease in continuous processing in FIG. 5, the chamfered surface processing rate decreases when continuously performing end surface polishing. Can be suppressed. The supply of the abrasive grains during polishing may be performed by supplying the abrasive grains themselves, or may be performed by supplying a liquid containing the abrasive grains. Examples of the supply method include, but are not limited to, a method of flowing out abrasive grains or a liquid containing the abrasive grains toward the region A2 (for example, a method of spraying), a method of dropping, and the like.
An example of a method for supplying abrasive grains by supplying a liquid containing abrasive grains is shown in FIG. FIG. 6 shows an example in which the polishing fluid is supplied to the polishing apparatus 10 from the nozzle of the supply apparatus 30 in a plan view. In the example shown in FIG. 6, the liquid containing the additional abrasive grains is supplied toward a position where the lump of polishing fluid held in the magnetic field and the outer peripheral end of the glass substrate G are in contact with each other. Preferably, as shown in FIG. 6, a liquid containing additional abrasive grains is supplied along the direction of movement of the end surface of the glass substrate in contact with the lump of polishing fluid. As the liquid, for example, water can be used.

追加の研磨砥粒を含む液体の供給タイミングは特に限定するものではないが、例えば、端面研磨処理中の任意のタイミングで供給してもよいし、ガラス基板の研磨が終了してから次のガラス基板の研磨が開始するまでの間に供給してもよいし、所定時間若しくはガラス基板の所定枚数で区切られるロット間のタイミングで供給してもよい。また、特定のタイミングを指定することなく供給し続けてもよい。
なお、ガラス基板Gの端面研磨中に供給する上記液体に、研磨砥粒に加えて磁性体微粒子や磁気機能性流体を添加してもよい。研磨加工により磁性体微粒子も僅かではあるが徐々に減少するため、より長期的な視点で加工レートの低下を抑制することができる。ただし、磁性体微粒子は研磨砥粒に較べてはるかに減少しにくいため、磁性体微粒子を供給することにより、端面研磨中に研磨流体に含まれる磁性体微粒子の量が徐々に増えていく場合がある。この場合、磁場に保持しきれない磁性体微粒子が研磨装置の周囲に飛び散り、基板表面を汚す原因となる場合がある。したがって、磁性体微粒子や磁気機能性流体の供給量が多くなり過ぎないように調整することが必要である。
The supply timing of the liquid containing the additional abrasive grains is not particularly limited. For example, the liquid may be supplied at any timing during the end surface polishing process, or after the polishing of the glass substrate is finished, the next glass is supplied. It may be supplied until the polishing of the substrate is started, or may be supplied at a timing between lots divided by a predetermined time or a predetermined number of glass substrates. Further, the supply may be continued without specifying a specific timing.
In addition to the abrasive grains, magnetic fine particles or a magnetic functional fluid may be added to the liquid supplied during the end face polishing of the glass substrate G. Since the magnetic fine particles are gradually reduced by the polishing process, a decrease in the processing rate can be suppressed from a long-term viewpoint. However, since the magnetic fine particles are much less likely to decrease than the abrasive grains, supplying the magnetic fine particles may gradually increase the amount of the magnetic fine particles contained in the polishing fluid during end face polishing. is there. In this case, magnetic fine particles that cannot be held in the magnetic field may scatter around the polishing apparatus and cause the substrate surface to become dirty. Therefore, it is necessary to adjust so that the supply amount of the magnetic fine particles and the magnetic functional fluid does not become excessive.

端面研磨処理中に供給する研磨流体、又は研磨砥粒、若しくは研磨砥粒を含む液体の温度は室温以下であることが好ましい。具体的には25度以下、より好ましくは20度以下である。本実施形態の端面研磨処理では、磁場発生手段によって形成される磁力線を横切るようにしてガラス基板Gを研磨流体の塊に対して相対移動させるため摩擦熱が発生するが、この摩擦熱により研磨流体中の水分量が低下して被加工部における潤滑性が悪化して、被加工部の表面に微小なスクラッチを生じさせる要因となる。そこで、研磨中に供給する研磨流体の温度を室温以下とすることで上記摩擦熱の発生を抑制し、被加工部の研磨品質を高く維持することができるようになる。   It is preferable that the temperature of the polishing fluid supplied during the end surface polishing process, the abrasive grains, or the liquid containing the abrasive grains is room temperature or lower. Specifically, it is 25 degrees or less, more preferably 20 degrees or less. In the end surface polishing process of this embodiment, frictional heat is generated to move the glass substrate G relative to the lump of polishing fluid across the magnetic field lines formed by the magnetic field generating means. The amount of moisture in the inside decreases, and the lubricity in the processed part deteriorates, which causes a minute scratch on the surface of the processed part. Therefore, by setting the temperature of the polishing fluid supplied during polishing to room temperature or lower, generation of the frictional heat can be suppressed, and the polishing quality of the workpiece can be maintained high.

以下、第1の実施形態の変形例について説明する。
[変形例1]
図3〜6を参照してガラス基板Gの外周端面の研磨について説明したが、ガラス基板の内周端面についても、同様の方法により研磨することができる。変形例1(図示せず)は、ガラス基板Gの外周端面の研磨と同時に内周端面の研磨を行う例である。
変形例1では、図3と同様の構成を備えた研磨装置(図示せず)を、ガラス基板Gの内周端面の近傍に配置し、一対のN極およびS極の磁石によって磁場を発生させる。この磁場によって研磨流体を保持させることによって研磨流体の塊を形成させる。この塊とガラス基板Gの内周端面を接触させた状態で相対的に移動させることにより、ガラス基板Gの内周端面の研磨が行われる。このとき、追加の研磨流体が、磁場に保持されている研磨流体の塊とガラス基板Gの内周端部が接触する位置に向けて供給される。
Hereinafter, modifications of the first embodiment will be described.
[Modification 1]
Although the polishing of the outer peripheral end surface of the glass substrate G has been described with reference to FIGS. 3 to 6, the inner peripheral end surface of the glass substrate can also be polished by the same method. Modification 1 (not shown) is an example in which the inner peripheral end face is polished simultaneously with the polishing of the outer peripheral end face of the glass substrate G.
In Modification 1, a polishing apparatus (not shown) having a configuration similar to that in FIG. 3 is disposed in the vicinity of the inner peripheral end surface of the glass substrate G, and a magnetic field is generated by a pair of N-pole and S-pole magnets. . By holding the polishing fluid by this magnetic field, a lump of polishing fluid is formed. By relatively moving the lump and the inner peripheral end face of the glass substrate G in contact with each other, the inner peripheral end face of the glass substrate G is polished. At this time, the additional polishing fluid is supplied toward a position where the lump of polishing fluid held in the magnetic field and the inner peripheral end of the glass substrate G are in contact with each other.

すなわち、変形例1の磁場発生手段は、図3および図4に示す磁石12,14をガラス基板Gの外周側に設けてガラス基板Gの板厚方向に磁力線(外周側磁力線)が進むように磁場を発生させる外周側手段と、ガラス基板Gの内周側(つまり、ガラス基板Gの内孔)に一対の磁石(N極およびS極)を設けてガラス基板Gの板厚方向に磁力線(内周側磁力線)が進むように磁場を発生させる内周側手段と、を含む。端面の研磨は、上記内周側手段および上記外周側手段のそれぞれによって形成される磁場によって研磨流体の塊を保持させ、ガラス基板Gの内周端面および外周端面を、研磨流体の塊と接触させた状態で相対移動させることにより、内周端面および外周端面の両方を同時に研磨する。したがって、変形例1では、図3および図4に示すガラス基板Gの外周端面の研磨を行うと同時に、内周端面の研磨を行うことができ、効率の良い端面研磨を実現することができる。
なお、内周端面および外周端面の両方を同時に研磨することは必須ではない。すなわち、上記内周側手段および上記外周側手段の少なくともいずれか一方が設けられていればよい。また、上記内周側手段および上記外周側手段が両方設けられている場合であっても、内周端面および外周端面の両方を同時に研磨せず、内周端面および外周端面を順に研磨してもよい。
That is, the magnetic field generating means of Modification 1 is provided such that the magnets 12 and 14 shown in FIGS. A pair of magnets (N pole and S pole) are provided on the outer peripheral side means for generating a magnetic field, and the inner peripheral side of the glass substrate G (that is, the inner hole of the glass substrate G). Inner peripheral means for generating a magnetic field so that the inner peripheral magnetic field lines) travel. The polishing of the end face is performed by holding the lump of polishing fluid by the magnetic field formed by each of the inner peripheral means and the outer peripheral means, and bringing the inner peripheral end face and the outer peripheral end face of the glass substrate G into contact with the polishing fluid lump. Both the inner peripheral end face and the outer peripheral end face are polished simultaneously by relative movement in this state. Therefore, in the first modification, the outer peripheral end face of the glass substrate G shown in FIGS. 3 and 4 can be polished and simultaneously the inner peripheral end face can be polished, and efficient end face polishing can be realized.
It is not essential to polish both the inner peripheral end face and the outer peripheral end face at the same time. That is, it is sufficient that at least one of the inner peripheral means and the outer peripheral means is provided. Further, even when both the inner peripheral means and the outer peripheral means are provided, both the inner peripheral end face and the outer peripheral end face are not polished at the same time, and the inner peripheral end face and the outer peripheral end face are polished in order. Good.

[変形例2]
図7は、ガラス基板Gの外周端面の研磨の変形例2を示す図である。変形例2では、1枚のガラス基板ではなく、複数のガラス基板の内周端面を纏めて研磨する例である。
図7に示す研磨装置10Aは、N極の磁石121,122,123,124,…と、S極の磁石140,141,142,143,…と、スペーサ161,162,163,…とを含む。N極の各磁石、S極の各磁石、および、各スペーサは、図3の磁石12、磁石14、および、スペーサ16と同じ構成のものである。
すなわち、研磨装置10Aでは、磁石のN極の端面と隣り合うS極の端面とが一定距離離間して対向するように段重ねになって配列されている。研磨装置10Aでは、スペーサを介在させて対向するN極の磁石からS極の磁石に磁力線が向かう磁場が形成される。つまり、ガラス基板Gの厚さ方向に、N極の面とS極の面が互いに対向するように離間した状態で配置された磁石の複数の対がそれぞれ磁場発生手段として用いられる。例えば、磁石121から磁石141に磁力線が向かう磁場が形成される。スペーサ161,162,163,…の各々の周縁において、磁場によって研磨流体の塊Fが保持される。端面研磨中では、研磨装置10Aを図示されない駆動モータを利用して図7に示すように自転させる。
[Modification 2]
FIG. 7 is a diagram showing a second modification example of polishing of the outer peripheral end face of the glass substrate G. FIG. Modification 2 is an example in which the inner peripheral end faces of a plurality of glass substrates are polished together instead of a single glass substrate.
7 includes N pole magnets 121, 122, 123, 124,..., S pole magnets 140, 141, 142, 143,... And spacers 161, 162, 163,. . Each of the N pole magnets, each S pole magnet, and each spacer has the same configuration as the magnet 12, the magnet 14, and the spacer 16 of FIG.
That is, in the polishing apparatus 10A, the N pole end face of the magnet and the adjacent S pole end face are arranged in a stacked manner so as to face each other with a predetermined distance therebetween. In the polishing apparatus 10A, a magnetic field is formed in which magnetic lines of force are directed from an N-pole magnet facing each other through a spacer to an S-pole magnet. That is, in the thickness direction of the glass substrate G, a plurality of pairs of magnets arranged in a state of being separated so that the N-pole surface and the S-pole surface face each other are used as the magnetic field generating means. For example, a magnetic field in which magnetic lines of force are directed from the magnet 121 to the magnet 141 is formed. The lump F of the polishing fluid is held by the magnetic field at the periphery of each of the spacers 161, 162, 163,. During end face polishing, the polishing apparatus 10A is rotated as shown in FIG. 7 using a drive motor (not shown).

