JPH0318128Y2 - - Google Patents

Info

Publication number
JPH0318128Y2
JPH0318128Y2 JP1985169064U JP16906485U JPH0318128Y2 JP H0318128 Y2 JPH0318128 Y2 JP H0318128Y2 JP 1985169064 U JP1985169064 U JP 1985169064U JP 16906485 U JP16906485 U JP 16906485U JP H0318128 Y2 JPH0318128 Y2 JP H0318128Y2
Authority
JP
Japan
Prior art keywords
abrasive
polishing
ferromagnetic
grains
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985169064U
Other languages
Japanese (ja)
Other versions
JPS6278259U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985169064U priority Critical patent/JPH0318128Y2/ja
Publication of JPS6278259U publication Critical patent/JPS6278259U/ja
Application granted granted Critical
Publication of JPH0318128Y2 publication Critical patent/JPH0318128Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、例えば磁気を利用して丸棒材、線
材、帯材、角鋼などの被研摩材を連続的に研摩す
る装置に用いられる強磁性研摩材に関し、更に詳
述すれば、鋭い陵角部を有し、熱処理により硬化
した鉄製粗粒状物7の外面に接着剤23にて砥粒
22を積層して鉄製粗粒状物7の外周に研摩層1
3を構成してなることを特徴とする強磁性研摩材
にかかるものである。 従来、地場産業や線材加工メーカにあつては、
線材の表面に形成される酸化皮膜を除去するため
に酸処理を行つてきたが、酸処理廃液の処理に多
額の費用と設備及び周到な管理を必要とし、これ
に加えて大量のスラツジの処理に苦慮しているの
が現状である。そこでこのよう湿式処理から次第
に線材の表面の酸化皮膜を物理的に取り除く乾式
処理(例えば、ホイルブラシを使用するブラツシ
ング法その他サンドブラスト法やシヨツトブラス
ト法)にその比重が次第に移つてきた。しかしな
がら前者にあつてはホイルブラシの摩擦抵抗が大
きく、被研摩材のパスラインの通過に過大の動力
を必要とするという欠点や研摩力が弱いため、ホ
イルブラシを多段に必要とするという欠点などが
あり、また、研摩も正確に行なわれないという欠
点もあつた。後二者にあつては、高圧で研摩材を
被研摩材に吹き付けるため、振動の発生、仕上が
りの不正確さ、高圧吹き付けによる騒音公害など
の問題点があつた。そこで、磁気を利用した研摩
方法が最近注目されるようになつた来た。処が、
研摩材として単なる鉄粉やシヨツト又はグリツト
のような鋼粒を用いるだけでは研摩力が比較的弱
く、高速且つ精密な研摩が不可能で実用上問題が
あつた。そこで、特公昭46−11395号公報に記載
されているように、フエライト粒の表面に研摩剤
を焼結した強磁性研摩材が提案されたが、フエラ
イト粒を粗粒にした場合にはその粒界から割れ易
く、粗粒状では実用に供しえなかつた。従つて、
フエライト利用の強磁性研摩材はフエライト単粒
の微粉状のものであり、研摩による表面研削量が
少ないために表面粗さが非常に細かい仕上げの要
求される用途には威力を発揮するものの鋼線や棒
鋼表面のスケールや錆取りなど短時間で大量の表
面研削を行わねばならないような用途には不向き
であつた。 本考案は係る経緯に鑑みて為されたもので、そ
の目的とするところは、磁気利用の研摩方法にお
いて、高速且つ精密な研摩が可能な強磁性研摩材
を提供するにある。 以下、本考案を図示実施例に従つて詳述する。
本考案で使用される鉄製粗粒状物7は、グリツト
(溶解鋳造乃至ワイヤをカツトした鋭い陵角部を
有する金属粒で、熱処理によつて硬化している。)
のようなものであり、鋳鉄製のものや鋳鋼製のも
のなどがあり、高硬度、高靭性を有している。 本考案で使用するグリツドの規格を示す。
The present invention relates to a ferromagnetic abrasive used in a device that uses magnetism to continuously polish materials to be polished such as round bars, wire rods, strips, and square steel. The abrasive grains 22 are laminated with an adhesive 23 on the outer surface of the iron coarse granules 7 which have been hardened by heat treatment, thereby forming an abrasive layer 1 on the outer periphery of the iron coarse granules 7.
This invention relates to a ferromagnetic abrasive material characterized by comprising: 3. Traditionally, for local industries and wire processing manufacturers,
Acid treatment has been used to remove the oxide film that forms on the surface of wire rods, but treatment of acid treatment waste requires a large amount of money, equipment, and careful management. The current situation is that we are struggling with this. Therefore, the emphasis has gradually shifted from such wet processing to dry processing (for example, brushing using a foil brush, sandblasting, and shotblasting) that physically removes the oxide film on the surface of the wire. However, in the case of the former, the disadvantages are that the frictional resistance of the foil brush is large and excessive power is required for the material to be polished to pass through the pass line, and that the polishing force is weak, requiring multiple stages of foil brushes. There was also the drawback that polishing could not be done accurately. In the latter two, the abrasive material is sprayed onto the material to be polished at high pressure, resulting in problems such as generation of vibration, inaccurate finishing, and noise pollution caused by high-pressure spraying. Therefore, polishing methods using magnetism have recently been attracting attention. The place is
Simply using steel grains such as iron powder, shot, or grit as the abrasive material has a relatively weak abrasive power, making it impossible to perform high-speed and precise polishing, which poses a practical problem. Therefore, as described in Japanese Patent Publication No. 46-11395, a ferromagnetic abrasive material was proposed in which an abrasive agent was sintered on the surface of ferrite grains, but when the ferrite grains were made into coarse grains, It was easily cracked by particles and could not be put to practical use in coarse-grained form. Therefore,
Ferromagnetic abrasives using ferrite are in the form of a fine powder of single grains of ferrite, and because the amount of surface abrasion caused by polishing is small, they are effective in applications that require a very fine surface finish. It was unsuitable for applications that require a large amount of surface grinding in a short period of time, such as removing scale and rust from the surface of steel bars. The present invention was devised in view of the above circumstances, and its purpose is to provide a ferromagnetic abrasive material that enables high-speed and precise polishing in a magnetic polishing method. The present invention will be described in detail below with reference to illustrated embodiments.
The coarse iron particles 7 used in the present invention are grits (metal grains with sharp ridges made by melting and casting or cutting wire, and are hardened by heat treatment).
They are made of cast iron or cast steel, and have high hardness and toughness. The standards of the grid used in this invention are shown below.

