JPH0415063B2 - - Google Patents

Info

Publication number
JPH0415063B2
JPH0415063B2 JP59225027A JP22502784A JPH0415063B2 JP H0415063 B2 JPH0415063 B2 JP H0415063B2 JP 59225027 A JP59225027 A JP 59225027A JP 22502784 A JP22502784 A JP 22502784A JP H0415063 B2 JPH0415063 B2 JP H0415063B2
Authority
JP
Japan
Prior art keywords
polished
rotating body
polishing
electromagnetic rotating
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59225027A
Other languages
Japanese (ja)
Other versions
JPS61103772A (en
Inventor
Tokumitsu Kuromatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO SANGYO SETSUBI JUGENGAISHA
Original Assignee
SHINKO SANGYO SETSUBI JUGENGAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO SANGYO SETSUBI JUGENGAISHA filed Critical SHINKO SANGYO SETSUBI JUGENGAISHA
Priority to JP59225027A priority Critical patent/JPS61103772A/en
Publication of JPS61103772A publication Critical patent/JPS61103772A/en
Publication of JPH0415063B2 publication Critical patent/JPH0415063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強磁性研摩砕粒を利用して、例えば
丸棒材、線材、帯材、角鋼などの被研摩材を連続
的に研摩する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a method for continuously polishing materials to be polished, such as round bars, wires, strips, and square steel, using ferromagnetic abrasive grains. Regarding.

(従来技術とその問題点) 従来、地場産業や線材メーカにあつては、線材
の表面に形成される酸化被膜を除去するために酸
処理を行つてきたが、酸処理廃液の処理に多額の
費用と設備を必要とし、且つ、周到な管理が要求
されてきたが、尚、そのスラツジの処理に苦慮し
ているのが現状である。そこで、このような湿式
処理から以下に述べる線材の表面の酸化皮膜を物
理的に取り除く乾式処理に比重が次第に移つてき
たが、尚、以下のような欠点が残つていた。即
ち、被研摩材1のパスライン2の上下又は左右に
ホイルブラシを配設し、回転せるホイルブラシの
間に被研摩材1を強制的に通過させて表面の研摩
を行う方法や、密閉室内を横断するパスライン2
に被研摩材1を通し、密閉室内で被研摩材1に研
摩粉を高圧にて吹き付けるなどの方法があつた。
前者にあつてはホイルブラシの研摩抵抗が大き
く、被研摩材1のパスライン2上の通過に過大の
動力を必要とするという欠点や研摩力が弱いた
め、ホイルブラシを多段に必要とするという欠点
などがあり、また、研摩も正確に行なわれないと
いう欠点もあつた。後者にあつては、高圧で研摩
粉を被研摩材に吹き付けるため、振動などによ
り、被研摩材1の位置ずれなが生じ、吹き付け角
度が変わる場合があり、正確な研摩が期待出来な
いという欠点がある。特に細い線材の場合はその
傾向が強い。又、研摩粉の高圧吹き付けは衝撃音
が大きく、騒音公害を引き起こすという欠点もあ
る。
(Prior art and its problems) Traditionally, local industries and wire manufacturers have carried out acid treatment to remove the oxide film formed on the surface of wire rods, but it costs a lot of money to process the acid treatment waste liquid. Although it requires expense and equipment and requires careful management, the current situation is that it is difficult to dispose of the sludge. Therefore, emphasis has gradually shifted from such wet processing to dry processing, which physically removes the oxide film on the surface of the wire, as described below, but the following drawbacks remain. That is, there are methods in which foil brushes are arranged above and below or on the left and right sides of the pass line 2 of the material to be polished 1, and the surface is polished by forcing the material to be polished to pass between the rotating foil brushes, and a method in which the surface is polished by forcing the material to be polished to pass between the rotating foil brushes. Path line 2 that crosses
There is a method in which the material 1 to be polished is passed through the material 1 and abrasive powder is sprayed at high pressure onto the material 1 in a closed chamber.
In the former case, the polishing resistance of the foil brush is large and excessive power is required to pass the material 1 to be polished over the pass line 2, and the polishing force is weak, so the foil brush is required in multiple stages. There were some drawbacks, including the fact that polishing could not be done accurately. In the latter case, since the abrasive powder is sprayed onto the material to be polished under high pressure, the position of the material to be polished 1 may shift due to vibrations, etc., and the spray angle may change, so accurate polishing cannot be expected. There is. This tendency is particularly strong in the case of thin wires. In addition, high-pressure spraying of abrasive powder has the disadvantage of producing large impact noises and causing noise pollution.