複数のガラス基板Gは、スペーサ151,152,153,154,…を挟んで接着剤等により積層体として一体化されている。ここで、積層体にするために用いる接着剤として、複数のガラス基板Gの各主表面同士をスペーサに接着、またはスペーサから剥離可能であればいかなるものでも構わない。例えば、紫外線硬化樹脂接着剤は、所定の波長の紫外線の照射で容易に固化するため接着作業が容易である。また、紫外線硬化樹脂として、温水あるいは有機溶媒により接着した複数のガラス基板Gを容易に剥離させることができるものが好ましい。接着剤としては紫外線硬化樹脂接着剤のほか、ワックス、光硬化樹脂、可視光線硬化樹脂等も使用することができる。ワックスは、所定の温度で軟化して液状になり常温で固形状となるので、複数のガラス基板Gの接着、剥離作業が容易である。接着剤の代わりにスペーサを挟み貼付してもよい。接着剤の代わりにスペーサを複数のガラス基板G間に貼付する場合には、樹脂材料、繊維材料、ゴム材料、金属材料、セラミック材料等の薄厚のスペーサを使用することができる。端面研磨中では、複数のガラス基板Gを含む積層体を、図示されない回転体で保持し、図示されない駆動モータを利用して図7に示すように自転させる。   The plurality of glass substrates G are integrated as a laminate by an adhesive or the like with spacers 151, 152, 153, 154,. Here, any adhesive may be used as the adhesive used to form the laminated body as long as the main surfaces of the plurality of glass substrates G can be bonded to the spacer or peeled from the spacer. For example, since an ultraviolet curable resin adhesive is easily solidified by irradiation with ultraviolet rays having a predetermined wavelength, the bonding operation is easy. Moreover, what can peel easily several glass substrate G adhere | attached with warm water or the organic solvent as an ultraviolet curable resin is preferable. As the adhesive, in addition to the UV curable resin adhesive, wax, photo curable resin, visible light curable resin, and the like can be used. Since the wax softens at a predetermined temperature and becomes liquid and becomes solid at room temperature, the bonding and peeling operations of the plurality of glass substrates G are easy. Instead of the adhesive, a spacer may be sandwiched and pasted. When sticking a spacer between a plurality of glass substrates G instead of an adhesive, a thin spacer such as a resin material, a fiber material, a rubber material, a metal material, or a ceramic material can be used. During end face polishing, the laminated body including a plurality of glass substrates G is held by a rotating body (not shown) and rotated as shown in FIG. 7 using a driving motor (not shown).

積層体に含まれる各ガラス基板Gの外周端面を、研磨流体の塊Fと接触させ、それによって研磨流体の塊Fと複数のガラス基板Gの外周端面とを相対移動させることにより、複数のガラス基板Gの外周端面を同時に研磨することができる。すなわち、複数のガラス基板の外周端面を同時に研磨することができるので、加工レートを従来よりも高くすることができ、効率良く研磨をすることができる。   The outer peripheral end face of each glass substrate G included in the laminate is brought into contact with the polishing fluid lump F, whereby the polishing fluid lump F and the outer peripheral end faces of the plurality of glass substrates G are moved relative to each other, whereby a plurality of glasses is obtained. The outer peripheral end face of the substrate G can be polished simultaneously. That is, since the outer peripheral end surfaces of a plurality of glass substrates can be polished at the same time, the processing rate can be made higher than before and the polishing can be performed efficiently.

なお、各ガラス基板Gの間隔と、研磨流体の塊Fの間隔は一致し、各ガラス基板Gの外周端面が、研磨流体の塊Fのそれぞれと同時に接触するように磁石間に設けるスペーサを調整することにより、研磨流体の塊Fの形成位置を調整しておくことが好ましい。複数のガラス基板Gの外周端面が、研磨流体の塊Fのそれぞれと同時に接触しない場合を考慮して、複数の磁石とガラス基板Gの積層体とは、研磨中、積層体の積層方向に対して相対的に揺動することが好ましい。揺動させることにより、研磨流体の塊Fのそれぞれと研磨中、偏り無く接触し、複数のガラス基板Gの外周端面の研磨を均一に行うことができる。この揺動は、変形例2のガラス基板の積層体の端面研磨のみに用いられるわけではなく、図4に示すような1枚のガラス基板の端面を研磨する場合にも適用できる。   In addition, the spacer provided between the magnets is adjusted so that the intervals between the glass substrates G and the lumps of the polishing fluid lumps coincide with each other and the outer peripheral end surfaces of the glass substrates G are simultaneously in contact with the lumps of lapping fluids F. By doing so, it is preferable to adjust the formation position of the lump F of the polishing fluid. In consideration of the case where the outer peripheral end faces of the plurality of glass substrates G do not contact with each of the lumps F of the polishing fluid at the same time, the laminate of the plurality of magnets and the glass substrate G is in the direction of lamination of the laminate during polishing. It is preferable to swing relatively. By swinging, each of the lumps F of polishing fluid can be contacted without any deviation during polishing, and the outer peripheral end surfaces of the plurality of glass substrates G can be polished uniformly. This swinging is not only used for polishing the end face of the laminated body of glass substrates of the second modification, but can also be applied to the case where the end face of one glass substrate as shown in FIG. 4 is polished.

変形例2の端面研磨処理においても、研磨中に外部から、研磨砥粒を含む液体を供給しながら行うようにする。それによって、研磨処理中に失われた研磨砥粒を補うことができ、連続的に端面研磨を行う場合に面取面の加工レートの低下を抑制することができる。図7に示す例では、供給装置30Aのノズルから追加の研磨流体が、磁場に保持されている研磨流体の塊Fとガラス基板Gの外周端部が接触する位置に向けて供給される。研磨砥粒を含む液体は上方から下方へ落下するため、各ガラス基板の外周端部が接触する複数の研磨流体の塊Fに供給されるようになる。また、図示しないが、図6に示したように、複数のノズルの各々から横方向に、各研磨流体の塊Fとガラス基板Gの外周端部が接触する位置に向けて研磨砥粒を含む液体が供給されるようにしてもよい。   The end face polishing process of the second modification is also performed while supplying a liquid containing abrasive grains from the outside during polishing. As a result, the abrasive grains lost during the polishing process can be supplemented, and a reduction in the chamfered surface processing rate can be suppressed when end face polishing is performed continuously. In the example shown in FIG. 7, the additional polishing fluid is supplied from the nozzle of the supply device 30 </ b> A toward a position where the polishing fluid lump F held in the magnetic field and the outer peripheral end of the glass substrate G contact each other. Since the liquid containing the abrasive grains falls from the upper side to the lower side, the liquid is supplied to a plurality of lumps F of the polishing fluid that are in contact with the outer peripheral ends of the glass substrates. Although not shown, as shown in FIG. 6, the abrasive grains are included in the lateral direction from each of the plurality of nozzles toward the position where the lump F of each polishing fluid and the outer peripheral end of the glass substrate G contact each other. A liquid may be supplied.

図7は、積層体として一体化されている複数のガラス基板Gの外周端面を研磨する場合について例示したが、同様にして複数のガラス基板Gの内周端面を研磨してもよい。また、積層体として一体化されている複数のガラス基板Gの外周端面と内周端面を同時に研磨してもよい。   Although FIG. 7 illustrates the case where the outer peripheral end faces of a plurality of glass substrates G integrated as a laminate are illustrated, the inner peripheral end faces of the plurality of glass substrates G may be similarly polished. Moreover, you may grind | polish the outer peripheral end surface and inner peripheral end surface of the several glass substrate G integrated as a laminated body simultaneously.

[変形例3]
図8は、端面研磨の変形例3を示す図である。変形例3では、図4と同様の研磨装置10を用いるが、研磨装置10と研磨対象のガラス基板Gの両方を、研磨砥粒を含む液体が充填された槽90の中に浸漬させた状態でガラス基板Gの端面研磨を行う。槽内の研磨砥粒の濃度は、実施形態で説明した値と同一の値でもよいが、例えば1〜50wt%とすることができる。また、上記液体としては例えば水を用いることができる。
槽90の中では、図4の場合と同様に、磁石12から磁石14に向かう磁力線が進むように磁場を形成し、当該磁場の周囲にある研磨流体を塊Fとして磁場によって保持させた状態で、ガラス基板Gの外周端部を研磨流体の塊Fに繰り返し接触させて、ガラス基板Gと研磨流体の塊Fとを相対移動させることにより、ガラス基板Gの外周端面を研磨する。このとき、前述したように、一部の領域(図5の領域A2)では、ガラス基板の端部が磁束線を横切ることにより、研磨流体中の磁性体微粒子の配列が崩れ、それによって磁場による研磨砥粒の保持力が局所的に低下することから、研磨砥粒が外部に放出されやすくなる。しかし本変形例では、研磨砥粒を含む液体で充填された槽90の中で研磨が行われるため、放出された研磨砥粒が槽内の周囲の研磨砥粒によって供給され、連続的に研磨を行った場合に研磨砥粒の濃度が低下していく状況が回避される。そのため、加工レートが時間とともに低下することがない。
なお、図8では、研磨流体の槽90の中で1枚のガラス基板Gの外周端面を研削する場合について例示しているが、この場合に限られない。研磨流体の槽90の中でガラス基板Gの内周端面を研磨してもよいし、変形例2で示したように複数のガラス基板Gの積層体の端面を研磨してもよい。
[Modification 3]
FIG. 8 is a diagram showing a third modification of the end surface polishing. In Modification 3, the same polishing apparatus 10 as in FIG. 4 is used, but both the polishing apparatus 10 and the glass substrate G to be polished are immersed in a bath 90 filled with a liquid containing polishing abrasive grains. Then, the end surface of the glass substrate G is polished. Although the density | concentration of the abrasive grain in a tank may be the same value as the value demonstrated in embodiment, it can be 1-50 wt%, for example. For example, water can be used as the liquid.
In the tank 90, as in FIG. 4, a magnetic field is formed so that the magnetic lines of force from the magnet 12 toward the magnet 14 are advanced, and the polishing fluid around the magnetic field is held as a lump F by the magnetic field. The outer peripheral end of the glass substrate G is polished by repeatedly bringing the outer peripheral end of the glass substrate G into contact with the polishing fluid mass F and moving the glass substrate G and the polishing fluid mass F relative to each other. At this time, as described above, in a part of the region (region A2 in FIG. 5), the end of the glass substrate crosses the magnetic flux lines, so that the arrangement of the magnetic fine particles in the polishing fluid collapses, thereby causing a magnetic field. Since the holding power of the abrasive grains is locally reduced, the abrasive grains are easily released to the outside. However, in this modified example, since polishing is performed in a tank 90 filled with a liquid containing polishing abrasive grains, the released polishing abrasive grains are supplied by surrounding polishing abrasive grains in the tank and polished continuously. The situation in which the concentration of the abrasive grains decreases when the above is performed is avoided. Therefore, the processing rate does not decrease with time.
FIG. 8 illustrates the case where the outer peripheral end surface of one glass substrate G is ground in the polishing fluid bath 90, but is not limited thereto. The inner peripheral end face of the glass substrate G may be polished in the polishing fluid bath 90, or the end faces of the laminate of the plurality of glass substrates G may be polished as shown in the second modification.