【表】 砥粒22には例えばカーボランダム、ホワイト
アランダム、グリーンカーボン又はカーボンアラ
ンダムの粉又は小粒状のものが用いられる。砥粒
22を固める接着剤23としてはゴムラテツクス
系のものやエポキシ系、無機接着剤その他各種の
ものなどが利用される。 しかして、ホワイトアランダムを主とし、必要
があればカーボアランダムやグリーンカーボンな
どを混入し、接着剤23と共に混練する。次に、
鉄製粗粒状物7を混入して泥状に混練し、この混
練物を押し出し、板状に展延してから乾燥し、半
乾燥状態にする。半乾燥状態となつた混練物はロ
ーラにかけられて破砕され、鉄製粗粒状物7の外
面に砥粒22が積層した強磁性研摩材5と砥粒2
2だけの粒状物とに分かれる。第6図中、7が鉄
製粗粒状物でその外面に接着剤23にて固化・積
層している砥粒22の層が研摩層13である。次
いで、電磁石にて内部に鉄製粗粒状物7を含む強
磁性研摩材5のみを磁着して砥粒22だけのもの
と分離する。然る後、大小取り混ぜて分離された
強磁性研摩材5をふるいわけ、粒径をそろえる。
前述のようにふるい分けられた砥粒22だけのも
のは原料として最初の段階に戻され、細かく粉砕
されて次ロツトの砥粒22及び鉄製粗粒状物7に
投入され、混練・再利用される。 次ぎに、本考案に係る強磁性研摩材5を使用す
る研摩装置の一実施例に付いて説明する。第1図
において、装置の中央を通るパスライン2の上下
に一対の電磁回転体3が前後2組配設されてい
る。電磁回転体3の断面は第3図のような構造
で、可変速モータ(図示せず)にて回転駆動され
るようになつており、電磁回転体3内に設けられ
た励磁コイル17に給電するようになつている。
集電機16には(+)(−)の給電ブラシ18が
摺接していて(+)(−)が回転中に所定時間
(1/60秒程度)経過すると切替わるようになつ
ている。励磁コイル17の外周にはアルミニウム
製の円筒19が嵌着されている。円筒19の外周
中央には非磁性リング14が嵌め込まれており、
非磁性リング14の両側に永久磁石の研摩用リン
グ20が嵌め込まれており、最も外側に鉄のよう
な強磁性体の電磁リング15が嵌め込まれてお
り、電磁回転体3の両側面には鉄製の側板21を
張設してある。(もち論、研摩用リング20と電
磁リング15とは逆の配置になつていても良いも
のである。)研摩用リング20の外周面全周には
被研摩材1の形状に合わせた研摩溝12を凹設し
てあり、本実施例の場合は被研摩材1が丸棒のた
め研摩溝12は断面が半円状となつている。被研
摩材1が平板の場合は、研摩溝12を要しないも
のである。電磁回転体3の上方には、研摩材供給
箱8が配設されており、その底部からプラスチツ
ク製の研摩材供給筒9が突出しており、電磁回転
体3に強磁性研摩材5を連続的に注ぐようになつ
ている。電磁回転体3の下方には摺り鉢状の集粒
箱10が配置されており、研摩時に跳ね飛ばされ
た強磁性研摩材5が集粒箱10に集められる。集
められた強磁性研摩材5は装置本体の背部に設け
られた搬送手段11であるホツパに入れられて上
方に運ばれ、再び研摩材供給箱8に投入される。
24は排気孔で集塵機(図示せず)へ連結されて
おり、研摩時に発生した砥粒22の微粉塵を排出
するもので、排出された砥粒22に再利用される
ものである。尚、研摩材供給箱8は防振ばね25
によつて支持されている。装置本体の入口26及
び出口27近傍にてパスライン2の上下にガイド
ローラ28を配置してある。 而して、パスライン2に被研摩材1を通し、一
度速度で一方向に移送する。これと同時に研摩材
供給筒9を通して強磁性研摩材5を回転せる電磁
回転体3に注ぎ、電磁回転体3の回転研摩面4に
強磁性研摩材5を積層して研摩材磁着層6を形成
し、この研摩材磁着層6にて被研摩材1の表面を
研摩する。電磁回転体3は被研摩材1の種類によ
り可変速モータにて最適の回転数に制御される。
電磁回転体3の回転方向は第1図からわかるよう
に、通常は被研摩材1の進行方向に抗する方向に
回転する。電磁回転体3に設けられた電磁リング
15がある瞬間励磁コイル17によつて磁化さ
れ、第5図のようにN,S,N,S・N,S,
N,Sと順方向に磁極が並んだ時、永久磁石の研
摩用リング20と協働して磁界を強め、強磁性研
摩材5を磁着する。次の瞬間、励磁コイル17を
流れる電流の方向が逆向きとなり、電磁リング1
5と永久時の研摩用リング20の極性がS,N,
N,S・N,S,S,Nと逆方向になり、互いに
磁力を打ち消しあつて消磁する。このような動作
を瞬時に繰り返して被研摩材1への強磁性研摩材
5の付着を防止している。尚、本考案に係る強磁
性研摩材5図示実施例の装置にのみ使用されるも
のでなく、磁気利用の研摩装置にはもれなく適用
出来るものである。 本考案は叙上のように、熱処理が施されて硬化
しており、鋭い陵角部を有する鉄製粗粒状物の外
面に砥粒を積層して鉄製粗粒状物の外周に研摩層
を構成してあるので、パスラインと接する電磁回
転体の回転研摩面に強磁性研摩材の研摩材磁着層
を形成し、パスライン上を通過する被研摩材の表
面を研摩する事になり、被研摩材と直接接触する
のは強磁性研摩材の砥粒部分であり、砥粒による
高速度な研摩効果を得る事が出来るものである。
又、この場合研摩材磁着層は回転研摩面に磁着さ
れているのみで、流動性があるため被研摩材の表
面への接触圧はどの強磁性研摩材を取つても均一
であり、高い寸法精度及び優れた表面荒さを得る
事が出来るものである。又、砥粒を積層するため
の粒状物は鉄製であるので、粒度を大きくしても
従来のフエライトのように割れたりすると言う事
がなく、しかもこの鉄製粗粒状物は鋭い陵角部を
有するので、表面の砥粒と協働して鋼材の表面の
スケールや錆取りなど研削量の大きい用途に最適
である。更に、この鉄製粗粒状物は熱処理にて高
い硬度を有するために研摩により鋭い陵角部の摩
滅が少なく、繰り返しての使用が可能となる。
[Table] As the abrasive grains 22, for example, powder or small grains of carborundum, white alundum, green carbon, or carbon alundum are used. As the adhesive 23 for hardening the abrasive grains 22, rubber latex-based adhesives, epoxy-based adhesives, inorganic adhesives, and various other adhesives are used. The mixture is mainly made of white alundum, and if necessary, carboriandum, green carbon, etc. are mixed therein and kneaded together with the adhesive 23. next,
Coarse iron particles 7 are mixed and kneaded into a slurry, and the kneaded material is extruded, spread into a plate shape, and then dried to a semi-dry state. The semi-dry kneaded material is crushed by rollers, and a ferromagnetic abrasive material 5 with abrasive grains 22 laminated on the outer surface of coarse iron particles 7 and abrasive grains 2 are formed.