(発明の目的) 本発明は係る従来例に鑑みて為されたもので、
その目的の第1は、被研摩材のパスライン上での
通過についてわずかな動力しか必要とせず、しか
も完全な研摩を行なうことのできる強磁性研摩砕
粒利用の研摩方法を提供するにあり、目的の第2
は、磁化された強磁性研摩砕粒並びに被研摩材の
消磁が可能で、被研摩材への強磁性研摩砕粒の付
着を防止出来る強磁性研摩砕粒利用の研摩方法を
提供するにある。
(Object of the invention) The present invention has been made in view of the conventional example,
The first purpose is to provide a polishing method using ferromagnetic abrasive grains that requires only a small amount of power for the material to be polished to pass over the pass line and can perform complete polishing. the second of
The object of the present invention is to provide a polishing method using ferromagnetic abrasive grains that can demagnetize magnetized ferromagnetic abrasive grains and a material to be polished, and can prevent the ferromagnetic abrasive grains from adhering to the material to be polished.

(問題点を解決するための手段) 本発明方法は前記問題点を解決するために、 その外周が多数の磁区7に区切られ且つ互い
に隣接せる磁区7が異極に励磁される電磁回転
体3を被研摩材1のパスライン2の上下に千鳥
状にて一対以上配設し、 パスライン2と接する電磁回転体3の回転研
摩面に強磁性研摩砕粒5を磁着して研摩層6を
積層し、 パスライン2上を通過する被研摩材1の表面
を回転せる電磁回転体3の研摩層6で研摩し、 電磁回転体3内に内蔵され、前記磁区7の励
磁を行う励磁コイル17に対する通電方向をそ
の回転につれて切り替えて各磁区7の磁極を切
り替え、被研摩材1並びに強磁性研摩砕粒5の
消磁をなす。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the method of the present invention provides an electromagnetic rotating body 3 whose outer periphery is divided into a large number of magnetic domains 7 and in which mutually adjacent magnetic domains 7 are excited with different polarities. are arranged in a staggered manner above and below the pass line 2 of the material to be polished 1, and the ferromagnetic abrasive grains 5 are magnetically attached to the rotary polishing surface of the electromagnetic rotating body 3 in contact with the pass line 2 to form the polishing layer 6. The surface of the material to be polished 1 that is laminated and passes on the pass line 2 is polished by the polishing layer 6 of the rotating electromagnetic rotating body 3, and the excitation coil 17 is built in the electromagnetic rotating body 3 and excites the magnetic domain 7. The magnetic pole of each magnetic domain 7 is switched by changing the direction of energization as it rotates, thereby demagnetizing the material to be polished 1 and the ferromagnetic abrasive grains 5.

;と言う技術的手段を採用している。; adopts technical means.

(作 用) パスライン2に被研摩材1を通し、一定速度で
一方向に移送すると共に強磁性研摩砕粒5を回転
せる電磁回転体3に注ぎ、電磁回転体3の回転研
摩面4に強磁性研摩砕粒5を積層して研摩層6を
形成する。
(Function) The material to be polished 1 is passed through the pass line 2, transported in one direction at a constant speed, and poured into the electromagnetic rotating body 3 that rotates the ferromagnetic abrasive grains 5, so that the material is strongly applied to the rotating polishing surface 4 of the electromagnetic rotating body 3. Magnetic abrasive grains 5 are stacked to form an abrasive layer 6.

この研摩層6にて一方向に移送せる被研摩材1
の表面を研摩するのであるが、電磁回転体3の外
周に設けられた各磁区7は相隣接するもの同士互
いに逆の磁極となつていて、回転中に励磁コイル
17の通電方向が所定時間(極く短時間で切替わ
る)が経過すると切替わり、これにより各磁区7
の磁極が逆転するようになつており、例えば
『N』の磁区7に着磁された強磁性研摩砕粒5は
次の瞬間には前記磁極が『S』に切替わつて前記
着磁された強磁性研摩砕粒5の極性を打ち消して
消磁するものである。
The material to be polished 1 that can be transported in one direction by this polishing layer 6
The magnetic domains 7 provided on the outer periphery of the electromagnetic rotating body 3 have opposite magnetic poles to each other, and during rotation, the current direction of the excitation coil 17 changes for a predetermined period of time ( (switches in a very short time), and as a result, each magnetic domain 7
For example, the ferromagnetic abrasive grains 5 magnetized in the "N" magnetic domain 7 will have their magnetic poles switched to "S" in the next moment, and the magnetic domain 7 will be reversed. This is to cancel the polarity of the magnetic abrasive grains 5 and demagnetize them.

又、被研摩材1は所定の速度で一方向(第1図
中右方向)に送給されているが、図の実施例では
まず下側の電磁回転体3に接して下側半面が研摩
されと同時に電磁回転体3の『N』の磁区7によ
つて被研摩材1の対応部分が瞬間的に異極である
『S』に励磁されるが、電磁回転体3の回転によ
り次の瞬間には隣接せる次の『S』の磁区7と前
記励磁部分『S』とがほぼ一致して被研摩材1の
励磁部分『S』の部分が打ち消され、被研摩材1
の着磁部分が消磁する。
Further, the material to be polished 1 is fed in one direction (to the right in FIG. 1) at a predetermined speed, but in the embodiment shown, it first contacts the lower electromagnetic rotating body 3 and its lower half is polished. At the same time, the corresponding part of the material to be polished 1 is momentarily excited to the different polarity "S" by the "N" magnetic domain 7 of the electromagnetic rotating body 3, but due to the rotation of the electromagnetic rotating body 3, the following Instantly, the magnetic domain 7 of the next adjacent "S" and the excitation part "S" almost coincide, and the excitation part "S" of the material to be polished 1 is canceled out, and the material to be polished 1
The magnetized part of is demagnetized.

このようにして、表面研摩を行いつつ被研摩材
1並びに強磁性研摩砕粒5の消磁を行つて被研摩
材1への強磁性体研摩砕粒5の付着を防止してい
る。
In this way, while performing surface polishing, the material to be polished 1 and the ferromagnetic abrasive grains 5 are demagnetized to prevent the ferromagnetic abrasive grains 5 from adhering to the material to be polished 1.

尚、電磁回転体3が被研摩材1のパスライン2
の上下に千鳥状に配設されているので、互いに干
渉し合う事がなく、前記の着磁・消磁作用を確実
に行うものである。
Note that the electromagnetic rotating body 3 is connected to the pass line 2 of the material to be polished 1.
Since the magnets are arranged in a staggered manner above and below, they do not interfere with each other, and the magnetizing and demagnetizing effects described above are reliably performed.

(実施例) 以下、本発明の図示実施例に従つて詳述する。
第1図は本発明に係る研摩装置の1実施例の正面
図で、中央を通るパスライン2の上下に1対の電
磁回転体3が前後2組配設されている。電磁回転
体3の断面は第3図のような構造で電磁回転体3
の中央にステンレス製のシヤフト13の1端を挿
通してあり、他端は防塵ボツクス14内に挿通さ
れ、ベアリング15で支持されており、可変速モ
ータ(図示せず)にて回転駆動されるようになつ
ている。防塵ボツクス14内においてシヤフト1
3には集電機16が取着されており、電磁回転体
3内に設けられた励磁コイル17に給電するよう
になつている。集電機16には(+)(−)の給
電ブラシ18が摺接していて(+)(−)が回転
中に所定時間経過すると切替わるようになつてい
る。前述の励磁コイル17はシヤフト13の一端
の周囲に配設してあり、励磁コイル17の外周に
はアルミニウム製の円筒19が嵌着されており、
さらに円筒19の外周には鉄製の磁着筒体20が
嵌め込まれている。電磁回転体3の両側面には鉄
製の側板21を張設してある。ここで、磁着筒体
20の第1実施例の構造を詳述すると、第3図か
ら分かるように、磁着筒体20を中央から左右に
2分割してそれぞれを磁着半体20a,20bと
し、磁着筒体20の回転研摩面4からアルミニウ
ム製の筒体に至る銅製のリング22を磁着半体2
0a,20bの間に嵌め込んである。更に、第4
図から分かるように左右の磁着半体20a,20
bを多数の磁区7に区分するため、リング22に
直角に銅製の区分板23を磁着半体20a,20
bに一定間隔で嵌め込んであり、リング22と区
分板23とで囲まれる部分が磁区7となる。区分
板23の嵌め込み方は、第4図からわかるように
左右の磁着半体20a,20bで千鳥状となるよ
うに嵌め込んであり、その嵌入深さは、第5図か
らわかるように磁着半体20a,20bの肉厚の
半分程度であり、励磁コイル17の通電により相
隣接する磁区7がN極とS極とに交互に磁化され
るようになつている。磁着筒体20の外周面全周
には被研摩材1の形状に合わせた研摩溝12を凹
設してあり、第3,4図の場合は被研摩材1が丸
棒のため研摩溝12は断面が半円状となつてい
る。被研摩材1が平板の場合は、研摩溝12を要
しないものである。このように構成された電磁回
転体3は第1図のように被研摩材1のパスライン
2の上下に千鳥状にて二対配設されている。
(Example) Hereinafter, the present invention will be described in detail according to illustrated embodiments.
FIG. 1 is a front view of one embodiment of the polishing apparatus according to the present invention, in which a pair of electromagnetic rotating bodies 3 are arranged above and below a pass line 2 passing through the center. The cross section of the electromagnetic rotating body 3 has a structure as shown in Figure 3.
One end of a stainless steel shaft 13 is inserted through the center of the box, and the other end is inserted into a dustproof box 14, supported by a bearing 15, and rotated by a variable speed motor (not shown). It's becoming like that. Shaft 1 inside dustproof box 14
A current collector 16 is attached to the electromagnetic rotating body 3 to supply power to an excitation coil 17 provided within the electromagnetic rotating body 3. (+) (-) power supply brushes 18 are in sliding contact with the current collector 16, and the (+) and (-) are switched over after a predetermined period of time during rotation. The above-mentioned excitation coil 17 is arranged around one end of the shaft 13, and an aluminum cylinder 19 is fitted around the outer periphery of the excitation coil 17.
Furthermore, a magnetic cylinder 20 made of iron is fitted into the outer periphery of the cylinder 19. Iron side plates 21 are stretched on both sides of the electromagnetic rotating body 3. Here, the structure of the first embodiment of the magnetic cylinder 20 will be described in detail. As can be seen from FIG. 20b, and a copper ring 22 extending from the rotating polished surface 4 of the magnetic cylinder 20 to the aluminum cylinder is connected to the magnetic half body 2.
It is fitted between 0a and 20b. Furthermore, the fourth
As can be seen from the figure, the left and right magnetic halves 20a, 20
In order to divide b into a large number of magnetic domains 7, a copper dividing plate 23 is placed perpendicularly to the ring 22 in the magnetic halves 20a, 20.
b, and the portion surrounded by the ring 22 and the partition plate 23 becomes the magnetic domain 7. As shown in FIG. 4, the dividing plate 23 is fitted in such a manner that the left and right magnetic halves 20a and 20b are fitted in a staggered manner, and the depth of insertion is determined by the magnetic field, as shown in FIG. It is approximately half the thickness of the bonded halves 20a and 20b, and the adjacent magnetic domains 7 are alternately magnetized to north and south poles when the excitation coil 17 is energized. A polishing groove 12 matching the shape of the material to be polished 1 is formed on the entire outer circumferential surface of the magnetized cylinder 20. In the case of FIGS. 3 and 4, since the material to be polished 1 is a round bar, the polishing grooves 12 has a semicircular cross section. If the material to be polished 1 is a flat plate, the polishing grooves 12 are not required. As shown in FIG. 1, two pairs of electromagnetic rotating bodies 3 configured in this manner are arranged in a staggered manner above and below the pass line 2 of the material to be polished 1.

本発明に利用される強磁性研摩砕粒5は例えば
電気炉、キユポラその他適当な炉によつて溶解鋳
造された金属粒を破砕して得られた鋭い稜角部を
有する高硬度のもの又はこれを熱処理したもの
で、高硬度、高靭性を有している。通常鋳鉄製グ
リツト、鋳鋼製グリツトと称されているが、勿論
これらに限られるものでなく、研摩力が強く、磁
着されるものは全て含まれるし、研摩材(例えば
カーボランダム、ホワイトランダム、クリーンカ
ーボン又はカーボンアランダムのようなもの)を
一部混入して研摩力を向上させてもよいものであ
る。電磁回転体3の上方には、砕粒供給箱8が配
設されており、その底部からプラスチツク製の砕
粒供給筒9が突出しており、電磁回転体3に強磁
性研摩砕粒5を連続的に注ぐようになつている。
電磁回転体3の下方には摺り鉢状の集粒箱10が
配置されており、研摩時に跳ね飛ばされた強磁性
研摩砕粒5が集粒箱10に集められる。集められ
た強磁性研摩砕粒5は装置本体の背部に設けられ
た搬送手段11であるホツパに入れられて上方に
運ばれ、再び砕粒供給箱8に投入される。24は
排気孔で集塵機(図示せず)へ連結されており、
研摩時に発生した微粉塵を排出・処理するもので
ある。尚、砕粒供給箱8は防振ばね25によつて
支持されている。装置本体の入口26及び出口2
7近傍にてパスライン2の上下にガイドローラ2
8を配置してある。
The ferromagnetic abrasive grains 5 used in the present invention are, for example, high-hardness grains with sharp edges obtained by crushing melted and cast metal grains in an electric furnace, cupola, or other suitable furnace, or are heat-treated. It has high hardness and toughness. They are usually referred to as cast iron grit or cast steel grit, but of course they are not limited to these, and include anything that has strong abrasive power and is magnetically attached, as well as abrasive materials such as carborundum, white random, Clean carbon or carbon alundum) may be mixed in to improve the polishing power. A crushed grain supply box 8 is disposed above the electromagnetic rotor 3, and a crushed grain supply tube 9 made of plastic protrudes from the bottom of the box 8, and the ferromagnetic abrasive crushed grains 5 are continuously poured into the electromagnetic rotor 3. It's becoming like that.
A mortar-shaped grain collection box 10 is arranged below the electromagnetic rotating body 3, and the ferromagnetic abrasive grains 5 thrown off during polishing are collected in the grain collection box 10. The collected ferromagnetic abrasive grains 5 are put into a hopper, which is a conveying means 11 provided at the back of the main body of the apparatus, are carried upwards, and are again thrown into the crushed grain supply box 8. 24 is connected to a dust collector (not shown) through an exhaust hole,
This is to discharge and dispose of fine dust generated during polishing. Note that the crushed grain supply box 8 is supported by an anti-vibration spring 25. Inlet 26 and outlet 2 of the device body
Guide rollers 2 are placed above and below the pass line 2 near 7.
8 is placed.

而して、パスライン2に被研摩材1を通し、一
定速度で一方向に移送する。これと同時に砕粒供
給筒9を通して強磁性研摩砕粒5を回転せる電磁
回転体3に注ぎ、電磁回転体3の回転研摩面4に
強磁性研摩砕粒5を積層して研摩層6を形成し、
この研摩層6にて被研摩材1の表面を研摩する。
電磁回転体3は被研摩材1の種類により可変速モ
ータにて最適の回転数に制御される。電磁回転体
3の回転方向は第1図からわかるように、通常は
被研摩材1の進行方向に抗する方向に回転する。
電磁回転体3に設けられた各磁区7は相隣接する
もの同士互いに逆の磁極となつていて、回転中に
励磁コイル17の通電方向が所定時間(極く短時
間で切替わる)が経過すると切替わり、これによ
り各磁区7の磁極が逆転するようになつている。
又、被研摩材1は所定の速度で一方向(第1図中
右方向)に送給されているが、図の実施例ではま
ず下側の電磁回転体3に接して下側半面が研摩さ
れる。この時、電磁回転体3の『N』の磁区7に
よつて被研摩材1の対応部分が瞬間的に異極であ
る『S』に励磁されるが、電磁回転体3の回転に
より次の瞬間には隣接せる次の『S』の磁区7と
前記励磁部分『S』とがほぼ一致して被研摩材1
の励磁部分『S』の部分が打ち消され、被研摩材
1の着磁部分が消磁する。
The material to be polished 1 is then passed through the pass line 2 and transported in one direction at a constant speed. At the same time, ferromagnetic abrasive granules 5 are poured into the rotating electromagnetic rotating body 3 through the granular supply cylinder 9, and the ferromagnetic abrasive granules 5 are laminated on the rotating polishing surface 4 of the electromagnetic rotating body 3 to form an abrasive layer 6.
This polishing layer 6 polishes the surface of the material to be polished 1.
The electromagnetic rotating body 3 is controlled to an optimum rotational speed by a variable speed motor depending on the type of material 1 to be polished. As can be seen from FIG. 1, the electromagnetic rotating body 3 normally rotates in a direction opposite to the direction in which the material to be polished 1 moves.
Adjacent magnetic domains 7 provided in the electromagnetic rotating body 3 have opposite magnetic poles, and when the current direction of the excitation coil 17 is switched over a predetermined period of time (switches in a very short time) during rotation, As a result, the magnetic poles of each magnetic domain 7 are reversed.
Further, the material to be polished 1 is fed in one direction (to the right in FIG. 1) at a predetermined speed, but in the embodiment shown, it first contacts the lower electromagnetic rotating body 3 and its lower half is polished. be done. At this time, the corresponding part of the material to be polished 1 is momentarily excited by the magnetic domain 7 of "N" of the electromagnetic rotating body 3 to a different polarity, ie, "S", but due to the rotation of the electromagnetic rotating body 3, the next magnetization occurs. At an instant, the magnetic domain 7 of the next adjacent "S" and the excitation part "S" almost coincide with each other, and the material to be polished 1
The excitation portion "S" of is canceled out, and the magnetized portion of the material to be polished 1 is demagnetized.

又、回転研摩面4の積層した強磁性研摩砕粒5
は励磁コイル17の通電方向の切り替えによる磁
区7の磁極切り替えにより消磁が行なわれてお
り、以上の方法により被研摩材1並びに強磁性研
摩砕粒5の消磁を行つて被研摩材1への強磁性体
研摩砕粒5の付着を防止している。
Further, the laminated ferromagnetic abrasive grains 5 on the rotary abrasive surface 4
Demagnetization is performed by switching the magnetic pole of the magnetic domain 7 by switching the current direction of the excitation coil 17, and the material to be polished 1 and the ferromagnetic abrasive grains 5 are demagnetized by the above method, and the ferromagnetism is transferred to the material to be polished 1. This prevents the adhesion of the grinding particles 5 to the body.

尚、パスライン2を介して電磁回転体3を上下
に配置した場合には、互いに干渉し合つて着磁や
消磁を確実に行う事が出来ないが、電磁回転体3
を被研摩材のパスライン2の上下に千鳥状に配設
する事により互いに独立して干渉し合う事がな
く、前記の着磁・消磁作用を確実に行うものであ
る。
Note that if the electromagnetic rotating bodies 3 are placed one above the other via the pass line 2, they will interfere with each other and magnetization and demagnetization cannot be performed reliably, but the electromagnetic rotating bodies 3
By arranging them in a staggered manner above and below the pass line 2 of the material to be polished, they do not interfere with each other independently, and the above-mentioned magnetizing and demagnetizing effects are reliably performed.

又、電磁回転体3の他の実施例として、第6図
イ,ロのように、永久磁石と電磁石とを併用して
も良い。即ち、励磁コイル17の外周にはアルミ
ニウム製の円筒19が嵌着されている。円筒19
の外周中央にはリング22が嵌め込まれており、
リング22の両側に永久磁石リング30が嵌め込
まれており、最も外側に鉄のような強磁性体の電
磁リング31が嵌め込まれており、電磁回転体3
の両側面には鉄製の側板21を張設してある。
(勿論、永久磁石リング30と電磁リング31と
は逆の配置になつていても良いものである。)こ
の場合、電磁回転体3に設けられた電磁リング3
1がある瞬間励磁コイル17によつて磁化され、
第6図ロのように(N)(S)(N)(S)…(N)
(S)(N)(S)と順方向に磁極が並んだ時、永
久磁石リング30と協働して磁界を強め、強磁性
研摩材5を磁着する。次の瞬間、励磁コイル17
を流れる電流の方向が逆向きとなり、電磁リング
31と永久時の永久磁石リング30の極性が
(S)(N)(N)(S)…(N)(S)(S)(N)
と逆方向になり、互いに磁力を打ち消しあつて消
磁する。このような動作を瞬時に繰り返して被研
摩材1への強磁性体研摩材5の付着を防止してい
る。尚、永久磁石リング30を用いず電磁リング
31のみとすると、永久磁石リング30の分だけ
余分に電力量が必要となる。
Further, as another embodiment of the electromagnetic rotating body 3, permanent magnets and electromagnets may be used in combination, as shown in FIGS. 6A and 6B. That is, an aluminum cylinder 19 is fitted around the outer periphery of the excitation coil 17. Cylinder 19
A ring 22 is fitted in the center of the outer periphery of the
Permanent magnet rings 30 are fitted on both sides of the ring 22, and an electromagnetic ring 31 made of a ferromagnetic material such as iron is fitted on the outermost side.
Iron side plates 21 are stretched on both sides.
(Of course, the permanent magnet ring 30 and the electromagnetic ring 31 may be arranged in reverse.) In this case, the electromagnetic ring 3 provided on the electromagnetic rotating body 3
1 is momentarily magnetized by the excitation coil 17,
As shown in Figure 6 (B) (N) (S) (N) (S)...(N)
When the magnetic poles are aligned in the forward direction (S), (N), and (S), the magnetic field is strengthened in cooperation with the permanent magnet ring 30, and the ferromagnetic abrasive material 5 is magnetically attached. The next moment, excitation coil 17
The direction of the current flowing through becomes opposite, and the polarity of the electromagnetic ring 31 and the permanent permanent magnet ring 30 becomes (S) (N) (N) (S)...(N) (S) (S) (N)
They are in opposite directions, canceling out their magnetic forces and demagnetizing each other. This operation is repeated instantaneously to prevent the ferromagnetic abrasive material 5 from adhering to the material 1 to be polished. Note that if only the electromagnetic ring 31 is used without using the permanent magnet ring 30, an extra amount of electric power is required for the permanent magnet ring 30.

(効 果) 本発明は、叙上のように、その外周が多数の磁
区に区切られ且つ互いに隣接せる磁区が異極に励
磁される電磁回転体を被研摩材のパスラインの上
下に千鳥状にて一対以上配設し、パスラインと接
する電磁回転体の回転研摩面に強磁性研摩砕粒を
磁着して研摩層を積層し、パスライン上を通過す
る被研摩材の表面を回転せる電磁回転体の研摩層
で研摩しているので、被研摩材と直接接触するの
は磁着された研摩層のみであつて、固体である電
磁回転体とは接触せず、抵抗がないため被研摩材
の移送に動力を要しないという利点があり、固体
の研摩回転体に粒状の強磁性研摩砕粒を磁着・積
層するため、定常な研摩層を形成することが出
来、高圧吹き付けのような不安定性がなく、正確
且つ奇麗な研摩表面を得ることが出来るものであ
り、又、このように研摩回転体に強磁性研摩砕粒
を磁着して研摩するのであるから、研摩時に強磁
性研摩砕粒が飛び散る事が少なく、高圧吹き付け
のような騒音を引き起こすことがなく、工場環境
の向上に寄与しうるという利点もある。又、パス
ラインを介して電磁回転体を千鳥状に配設する事
により互いに独立して干渉し合う事がなく、着
磁・消磁作用を確実に行うものである。
(Effects) As described above, the present invention uses an electromagnetic rotating body whose outer periphery is divided into a large number of magnetic domains and whose mutually adjacent magnetic domains are excited with different polarities in a staggered manner above and below the pass line of the material to be polished. At least one pair of electromagnetic rotors are arranged on the rotary polishing surface of the electromagnetic rotating body in contact with the pass line, and ferromagnetic abrasive grains are magnetically attached to the rotating polishing surface of the electromagnetic rotary body to form an abrasive layer. Since polishing is carried out using the abrasive layer of the rotating body, only the magnetically attached abrasive layer comes into direct contact with the material to be polished, and does not come into contact with the solid electromagnetic rotating body. It has the advantage that no power is required to transport the material, and since the granular ferromagnetic abrasive grains are magnetically attached and stacked on a solid abrasive rotating body, a steady abrasive layer can be formed, and there is no need to worry about the instability of high-pressure spraying. It is possible to obtain an accurate and beautiful polished surface without any specificity, and since the ferromagnetic abrasive grains are magnetically attached to the polishing rotor and polished, the ferromagnetic abrasive grains are removed during polishing. It also has the advantage of being less likely to scatter, causing no noise like high-pressure spraying, and contributing to improving the factory environment. Further, by arranging the electromagnetic rotating bodies in a staggered manner through the pass lines, they do not interfere with each other independently, and the magnetizing and demagnetizing effects are reliably performed.

更に、電磁回転体内に内蔵され、前記磁区の励
磁を行う励磁コイルに対する通電方向をその回転
につれて切り替えて各磁区の磁極を切り替えるの
であるから、電磁回転体に磁着している強磁性研
摩砕粒が『N』『S』『N』…と短時間の内に交互
に励磁されるために強磁性研摩砕粒自身は消磁さ
れてしまい、加えて電磁回転体の磁区に対応して
励磁された被研摩材の励磁部分も電磁回転体の回
転による隣接せる次の異極の磁区に近接する事に
よつて消磁され、その結果、飛び散つた強磁性研
摩砕粒が被研摩材の表面や装置内部に付着せず、
清浄な状態で被研摩材を研摩装置から引き出す事
や装置内部の清浄を簡単に出来るという利点もあ
る。
Furthermore, since the direction of energization of the excitation coil, which is built into the electromagnetic rotating body and excites the magnetic domains, is switched as the magnetic domain rotates to switch the magnetic poles of each magnetic domain, the ferromagnetic abrasive grains magnetically attached to the electromagnetic rotating body are The ferromagnetic abrasive grains themselves are demagnetized because they are alternately excited with "N", "S", "N"... The energized part of the material is also demagnetized by the rotation of the electromagnetic rotating body as it comes close to the next adjacent magnetic domain of different polarity, and as a result, the scattered ferromagnetic abrasive particles are attached to the surface of the material to be polished or inside the equipment. without wearing it,
Another advantage is that the material to be polished can be pulled out of the polishing device in a clean state, and the inside of the device can be cleaned easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の正面図、第2図は
本発明の一実施例の側面図、第3図は本発明の電
磁回転体の1実施例の断面図、第4図は第3図の
側面図、第5図は第3図の正面図、第6図イは本
発明の電磁回転体の他の実施例の断面図、第6図
ロは本発明の電磁回転体の他の実施例の正面図、
第6図ハは第6図ロの概略縦断面図、第7図は従
来例のホイルブラシにて線材を研摩する場合の部
分斜視図、第8図は従来例の研摩粉による研摩装
置の概略断面図である。 1は被研摩剤、2はパスライン、3は電磁回転
体、4は回転研摩面、5は強磁性研摩砕粒、6は
研摩層、7は磁区、8は砕粒供給箱、9は砕粒供
給筒、10は集粒箱、11は搬送手段、12は研
摩溝である。
Fig. 1 is a front view of an embodiment of the present invention, Fig. 2 is a side view of an embodiment of the invention, Fig. 3 is a sectional view of an embodiment of the electromagnetic rotating body of the invention, and Fig. 4 is a sectional view of an embodiment of the electromagnetic rotating body of the invention. 3 is a side view, FIG. 5 is a front view of FIG. 3, FIG. 6A is a sectional view of another embodiment of the electromagnetic rotating body of the present invention, and FIG. A front view of another embodiment,
FIG. 6C is a schematic longitudinal cross-sectional view of FIG. FIG. 1 is an abrasive material, 2 is a pass line, 3 is an electromagnetic rotating body, 4 is a rotating polishing surface, 5 is a ferromagnetic abrasive grain, 6 is an abrasive layer, 7 is a magnetic domain, 8 is a crushed grain supply box, 9 is a crushed grain supply cylinder , 10 is a grain collecting box, 11 is a conveying means, and 12 is a polishing groove.

Claims (1)

【特許請求の範囲】 1 その外周が多数の磁区に区切られ且つ互いに
隣接せる磁区が異極に励磁される電磁回転体を被
研摩材のパスラインの上下に千鳥状にて一対以上
配設し、パスラインと接する電磁回転体の回転研
摩面に強磁性研摩砕粒を磁着して研摩層を積層
し、パスライン上を通過する被研摩材の表面を回
転せる電磁回転体の研摩層で研摩し、電磁回転体
内に内蔵され、前記磁区の励磁を行う励磁コイル
に対する通電方向をその回転につれて切り替えて
各磁区の磁極を切り替え、被研摩材並びに強磁性
研摩砕粒の消磁をなすことを特徴とする強磁性研
摩砕粒利用の研摩方法。 2 電磁回転体の回転研摩面全周に被研摩材の断
面の半分にほぼ等しい研摩溝を凹設して成ること
を特徴とする特許請求の範囲第1項に記載の強磁
性研摩砕粒利用の方法。
[Claims] 1. One or more pairs of electromagnetic rotating bodies whose outer periphery is divided into a large number of magnetic domains and whose mutually adjacent magnetic domains are excited with different polarities are arranged in a staggered manner above and below the pass line of the material to be polished. , ferromagnetic abrasive grains are magnetically attached to the rotating polishing surface of an electromagnetic rotating body in contact with the pass line to form an abrasive layer, and the surface of the material to be polished passing on the pass line is polished by the polishing layer of the rotating electromagnetic rotating body. The magnetic pole of each magnetic domain is switched by switching the direction of energization to an excitation coil built in an electromagnetic rotating body and excitation of the magnetic domains as the magnetic domain rotates, thereby demagnetizing the material to be polished and the ferromagnetic abrasive grains. A polishing method using ferromagnetic abrasive grains. 2. A method using ferromagnetic abrasive grains according to claim 1, characterized in that a polishing groove approximately equal to half of the cross section of the material to be polished is provided on the entire circumference of the rotary polishing surface of the electromagnetic rotating body. Method.
JP59225027A 1984-10-24 1984-10-24 Polishing in utilization on ferromagnetic abrasive pulverized grains and apparatus thereof Granted JPS61103772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59225027A JPS61103772A (en) 1984-10-24 1984-10-24 Polishing in utilization on ferromagnetic abrasive pulverized grains and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225027A JPS61103772A (en) 1984-10-24 1984-10-24 Polishing in utilization on ferromagnetic abrasive pulverized grains and apparatus thereof

Publications (2)

Publication Number Publication Date
JPS61103772A JPS61103772A (en) 1986-05-22
JPH0415063B2 true JPH0415063B2 (en) 1992-03-16

Family

ID=16822915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225027A Granted JPS61103772A (en) 1984-10-24 1984-10-24 Polishing in utilization on ferromagnetic abrasive pulverized grains and apparatus thereof

Country Status (1)

Country Link
JP (1) JPS61103772A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004731A1 (en) * 1987-11-18 1989-06-01 Fiziko-Tekhnichesky Institut Akademii Nauk Belorus Device for magneto-abrasive machining of external cylindrical surfaces of parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187081A (en) * 1977-02-10 1980-02-05 Deresh Ilya A Apparatus for treatment of sheet material with the use of ferromagnetic powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187081A (en) * 1977-02-10 1980-02-05 Deresh Ilya A Apparatus for treatment of sheet material with the use of ferromagnetic powder

Also Published As

Publication number Publication date
JPS61103772A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
Mulik et al. Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives
CA1184880A (en) Sputtering apparatus and method
US9375727B2 (en) Drum for magnetic separator and relevant production method
US4359382A (en) Magnetic structure for a magnetic separator
US5051177A (en) High-intensity magnetic separator
US2535719A (en) Magnetic pulley
US5797498A (en) Magnetic separator and sweeping brush used therein
KR19990052222A (en) Magnetic sorting machine for the collection of ferrous fine particles
JPH0415063B2 (en)
JPS60118466A (en) Grinding method using magnetic fluid
JP2001276646A (en) Magnetic roller and magnetic separator using the same
CN106111331B (en) A kind of soft magnetic medium component and the deironing apparatus using the component
US3028708A (en) Blast cleaning machines
JPH0318128Y2 (en)
JPS63221965A (en) Method and device for polishing pipe material
EP0856380A3 (en) Method for processing using beam of magnetic line of force, apparatus for carrying out said method, and carriage member for hard disk drive processed by said method
KR19990052838A (en) Magnetic separator for the collection of iron-based fine particles
SU1715425A1 (en) Magnetic drum separator
JP3818883B2 (en) Magnetic separator
JPH10272381A (en) Repulsion magnetic circuit type device for separation of non-ferrous metal, and rotary rotor used therefor
JPH0852379A (en) Drum type magnetic selector
CN206046254U (en) A kind of soft magnetic medium component and the deironing apparatus using the component
JP2794862B2 (en) Magnetic grinding device
KR20010055821A (en) Velt type magnetic separator for removing fine iron-particles on plates and sheets
JPS60201869A (en) Magnetism utilizing grinding machining device