[実施例]
本発明の効果を確かめるために、作製したガラス基板の端面研磨を行った。
作製したガラス基板の外径は65mmであり、厚さは0.8mmであり、形状加工処理で、ガラス基板の厚さ方向で0.15mmの面取りを主表面に対して45度の傾斜角度で施した。
[Example]
In order to confirm the effect of the present invention, end face polishing of the produced glass substrate was performed.
The produced glass substrate has an outer diameter of 65 mm and a thickness of 0.8 mm. In the shape processing, a chamfer of 0.15 mm in the thickness direction of the glass substrate is inclined at 45 degrees with respect to the main surface. gave.

(比較例)
図4に示したように、一対の磁石をステンレス製のスペーサによって離間させて配置した研磨装置に、2.5インチ型磁気ディスク用のガラス基板の外周端部を挿入した。磁石の寸法は直径19mm、厚さ15mmとした。そして、磁石間に研磨流体を与えて磁石によって形成された磁場に磁石スラリの塊を保持させ、ガラス基板の外周端面を研磨した。ガラス基板の端面と研磨装置を互いに逆向きとなるように回転させ、それぞれの回転数を700rpmとした。100枚のガラス基板を研磨し、1枚ごとの加工時間は3分間とした。
ガラス基板の外周端面の研磨のために用いる研磨流体は、非磁性オイル(シリコンオイル)に、2μmの平均粒径(D50)のFe(鉄)の微粒子を3[g/cm3]分散させ、かつ研磨砥粒として平均粒子径が2μmの酸化セリウムを分散させたものを用いた。研磨流体中の酸化セリウムの濃度は5[vol%]となるように含ませた。磁石として、0.5[テスラ]の磁束密度を有する永久磁石を用いた。
(Comparative example)
As shown in FIG. 4, the outer peripheral edge of a glass substrate for a 2.5 inch type magnetic disk was inserted into a polishing apparatus in which a pair of magnets were spaced apart by a stainless steel spacer. The dimensions of the magnet were 19 mm in diameter and 15 mm in thickness. Then, a polishing fluid was applied between the magnets to hold the mass of the magnet slurry in the magnetic field formed by the magnets, and the outer peripheral end surface of the glass substrate was polished. The end surface of the glass substrate and the polishing apparatus were rotated so as to be opposite to each other, and the number of rotations was set to 700 rpm. 100 glass substrates were polished, and the processing time for each one was 3 minutes.
The polishing fluid used for polishing the outer peripheral end surface of the glass substrate is 3 [g / cm 3 ] of fine particles of Fe (iron) having an average particle diameter (D50) of 2 μm dispersed in non-magnetic oil (silicon oil). In addition, abrasive grains in which cerium oxide having an average particle diameter of 2 μm was dispersed were used. The concentration of cerium oxide in the polishing fluid was included to be 5 [vol%]. A permanent magnet having a magnetic flux density of 0.5 [Tesla] was used as the magnet.

(実施例1)
比較例の研磨条件に加えて、研磨砥粒を含む液体を供給しながら研磨を行った。具体的には、図6に示すように、研磨流体の塊と接触するガラス基板の端面の移動方向に沿って研磨砥粒を含む液体を、1枚のガラス基板の外周端面の研磨が終了する度に供給した。当該液体は水とした。比較例と同様に100枚のガラス基板を研磨し、1枚ごとの加工時間は3分間とした。
Example 1
In addition to the polishing conditions of the comparative example, polishing was performed while supplying a liquid containing abrasive grains. Specifically, as shown in FIG. 6, the polishing of the outer peripheral end surface of one glass substrate is finished with a liquid containing abrasive grains along the moving direction of the end surface of the glass substrate in contact with the lump of polishing fluid. Supplied every time. The liquid was water. As in the comparative example, 100 glass substrates were polished, and the processing time for each sheet was 3 minutes.

(比較例と実施例1の評価)
比較例および実施例1の端面研磨後のガラス基板の外周端面の面取面について、1枚目のガラス基板と100枚目のガラス基板の加工レートを測定した結果、表1に示す通りであった。表1において、加工レートの低下率は、以下の式(1)によって算出された値である。
加工レートの低下率(%)=100−(100枚目のガラス基板の加工レート)/(1枚目のガラス基板の加工レート)×100 … 式(1)
(Evaluation of Comparative Example and Example 1)
As a result of measuring the processing rate of the first glass substrate and the 100th glass substrate with respect to the chamfered surface of the outer peripheral end surface of the glass substrate after end face polishing in Comparative Example and Example 1, the results are as shown in Table 1. It was. In Table 1, the reduction rate of the processing rate is a value calculated by the following equation (1).
Reduction rate (%) of processing rate = 100− (processing rate of the 100th glass substrate) / (processing rate of the first glass substrate) × 100 (1)

表1に示すように、実施例1では、ガラス基板を連続して研磨を行う場合に、比較例と比べて加工レートの低下が大きく抑制されることが確認された。なお、表1には示していないが、側壁面における加工レートの低下率は、比較例および実施例1のいずれも2%以下であり、問題とならないレベルであった。   As shown in Table 1, in Example 1, when the glass substrate was continuously polished, it was confirmed that the reduction in the processing rate was greatly suppressed as compared with the comparative example. Although not shown in Table 1, the rate of reduction of the processing rate on the side wall surface was 2% or less in both the comparative example and Example 1, which was a level that does not cause a problem.

Figure 0006148345
Figure 0006148345

(実施例2)
研磨処理中に継続して、研磨砥粒を含む液体を研磨流体の塊に供給し続けたこと以外は上記比較例と同様にしてガラス基板の外周端面の研磨処理を行なった。このとき、上記液体は、研磨加工部(加工点)に至る直前研磨流体の塊に、上部から滴下させるようにした。
その結果、ガラス基板の面取面における加工レートの低下率は5%となり、実施例1よりも良好な結果が得られた。なお、ガラス基板の側壁面における加工レートの低下率は実施例1と同様に2%以下であった。
(Example 2)
The outer peripheral end face of the glass substrate was polished in the same manner as in the comparative example except that the liquid containing the abrasive grains was continuously supplied to the lump of polishing fluid continuously during the polishing process. At this time, the liquid was dropped from above onto the lump of polishing fluid immediately before reaching the polishing portion (processing point).
As a result, the reduction rate of the processing rate on the chamfered surface of the glass substrate was 5%, and a better result than Example 1 was obtained. In addition, the reduction rate of the processing rate in the side wall surface of a glass substrate was 2% or less similarly to Example 1.

(実施例3)
図8に示したように、研磨砥粒を含む液体が充填された槽の中に、研磨対象のガラス基板を浸漬させた状態でガラス基板の外周端面の研磨処理を行なった。槽内の液体は水とし、研磨砥粒の濃度は20wt%とした。研磨中には槽内に上記液体の供給を行わなかった。
その結果、ガラス基板の面取面における加工レートの低下率は0%となり、実施例2よりも一層良好な結果が得られた。
(Example 3)
As shown in FIG. 8, the outer peripheral end face of the glass substrate was polished in a state where the glass substrate to be polished was immersed in a tank filled with a liquid containing abrasive grains. The liquid in the tank was water, and the abrasive grain concentration was 20 wt%. During the polishing, the liquid was not supplied into the tank.
As a result, the reduction rate of the processing rate on the chamfered surface of the glass substrate was 0%, and a result better than that of Example 2 was obtained.

(第2の実施形態)
以下、本発明の非磁性基板の製造方法の第2の実施形態として、磁気ディスク用基板の製造方法について説明する。第1の実施形態と同様に磁気ディスク用基板としてガラス基板を用いる場合について説明するが、それに限られずアルミニウム合成基板であってもよい。
本実施形態において、磁気ディスク用ガラス基板、磁気ディスク用ガラス基板の製造方法の全体の処理の流れ、および、磁場発生手段と研磨流体を用いた端面研磨の方法(図3および図4に関連付けて説明した内容)については、第1の実施形態と同様である。以下では、第1の実施形態と異なる端面研磨の処理の内容に絞って説明する。
(Second Embodiment)
Hereinafter, a method for manufacturing a magnetic disk substrate will be described as a second embodiment of the method for manufacturing a nonmagnetic substrate of the present invention. Although the case where a glass substrate is used as the magnetic disk substrate as in the first embodiment will be described, the present invention is not limited thereto, and an aluminum synthetic substrate may be used.
In this embodiment, the entire processing flow of the magnetic disk glass substrate, the manufacturing method of the magnetic disk glass substrate, and the end surface polishing method using the magnetic field generating means and the polishing fluid (in association with FIGS. 3 and 4). The content described is the same as in the first embodiment. The following description will focus on the details of the end surface polishing process different from the first embodiment.