It is divided into only 2 granules. In FIG. 6, reference numeral 7 denotes iron coarse particles, and a layer of abrasive grains 22 solidified and laminated with an adhesive 23 on the outer surface thereof is a polishing layer 13. Next, only the ferromagnetic abrasive material 5 containing coarse iron particles 7 inside is magnetically attracted using an electromagnet to separate it from the abrasive grains 22 only. After that, the ferromagnetic abrasive material 5, which has been mixed and separated in size, is sieved to make the particle size uniform.
The abrasive grains 22 that have been sieved as described above are returned to the initial stage as a raw material, are finely ground, and are fed into the next lot of abrasive grains 22 and coarse iron particles 7, where they are kneaded and reused. Next, an embodiment of a polishing apparatus using the ferromagnetic abrasive material 5 according to the present invention will be described. In FIG. 1, a pair of electromagnetic rotating bodies 3 are arranged above and below a pass line 2 passing through the center of the device. The cross section of the electromagnetic rotating body 3 has a structure as shown in FIG. 3, and is designed to be rotated by a variable speed motor (not shown), which supplies power to an excitation coil 17 provided within the electromagnetic rotating body 3. I'm starting to do that.
(+) and (-) power supply brushes 18 are in sliding contact with the current collector 16, and the (+) and (-) are switched over after a predetermined time (about 1/60 second) has elapsed during rotation. An aluminum cylinder 19 is fitted around the outer periphery of the excitation coil 17. A non-magnetic ring 14 is fitted into the center of the outer circumference of the cylinder 19.
Abrasive rings 20 made of permanent magnets are fitted on both sides of the non-magnetic ring 14, and an electromagnetic ring 15 made of a ferromagnetic material such as iron is fitted on the outermost side. A side plate 21 is stretched. (Of course, the polishing ring 20 and the electromagnetic ring 15 may be arranged in opposite directions.) The polishing ring 20 has polishing grooves that match the shape of the material 1 on the entire outer circumference. In this embodiment, since the material 1 to be polished is a round bar, the polishing groove 12 has a semicircular cross section. If the material 1 to be polished is a flat plate, the polishing grooves 12 are not required. An abrasive supply box 8 is disposed above the electromagnetic rotor 3, and a plastic abrasive supply tube 9 protrudes from the bottom of the box 8, which continuously supplies the ferromagnetic abrasive 5 to the electromagnetic rotor 3. It is now pouring into the water. A mortar-shaped particle collection box 10 is arranged below the electromagnetic rotating body 3, and the ferromagnetic abrasive material 5 splashed away during polishing is collected in the particle collection box 10. The collected ferromagnetic abrasive material 5 is put into a hopper, which is a conveying means 11 provided at the back of the apparatus main body, is carried upward, and is again thrown into the abrasive material supply box 8.