第2の実施形態において、研磨流体を用いたガラス基板の端面研磨では、ワークである複数のガラス基板の端面を枚葉式の処理によって連続的に研磨する場合に、面取面の加工レートが大きく低下することがないように、研磨流体の塊の形状を修正する処理を行う。ここで、ガラス基板の端面研磨において研磨流体の形状を修正しない場合に面取面の加工レートが低下する理由について、図9を参照して説明する。
図9において端面研磨処理の初期の状態である状態S1では、磁石12,14によって形成される磁場によって研磨流体の塊Fが安定的に保持されている。この研磨流体の塊Fに対してガラス基板Gの接触を開始した直後は、ガラス基板Gの外周端面を構成する側壁面および面取面が一定の押圧力で塊Fから押圧され、側壁面および面取面の両方の加工レートが高い状態にある。
しかし、複数のガラス基板を枚葉式の処理によって連続して端面研磨を行う場合、側壁面の加工レートはほとんど低下しないが、面取面の加工レートが大きく低下する。すなわち、ガラス基板の外周端面のうち側壁面は、平面視でガラス基板Gが磁力線を横切らない領域A1にある研磨流体の塊Fによって研磨される。領域A1にある研磨流体の塊Fは、磁力線が断ち切られないため磁場による塊Fの保持力が高く、研磨砥粒によって安定的に研磨が行われるため、研磨の加工レートが高い。一方、ガラス基板の外周端面のうち面取面は、平面視でガラス基板Gが磁力線を横切る領域A2にある研磨流体の塊Fによって研磨される。この領域A2にある研磨流体の塊Fは、磁場による保持力が相対的に弱い。そのため、複数のガラス基板Gを枚葉式の処理によって連続して端面研磨を行っていくと、図9の状態S2に示すように、領域A2では研磨流体の塊Fが崩れて変形(塑性変形)し、ガラス基板Gの外周側の面取面に対する押圧力が低下しやすくなっている。ガラス基板Gの面取面に対する押圧力が低下すると、研磨砥粒によって安定的に研磨が行われ難いため、面取面の研磨の加工レートが低下する。
In the second embodiment, in the end surface polishing of a glass substrate using a polishing fluid, when the end surfaces of a plurality of glass substrates that are workpieces are continuously polished by a single wafer processing, the processing rate of the chamfered surface is increased. A process of correcting the shape of the lump of the polishing fluid is performed so as not to greatly decrease. Here, the reason why the processing rate of the chamfered surface is lowered when the shape of the polishing fluid is not corrected in the end surface polishing of the glass substrate will be described with reference to FIG.
9, in the state S1, which is the initial state of the end surface polishing process, the lump F of the polishing fluid is stably held by the magnetic field formed by the magnets 12 and 14. Immediately after starting the contact of the glass substrate G with the lump F of the polishing fluid, the side wall surface and the chamfered surface constituting the outer peripheral end surface of the glass substrate G are pressed from the lump F with a constant pressing force, Both chamfered surfaces are in a high processing rate.
However, when end face polishing is continuously performed on a plurality of glass substrates by single-wafer processing, the processing rate of the side wall surface hardly decreases, but the processing rate of the chamfered surface greatly decreases. That is, the side wall surface of the outer peripheral end surface of the glass substrate is polished by the lump F of the polishing fluid in the region A1 where the glass substrate G does not cross the lines of magnetic force in plan view. The lump F of the polishing fluid in the region A1 has a high holding force of the lump F due to the magnetic field because the lines of magnetic force are not cut off, and the polishing is performed stably by the abrasive grains, so that the polishing processing rate is high. On the other hand, the chamfered surface of the outer peripheral end surface of the glass substrate is polished by the lump F of the polishing fluid in the region A2 where the glass substrate G crosses the lines of magnetic force in plan view. The lump F of the polishing fluid in this area A2 has a relatively weak holding force due to the magnetic field. Therefore, when end face polishing is continuously performed on a plurality of glass substrates G by a single wafer processing, the lump F of the polishing fluid collapses and deforms (plastic deformation) in the region A2, as shown in the state S2 of FIG. ), And the pressing force against the chamfered surface on the outer peripheral side of the glass substrate G tends to decrease. When the pressing force with respect to the chamfered surface of the glass substrate G is lowered, it is difficult to stably perform polishing by the abrasive grains, so that the processing rate of chamfered surface polishing is reduced.

そこで、本実施形態の端面研磨処理では、ガラス基板Gと接触することにより変形した研磨流体の塊Fの形状を、ガラス基板Gに対する押圧力を一定に維持するように修正する。
以下、本実施形態の端面研磨処理において、形状修正装置を用いた研磨流体の塊の修正方法について、図10および図11を参照して説明する。図10は、形状修正装置を用いて研磨流体の形状を修正する場合の構成例を示す図である。図11は、形状修正装置を用いた研磨流体の形状修正処理を説明する図である。
図10において、形状修正装置20は、非磁性体で構成され平面視で円弧状の治具21U、21L、22と、各治具を駆動する駆動機構(図示せず)とを備える。図示しない駆動機構は、治具21Uおよび治具21Lがそれぞれ磁石12、磁石14の表面上を移動可能となるように、治具21Uおよび治具21Lを水平方向および垂直方向に駆動する。また、駆動機構は、磁石12と磁石14の間の空間に治具22を挿入できるように、治具22を水平方向に駆動する。治具22のガラス基板の厚さ方向の長さは、磁石12および磁石14の離間距離と同じか、それより僅かに低く設定されていることが好ましい。なお、研磨流体の形状修正の程度によっては、形状修正装置20に治具21Uおよび治具21Lを設けなくてもよい。
Therefore, in the end surface polishing process of the present embodiment, the shape of the lump F of the polishing fluid deformed by contact with the glass substrate G is corrected so that the pressing force on the glass substrate G is maintained constant.
Hereinafter, a method for correcting a lump of polishing fluid using a shape correcting device in the end surface polishing process of the present embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a diagram illustrating a configuration example when the shape of the polishing fluid is corrected using the shape correcting device. FIG. 11 is a diagram for explaining the shape correction processing of the polishing fluid using the shape correction device.
In FIG. 10, the shape correcting device 20 includes jigs 21U, 21L, and 22 that are made of a non-magnetic material and are arcuate in plan view, and drive mechanisms (not shown) that drive the jigs. A driving mechanism (not shown) drives the jig 21U and the jig 21L in the horizontal direction and the vertical direction so that the jig 21U and the jig 21L can move on the surfaces of the magnet 12 and the magnet 14, respectively. The driving mechanism drives the jig 22 in the horizontal direction so that the jig 22 can be inserted into the space between the magnet 12 and the magnet 14. The length of the jig 22 in the thickness direction of the glass substrate is preferably set to be the same as or slightly lower than the distance between the magnet 12 and the magnet 14. Note that the jig 21U and the jig 21L may not be provided in the shape correction device 20 depending on the degree of shape correction of the polishing fluid.

図11では、形状修正装置20によって研磨流体の塊Fの形状を修正する一連の処理(ステップS1〜S3)において、形状修正装置20の各治具、および磁石12,14の位置関係を、側面図および平面図によって示している。なお、図11に示す例では、治具22の垂直方向の位置決めが既になされているものとする。
先ずステップS1において、治具21U、21Lが水平方向に駆動され、各治具はそれぞれ磁石12、14の側面に接触する。次いでステップS2において、治具21Uが下方に駆動され、治具21Lが上方に駆動される。それによって磁石12、14の側面上にはみ出して付着している研磨流体(つまり、変形した研磨流体の塊Fの一部)が押し当てられ、側面視で磁石12、14の間の位置に移動させられる。最後にステップS3において、治具22が水平方向に駆動され、ステップS2で移動させられた研磨流体や、塊Fの変形によって各磁石の側面周縁に移動した研磨流体が、治具22によって押し当てられることで磁石の中心に向かって移動する。以上のステップS1〜S3によって、変形した研磨流体の塊Fの形状がガラス基板に対する押圧力を一定に維持するように修正される。
磁石12、14の側面上にはみ出す研磨流体が存在しない場合、治具21Uおよび治具21Lを用いなくてもよい。
In FIG. 11, in a series of processes (steps S <b> 1 to S <b> 3) in which the shape correcting device 20 corrects the shape of the lump F of the polishing fluid, the positional relationship between each jig of the shape correcting device 20 and the magnets 12 and 14 is It is shown by a figure and a plan view. In the example shown in FIG. 11, it is assumed that the jig 22 has already been positioned in the vertical direction.
First, in step S1, the jigs 21U and 21L are driven in the horizontal direction, and the jigs contact the side surfaces of the magnets 12 and 14, respectively. Next, in step S2, the jig 21U is driven downward, and the jig 21L is driven upward. As a result, the polishing fluid sticking out from the side surfaces of the magnets 12 and 14 (that is, a part of the deformed polishing fluid mass F) is pressed and moved to a position between the magnets 12 and 14 in a side view. Be made. Finally, in step S3, the jig 22 is driven in the horizontal direction, and the polishing fluid moved in step S2 or the polishing fluid moved to the peripheral edge of each magnet due to deformation of the lump F is pressed by the jig 22. Is moved toward the center of the magnet. Through the above steps S1 to S3, the shape of the deformed lump F of the polishing fluid is corrected so as to keep the pressing force against the glass substrate constant.
When there is no polishing fluid protruding on the side surfaces of the magnets 12 and 14, the jig 21U and the jig 21L may not be used.

上述したように、本実施形態では、形状修正装置20を用いて、ガラス基板と接触することにより変形した研磨流体の塊Fの形状を、元の形状に戻すように修正する。言い換えると、研磨流体の塊Fに治具を接触させることで研磨流体の塊Fの形を変える。それによって、ガラス基板に対する押圧力が一定に維持される。 As described above, in this embodiment, the shape correcting device 20 is used to correct the shape of the lump F of the polishing fluid deformed by contact with the glass substrate so as to return to the original shape. In other words, the shape of the polishing fluid mass F is changed by bringing the jig into contact with the polishing fluid mass F. Thereby, the pressing force on the glass substrate is kept constant.

本実施形態では、治具の先端を研磨流体の塊Fに差し込むようにして、研磨流体の塊Fに対して治具を接触させることが好ましい。例えば、図10に示す治具22に代えて、先端の断面が凸形状となっている治具を用い、当該治具の水平方向の駆動によって当該治具の先端を研磨流体の塊Fに差し込むようにする。治具の形状は棒状であってもよいし、板状、扁平状、角柱状であってもよい。つまり、治具の先端の断面が円形若しくは楕円形であってもよいし、平板状、多角形であってもよい。そのような治具の垂直方向(つまり、研磨加工されるガラス基板Gの厚さ方向)の高さは、磁石12,14間の間隙以下であればよい。上述した治具21U、21L、22についても同様であるが、治具の材質は、アルミニウムやチタン等の金属やセラミックなど、非磁性で比較的硬い素材のものが好ましい。
治具の先端を研磨流体の塊に差し込むようにすることが好ましい理由は、以下のとおりである。すなわち、図9の状態S2に示したように、領域A2において研磨流体の塊Fが崩れて変形(塑性変形)し、ガラス基板Gの外周側の面取面に対する押圧力が低下した場合、研磨流体の塊の内部において磁性体微粒子の密度の偏りが生じていると考えられる。つまり、図9の領域A1では基板が押し込まれたことにより磁性体微粒子が高密度になっており、領域A2では低密度になっており、それによって領域A2における研磨砥粒の保持力が低下していると考えられる。そこで、治具の先端を研磨流体の塊に差し込み、奥の方に押し込まれた磁性体微粒子が手前に移動させることで、研磨流体内部の磁性体微粒子の磁場による再配置が促進されるため、加工前の磁性体微粒子の密度の偏りがない状態になる。そのため、面取面の加工レートの低下をさらに抑制することができる。
In the present embodiment, it is preferable that the jig is brought into contact with the lump F of the polishing fluid so that the tip of the jig is inserted into the lump F of the polishing fluid. For example, instead of the jig 22 shown in FIG. 10, a jig having a convex cross section at the tip is used, and the tip of the jig is inserted into the lump F of polishing fluid by driving the jig in the horizontal direction. Like that. The shape of the jig may be a rod shape, a plate shape, a flat shape, or a prism shape. That is, the cross section of the tip of the jig may be circular or elliptical, flat, or polygonal. The height of such a jig in the vertical direction (that is, the thickness direction of the glass substrate G to be polished) may be less than or equal to the gap between the magnets 12 and 14. The same applies to the jigs 21U, 21L, and 22 described above, but the material of the jig is preferably a non-magnetic and relatively hard material such as a metal such as aluminum or titanium or ceramic.
The reason why it is preferable to insert the tip of the jig into the lump of polishing fluid is as follows. That is, as shown in the state S2 of FIG. 9, the lump F of the polishing fluid collapses and deforms (plastically deforms) in the region A2, and the pressing force against the chamfered surface on the outer peripheral side of the glass substrate G decreases. It is considered that the density of the magnetic fine particles is uneven within the fluid mass. That is, in the area A1 in FIG. 9, the magnetic fine particles are dense due to the substrate being pushed in, and in the area A2, the density is low, thereby reducing the holding power of the abrasive grains in the area A2. It is thought that. Therefore, by inserting the tip of the jig into the lump of polishing fluid and moving the magnetic fine particles pushed toward the back, the rearrangement by the magnetic field of the magnetic fine particles inside the polishing fluid is promoted, There is no density deviation of the magnetic fine particles before processing. Therefore, it is possible to further suppress a decrease in the chamfered surface processing rate.

研磨流体の塊の形状を修正するタイミングは、端面研磨処理中であればいつでも構わない。図10に示したように、研磨装置10を基準にして、ワークであるガラス基板Gの反対側に形状修正装置20を配置することで、ガラス基板Gの端面研磨を行いながら研磨流体の塊の形状修正を行うことができる。また、ガラス基板の端面研磨が終了してから次のガラス基板の端面研磨が開始するまでの間に形状修正を行ってもよいし、所定時間若しくはガラス基板の所定枚数で区切られるロット間のタイミングで形状修正を行ってもよい。   The timing for correcting the shape of the lump of the polishing fluid may be any time as long as it is during the end face polishing process. As shown in FIG. 10, with the polishing device 10 as a reference, the shape correcting device 20 is arranged on the opposite side of the glass substrate G that is a workpiece, so that the polishing fluid lump can be obtained while polishing the end surface of the glass substrate G. Shape correction can be performed. Further, the shape correction may be performed after the end surface polishing of the glass substrate is completed until the end surface polishing of the next glass substrate is started, or timing between lots divided by a predetermined time or a predetermined number of glass substrates. The shape may be corrected by.

次に、研磨流体の塊の形状を修正する別の方法として、変形した研磨流体の塊に対して追加の研磨流体を供給する方法について、図12を参照して説明する。
図12は、平面視にて供給装置30のノズルから研磨流体を研磨装置10に供給する例を示している。図12に示す例では、追加の研磨流体は、磁場に保持されている研磨流体の塊とガラス基板Gの外周端部が接触する位置に向けて供給されているが、ガラス基板Gの外周端部と接触した後の位置における研磨流体の塊に供給するとより好ましい。また、研磨流体の塊と接触するガラス基板の端面の移動方向に沿って追加の研磨流体が供給されとより好ましい。この追加の研磨流体が塊として新たに磁場に保持されることで、結果として、ガラス基板に対する押圧力を一定に維持するように研磨流体の塊の形状が修正される。
Next, as another method of correcting the shape of the polishing fluid lump, a method of supplying additional polishing fluid to the deformed polishing fluid lump will be described with reference to FIG.
FIG. 12 shows an example in which the polishing fluid is supplied to the polishing apparatus 10 from the nozzle of the supply apparatus 30 in a plan view. In the example shown in FIG. 12, the additional polishing fluid is supplied toward a position where the lump of polishing fluid held in the magnetic field and the outer peripheral end of the glass substrate G are in contact with each other. More preferably, it is supplied to a lump of polishing fluid at a position after contact with the part. Also, and more preferably additional polishing fluid Ru along the direction of movement of the end face of the glass substrate in contact with the mass of the polishing fluid. This additional polishing fluid is newly held in the magnetic field as a lump, and as a result, the shape of the lump of polishing fluid is modified so as to maintain a constant pressing force on the glass substrate.

追加の研磨流体の供給タイミングは特に限定するものではないが、例えば、端面研磨処理中に適時供給してもよいし、ガラス基板の端面研磨が終了してから次のガラス基板の端面研磨が開始するまでの間に供給してもよいし、所定時間若しくはガラス基板の所定枚数で区切られるロット間のタイミングで供給してもよい。また、特定のタイミングを指定することなく供給し続けてもよい。   The supply timing of the additional polishing fluid is not particularly limited. For example, the additional polishing fluid may be supplied at an appropriate time during the end surface polishing process, or the end surface polishing of the next glass substrate starts after the end surface polishing of the glass substrate is completed. It may be supplied until it is done, or may be supplied at a predetermined time or at a timing between lots divided by a predetermined number of glass substrates. Further, the supply may be continued without specifying a specific timing.

端面研磨処理中に供給する研磨流体の温度は室温以下であることが好ましい。本実施形態の端面研磨処理では、磁場発生手段によって形成される磁力線を横切るようにしてガラス基板Gを研磨流体の塊に対して相対移動させるため摩擦熱が発生するが、この摩擦熱は研磨流体を劣化させ、研磨の加工レートを低下させる要因となる。そこで、研磨中に供給する研磨流体の温度を室温以下とすることで上記摩擦熱の発生を抑制し、研磨の加工レートを高く維持することができるようになる。   The temperature of the polishing fluid supplied during the end surface polishing treatment is preferably room temperature or lower. In the end surface polishing process of the present embodiment, frictional heat is generated to move the glass substrate G relative to the lump of polishing fluid so as to cross the magnetic field lines formed by the magnetic field generating means. This frictional heat is generated by the polishing fluid. As a result, the polishing processing rate is lowered. Therefore, by setting the temperature of the polishing fluid supplied during polishing to room temperature or less, generation of the frictional heat can be suppressed and the polishing processing rate can be kept high.

以下、第2の実施形態の変形例について説明する。
[変形例1]
図9〜12を参照してガラス基板Gの外周端面の研磨について説明したが、ガラス基板の内周端面についても、同様の方法により研磨することができる。変形例1(図示せず)は、ガラス基板Gの外周端面の研磨と同時に内周端面の研磨を行う例であり、第1の実施形態の変形例1と同じ研磨方法であるため、詳細な説明については省略する。
Hereinafter, modifications of the second embodiment will be described.
[Modification 1]
Although the grinding | polishing of the outer peripheral end surface of the glass substrate G was demonstrated with reference to FIGS. 9-12, it can grind | polish also about the inner peripheral end surface of a glass substrate by the same method. Modification 1 (not shown) is an example of polishing the inner peripheral end face simultaneously with the polishing of the outer peripheral end face of the glass substrate G, and is the same polishing method as the first modification of the first embodiment. The explanation is omitted.

なお、第2の実施形態の変形例1では、例えば、追加の研磨流体を、磁場に保持されている研磨流体の塊とガラス基板Gの内周端部が接触する位置に向けて供給装置によって供給することで、内周端面研磨を行うための研磨流体の塊の形状を、ガラス基板に対する押圧力を一定に維持するように修正する。また、外周端面研磨については、上述した形状修正装置による研磨流体の塊に対する形状修正を行うか、あるいは追加の研磨流体を供給することによって、外周端面研磨を行うための研磨流体の塊の形状を、ガラス基板に対する押圧力を一定に維持するように修正する。そのため、この変形例では、内周端面および外周端面の両方を同時に研磨しつつ、内周側の面取面および外周側の面取面の加工レートの低下を抑制することができる。   In the first modification of the second embodiment, for example, the additional polishing fluid is directed toward the position where the lump of polishing fluid held in the magnetic field and the inner peripheral end of the glass substrate G are in contact with each other by the supply device. By supplying, the shape of the lump of the polishing fluid for polishing the inner peripheral end face is corrected so as to keep the pressing force against the glass substrate constant. For the outer peripheral end face polishing, the shape of the polishing fluid lump for polishing the outer peripheral end face is obtained by correcting the shape of the polishing fluid lump by the shape correcting device described above or by supplying an additional polishing fluid. Then, the pressing force on the glass substrate is corrected to be kept constant. Therefore, in this modification, it is possible to suppress a decrease in the processing rate of the inner peripheral side chamfered surface and the outer peripheral side chamfered surface while simultaneously polishing both the inner peripheral end surface and the outer peripheral end surface.