Reference numeral 24 is connected to a dust collector (not shown) through an exhaust hole, which discharges fine dust of the abrasive grains 22 generated during polishing, and is reused as the discharged abrasive grains 22. In addition, the abrasive material supply box 8 is equipped with an anti-vibration spring 25.
Supported by. Guide rollers 28 are arranged above and below the pass line 2 near the entrance 26 and exit 27 of the main body of the apparatus. The material to be polished 1 is then passed through the pass line 2 and transported once in one direction at a high speed. At the same time, the ferromagnetic abrasive 5 is poured into the rotating electromagnetic rotating body 3 through the abrasive supply cylinder 9, and the ferromagnetic abrasive 5 is laminated on the rotary polishing surface 4 of the electromagnetic rotating body 3 to form an abrasive magnetic layer 6. The surface of the material to be polished 1 is polished using this abrasive magnetic layer 6. The electromagnetic rotating body 3 is controlled to an optimum rotational speed by a variable speed motor depending on the type of material 1 to be polished.
As can be seen from FIG. 1, the electromagnetic rotating body 3 normally rotates in a direction opposite to the direction in which the material to be polished 1 moves. The electromagnetic ring 15 provided on the electromagnetic rotating body 3 is magnetized by a momentary excitation coil 17, and as shown in FIG.
When the magnetic poles are aligned in the forward direction of N and S, the magnetic field is strengthened in cooperation with the permanent magnet polishing ring 20, and the ferromagnetic abrasive material 5 is magnetically attached. At the next moment, the direction of the current flowing through the excitation coil 17 is reversed, and the electromagnetic ring 1
5 and the polarity of the permanent polishing ring 20 is S, N,
The directions are opposite to N, S, N, S, S, N, and their magnetic forces are canceled out and demagnetized. This operation is repeated instantaneously to prevent the ferromagnetic abrasive material 5 from adhering to the material 1 to be polished. The ferromagnetic abrasive material 5 according to the present invention is not only used in the apparatus shown in the illustrated embodiment, but can be applied to any polishing apparatus utilizing magnetism. As mentioned above, the present invention is made by laminating abrasive grains on the outer surface of a coarse iron granule that has been hardened by heat treatment and has sharp ridges to form an abrasive layer around the outer periphery of the coarse iron granule. Therefore, an abrasive magnetic layer of ferromagnetic abrasive material is formed on the rotating polishing surface of the electromagnetic rotating body in contact with the pass line, and the surface of the material to be polished passing on the pass line is polished. The abrasive grains of the ferromagnetic abrasive material are in direct contact with the material, and the abrasive grains can provide a high-speed polishing effect.
In addition, in this case, the abrasive magnetic layer is only magnetically attached to the rotating polishing surface, and since it has fluidity, the contact pressure to the surface of the polished material is uniform no matter which ferromagnetic abrasive material is used. It is possible to obtain high dimensional accuracy and excellent surface roughness. In addition, since the granules used to stack the abrasive grains are made of iron, even if the grain size is increased, they do not break like conventional ferrite, and these coarse iron granules have sharp ridges. Therefore, it works in cooperation with the abrasive grains on the surface, making it ideal for applications that require a large amount of grinding, such as removing scale and rust from the surface of steel materials. Furthermore, since this coarse iron granule has high hardness when heat treated, the sharp ridges are less likely to be worn away by polishing, making it possible to use it repeatedly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図…本考案に使用する研摩装置の一部切欠
正面図、第2図…本考案に使用する研摩装置の一
部切欠側断面図、第3図…本考案の電磁回転体の
1実施例の断面図、第4図…本考案の電磁回転体
の縦断面図、第5図…第3図の正面図、第6図…
本考案の強磁性研摩材の一部切欠正面図。 1……被研摩材、2……パスライン、3……電
磁回転体、4……回転研摩面、5……強磁性研摩
材、6……研摩材磁着層、7……鉄製粗粒状物、
8……研摩材供給箱、9……研摩材供給筒、10
……集粒箱、11……搬送手段、12……研摩
溝、13……研摩層、14……被磁性リング、1
5……電磁リング、16……集電機、17……励
磁コイル、18……給電ブラシ、19……円筒、
20……研摩用リング、21……側板、22……
砥粒、23……接着剤、24……排気孔、25…
…防振ばね、26……入口、27……出口、28
……ガイドローラ。
Fig. 1... A partially cutaway front view of the polishing device used in the present invention, Fig. 2... A partially cutaway side sectional view of the polishing device used in the present invention, Fig. 3... One implementation of the electromagnetic rotating body of the present invention. A sectional view of an example, FIG. 4...A longitudinal sectional view of the electromagnetic rotating body of the present invention, FIG. 5...A front view of FIG. 3, FIG. 6...
FIG. 2 is a partially cutaway front view of the ferromagnetic abrasive material of the present invention. 1... Material to be polished, 2... Pass line, 3... Electromagnetic rotating body, 4... Rotating polishing surface, 5... Ferromagnetic abrasive material, 6... Abrasive magnetic layer, 7... Iron coarse grains thing,
8... Abrasive material supply box, 9... Abrasive material supply cylinder, 10
... Grain collection box, 11 ... Conveyance means, 12 ... Polishing groove, 13 ... Polishing layer, 14 ... Magnetized ring, 1
5... Electromagnetic ring, 16... Current collector, 17... Excitation coil, 18... Power supply brush, 19... Cylinder,
20... Polishing ring, 21... Side plate, 22...
Abrasive grain, 23...Adhesive, 24...Exhaust hole, 25...
...Anti-vibration spring, 26...Inlet, 27...Outlet, 28
...Guide roller.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 鋭い陵角部を有し、熱処理により硬化した鉄製
粗粒状物の外面に接着剤にて砥粒を積層して鉄製
粗粒状物の外周に研摩層を構成してなることを特
徴とする強磁性研摩材。
A ferromagnetic material that has sharp ridges and is made by laminating abrasive grains with an adhesive on the outer surface of a coarse iron granule that has been hardened by heat treatment to form an abrasive layer around the outer periphery of the coarse iron granule. Abrasive material.
JP1985169064U 1985-10-31 1985-10-31 Expired JPH0318128Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985169064U JPH0318128Y2 (en) 1985-10-31 1985-10-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985169064U JPH0318128Y2 (en) 1985-10-31 1985-10-31