[変形例2]
図13は、ガラス基板Gの外周端面の研磨の変形例2を示す図である。変形例2は、1枚のガラス基板ではなく、複数のガラス基板の外周端面を纏めて研磨する例である。
図13に示す研磨装置10Aは、N極の磁石121,122,123,124,…と、S極の磁石140,141,142,143,…と、スペーサ161,162,163,…とを含む。N極の各磁石、S極の各磁石、および、各スペーサは、図3の磁石12、磁石14、および、スペーサ16と同じ構成のものである。
すなわち、研磨装置10Aでは、磁石のN極の端面と隣り合うS極の端面とが一定距離離間して対向するように段重ねになって配列されている。研磨装置10Aでは、スペーサを介在させて対向するN極の磁石からS極の磁石に磁力線が向かう磁場が形成される。つまり、ガラス基板Gの厚さ方向に、N極の面とS極の面が互いに対向するように離間した状態で配置された磁石の複数の対がそれぞれ磁場発生手段として用いられる。例えば、磁石121から磁石141に磁力線が向かう磁場が形成される。スペーサ161,162,163,…の各々の周縁において、磁場によって研磨流体の塊Fが保持される。端面研磨中では、研磨装置10Aを図示されない駆動モータを利用して図13に示すように自転させる。
[Modification 2]
FIG. 13 is a diagram illustrating a second modification example of polishing of the outer peripheral end surface of the glass substrate G. FIG. Modification 2 is an example in which the outer peripheral end surfaces of a plurality of glass substrates are polished together instead of a single glass substrate.
A polishing apparatus 10A shown in FIG. 13 includes N-pole magnets 121, 122, 123, 124,..., S-pole magnets 140, 141, 142, 143,... And spacers 161, 162, 163,. . Each of the N pole magnets, each S pole magnet, and each spacer has the same configuration as the magnet 12, the magnet 14, and the spacer 16 of FIG.
That is, in the polishing apparatus 10A, the N pole end face of the magnet and the adjacent S pole end face are arranged in a stacked manner so as to face each other with a predetermined distance therebetween. In the polishing apparatus 10A, a magnetic field is formed in which magnetic lines of force are directed from an N-pole magnet facing each other through a spacer to an S-pole magnet. That is, in the thickness direction of the glass substrate G, a plurality of pairs of magnets arranged in a state of being separated so that the N-pole surface and the S-pole surface face each other are used as the magnetic field generating means. For example, a magnetic field in which magnetic lines of force are directed from the magnet 121 to the magnet 141 is formed. The lump F of the polishing fluid is held by the magnetic field at the periphery of each of the spacers 161, 162, 163,. During end face polishing, the polishing apparatus 10A is rotated as shown in FIG. 13 using a drive motor (not shown).

複数のガラス基板Gは、スペーサ151,152,153,154,…を挟んで接着剤等により積層体として一体化されている。ここで、積層体にするために用いる接着剤は、第1の実施形態の変形例2で述べたものと同様でよい。端面研磨中では、複数のガラス基板Gを含む積層体を、図示されない回転体で保持し、図示されない駆動モータを利用して図13に示すように自転させる。   The plurality of glass substrates G are integrated as a laminate by an adhesive or the like with spacers 151, 152, 153, 154,. Here, the adhesive used for forming the laminate may be the same as that described in the second modification of the first embodiment. During end face polishing, the laminated body including a plurality of glass substrates G is held by a rotating body (not shown) and rotated as shown in FIG. 13 using a driving motor (not shown).

積層体に含まれる各ガラス基板Gの外周端面を、研磨流体の塊Fと接触させ、それによって研磨流体の塊Fと複数のガラス基板Gの外周端面とを相対移動させることにより、複数のガラス基板Gの外周端面を同時に研磨することができる。すなわち、複数のガラス基板の外周端面を同時に研磨することができるので、加工レートを従来よりも高くすることができ、効率良く研磨をすることができる。
なお、第1の実施形態の変形例2で述べた技術的事項(例えば、磁石間のスペーサの調整や、複数の磁石とガラス基板Gの積層体との揺動等)は、この変形例においても適用できる。
The outer peripheral end face of each glass substrate G included in the laminate is brought into contact with the polishing fluid lump F, whereby the polishing fluid lump F and the outer peripheral end faces of the plurality of glass substrates G are moved relative to each other, whereby a plurality of glasses is obtained. The outer peripheral end face of the substrate G can be polished simultaneously. That is, since the outer peripheral end surfaces of a plurality of glass substrates can be polished at the same time, the processing rate can be made higher than before and the polishing can be performed efficiently.
The technical matters described in the second modification of the first embodiment (for example, adjustment of spacers between magnets and swinging of a laminate of a plurality of magnets and a glass substrate G) are the same in this modification. Is also applicable.

変形例2の端面研磨処理において、研磨中に外部から新たな研磨流体を供給しながら行うようにする。図13に示す例では、複数のノズル301,302,303,…の各々から横方向に追加の研磨流体が、各研磨流体の塊Fとガラス基板Gの外周端部が接触する位置に向けて供給される。この追加の研磨流体が塊として新たに磁場に保持されることで、結果として、各ガラス基板に対する押圧力を一定に維持するように研磨流体の各塊Fの形状が修正される。それによって、ガラス基板Gの積層体に対して連続的に端面研磨を行う場合に各ガラス基板Gの面取面の加工レートの低下を抑制することができる。   In the end face polishing process of the modified example 2, it is performed while supplying a new polishing fluid from the outside during polishing. In the example shown in FIG. 13, additional polishing fluid from each of the plurality of nozzles 301, 302, 303,... Toward the position where the lump F of each polishing fluid and the outer peripheral edge of the glass substrate G contact each other. Supplied. The additional polishing fluid is newly held in the magnetic field as a lump, and as a result, the shape of each lump F of the polishing fluid is corrected so as to keep the pressing force against each glass substrate constant. Thereby, when end surface grinding | polishing is continuously performed with respect to the laminated body of the glass substrate G, the fall of the processing rate of the chamfering surface of each glass substrate G can be suppressed.

図13は、積層体として一体化されている複数のガラス基板Gの外周端面を研磨する場合について例示したが、同様にして複数のガラス基板Gの内周端面を研磨してもよい。また、積層体として一体化されている複数のガラス基板Gの外周端面と内周端面を同時に研磨してもよい。   Although FIG. 13 illustrates the case where the outer peripheral end faces of the plurality of glass substrates G integrated as a laminate are illustrated, the inner peripheral end faces of the plurality of glass substrates G may be similarly polished. Moreover, you may grind | polish the outer peripheral end surface and inner peripheral end surface of the several glass substrate G integrated as a laminated body simultaneously.

[実施例]
本発明の効果を確かめるために、作製したガラス基板の端面研磨を行った。
作製したガラス基板の外径は65mmであり、厚さは0.8mmであり、形状加工処理で、ガラス基板の厚さ方向で0.15mmの面取りを主表面に対して45度の傾斜角度で施した。
[Example]
In order to confirm the effect of the present invention, end face polishing of the produced glass substrate was performed.
The produced glass substrate has an outer diameter of 65 mm and a thickness of 0.8 mm. In the shape processing, a chamfer of 0.15 mm in the thickness direction of the glass substrate is inclined at 45 degrees with respect to the main surface. gave.

(比較例)
図4に示したように、一対の磁石を非磁性のステンレス製のスペーサによって離間させて配置した研磨装置に、2.5インチ型磁気ディスク用のガラス基板の外周端部を挿入した。磁石の寸法は直径19mm、厚さ15mmとした。そして、磁石間に研磨流体を与えて磁石によって形成された磁場に磁石スラリの塊を保持させ、ガラス基板の外周端面を研磨した。ガラス基板の端面と研磨装置を互いに逆向きとなるように回転させ、それぞれの回転数を700rpmとした。100枚のガラス基板を研磨し、1枚ごとの加工時間は3分間とした。なお、磁石の側面上にはみ出す研磨流体は存在しなかった。
ガラス基板の外周端面の研磨のために用いる研磨流体は、非磁性オイル(シリコンオイル)に、2μmの平均粒径(D50)のFe(鉄)の微粒子を3[g/cm3]分散させ、かつ研磨砥粒として平均粒子径が1.5μmの酸化セリウムを分散させたものを用いた。研磨流体中の酸化セリウムの濃度は7[vol%]となるように含ませた。磁石として、0.5[テスラ]の磁束密度を有する永久磁石を用いた。
(Comparative example)
As shown in FIG. 4, the outer peripheral edge of a glass substrate for a 2.5 inch type magnetic disk was inserted into a polishing apparatus in which a pair of magnets were spaced apart by a nonmagnetic stainless steel spacer. The dimensions of the magnet were 19 mm in diameter and 15 mm in thickness. Then, a polishing fluid was applied between the magnets to hold the mass of the magnet slurry in the magnetic field formed by the magnets, and the outer peripheral end surface of the glass substrate was polished. The end surface of the glass substrate and the polishing apparatus were rotated so as to be opposite to each other, and the number of rotations was set to 700 rpm. 100 glass substrates were polished, and the processing time for each one was 3 minutes. There was no polishing fluid protruding on the side of the magnet.
The polishing fluid used for polishing the outer peripheral end surface of the glass substrate is 3 [g / cm 3 ] of fine particles of Fe (iron) having an average particle diameter (D50) of 2 μm dispersed in non-magnetic oil (silicon oil). In addition, abrasive grains in which cerium oxide having an average particle diameter of 1.5 μm was dispersed were used. The concentration of cerium oxide in the polishing fluid was 7 [vol%]. A permanent magnet having a magnetic flux density of 0.5 [Tesla] was used as the magnet.

(実施例1)
比較例と同様に100枚のガラス基板を研磨し、1枚ごとの加工時間は3分間とした。実施例1では、10枚のガラス基板を研磨する度に形状修正装置を用いて、変形した研磨流体の塊の形状を修正した点を除き、比較例の研磨条件と同一条件で研磨を行った。
Example 1
As in the comparative example, 100 glass substrates were polished, and the processing time for each sheet was 3 minutes. In Example 1, polishing was performed under the same conditions as the polishing conditions of the comparative example except that the shape of the lump of deformed polishing fluid was corrected using a shape correction device every time 10 glass substrates were polished. .

(比較例と実施例1の評価)
比較例および実施例1の端面研磨後のガラス基板の外周端面の面取面について、1枚目のガラス基板と100枚目のガラス基板の加工レートを測定した結果、表2に示す通りであった。ここで、加工レートの低下率の算出方法は、上述した式(1)が適用された。表2に示すように、実施例1では、ガラス基板を連続して研磨を行う場合に、比較例と比べて面取面の加工レートの低下が大きく抑制されることが確認された。加工レートの低下率が10%以下であれば、製造工程上特に問題にはならない。
(Evaluation of Comparative Example and Example 1)
As a result of measuring the processing rate of the first glass substrate and the 100th glass substrate on the chamfered surface of the outer peripheral end surface of the glass substrate after end surface polishing in Comparative Example and Example 1, the results are as shown in Table 2. It was. Here, the formula (1) described above was applied as a method of calculating the reduction rate of the processing rate. As shown in Table 2, in Example 1, when the glass substrate was continuously polished, it was confirmed that a decrease in the chamfered surface processing rate was greatly suppressed as compared with the comparative example. If the reduction rate of the processing rate is 10% or less, there is no particular problem in the manufacturing process.

Figure 0006148345
Figure 0006148345

(実施例2)
棒状で先端の断面が凸形状のアルミニウム製の治具を用い、端面研磨中に研磨流体の塊に当該治具の先端を差し込むようにしたこと以外は上記比較例と同一の条件で、ガラス基板の外周端面を研磨した。その結果、ガラス基板の面取面における加工レートの低下率は1%となり、実施例1よりも良好となった。
(Example 2)
A glass substrate under the same conditions as in the above comparative example except that a rod-shaped aluminum jig having a convex cross section was used and the tip of the jig was inserted into a lump of polishing fluid during end face polishing. The outer peripheral end face of was ground. As a result, the reduction rate of the processing rate on the chamfered surface of the glass substrate was 1%, which was better than that of Example 1.