Publications (2)

Publication Number Publication Date
JPS6278259U JPS6278259U (en) 1987-05-19
JPH0318128Y2 true JPH0318128Y2 (en) 1991-04-17

Family

ID=31102527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985169064U Expired JPH0318128Y2 (en) 1985-10-31 1985-10-31

Country Status (1)

Country Link
JP (1) JPH0318128Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046525A1 (en) * 2013-09-27 2015-04-02 Hoya株式会社 Method for producing non-magnetic substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847689A (en) * 1971-10-20 1973-07-06
JPS5039870A (en) * 1973-07-12 1975-04-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959256U (en) * 1982-10-12 1984-04-18 株式会社東邦金剛 free grinding abrasive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847689A (en) * 1971-10-20 1973-07-06
JPS5039870A (en) * 1973-07-12 1975-04-12

Also Published As

Publication number Publication date
JPS6278259U (en) 1987-05-19

Similar Documents

Publication Publication Date Title
Mulik et al. Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives
CN106938410A (en) The burnishing device and its method of big L/D ratio internal surface of elongated tube
US4306386A (en) Method of finishing ferromagnetic articles by ferromagnetic abrasive powders in magnetic field
CN206632769U (en) The burnishing device of big L/D ratio internal surface of elongated tube
JPH0318128Y2 (en)
JP2987703B1 (en) Recycling method and equipment for used blast material
JP4852806B2 (en) Chamfering method and apparatus for rare earth magnet
US2827740A (en) Polishing treatment for article surfaces
JPS61265261A (en) Magnetic polishing method for inner surface
JPH0415063B2 (en)
JP2003231050A (en) Method of machining alloy compact for magnet, and magnet and machining device
JPH0248391B2 (en)
JP2794862B2 (en) Magnetic grinding device
CN206082826U (en) Blast furnace grain slag deironing device
SU1715425A1 (en) Magnetic drum separator
JP2789476B2 (en) Disk pad polishing equipment
EP0856380A3 (en) Method for processing using beam of magnetic line of force, apparatus for carrying out said method, and carriage member for hard disk drive processed by said method
CN204614580U (en) A kind of magnetic ceramics dish
JPH03202270A (en) Magnetic lapping machine
JPH08323596A (en) Grinding device for glass
SU1000252A1 (en) Method of cleaning abrasive wheel at grinding ferromagnetic material part
JP2009196071A (en) Dressing method for diamond grinding wheel
EP1110671A3 (en) Dressing, honing and grinding tool
RU2417149C1 (en) Electromagnetic device to prevent disbalance in face grinding wheels
KR100495745B1 (en) Abrasive and grinding method using the same