(実施例3)
形状修正装置を用いる替わりに、研磨処理中に研磨流体を追加してガラス基板の外周端面の研磨処理を行なった。この場合のガラス基板の面取面における加工レートの低下率は6%となった。
(Example 3)
Instead of using the shape correcting device, a polishing fluid was added during the polishing process to polish the outer peripheral end surface of the glass substrate. In this case, the reduction rate of the processing rate on the chamfered surface of the glass substrate was 6%.

(実施例4)
実施例1の条件に加えて、研磨砥粒を含む液体を供給しながら研磨を行った。具体的には、図6に示すように、研磨流体の塊と接触するガラス基板の端面の移動方向に沿って研磨砥粒を含む液体を、1枚のガラス基板の外周端面の研磨が終了する度に供給した。当該液体は水とした。
この場合のガラス基板の面取面における加工レートの低下率は0%となり、実施例2よりも一層良好となった。
Example 4
In addition to the conditions of Example 1, polishing was performed while supplying a liquid containing abrasive grains. Specifically, as shown in FIG. 6, the polishing of the outer peripheral end surface of one glass substrate is finished with a liquid containing abrasive grains along the moving direction of the end surface of the glass substrate in contact with the lump of polishing fluid. Supplied every time. The liquid was water.
In this case, the reduction rate of the processing rate on the chamfered surface of the glass substrate was 0%, which was even better than Example 2.

さらに、研磨対象のガラス基板100枚それぞれについて、側壁面と面取面との間の部分の形状の曲率半径を測定した。
ここで、図14を参照して、側壁面と面取面との間の部分の形状の曲率半径をもとめる方法について説明する。図14において、Rは、側壁面1tと面取面1cとの間の部分の形状の曲率を形成する円C2の半径であって、当該部分の形状の曲率半径である。曲率半径Rは、例えば以下のようにしてもとめられる。先ず、面取面1cの直線部を延ばした仮想線L1と、側壁面1tの直線部を延ばした仮想線L2との交点をP1とする。次に、交点P1を通り、且つ、面取面1cの直線部に対して垂直に延びる仮想線L3を設定する。次いで、側壁面1tと面取面1cとの間の部分と、仮想線L3との交点をP2とする。また、ガラス基板Gの断面において、交点P2を中心として所定の半径(例えば50μm)を有する円C1を設定する。また、側壁面1tと面取面1cとの間の部分と、円C1の外周との2つの交点をそれぞれP3,P4とする。さらに、3つの交点P2,P3,P4のそれぞれを通る円C2を設定する。そして、円C2の半径をもとめることによって、側壁面1tと面取面1cとの間の部分の形状の曲率半径Rがもとめられる。
なお、側壁面1tと他方の面取面1c(図14には図示せず)との間の部分の形状の曲率半径も、上記と同様にもとめることができる。
Furthermore, the curvature radius of the shape of the part between a side wall surface and a chamfering surface was measured about 100 glass substrates of grinding | polishing object.
Here, with reference to FIG. 14, a method for obtaining the curvature radius of the shape of the portion between the side wall surface and the chamfered surface will be described. In FIG. 14, R is the radius of a circle C2 that forms the curvature of the shape of the portion between the side wall surface 1t and the chamfered surface 1c, and is the curvature radius of the shape of the portion. The curvature radius R can be determined as follows, for example. First, let P1 be the intersection of an imaginary line L1 extending the straight line portion of the chamfered surface 1c and a virtual line L2 extending the straight line portion of the side wall surface 1t. Next, an imaginary line L3 passing through the intersection point P1 and extending perpendicularly to the straight line portion of the chamfered surface 1c is set. Next, an intersection between the portion between the side wall surface 1t and the chamfered surface 1c and the virtual line L3 is defined as P2. In the cross section of the glass substrate G, a circle C1 having a predetermined radius (for example, 50 μm) around the intersection P2 is set. Moreover, let two intersections of the part between the side wall surface 1t and the chamfering surface 1c and the outer periphery of the circle C1 be P3 and P4, respectively. Further, a circle C2 passing through each of the three intersections P2, P3, P4 is set. Then, by determining the radius of the circle C2, the radius of curvature R of the shape of the portion between the side wall surface 1t and the chamfered surface 1c is determined.
Note that the radius of curvature of the shape of the portion between the side wall surface 1t and the other chamfered surface 1c (not shown in FIG. 14) can also be determined in the same manner as described above.

ガラス基板100枚それぞれについて上記曲率半径を測定し(両面において周上の任意の各1点ずつの平均値)、100枚におけるバラツキ(ここでは、最大値と最小値の差分として定義する。)を算出したところ、実施例1のバラツキの大きさに対する実施例4のバラツキの大きさの比(実施例4/実施例1)は、0.5となり、大幅に小さくなった。これは、研磨砥粒を含む液体を供給することによる相乗効果によって、面取面の研磨レートの低下が抑制されたのみならず、側壁面と面取面との間の部分の研磨が安定するようになったためであると推察される。すなわち、側壁面と面取面との間の部分は尖っているため、一般に加工条件の僅かな変化によっても当該部分の形状の変動が生じやすいが、実施例4では、当該変動が抑制されたことが確認できた。   The radius of curvature is measured for each of the 100 glass substrates (the average value for each arbitrary point on the circumference on both sides), and the variation in 100 sheets (here, defined as the difference between the maximum value and the minimum value). As a result of calculation, the ratio of the variation size of Example 4 to the variation size of Example 1 (Example 4 / Example 1) was 0.5, which was significantly reduced. This is because not only the decrease in the polishing rate of the chamfered surface is suppressed but also the polishing of the portion between the side wall surface and the chamfered surface is stabilized by the synergistic effect by supplying the liquid containing abrasive grains. This is presumed to be due to this. That is, since the portion between the side wall surface and the chamfered surface is pointed, generally the shape of the portion is likely to fluctuate even by a slight change in the processing conditions, but in Example 4, the fluctuation was suppressed. I was able to confirm.

以上、本発明の非磁性基板の製造方法について詳細に説明したが、本発明は上記実施形態および変形例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのは勿論である。例えば、本発明の非磁性基板の製造方法の一実施形態として、磁気ディスク用ガラス基板の製造方法について説明したが、加工対象は非磁性基板であればよく、アルミニウム合金基板等の他の材質の非磁性基板についても適用可能である。   As mentioned above, although the manufacturing method of the nonmagnetic board | substrate of this invention was demonstrated in detail, this invention is not limited to the said embodiment and modification, In the range which does not deviate from the main point of this invention, various improvement and a change are carried out. Of course, it is good. For example, although the manufacturing method of the glass substrate for magnetic disks was demonstrated as one Embodiment of the manufacturing method of the nonmagnetic board | substrate of this invention, the processing object should just be a nonmagnetic board | substrate and other materials, such as an aluminum alloy board | substrate, It can also be applied to non-magnetic substrates.

1…磁気ディスク用ガラス基板
G…ガラス基板
10,10A…研磨装置
5a…磁性体微粒子
5b…研磨砥粒
12,14,121〜124,140〜143…磁石
16,151〜154,161〜163…スペーサ
F…塊
M…磁力線
20…形状修正装置
21U,21L,22…治具
30,30A…供給装置
90…槽
DESCRIPTION OF SYMBOLS 1 ... Magnetic disk glass substrate G ... Glass substrate 10, 10A ... Polishing apparatus 5a ... Magnetic fine particle 5b ... Polishing abrasive grain 12, 14, 121-124, 140-143 ... Magnet 16, 151-154, 161-163 ... Spacer F ... Mass M ... Magnetic field line 20 ... Shape correction device 21U, 21L, 22 ... Jig 30, 30A ... Supply device 90 ... Tank

Claims (10)

側壁面および主表面を有する板状の非磁性基板の端面を研磨する端面研磨処理を含む非磁性基板の製造方法であって、
前記端面研磨処理は、磁場発生手段を用いて前記基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させることによって前記磁気機能性流体の塊を形成し、前記基板の端面と前記磁気機能性流体の塊とを接触させて、基板と前記磁気機能性流体の塊とを相対移動させることにより、前記基板の端面を研磨する処理であり、
基板と接触することにより変形した磁気機能性流体の塊の形状を、治具を接触させることによって、基板に対する押圧力を一定に維持するように修正することを特徴とする、非磁性基板の製造方法。
A method for producing a nonmagnetic substrate, comprising an end surface polishing treatment for polishing an end surface of a plate-like nonmagnetic substrate having a side wall surface and a main surface,
The end surface polishing treatment uses the magnetic field generating means to form a magnetic field so that a magnetic line of force advances in the thickness direction of the substrate, and to hold the magnetic functional fluid containing abrasive grains in the magnetic field. A process of polishing the end face of the substrate by forming a fluid mass, bringing the end surface of the substrate into contact with the mass of the magnetic functional fluid, and moving the substrate and the mass of the magnetic functional fluid relative to each other. And
Manufacturing of a non-magnetic substrate characterized by correcting the shape of the mass of the magnetic functional fluid deformed by contact with the substrate so that the pressing force against the substrate is kept constant by contacting the jig Method.
側壁面および主表面を有する板状の非磁性基板の端面を研磨する端面研磨処理を含む非磁性基板の製造方法であって、
前記端面研磨処理は、磁場発生手段を用いて前記基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させることによって前記磁気機能性流体の塊を形成し、前記基板の端面と前記磁気機能性流体の塊とを接触させて、基板と前記磁気機能性流体の塊とを相対移動させることにより、前記基板の端面を研磨する処理であり、
基板と接触することにより変形した前記磁気機能性流体の塊に対して治具を接触させて磁気機能性流体を移動させることによって、前記磁気機能性流体の塊の形状を修正することを特徴とする、非磁性基板の製造方法。
A method for producing a nonmagnetic substrate, comprising an end surface polishing treatment for polishing an end surface of a plate-like nonmagnetic substrate having a side wall surface and a main surface,
The end surface polishing treatment uses the magnetic field generating means to form a magnetic field so that a magnetic line of force advances in the thickness direction of the substrate, and to hold the magnetic functional fluid containing abrasive grains in the magnetic field. A process of polishing the end face of the substrate by forming a fluid mass, bringing the end surface of the substrate into contact with the mass of the magnetic functional fluid, and moving the substrate and the mass of the magnetic functional fluid relative to each other. And
A shape of the mass of the magnetic functional fluid is corrected by moving the magnetic functional fluid by bringing a jig into contact with the mass of the magnetic functional fluid deformed by contact with the substrate. A method of manufacturing a nonmagnetic substrate.
側壁面および主表面を有する板状の非磁性基板の端面を研磨する端面研磨処理を含む非磁性基板の製造方法であって、
前記端面研磨処理は、磁場発生手段を用いて前記基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させることによって前記磁気機能性流体の塊を形成し、前記基板の端面と前記磁気機能性流体の塊とを接触させて、基板と前記磁気機能性流体の塊とを相対移動させることにより、前記基板の端面を研磨する処理であり、
前記基板と接触することにより変形した磁気機能流体の塊の形状を、治具を接触させることによって、元の形状に戻すように修正することを特徴とする、非磁性基板の製造方法。
A method for producing a nonmagnetic substrate, comprising an end surface polishing treatment for polishing an end surface of a plate-like nonmagnetic substrate having a side wall surface and a main surface,
The end surface polishing treatment uses the magnetic field generating means to form a magnetic field so that a magnetic line of force advances in the thickness direction of the substrate, and to hold the magnetic functional fluid containing abrasive grains in the magnetic field. A process of polishing the end face of the substrate by forming a fluid mass, bringing the end surface of the substrate into contact with the mass of the magnetic functional fluid, and moving the substrate and the mass of the magnetic functional fluid relative to each other. And
A method of manufacturing a non-magnetic substrate, wherein the shape of the mass of the magnetic functional fluid deformed by contacting with the substrate is corrected so as to return to the original shape by contacting a jig.
側壁面および主表面を有する板状の非磁性基板の端面を研磨する端面研磨処理を含む非磁性基板の製造方法であって、
前記端面研磨処理は、磁場発生手段を用いて前記基板の厚さ方向に磁力線が進むように磁場を形成し、当該磁場に研磨砥粒を含む磁気機能性流体を保持させることによって前記磁気機能性流体の塊を形成し、前記基板の端面と前記磁気機能性流体の塊とを接触させて、基板と前記磁気機能性流体の塊とを相対移動させることにより、前記基板の端面を研磨する処理であり、
前記磁気機能流体の塊に治具を接触させることで前記磁気機能流体の塊の形を変えることを特徴とする、非磁性基板の製造方法。
A method for producing a nonmagnetic substrate, comprising an end surface polishing treatment for polishing an end surface of a plate-like nonmagnetic substrate having a side wall surface and a main surface,
The end surface polishing treatment uses the magnetic field generating means to form a magnetic field so that a magnetic line of force advances in the thickness direction of the substrate, and to hold the magnetic functional fluid containing abrasive grains in the magnetic field. A process of polishing the end face of the substrate by forming a fluid mass, bringing the end surface of the substrate into contact with the mass of the magnetic functional fluid, and moving the substrate and the mass of the magnetic functional fluid relative to each other. And
A method of manufacturing a non-magnetic substrate, wherein a shape of the mass of the magnetic functional fluid is changed by bringing a jig into contact with the mass of the magnetic functional fluid.
前記治具の先端を前記磁気機能性流体の塊に差し込むようにして、前記磁気機能性流体の塊に対して前記治具を接触させることを特徴とする、請求項1〜4のいずれか1項に記載の非磁性基板の製造方法。   The tip of the jig is inserted into the mass of the magnetic functional fluid, and the jig is brought into contact with the mass of the magnetic functional fluid. The manufacturing method of the nonmagnetic board | substrate as described in a term. 追加の磁気機能性流体の塊を供給するとともに治具を接触することによって、前記磁気機能性流体の形状を修正することを特徴とする、請求項1〜5いずれか1項に記載の非磁性基板の製造方法。   The nonmagnetic property according to any one of claims 1 to 5, wherein a shape of the magnetic functional fluid is corrected by supplying an additional mass of the magnetic functional fluid and contacting a jig. A method for manufacturing a substrate. 前記磁場発生手段は、前記基板の厚さ方向に、N極の面とS極の面が互いに対向するように離間した状態で配置された磁石の対を含む、請求項1〜6のいずれか1項に記載された非磁性基板の製造方法。   The magnetic field generation means includes a pair of magnets arranged in a state in which the N-pole surface and the S-pole surface are spaced apart from each other in the thickness direction of the substrate. A method for producing a non-magnetic substrate according to item 1. 前記磁石の対の前記N極の面と前記S極の面との間には、非磁性体からなるスペーサが設けられている、請求項7に記載された非磁性基板の製造方法。   The method of manufacturing a nonmagnetic substrate according to claim 7, wherein a spacer made of a nonmagnetic material is provided between the N pole surface and the S pole surface of the pair of magnets. 前記基板は、円形状の内孔を有する円板形状であり、
前記磁場発生手段は、前記基板の前記内孔内に設けられて、前記内孔の側壁面である内周端面の周りで、前記基板の厚さ方向に内周側磁力線が進むように磁場を形成する内周側手段、および/または、前記基板の外周側に設けられて、前記基板の外周端面の周りで、前記基板の厚さ方向に外周側磁力線が進むように磁場を形成する外周側手段、を有し、
前記基板の内周端面および/または外周端面を、前記内周側手段および/または前記外周側手段のそれぞれによって形成される磁場に前記磁気機能性流体の塊を保持させた状態で、前記基板の内周端面および/または外周端面を研磨する、請求項1〜8のいずれか1項に記載された非磁性基板の製造方法。
The substrate has a disk shape having a circular inner hole,
The magnetic field generating means is provided in the inner hole of the substrate and generates a magnetic field so that an inner peripheral magnetic field line advances in the thickness direction of the substrate around an inner peripheral end surface which is a side wall surface of the inner hole. Inner peripheral means for forming and / or an outer peripheral side which is provided on the outer peripheral side of the substrate and forms a magnetic field around the outer peripheral end surface of the substrate so that outer peripheral magnetic lines of force advance in the thickness direction of the substrate Means,
The inner peripheral end face and / or the outer peripheral end face of the substrate is held in a state where the mass of the magnetic functional fluid is held in a magnetic field formed by each of the inner peripheral means and / or the outer peripheral means. The method for manufacturing a nonmagnetic substrate according to claim 1, wherein the inner peripheral end face and / or the outer peripheral end face is polished.
前記基板の端面研磨処理中に前記磁気機能性流体の塊に対して前記研磨砥粒を供給することを特徴とする、請求項1〜9のいずれか1項に記載された非磁性基板の製造方法。   The non-magnetic substrate manufacturing method according to any one of claims 1 to 9, wherein the abrasive grains are supplied to the lump of the magnetic functional fluid during an end surface polishing process of the substrate. Method.
JP2015539434A 2013-09-27 2014-09-29 Manufacturing method of non-magnetic substrate Expired - Fee Related JP6148345B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013202183 2013-09-27
JP2013202159 2013-09-27
JP2013202183 2013-09-27
JP2013202159 2013-09-27
PCT/JP2014/075929 WO2015046525A1 (en) 2013-09-27 2014-09-29 Method for producing non-magnetic substrate

Publications (2)

Publication Number Publication Date
JPWO2015046525A1 JPWO2015046525A1 (en) 2017-03-09
JP6148345B2 true JP6148345B2 (en) 2017-06-14

Family

ID=52743646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015539434A Expired - Fee Related JP6148345B2 (en) 2013-09-27 2014-09-29 Manufacturing method of non-magnetic substrate

Country Status (4)

Country Link
JP (1) JP6148345B2 (en)
CN (1) CN105408062B (en)
SG (1) SG11201602297RA (en)
WO (1) WO2015046525A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170135A1 (en) * 2016-04-01 2017-10-05 株式会社フジミインコーポレーテッド Composition for abrasive finishing use and method for producing same, and magnetic abrasive finishing method
JP6220090B2 (en) * 2016-04-01 2017-10-25 株式会社フジミインコーポレーテッド Polishing composition, method for producing the same, and magnetic polishing method
JP2019014004A (en) * 2017-07-06 2019-01-31 日本特殊陶業株式会社 Production method for ceramic product

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239172A (en) * 1985-08-09 1987-02-20 Kureha Chem Ind Co Ltd Magnetic polishing machine
JPH0318128Y2 (en) * 1985-10-31 1991-04-17
JP2005050501A (en) * 2003-07-15 2005-02-24 Hoya Corp Method and device for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
US7175511B2 (en) * 2003-07-15 2007-02-13 Hoya Corporation Method of manufacturing substrate for magnetic disk, apparatus for manufacturing substrate for magnetic disk, and method of manufacturing magnetic disk
JP2007296598A (en) * 2006-04-28 2007-11-15 Fdk Corp Magnetic polishing method and wafer polishing device
JP2008254140A (en) * 2007-04-06 2008-10-23 Toshiba Corp Dressing device for thin blade grinding wheel, dressing method, manufacturing method of semiconductor and manufacturing method of precision part
JP2010082746A (en) * 2008-09-30 2010-04-15 Ohara Inc Method for manufacturing polishing-treated object, substrate and photomask
JP2010257562A (en) * 2009-03-30 2010-11-11 Hoya Corp Substrate for magnetic disk and method for manufacturing the same

Also Published As

Publication number Publication date
CN105408062B (en) 2018-01-30
WO2015046525A1 (en) 2015-04-02
SG11201602297RA (en) 2016-05-30
JPWO2015046525A1 (en) 2017-03-09
CN105408062A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5356606B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5860195B1 (en) Glass substrate for magnetic disk
JP5305698B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate for magnetic disk
JP2010257562A (en) Substrate for magnetic disk and method for manufacturing the same
JP6490842B2 (en) Grinding tool, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
JP2008302448A (en) Method for manufacturing glass substrate for information recording medium, glass substrate for information recording medium, and magnetic recording medium
JP6577501B2 (en) Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and method for producing glass substrate for magnetic disk
JP2012169024A (en) Method for manufacturing glass substrate for magnetic recording medium
JP6148345B2 (en) Manufacturing method of non-magnetic substrate
JP6059732B2 (en) Manufacturing method of glass substrate for magnetic disk
JP4894678B2 (en) Manufacturing method of glass substrate for information recording medium
JP2012216255A (en) Method for manufacturing glass substrate for magnetic disk
JP5902914B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2015064920A (en) Manufacturing method of glass substrate for magnetic disk
JP5483530B2 (en) Manufacturing method of magnetic disk substrate
JP6353524B2 (en) Substrate manufacturing method
JP2016071916A (en) Method for manufacturing glass substrate for magnetic disk
JP6392634B2 (en) Nonmagnetic substrate manufacturing method and polishing apparatus
CN109285565B (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
JP5702448B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2010080026A (en) Method for manufacturing substrate for magnetic disk
JP2015225687A (en) Manufacturing method of magnetic disk glass substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170518

R150 Certificate of patent or registration of utility model

Ref document number: 6148345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees