WO2021229781A1 - 搬送装置および搬送方法 - Google Patents

搬送装置および搬送方法 Download PDF

Info

Publication number
WO2021229781A1
WO2021229781A1 PCT/JP2020/019376 JP2020019376W WO2021229781A1 WO 2021229781 A1 WO2021229781 A1 WO 2021229781A1 JP 2020019376 W JP2020019376 W JP 2020019376W WO 2021229781 A1 WO2021229781 A1 WO 2021229781A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
linear
section
scale
linear module
Prior art date
Application number
PCT/JP2020/019376
Other languages
English (en)
French (fr)
Inventor
学 片山
俊介 青木
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to CN202080099930.0A priority Critical patent/CN115461971A/zh
Priority to JP2022522462A priority patent/JPWO2021229781A1/ja
Priority to DE112020007209.6T priority patent/DE112020007209T5/de
Priority to US17/759,090 priority patent/US12034349B2/en
Priority to PCT/JP2020/019376 priority patent/WO2021229781A1/ja
Publication of WO2021229781A1 publication Critical patent/WO2021229781A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G35/00Mechanical conveyors not otherwise provided for
    • B65G35/06Mechanical conveyors not otherwise provided for comprising a load-carrier moving along a path, e.g. a closed path, and adapted to be engaged by any one of a series of traction elements spaced along the path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G37/00Combinations of mechanical conveyors of the same kind, or of different kinds, of interest apart from their application in particular machines or use in particular manufacturing processes
    • B65G37/02Flow-sheets for conveyor combinations in warehouses, magazines or workshops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors

Definitions

  • the present invention relates to a transfer technique for transporting an object to be transported by shifting a slider between the fixed linear module and the movable linear module after positioning the movable linear module with respect to the fixed linear module.
  • Patent Document 1 a first linear transport unit in which a linear module having a stator is connected in a first direction is fixedly arranged. Further, the second straight line transport unit having the same configuration as the first straight line transport unit is arranged in parallel so as to be separated from each other in the second direction orthogonal to the first direction.
  • the slider having the mover moves along the stator of the linear module by controlling the energization of the stator to the coil. As a result, the object to be conveyed held by the slider is conveyed in the first direction by the first straight transfer unit.
  • a first direction change section is provided on one end side of both straight transport sections in the first direction.
  • the first direction changing portion has a movable linear module configured to be movable in the second direction. Then, when transferring from the first straight line transfer section to the second straight line transfer section, the movable linear module is positioned at a connection position where the movable linear module is connected to the fixed linear module constituting one end of the first straight line transfer section. .. Subsequently, by controlling the energization of the stator to the coil, the slider transfers from the first straight line conveying portion to the first direction changing portion.
  • the energization of the stator to the coil is controlled.
  • the slider transfers from the first direction change section to the second straight line transfer section.
  • the slider moves in the direction opposite to that of the first straight transfer section by controlling the energization of the stator to the coil, and the object to be conveyed is moved to the other side of the second straight transfer section. Transport to the end side.
  • a second direction turning section having the same configuration as the first direction turning section is provided on the other end side of both straight line conveying sections in the first direction. Therefore, similarly to the first direction change section, the slider is moved in the order of the second straight line transfer section, the second direction change section, and the first straight line transfer section to move the object to be conveyed to the other end side of the first straight line transfer section. Can be transported. As described above, in the transport device described in Patent Document 1, the slider can be circulated and moved.
  • the linear module of the direction change section is positioned with high accuracy with respect to the linear module of the linear transfer section in the second direction.
  • a part of the direction changing portion is brought into contact with a positioning member fixedly arranged in advance while the movable linear module is moving, and the movable linear module is positioned at the transfer position. Since the mechanical positioning is performed in this way, the positioning accuracy may be lowered due to deformation or wear due to temperature fluctuations of the turning portion or the positioning member, and it may be difficult to smoothly connect the sliders.
  • the present invention has been made in view of the above problems, and it is possible to stably transfer sliders between linear modules for a long period of time without performing special accuracy adjustment, and to satisfactorily transport an object to be transported.
  • the purpose is to provide transport technology.
  • One aspect of the present invention is a transport device for transporting a transport object by moving a slider that holds the transport target, and the slider is moved in the first direction by a first fixed linear module fixed on the first base.
  • the first straight transfer unit to be moved and the module holding member holding the movable linear module are moved in a second direction different from the first direction, and the movable linear module is positioned at the first connection position connected to the first fixed linear module. It has a module moving part that enables the transfer of a slider to and from the first fixed linear module, a scale that extends in the second direction, and a sensor that detects the scale.
  • the linear transport unit that moves the slider in the first direction by the fixed linear module fixed on the base and the module holding member that holds the movable linear module are different from the first direction. It is a transport method in which a slider for holding a transport target is moved to and from a module moving portion to be moved in a direction to transport the transport target, and a scale is placed on one of a linear transport portion and a module moving portion.
  • a process in which a sensor that detects a scale is attached to an extension in two directions and a sensor that detects a scale is attached to the other, and module position information indicating the position of the movable linear module in the second direction with respect to the fixed linear module is acquired based on the detection result of the sensor. And, based on the module position information, the module holding member is moved in the second direction to position the movable linear module at the connecting position connected to the fixed linear module, and the slider can be transferred to and from the fixed linear module. It is characterized by comprising a step and a step of moving a slider in a first direction between a fixed linear module and a movable linear module connected to each other.
  • the scale extending in the second direction is attached to the linear transport section (or module moving section).
  • a sensor is attached to the module moving part (or linear transporting part) so that the scale can be detected. Therefore, the module position information indicating the position of the movable linear module in the second direction with respect to the fixed linear module is accurately acquired from the detection result of the sensor. Then, the movable linear module is positioned at the connection position connected to the fixed linear module based on the module position information. As a result, the transfer of the slider between the fixed linear module and the movable linear module is stably performed.
  • the module moving unit may be configured to have a moving mechanism for moving the module holding member in the second direction and an encoder for acquiring encoder information indicating the position of the module holding member in the second direction.
  • the control unit may acquire the first module position information based on the sensor detection result and the encoder information, and may position the movable linear module at the first connection position based on the first module position information.
  • the section in which the sensor detects the scale in the second direction may be a linear scale section, and the section in which the sensor does not detect the scale may be a non-linear scale section. ..
  • the control unit may acquire the first module position information based on the detection result of the sensor in the linear scale section, and may acquire the first module position information based on the encoder information in the non-linear scale section.
  • the linear scale section is shortened by the amount of the non-linear scale section provided, and the scale can be miniaturized.
  • the section in which the sensor detects the scale in the second direction is set as the linear scale section, and the section in which the sensor does not detect the scale is the non-linear scale.
  • the section may be a section, and a part of the linear scale section adjacent to the non-linear scale section may be a composite section. Then, in the synthesis section, the discontinuity of the first module position information can be suppressed by acquiring the first module position information based on the sensor detection result and the encoder information, as will be described in detail later.
  • a second linear transport unit for moving the slider in the first direction by a second fixed linear module fixed on the second base provided apart from the first base in the second direction may be further provided. Then, even if the module moving unit is configured to position the movable linear module at the second connecting position connected to the second fixed linear module so that the slider can be connected to the second fixed linear module. good. Further, the control unit acquires the second module position information indicating the position of the movable linear module in the second direction with respect to the second fixed linear module based on the detection result of the sensor, and obtains the first module position information and the second module position information. Based on this, the movable linear module may be configured to move between the first connection position and the second connection position.
  • the slider can be moved in the order of the first fixed linear module, the first connected position, the movable linear module, the second connected position and the second fixed linear module, or vice versa, and the object to be conveyed can be moved over a wide range. Can be transported over.
  • the module moving portion is connected to the first holding portion of the module holding member to move the module holding member in the second direction, and the second holding portion different from the first holding portion of the module holding member. It may be configured to have a second moving mechanism that is connected and moves the second module holding member in the second direction. Then, a linear scale may be provided corresponding to each of the first moving mechanism and the second moving mechanism. In this case, the movement control of the first holding portion by the first moving mechanism and the movement control of the second holding portion by the second moving mechanism can be performed independently of each other, and the moving posture of the movable linear module can be stabilized. Can be done. As a result, the object to be transported can be transported more stably.
  • control unit controls the movement of the module holding member based on the detection result of the sensor independently of the host that indicates the movement destination of the movable linear module and the host when the movement destination is received, and moves the movable linear module to the movement destination.
  • It may be configured to have a dedicated driver unit for positioning in. In this way, the movement and positioning control of the movable linear module is completed by the dedicated driver unit independent of the host, so that the entire device configuration is simplified and high-speed positioning is possible.
  • FIG. 1 shows the whole structure of the 1st Embodiment of the transfer apparatus which concerns on this invention. It is a figure which shows the structure of the vertical moving part equipped in the transport device shown in FIG. It is a flowchart which shows an example of the transport operation of the transport object by the transport device shown in FIG. It is a figure which shows typically the operation which transfers the slider which holds a transport object from a fixed linear module to a movable linear module. It is a figure which shows typically the operation which transfers the slider which holds a transport object from a fixed linear module to a movable linear module. It is a figure which shows typically the operation which transfers the slider which holds a transport object from a fixed linear module to a movable linear module.
  • FIG. 1 is a diagram showing an overall configuration of a first embodiment of the transport device according to the present invention.
  • the transport device 1 circulates and transports an object to be transported in a vertical plane.
  • the XYZ coordinate axes are set as shown in FIG.
  • the XY plane is the horizontal plane
  • the X direction is the left-right direction (-X is the left, + X is the right)
  • the Y direction is the front-back direction (-Y is the front, + Y is the back)
  • the Z direction is the up-down direction (+ Z is the top).
  • -Z corresponds to the bottom).
  • the transport device 1 has a pair of linear transport sections 2A and 2B, a pair of vertical moving sections 2C and 2D, a plurality of sliders 3, and an integrated controller 4 that controls the entire device.
  • the linear transport unit 2A is provided on the upper base 5a of the gantry (not shown).
  • the linear transport unit 2B is arranged on the lower base 5b of the gantry in parallel with the linear transport unit 2A and away from the ⁇ Z side (lower side in FIG. 1).
  • a plurality of linear modules 20a equipped with stators (six in FIG. 1) are arranged in the X direction and fixed to the upper base 5a and the lower base 5b, respectively.
  • a plurality of sliders 3 are provided so as to be movable in the X direction with respect to the linear transport portions 2A and 2B.
  • a mover is connected to each slider 3.
  • the integrated controller 4 is provided with a plurality of linear module drivers 41.
  • the linear module driver 41 has a function of individually energizing the stator coils provided in the linear modules 20a and 20b. That is, the linear module driver 41 is provided for each coil and has a function of individually energizing the coil.
  • each linear module 20a is equipped with five coils
  • These linear module drivers 41 are cascaded to the host 42 of the integrated controller 4.
  • the linear module driver 41 corresponding to the movement destination command When a command regarding the movement destination of the slider 3 (hereinafter referred to as “movement destination command”) is output from the host 42, the linear module driver 41 corresponding to the movement destination command energizes the coil corresponding to the movement destination command to cause magnetic propulsion. A force is generated to move the slider 3 in the X direction. Since the configurations of the linear module 20a and the slider 3 are the same as those of the apparatus described in Patent Document 1, the description of the configuration will be omitted. Further, when the linear transport units 2A and 2B are described separately, the former is referred to as an "upper straight transport unit 2A", while the latter is referred to as a “downward linear transport unit 2B", and when the two are not distinguished, the two are referred to. It is simply referred to as "straight line transport section 2A, 2B".
  • the vertical moving portion 2C is provided corresponding to the side end portion on the + X side (right side in the figure) of the linear transport portions 2A and 2B.
  • the vertical moving unit 2C has a function of moving the linear module 20b in the vertical direction Z and connecting it to the linear modules 20a of the linear transport units 2A and 2B.
  • This linear module 20b has the same configuration as the linear module 20a, but differs from the linear module 20a which is always fixed in that it is movable. Therefore, in the present specification, when the linear modules 20a and 20b are described separately, the former is referred to as a "fixed linear module 20a", while the latter is referred to as a "movable linear module 20b". , Simply referred to as "linear modules 20a, 20b".
  • FIG. 2 is a diagram showing the configuration of the vertical moving portion.
  • the vertically moving portion 2C has a plate-shaped module holding member 21 that holds the movable linear module 20b from below.
  • the module holding member 21 is provided so as to be movable in the vertical direction Z along a pair of guide rails 22 and 22 extending in the vertical direction Z across the upper base 5a and the lower base 5b. Further, the uniaxial robot 23 is connected to the module holding member 21.
  • the single-axis robot 23 is a moving mechanism including, for example, a ball screw 231 parallel to the Z direction and a motor 232 for rotationally driving the ball screw 231. Further, an encoder 24 is attached to the motor 232 of the single-axis robot 23. The encoder 24 outputs rotation information related to the rotation of the motor 232 and gives it to a dedicated single-axis robot driver 43 that controls the single-axis robot 23. Further, in the single-axis robot 23, the nut 233 is screwed into the ball screw 231 and the module holding member 21 is attached to the nut 233. Further, the motor 232 and the encoder 24 are electrically connected to the driver 43 for the single axis robot of the integrated controller 4. Further, a linear scale sensor, which will be described in detail later, is electrically connected to the driver 43 for the single-axis robot.
  • the single-axis robot driver 43 information regarding the height position of the movable linear module 20b in the vertical direction Z is input to the single-axis robot driver 43 from the encoder 24 and the linear scale. Further, the driver 43 for a single-axis robot drives and controls the motor 232 based on these information to move the nut 233 in the vertical direction Z along the guide rail 234. As a result, the nut 233, the module holding member 21, and the movable linear module 20b are integrally moved in the vertical direction Z. For example, as shown in FIGS. 1 and 2, the movable linear module 20b is moved to the end portion on the ⁇ Z direction side by the single axis robot 23, and the height position (connecting position) facing the downward linear transport portion 2B in the vertical direction Z.
  • the movable linear module 20b is located at the transit position P2 and is aligned with the fixed linear module 20a of the linear transfer section 2B. That is, it is connected to the fixed linear module 20a located on the + X side of the fixed linear modules 20a constituting the linear transport unit 2B. As a result, the slider 3 can be moved between the vertical moving portion 2C and the linear conveying portion 2B.
  • the movable linear module 20b is moved to the end portion on the + Z direction side by the single axis robot 23, and the height position facing the upward linear transport portion 2A in the vertical direction Z ( By being positioned at the connection position) H1, the slider 3 can be moved between the vertical moving portion 2C and the linear transport portion 2A. Therefore, the slider 3 can be moved from the straight line transport unit 2A to the straight line transfer unit 2B and the slider 3 can be moved from the straight line transfer unit 2B to the straight line transfer unit 2A by passing through the vertical transfer unit 2C.
  • the height positions H1 and H2 are the “first” of the present invention, respectively.
  • the fixed linear module 20a of the linear transfer unit 2A corresponds to an example of the "first fixed linear module” of the present invention, and the linear transfer unit 2B is fixed.
  • the linear module 20a corresponds to an example of the "second fixed linear module” of the present invention.
  • the vertical moving portion 2D is provided corresponding to the side end portion of the linear transport portions 2A and 2B on the ⁇ X side (right side in the figure).
  • the configuration of the vertically moving portion 2D is the same as that of the vertically moving portion 2C. Therefore, it is possible to move the slider 3 from the straight line transport section 2A to the straight line transport section 2B on the ⁇ X side and to move the slider 3 from the straight line transport section 2B to the straight line transport section 2A.
  • the integrated controller 4 has a host 42 that controls the entire device.
  • the host 42 has a movement destination command unit 422 that determines the movement destination of the slider 3 and the movable linear module 20b according to the program stored in the storage unit 421 and outputs the movement destination to the linear module driver 41 and the single-axis robot driver 43. doing.
  • the linear module driver 41 is provided for each coil of the stator. Each linear module driver 41 controls the energization of the coil to be controlled according to the movement destination of the slider 3. As a result, a magnetic propulsive force is generated between the stator of the linear modules 20a and 20b and the mover connected to the slider 3, and the slider 3 is moved in the X direction.
  • the driver 43 for the single axis robot is provided for each of the vertical moving portions 2C and 2D.
  • Each single-axis robot driver 43 controls the rotation of the motor 232 to be controlled according to the movement destination of the movable linear module 20b. That is, when connecting the slider 3 between the linear transport section 2A and the vertical moving section 2C and 2D, and when connecting the slider 3 between the straight transport section 2B and the vertical moving section 2C and 2D, it is simple. A command to move the movable linear module 20b is given to the shaft robot driver 43.
  • the height of the movable linear module 20b of the vertical movement unit 2C is increased from the movement destination command unit 422 of the host 42.
  • a move destination command is given to move to the position (connecting position) H1 and position it.
  • the single-axis robot driver 43 for the vertical moving unit 2C controls each part of the vertical moving unit 2C independently of the host 42.
  • the linear module driver 41 drives the fixed linear module 20a of the linear transport unit 2A and the movable linear module 20b of the vertical movement unit 2C. More specifically, the operation shown in FIG. 3 is executed independently of the host 42.
  • FIG. 3 is a flowchart showing an example of a transport operation of a transport object by the transport device shown in FIG.
  • FIGS. 4A to 4C are diagrams schematically showing the operation of transferring the slider holding the object to be conveyed from the fixed linear module to the movable linear module.
  • the linear module driver 41 moves the slider 3 holding the transfer target object WK to the transfer position P1 (step S1).
  • the driver 43 for the single-axis robot which receives the movement destination command to the height position H1 of the movable linear module 20b, is an empty movable linear module based on various information from the encoder 24 and the linear scale. 20b is raised to the height position H1 and positioned (step S2).
  • FIGS. 2, 4A to 4C Prior to the explanation of the ascending / positioning process of the movable linear module 20b by the driver 43 for a single-axis robot, the configuration of a linear scale, which is one of the technical features of the present invention, will be described in FIGS. 2, 4A to 4C. Will be explained with reference to.
  • the linear scale 6 has two scales 61 and 62 extending in the vertical direction Z and a sensor 63 for detecting position data provided on each of the scales 61 and 62.
  • a method for reading position data there are a method that mainly uses magnetism and a method that uses light, but in this embodiment, the magnetic method is adopted. That is, the scales 61 and 62 are magnetic scales, and the sensor 63 is a magnetic sensor.
  • the scale 61 is attached to the + X side end face of the upper base 5a as shown in FIGS. 4A to 4C, and the scale 62 is attached to the + X side end face of the lower base 5b below the scale 61.
  • the scales 61 and 62 are separated in the vertical direction Z and fixedly arranged on the gantry (not shown).
  • the former will be referred to as an “upper scale 61” and the latter will be referred to as a “lower scale 62”.
  • the sensor 63 is fixed to the end face on the ⁇ X side of the module holding member 21 at a position away from the upper scale 61 and the lower scale 62 on the + X side.
  • the sensor 63 moves in the vertical direction Z as the module holding member 21 and the movable linear module 20b move up and down.
  • the sensor 63 reads the position data facing the upper scale 61 while passing through the upper linear scale section LS1 in the vertical direction Z.
  • This read position data includes information regarding the position of the movable linear module 20b with respect to the upward linear transport unit 2A in the vertical direction Z. Further, as shown in FIG.
  • the sensor 63 reads the position data facing the lower scale 62 while passing through the lower linear scale section LS2 in the vertical direction Z.
  • This read position data includes information regarding the position of the movable linear module 20b with respect to the downward linear transport unit 2B in the vertical direction Z.
  • the sensor 63 passes between the upper linear scale sections LS1 and LS2, the sensor 63 does not face either the upper scale 61 or the lower scale 62, and the position data cannot be read.
  • the range in which the information regarding the position of the movable linear module 20b (hereinafter referred to as “linear scale information”) that can be detected by the linear scale 6 can be acquired is the upper linear scale section LS1 and the lower linear scale section. Limited to LS2.
  • the signal output from the encoder 24 includes information regarding the position of the movable linear module 20b in the vertical direction Z (hereinafter referred to as "encoder information"). That is, the height position of the movable linear module 20b can be acquired from the encoder information.
  • the linear scale sections LS1 and LS2 information regarding the height position of the movable linear module 20b may be acquired based on the linear scale information, and the movable linear module 20b may be controlled based on this. Further, in the section other than the linear scale sections LS1 and LS2 (including the non-linear scale section described later), information on the height position of the movable linear module 20b is acquired based on the encoder information, and the movable linear module is based on this. 20b may be controlled.
  • the encoder 24 detects the amount of rotation of the ball screw 231 by the motor 232, and it is difficult to accurately determine the height position of the movable linear module 20b with respect to the linear transport portions 2A and 2B from the amount of rotation.
  • the range ES for which the encoder information is obtained is partially overlapped with the linear scale sections LS1 and LS2, and five sections are set in the vertical direction Z. In other words, these five sections
  • Non-linear scale section NLS A section for acquiring the height position of the movable linear module 20b based only on the encoder information detected by the encoder 24.
  • Upper precision detection section UFS The height position of the movable linear module 20b in the vicinity of the height position H1 based only on the linear scale information read by detecting the upper scale 61 with the sensor 63 in the section of the upper linear scale section LS1 excluding the section USS. Section to acquire with high accuracy
  • Downward composite section DSS Based on the linear scale information read by detecting the lower scale 62 with the sensor 63 and the encoder information detected by the encoder 24, which is a part of the lower linear scale section LS2 adjacent to the non-linear scale section NLS. Section for acquiring the height position of the movable linear module 20b
  • Lower precision detection section DFS The height position of the movable linear module 20b in the vicinity of the height position H2 based only on the linear scale information read by detecting the lower scale 62 with the sensor 63 in the lower linear scale section LS2 excluding the section USS. Section to acquire with high accuracy, Is.
  • the reason why the upper composite section USS and the lower composite section DSS are provided is to eliminate the discontinuity between the encoder information and the linear scale information and to move the movable linear module 20b smoothly, as shown in FIG. be.
  • FIG. 5 is a graph showing the height position of the movable linear module acquired based on the encoder information and the linear scale information.
  • the target position that is, the current height position of the movable linear module 20b rising toward the connection position H1
  • the linear scale information dashed line
  • the encoder information two-dot chain line
  • the moving speed of the movable linear module 20b may fluctuate abruptly.
  • an impact is applied to the slider 3, which makes it difficult to smoothly and stably transport the object to be transported, and in the worst case, the object to be transported WK falls off from the slider 3.
  • the movable linear module 20b By controlling the ascending movement of the movable linear module 20b based on this, the movable linear module 20b can be smoothly ascended and brought closer to the height position H1. Finally, the movable linear module 20b can be positioned at the height position H1 based on the linear scale information that accurately indicates the height position of the movable linear module 20b with respect to the linear transport unit 2A. It should be noted that the point that the lower composite section DSS is provided is the same as that of the upper composite section USS.
  • FIG. 6 is a flowchart showing the ascending / positioning process of the movable linear module.
  • This ascending / positioning process is executed by the single-axis robot driver 43 based on the linear scale information output from the sensor 63 and the encoder information output from the encoder 24.
  • the driver 43 for a single-axis robot repeats the following steps S201 to S211 until the empty movable linear module 20b rises to the height position H1 and is positioned.
  • step S201 the encoder information output from the encoder 24 is acquired.
  • step S202 the position data Hs detected by the sensor 63 is acquired (step S202), and the position data Hs is further corrected to the height position of the movable linear module 20b with respect to the linear transfer unit 2A.
  • the section in which the movable linear module 20b is located (hereinafter referred to as "current section") is determined based on the two pieces of information regarding the height position of the movable linear module 20b thus obtained (step S204).
  • the current section is a precision detection section (“YES” in step S205)
  • the corrected linear scale information is set as the height position of the movable linear module 20b, that is, the position information of the first module (step S206).
  • the current section is a composite section (“YES” in step S207)
  • the height position is calculated based on the above equation (1) and used as the first module position information (step S208).
  • the encoder information is the height of the movable linear module 20b.
  • the position that is, the position information of the first module (step S209).
  • the movable linear module 20b is driven ascending by the single-axis robot 23 based on the first module position information of the movable linear module 20b determined as described above (step S210). Subsequently, it is determined whether or not the movable linear module 20b has reached the height position H1 (step S211). While the movable linear module 20b has not reached the height position H1 (“NO” in step S211), the process returns to steps S201 and S202 to repeat the above series of steps, and the movable linear module 20b gradually moves to the height position H1. Approaching.
  • Step S212 the movable linear module 20b is positioned at the transit position P1 and is connected to the fixed linear module 20a located on the most + X side of the upward linear transfer portion 2A.
  • step S1 the movement of the slider 3 to the transfer position P1 (step S1) and the positioning of the movable linear module 20b (step S2) are completed, and the transfer preparation of the slider 3 at the transfer position P1 is completed (step).
  • step S3 the transfer preparation of the slider 3 at the transfer position P1 is completed (step).
  • step S4 the transfer of the slider 3 is executed in the next step S4. That is, the linear module driver 41 controls the energization of the stator to the coil and moves the slider 3 holding the transport object WK from the fixed linear module 20a to the movable linear module 20b as shown by the arrow in FIG. 4C. As a result, the object to be transported WK moves from the upward linear transport section 2A to the vertical moving section 2C while being held by the slider 3 (step S4).
  • the host 42 gives the height position H2 as the movement destination of the movable linear module 20b to the driver 43 for the single axis robot for driving and controlling the vertical movement unit 2C.
  • the driver 43 for a single-axis robot that receives this movement destination command lowers the movable linear module 20b holding the transport object WK to the height position H2 and positions it based on the position data from the encoder 24 and the linear scale 6. (Step S5).
  • FIG. 7 is a flowchart showing the descent / positioning process of the movable linear module.
  • This lowering / positioning process is executed by the single-axis robot driver 43 in the same manner as the ascending / positioning process (step S2). That is, the driver 43 for a single-axis robot relates to the height position of the movable linear module 20b in the vertical direction Z until the movable linear module 20b holding the object to be conveyed WK descends to the height position H2 and is positioned.
  • Information that is, acquisition of "second module position information" of the present invention (steps S501 to S509) and downward drive of the movable linear module 20b based on the second module position information (step S510) are executed.
  • step S511 the above series of steps (steps S501 to S510) are repeated, and the movable linear module 20b gradually rises in height. Approaching position H2.
  • Step S512 the movable linear module 20b is positioned at the transit position P2 while holding the transport target WK, and is connected to the fixed linear module 20a located on the most + X side of the downward linear transport portion 2B.
  • step S5 the transfer of the slider 3 is executed in the next step S6. That is, the linear module driver 41 controls the energization of the stator to the coil to move the slider 3 holding the transfer target object WK from the movable linear module 20b to the fixed linear module 20a. As a result, the object to be transported WK moves from the vertical moving section 2C to the downward linear transport section 2B while being held by the slider 3 (step S6).
  • the scales 61 and 62 are attached to the end faces of the upper base 5a and the lower base 5b on the ⁇ X side (left hand side in FIG. 1), respectively, and are fixed to the end faces on the + X side of the module holding member 21 of the vertical moving portion 2D. ing. Then, the transfer of the object to be conveyed WK from the downward linear transfer unit 2B via the vertical moving unit 2D to the upward linear transfer unit 2A is also executed in the same manner as described above. As described above, in the first embodiment, it is possible to transport the WK to be transported by so-called vertical circulation.
  • the scales 61 and 62 extending in the vertical direction Z are attached to the linear transport portions 2A and 2B, respectively, while the sensor 63 is attached to the vertical moving portions 2C and 2D, respectively. .. That is, the linear scale 6 can accurately acquire the first module position information and the second module position information indicating the positions of the movable linear module 20b with respect to the fixed linear module 20a in the vertical direction Z. Then, the movable linear module 20b is accurately positioned at the height positions H1 and H2 based on the first module position information and the second module position information. Further, in the vertical moving portion 2D as well, the movable linear module 20b is accurately positioned at the height positions H3 and H4 (FIG.
  • the scale may be extended from the upper base 5a to the lower base 5b.
  • increasing the length of the scale causes an increase in the cost of the linear scale 6.
  • a short scale 61 suitable for acquiring the position information of the first module and a short scale 62 suitable for acquiring the position information of the second module are provided. That is, since the module position information is acquired by the minimum necessary scale, the cost of the linear scale 6 can be effectively suppressed.
  • the movable linear module 20b is moved based on the encoder information for the non-linear scale section NLS that cannot be detected by the linear scale 6 in the vertical direction Z in the vertical moving unit 2C.
  • the module position information is acquired by synthesizing the encoder information and the linear scale information. Therefore, it is possible to prevent the moving speed of the movable linear module 20b from suddenly fluctuating, and to smoothly move the movable linear module 20b between the height positions H1 and H2.
  • the transfer of the slider 3 between the fixed linear module 20a and the movable linear module 20b at the transfer positions P3 and P4 (FIG. 1) can be stably performed.
  • the single-axis robot driver 43 when the single-axis robot driver 43 receives a movement destination command from the host 42, the driver 43 determines the section in which the movable linear module 20b exists from the encoder information and the linear scale information, and responds accordingly.
  • the module position information is acquired in the embodiment, and the single-axis robot 23 is controlled based on the module position information. That is, as shown in FIG. 1, the single-axis robot driver 43 includes a section determination unit, a position information acquisition unit, and a robot control unit, and is dedicated to moving and positioning the movable linear module 20b independently of the host 42. It functions as a driver part. Therefore, the configuration of the transport device 1, particularly the control configuration, is simplified and the movable linear module 20b can be positioned at high speed. As a result, the throughput of the transport device 1 can be improved.
  • the upper base 5a and the lower base 5b correspond to an example of the "first base” and the “second base” of the present invention, respectively.
  • the X direction and the Z direction correspond to the "first direction” and the “second direction” of the present invention, respectively.
  • the vertical moving portions 2C and 2D correspond to an example of the "module moving portion” of the present invention.
  • the position data detected by the sensor 63 corresponds to an example of the "sensor detection result" of the present invention.
  • the integrated controller 4 corresponds to an example of the "control unit" of the present invention.
  • FIG. 8 is a perspective view showing the configuration of the vertically moving portion in the second embodiment of the transport device according to the present invention.
  • the major difference between the second embodiment and the first embodiment (FIG. 2) is the configuration of the vertically moving portion 2C (2D), and the other configurations are the same as those of the first embodiment. Therefore, in the following, the differences will be mainly described, and the same components will be designated by the same reference numerals and the description thereof will be omitted.
  • the module holding member 21 is connected to the two single-axis robots 23. More specifically, the rear portion of the module holding member 21 is joined to the nut 233 of the rear single-axis robot 23A. Further, the front portion of the module holding member 21 is joined to the nut (not shown) of the front single-axis robot 23B. Further, although not shown in FIG. 8, a linear scale (see FIGS. 1 and 4A to 4C) and a driver 43 for the single-axis robot are provided for each of the single-axis robots 23A and 23B.
  • the single-axis robots 23A and 23B operate independently of each other to move the rear portion and the front portion of the module holding member 21. They are moved up and down in the same direction Z. As a result, the module holding member 21 is raised and lowered as a whole.
  • the movable linear module 20b is correspondingly affected. May tilt. In that state, the transfer operation cannot be performed smoothly.
  • the movement control of the module holding member 21 by the single-axis robot 23B on the front side based on the detection result of the linear scale sensor provided on the front side and the detection result of the linear scale sensor provided on the rear side are used.
  • the movement control of the module holding member 21 by the single-axis robot 23A on the rear side is executed independently.
  • the inclination of the movable linear module 20b is corrected, and the movable linear module 20a is connected to the fixed linear module 20a.
  • the inclination of the movable linear module 20b is corrected, and it becomes possible to smoothly and stably transfer to the fixed linear module 20a.
  • the single-axis robots 23A and 23B correspond to examples of the “first moving mechanism” and the “second moving mechanism” of the present invention, respectively.
  • the rear side portion and the front side portion of the module holding member 21 correspond to an example of the "first holding portion” and the “second holding portion” of the present invention, respectively.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made to the above-mentioned one without departing from the spirit of the present invention. Therefore, for example, in the first embodiment and the second embodiment, the present invention is applied to the so-called vertical circulation type transport device 1, but as shown in FIGS. 9 and 10, for example, the so-called horizontal circulation type. It can be applied to the transport device 1 of.
  • FIG. 9 is a diagram showing a third embodiment of the transport device according to the present invention.
  • the transport device 1 has a pair of linear transport portions 2A and 2B, horizontal moving portions 2E and 2F, and a plurality of sliders 3.
  • the linear transport unit 2A is provided on the base 5c of the gantry (not shown).
  • the linear transport unit 2B is arranged in parallel with the linear transport unit 2A on the base 5d arranged in parallel with the base 5c separated from the base 5c on the + Y side.
  • the configurations of the linear transport units 2A and 2B are the same as those of the first embodiment.
  • the horizontal moving portion 2E is provided corresponding to the side end portion of the linear transport portions 2A and 2B on the + X side (right side in the figure).
  • the horizontal moving unit 2E has a function of moving the movable linear module 20b in the horizontal direction Y and connecting it to the fixed linear modules 20a of the linear transport units 2A and 2B.
  • FIG. 10 is a diagram showing the configuration of the horizontal moving portion.
  • the horizontal moving portion 2E has a module holding member 21 having a substantially L-shaped cross section for holding the movable linear module 20b from below.
  • the module holding member 21 is provided so as to be movable in the horizontal direction Y along a pair of guide rails 22 and 22 extending in the horizontal direction Y across the bases 5c and 5d. Then, the uniaxial robot 23 is connected to the module holding member 21.
  • the single-axis robot 23 is a moving mechanism including, for example, a ball screw parallel to the Y direction (not shown) and a motor 232 for rotationally driving the ball screw. Further, an encoder 24 is attached to the motor 232 of the single-axis robot 23, and rotation information related to the rotation of the motor 232 is output to a dedicated single-axis robot driver (not shown) for controlling the single-axis robot 23. ..
  • a dedicated single-axis robot driver not shown for controlling the single-axis robot 23.
  • the uniaxial robot 23 when the motor 232 is driven and controlled by the uniaxial robot driver, the module holding member 21 and the movable linear module 20b are integrally moved in the horizontal direction Y along the guide rails 22 and 22. As a result, for example, as shown in FIG.
  • the movable linear module 20b is located at the horizontal position L2 and is aligned with the fixed linear module 20a of the linear transport unit 2B at the transit position P2.
  • the motor 232 is rotated in the reverse direction, for example, as shown in FIG. 10
  • the movable linear module 20b is located at the horizontal position L1 and is aligned with the fixed linear module 20a of the linear transfer portion 2A at the transit position P1.
  • the horizontal movement unit 2F is also configured in the same manner as the horizontal movement unit 2E, and the horizontal movement of the movable linear module 20b enables the transfer of the slider 3 at the transfer positions P3 and P4.
  • the scales 61 and 62 extending in the Y direction are attached to the bases 5c and 5d, respectively. Further, the sensor 63 is attached to the module holding member 21 of the horizontal moving portion 2E. In this way, the linear scale 6 is provided on the horizontal moving portion 2E side. A linear scale 6 is also provided on the 2nd floor side of the horizontal moving portion.
  • the sensor 63 is electrically connected to a driver for a single-axis robot (not shown). Then, the driver for the single-axis robot acquires the module position information indicating the position of the movable linear module 20b with respect to the fixed linear module 20a in the horizontal direction Y based on the detection result of the sensor 62 as in the first embodiment. Then, the driver for the single-axis robot controls the movement of the module holding member 21 based on the module position information to position the movable linear module 20b at the positions L1 and L2. As a result, it is possible to stably connect the slider 3 between the fixed linear module 20a and the movable linear module 20b without performing special accuracy adjustment as in the prior art. As a result, the object to be transported WK can be satisfactorily transported.
  • the bases 5c and 5d correspond to an example of the "first base” and the “second base” of the present invention, respectively.
  • the Y direction corresponds to the "second direction” of the present invention.
  • the horizontal moving portions 2E and 2F correspond to an example of the "module moving portion" of the present invention.
  • the scales 61 and 62 are attached to the linear transport portions 2A and 2B, and the sensor 63 is attached to the module moving portion (vertical moving portion 2C, 2D and horizontal moving portion 2E, 2F).
  • the arrangement relationship between the scale and the sensor may be reversed from the above embodiment.
  • the module position information is acquired by constantly synthesizing the encoder information and the linear scale information in the upper composite section USS and the lower composite section DSS, but the detection characteristics of the linear scale 6 are taken into consideration. May be good.
  • This detection characteristic means that the detection by the sensor 63 is unstable in the region close to the non-linear scale section even in the combined section USS and DSS, that is, in the region where the sensor 63 starts to face the scales 61 and 62. It is a characteristic. In the linear scale 6 having this detection characteristic, correct position data may not be output from the sensor 63. Therefore, the use of the linear scale information (position data) may be determined after determining whether or not the position data is normally output from the sensor 63. That is, while it is determined that the output of the position data is abnormal, the module position information may be acquired only by the encoder information regardless of the section (fourth embodiment).
  • the present invention is applied to the transport device 1 having two linear transport portions 2A and 2B, but the present invention is also applied to the transport device having three or more linear transport portions. Can be applied.
  • the number of fixed linear modules 20a constituting each of the linear transport units 2A and 2B is "6", but the number is not limited to this and is arbitrary.
  • the present invention can be applied to a general transfer technique for transporting an object to be transported by transferring a slider between the fixed linear module and the movable linear module after positioning the movable linear module with respect to the fixed linear module.
  • Single-axis robot driver (dedicated driver section) 61 ... Upper scale 62 ... Lower scale 63 ... Sensor DFS ... Lower precision detection section DSS ... Lower composite section H1 ... Height position (first connection position) H2 ... Height position (second connection position L1 ... Horizontal position (first connection position) L1 ... Horizontal position (first connection position) NLS ... Non-linear scale section P1, P2, P3, P4 ... Transit position ULS ... Upper precision detection section USS ... Upper composite section WK ... Transport object X ... 1st direction Y ... Horizontal direction (2nd direction) Z ... Vertical direction (second direction)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

この発明は、第1ベース上に固定される第1固定リニアモジュールによりスライダを第1方向に移動させる第1直線搬送部と、可動リニアモジュールを保持するモジュール保持部材を第1方向と異なる第2方向に移動させ、可動リニアモジュールを第1固定リニアモジュールと連結される第1連結位置に位置決めして第1固定リニアモジュールとの間でスライダの乗り継ぎを可能とするモジュール移動部と、第2方向に延設されるスケールと、スケールを検出するセンサとを有し、スケールおよびセンサのうちの一方を第1直線搬送部に取り付け、他方をモジュール移動部に取り付けたリニアスケールと、センサの検出結果に基づいて第1固定リニアモジュールに対する可動リニアモジュールの第2方向における位置を示す第1モジュール位置情報を取得し、第1モジュール位置情報に基づいてモジュール保持部材の移動を制御する制御部と、を備えている。

Description

搬送装置および搬送方法
 この発明は、固定リニアモジュールに対して可動リニアモジュールを位置決めした後で固定リニアモジュールおよび可動リニアモジュールの間でスライダを乗り移らせて搬送対象物を搬送する搬送技術に関するものである。
 近年、ムービングマグネット型リニアモータを用いて搬送対象物を搬送する搬送装置が提案されている。例えば特許文献1では、固定子を有するリニアモジュールを第1方向に連結した第1直線搬送部が固定配置されている。また、第1直線搬送部と同一構成の第2直線搬送部が第1方向と直交する第2方向に離間して並列配置されている。ここで、第1直線搬送部において、固定子のコイルへの通電を制御することで可動子を有するスライダがリニアモジュールの固定子に沿って移動する。これによって、スライダに保持される搬送対象物が第1直線搬送部により第1方向に搬送される。
 また、搬送対象物を第1直線搬送部から第2直線搬送部に移載して搬送方向を転換させるために、第1方向における両直線搬送部の一方端側に第1方向転換部が設けられている。この第1方向転換部は第2方向に移動自在に構成された可動リニアモジュールを有している。そして、第1直線搬送部から第2直線搬送部への移載を行う際には、可動リニアモジュールが第1直線搬送部の一方端を構成する固定リニアモジュールと連結する連結位置に位置決めされる。それに続いて、固定子のコイルへの通電を制御することで、スライダが第1直線搬送部から第1方向転換部に乗り継ぐ。そして、第1方向転換部によりスライダを保持する可動リニアモジュールが第2直線搬送部の一方端を構成する固定リニアモジュールと連結する連結位置に移動された後で固定子のコイルへの通電を制御することで、スライダが第1方向転換部から第2直線搬送部に乗り継ぐ。これに続いて、第2直線搬送部において、固定子のコイルへの通電を制御することでスライダが第1直線搬送部と逆の方向に移動して搬送対象物を第2直線搬送部の他方端側に搬送する。
 さらに、第1方向における両直線搬送部の他方端側に第1方向転換部と同一構成の第2方向転換部が設けられている。このため、第1方向転換部と同様に、スライダを第2直線搬送部、第2方向転換部および第1直線搬送部の順に移動させて搬送対象物を第1直線搬送部の他方端側に搬送することができる。このように特許文献1に記載の搬送装置では、スライダを循環移動させることが可能となっている。
国際公開第2018/055709号
 ところで、直線搬送部と方向転換部との間でのスライダの乗り継ぎを円滑に行うためには、第2方向において直線搬送部のリニアモジュールに対して方向転換部のリニアモジュールを高精度に位置決めする必要がある。そこで、従来の搬送装置では、可動リニアモジュールの移動中に方向転換部の一部を予め固定配置された位置決め部材に当接させて可動リニアモジュールを乗継位置に位置決めさせている。このように機械的な位置決めを行っているため、方向転換部や位置決め部材などの温度変動による変形や摩耗などにより位置決め精度が低下し、円滑なスライダの乗り継ぎが困難となることがあった。
 また、定期的な保守で乗り継ぎ精度を維持することは可能である。ただし、従来装置では、乗り継ぎ精度を定量的に測定できないため、別途ダイヤルゲージなどの測定手段を用いた精度調整が必要であり、工数がかかっていた。また、立上げ時も同様に、精度調整に工数がかかっていた。
 この発明は上記課題に鑑みなされたものであり、特別な精度調整を行うことなく、リニアモジュール間でのスライダの乗り継ぎを長期的に安定して行い、搬送対象物を良好に搬送することができる搬送技術を提供することを目的とする。
 本発明の一態様は、搬送対象物を保持するスライダを移動させて搬送対象物を搬送する搬送装置であって、第1ベース上に固定される第1固定リニアモジュールによりスライダを第1方向に移動させる第1直線搬送部と、可動リニアモジュールを保持するモジュール保持部材を第1方向と異なる第2方向に移動させ、可動リニアモジュールを第1固定リニアモジュールと連結される第1連結位置に位置決めして第1固定リニアモジュールとの間でスライダの乗り継ぎを可能とするモジュール移動部と、第2方向に延設されるスケールと、スケールを検出するセンサとを有し、スケールおよびセンサのうちの一方を第1直線搬送部に取り付け、他方をモジュール移動部に取り付けたリニアスケールと、センサの検出結果に基づいて第1固定リニアモジュールに対する可動リニアモジュールの第2方向における位置を示す第1モジュール位置情報を取得し、第1モジュール位置情報に基づいてモジュール保持部材の移動を制御する制御部と、を備えることを特徴としている。
 また、本発明の他の態様は、ベース上に固定される固定リニアモジュールによりスライダを第1方向に移動させる直線搬送部と、可動リニアモジュールを保持するモジュール保持部材を第1方向と異なる第2方向に移動させるモジュール移動部との間で、搬送対象物を保持するスライダを移動させて搬送対象物を搬送する搬送方法であって、直線搬送部およびモジュール移動部のうちの一方にスケールが第2方向に延設して取り付けられ、他方にスケールを検出するセンサが取り付けられ、センサの検出結果に基づいて固定リニアモジュールに対する可動リニアモジュールの第2方向における位置を示すモジュール位置情報を取得する工程と、モジュール位置情報に基づいてモジュール保持部材を第2方向に移動させて可動リニアモジュールを固定リニアモジュールと連結される連結位置に位置決めして固定リニアモジュールとの間でスライダの乗り継ぎを可能とする工程と、互いに連結された固定リニアモジュールと可動リニアモジュールとの間でスライダを第1方向に移動させる工程と、を備えることを特徴としている。
 このように構成された発明では、第2方向に延設されるスケールが直線搬送部(またはモジュール移動部)に取り付けられる。一方、センサがモジュール移動部(または直線搬送部)に取り付けられ、スケールを検出可能となっている。このため、センサの検出結果から固定リニアモジュールに対する可動リニアモジュールの第2方向における位置を示すモジュール位置情報が正確に取得される。そして、当該モジュール位置情報に基づいて可動リニアモジュールが固定リニアモジュールと連結される連結位置に位置決めされる。その結果、固定リニアモジュールと可動リニアモジュールとの間でスライダの乗り継ぎが安定して行われる。
 ここで、モジュール移動部が、モジュール保持部材を第2方向に移動させる移動機構と、第2方向におけるモジュール保持部材の位置を示すエンコーダ情報を取得するエンコーダとを有するように構成してもよい。この場合、制御部は、センサの検出結果とエンコーダ情報とに基づいて第1モジュール位置情報を取得し、第1モジュール位置情報に基づいて可動リニアモジュールを第1連結位置に位置決めしてもよい。このように第1モジュール位置情報を取得するために、センサの検出結果のみならずエンコーダ情報を用いることで第2方向においてリニアスケールで検出すべき区間が短くなり、スケールの小型化およびそれによる低コスト化を図ることができる。
 上記のようにセンサの検出結果とエンコーダ情報とを併用する一例として、第2方向においてセンサがスケールを検出する区間をリニアスケール区間とし、センサがスケールを検出しない区間を非リニアスケール区間としてもよい。この場合、制御部は、リニアスケール区間ではセンサの検出結果に基づいて第1モジュール位置情報を取得し、非リニアスケール区間ではエンコーダ情報に基づいて第1モジュール位置情報を取得してもよい。このように非リニアスケール区間を設けた分だけリニアスケール区間が短くなり、スケールの小型化を図ることができる。
 また、上記のようにセンサの検出結果とエンコーダ情報とを併用する他の例として、第2方向においてセンサがスケールを検出する区間をリニアスケール区間とし、センサがスケールを検出しない区間を非リニアスケール区間とし、リニアスケール区間のうち非リニアスケール区間に隣接する一部区間を合成区間としてもよい。そして、合成区間ではセンサの検出結果とエンコーダ情報とに基づいて第1モジュール位置情報を取得することにより後で詳述するように第1モジュール位置情報の不連続性を抑えることができる。
 また、不連続性を完全に除去するために、例えば合成区間において、センサの検出結果に応じた重み付け係数k(ただし、0≦k≦1)を求め、次式
 (第1モジュール位置情報)=(センサの検出結果)*k+(エンコーダ情報)*(1-k)
に基づいて第1モジュール位置情報を求めるように構成してもよい。これによって、第1モジュール位置情報が不連続に変化するのを抑制し、可動リニアモジュールの移動を円滑に行うことができる。その結果、搬送対象物をより安定して搬送することができる。
 また、第2方向において第1ベースから離れて設けられた第2ベース上に固定される第2固定リニアモジュールによりスライダを第1方向に移動させる第2直線搬送部をさらに設けてもよい。そして、モジュール移動部が、可動リニアモジュールを第2固定リニアモジュールと連結される第2連結位置に位置決めして第2固定リニアモジュールとの間でスライダの乗り継ぎを可能とするように構成してもよい。さらに制御部が、センサの検出結果に基づいて第2固定リニアモジュールに対する可動リニアモジュールの第2方向における位置を示す第2モジュール位置情報を取得し、第1モジュール位置情報および第2モジュール位置情報に基づいて可動リニアモジュールを第1連結位置と第2連結位置との間を移動させるように構成してもよい。これにより、第1固定リニアモジュール、第1連結位置、可動リニアモジュール、第2連結位置および第2固定リニアモジュールの順序、あるいはその逆の順序でスライダを移動させることができ、搬送対象物を広範囲にわたって搬送することができる。
 また、モジュール移動部が、モジュール保持部材の第1保持部位に連結されてモジュール保持部材を第2方向に移動させる第1移動機構と、モジュール保持部材の第1保持部位と異なる第2保持部位に連結されて第2モジュール保持部材を第2方向に移動させる第2移動機構と、を有するように構成してもよい。そして、第1移動機構および第2移動機構の各々に対応してリニアスケールを設けてもよい。この場合、第1移動機構による第1保持部位の移動制御と第2移動機構による第2保持部位の移動制御とを互いに独立して行うことができ、可動リニアモジュールの移動姿勢を安定化させることができる。その結果、搬送対象物をさらに安定して搬送することができる。
 さらに、制御部が、可動リニアモジュールの移動先を指示するホストと、移動先を受け取るとホストから独立してセンサの検出結果に基づいてモジュール保持部材の移動を制御して可動リニアモジュールを移動先に位置決めする専用ドライバ部と、を有するように構成してもよい。このように可動リニアモジュールの移動および位置決め制御がホストから独立した専用ドライバ部で完結されるため、装置全体構成が簡素化されるとともに高速な位置決めが可能となる。
 以上のように、特別な精度調整を行うことなく、リニアモジュール間でのスライダの乗り継ぎを長期的に安定して行い、搬送対象物を良好に搬送することができる。
本発明に係る搬送装置の第1実施形態の全体構成を示す図である。 図1に示す搬送装置に装備される垂直移動部の構成を示す図である。 図1に示す搬送装置による搬送対象物の搬送動作の一例を示すフローチャートである。 搬送対象物を保持するスライダを固定リニアモジュールから可動リニアモジュールに乗り継ぐ動作を模式的に示す図である。 搬送対象物を保持するスライダを固定リニアモジュールから可動リニアモジュールに乗り継ぐ動作を模式的に示す図である。 搬送対象物を保持するスライダを固定リニアモジュールから可動リニアモジュールに乗り継ぐ動作を模式的に示す図である。 エンコーダ情報およびリニアスケール情報に基づき取得される可動リニアモジュールの高さ位置を示すグラフである。 可動リニアモジュールの上昇・位置決め処理を示すフローチャートである。 可動リニアモジュールの下降・位置決め処理を示すフローチャートである。 本発明に係る搬送装置の第2実施形態における垂直移動部の構成を示す斜視図である。 本発明に係る搬送装置の第3実施形態を示す図である。 図9に示す搬送装置に装備される水平移動部の構成を示す図である。
 図1は本発明に係る搬送装置の第1実施形態の全体構成を示す図である。この搬送装置1は垂直面内で搬送対象物を循環搬送する。以後の説明のために、図1に示すようにXYZ座標軸を設定する。ここでXY平面が水平面であり、X方向が左右方向(ーXが左、+Xが右)、Y方向が前後方向(-Yが前、+Yが後)、Z方向が上下方向(+Zが上、-Zが下)に各々相当する。
 搬送装置1は、一対の直線搬送部2A、2Bと、一対の垂直移動部2C、2Dと、複数のスライダ3と、装置全体を制御する統合コントローラ4と、を有している。直線搬送部2Aは架台(図示省略)の上方ベース5a上に設けられている。一方、直線搬送部2Bは架台の下方ベース5b上において直線搬送部2Aと平行に、しかも-Z側(図1の下方側)に離れて配置されている。これら直線搬送部2A、2Bでは、固定子を装備するリニアモジュール20aが複数個(図1では6個)X方向に配列され、上方ベース5aおよび下方ベース5bにそれぞれ固定されている。また、直線搬送部2A、2Bに対して複数のスライダ3がX方向に移動自在に設けられている。各スライダ3には可動子が接続されている。
 これら12個のリニアモジュール20aならびに後で説明する2個のリニアモジュール20bを個別に制御するために、統合コントローラ4には、複数のリニアモジュールドライバ41が設けられている。例えばリニアモジュールドライバ41はリニアモジュール20a、20bに設けられた固定子のコイルに対して個別に通電する機能を有している。つまり、コイル毎にリニアモジュールドライバ41は設けられ、当該コイルに対して個別に通電する機能を有している。本実施形態では、例えば各リニアモジュール20aに5個のコイルが装備され、各リニアモジュール20bに2個のコイルが装備されている。したがって、図1に示す搬送装置1は、64個(=5×12+2×2)のコイルを装備するとともに、それに対応して64個のリニアモジュールドライバ41を装備している。これらのリニアモジュールドライバ41は統合コントローラ4のホスト42とカスケード接続されている。ホスト42からスライダ3の移動先に関する指令(以下「移動先指令」という)が出力されると、当該移動先指令に応じたリニアモジュールドライバ41がそれに対応するコイルに通電することで磁気的な推進力を発生させてスライダ3をX方向に移動させる。なお、リニアモジュール20aおよびスライダ3の構成は特許文献1に記載の装置と同一であるため、当該構成の説明は省略する。また、直線搬送部2A、2Bを区別して説明する際には、前者を「上方直線搬送部2A」と称する一方、後者を「下方直線搬送部2B」と称し、両者を区別しない場合には、単に「直線搬送部2A、2B」と称する。
 垂直移動部2Cは直線搬送部2A、2Bの+X側(同図の右側)の側端部に対応して設けられている。垂直移動部2Cはリニアモジュール20bを上下方向Zに移動させて直線搬送部2A、2Bのリニアモジュール20aと連結させる機能を有している。このリニアモジュール20bはリニアモジュール20aと同一の構成を有しているが、可動である点で常時固定されているリニアモジュール20aと相違している。そこで、本明細書では、リニアモジュール20a、20bを区別して説明する際に、前者を「固定リニアモジュール20a」と称する一方、後者を「可動リニアモジュール20b」と称し、両者を区別しない場合には、単に「リニアモジュール20a、20b」と称する。
 図2は垂直移動部の構成を示す図である。垂直移動部2Cは可動リニアモジュール20bを下方から保持するプレート状のモジュール保持部材21を有している。このモジュール保持部材21は、上方ベース5aおよび下方ベース5bに跨って上下方向Zに延設された一対のガイドレール22、22に沿って上下方向Zに移動自在に設けられている。さらに、モジュール保持部材21に対して単軸ロボット23が接続されている。
 この単軸ロボット23は、例えばZ方向に平行なボールネジ231と、ボールネジ231を回転駆動するモータ232と、を備えた移動機構である。また、単軸ロボット23のモータ232にはエンコーダ24が取り付けられている。このエンコーダ24は、モータ232の回転に関連する回転情報を出力し、当該単軸ロボット23を制御する専用の単軸ロボット用ドライバ43に与える。また、単軸ロボット23では、ボールネジ231に対してナット233が螺合されるとともに、当該ナット233にモジュール保持部材21が取り付けられている。また、モータ232およびエンコーダ24は統合コントローラ4の単軸ロボット用ドライバ43と電気的に接続されている。さらに、単軸ロボット用ドライバ43には、後で詳述するリニアスケールのセンサが電気的に接続されている。
 このように、本実施形態では、エンコーダ24およびリニアスケールから上下方向Zにおける可動リニアモジュール20bの高さ位置に関する情報が単軸ロボット用ドライバ43に入力される。また、単軸ロボット用ドライバ43はこれらの情報に基づいてモータ232を駆動制御してナット233をガイドレール234に沿って上下方向Zに移動させる。これによって、ナット233、モジュール保持部材21および可動リニアモジュール20bが一体的に上下方向Zに移動される。例えば図1および図2に示すように、単軸ロボット23により可動リニアモジュール20bが-Z方向側の端部に移動されて上下方向Zにおいて下方直線搬送部2Bに対向する高さ位置(連結位置)H2に位置決めされる。これにより、可動リニアモジュール20bが乗継位置P2に位置して直線搬送部2Bの固定リニアモジュール20aと一列に並ぶ。つまり、直線搬送部2Bを構成する固定リニアモジュール20aのうち最も+X側に位置する固定リニアモジュール20aに連結される。その結果、垂直移動部2Cと直線搬送部2Bとの間でのスライダ3の移動が可能となる。
 一方、図1への図示を省略しているが、単軸ロボット23により可動リニアモジュール20bが+Z方向側の端部に移動されて上下方向Zにおいて上方直線搬送部2Aに対向する高さ位置(連結位置)H1に位置決めされることで、垂直移動部2Cと直線搬送部2Aとの間でのスライダ3の移動が可能となる。したがって、垂直移動部2Cを経由することで、直線搬送部2Aから直線搬送部2Bへのスライダ3の移動ならびに直線搬送部2Bから直線搬送部2Aへのスライダ3の移動が可能となっている。このように直線搬送部2Aおよび直線搬送部2Bがそれぞれ本発明の「第1直線搬送部」および「第2直線搬送部」に相当するとき、高さ位置H1、H2はそれぞれ本発明の「第1連結位置」および「第2連結位置」の一例に相当し、直線搬送部2Aの固定リニアモジュール20aが本発明の「第1固定リニアモジュール」の一例に相当するとともに、直線搬送部2Bの固定リニアモジュール20aが本発明の「第2固定リニアモジュール」の一例に相当する。なお、リニアスケールの構成および単軸ロボット用ドライバ43による可動リニアモジュール20bの移動制御については後で詳述する。
 垂直移動部2Dは直線搬送部2A、2Bの-X側(同図の右側)の側端部に対応して設けられている。垂直移動部2Dの構成は垂直移動部2Cと同一である。このため、-X側での直線搬送部2Aから直線搬送部2Bへのスライダ3の移動ならびに直線搬送部2Bから直線搬送部2Aへのスライダ3の移動が可能となっている。
 統合コントローラ4は装置全体を制御するホスト42を有している。このホスト42は、記憶部421に記憶されているプログラムに従ってスライダ3および可動リニアモジュール20bの移動先を決定し、リニアモジュールドライバ41および単軸ロボット用ドライバ43に出力する移動先指令部422を有している。
 リニアモジュールドライバ41は固定子のコイル毎に設けられている。各リニアモジュールドライバ41はスライダ3の移動先に応じて制御対象となっているコイルへの通電を制御する。これにより、リニアモジュール20a、20bの固定子とスライダ3に接続された可動子との間で磁気的な推進力が発生してスライダ3をX方向に移動させる。
 また、単軸ロボット用ドライバ43は垂直移動部2C、2D毎に設けられている。各単軸ロボット用ドライバ43は可動リニアモジュール20bの移動先に応じて制御対象となっているモータ232の回転を制御する。すなわち、直線搬送部2Aと垂直移動部2C、2Dとの間でのスライダ3の乗り継ぎ、ならびに直線搬送部2Bと垂直移動部2C、2Dとの間でのスライダ3の乗り継ぎを行う際に、単軸ロボット用ドライバ43に対して可動リニアモジュール20bの移動先の指令が与えられる。例えば垂直移動部2Cを経由して上方直線搬送部2Aから下方直線搬送部2Bに搬送対象物を搬送する場合、ホスト42の移動先指令部422から垂直移動部2Cの可動リニアモジュール20bを高さ位置(連結位置)H1に移動して位置決めさせる旨の移動先指令が与えられる。これを受けた垂直移動部2C用の単軸ロボット用ドライバ43はホスト42から独立して垂直移動部2Cの各部を制御する。その後で、リニアモジュールドライバ41が直線搬送部2Aの固定リニアモジュール20aと垂直移動部2Cの可動リニアモジュール20bを駆動する。より具体的には、ホスト42から独立して図3に示す動作が実行される。
 図3は図1に示す搬送装置による搬送対象物の搬送動作の一例を示すフローチャートである。また、図4Aないし図4Cは、搬送対象物を保持するスライダを固定リニアモジュールから可動リニアモジュールに乗り継ぐ動作を模式的に示す図である。リニアモジュールドライバ41により、図4Aに示すように搬送対象物WKを保持したスライダ3が乗継位置P1に移動される(ステップS1)。また、これに並行して、可動リニアモジュール20bの高さ位置H1への移動先指令を受けた単軸ロボット用ドライバ43は、エンコーダ24およびリニアスケールからの各種情報に基づいて空の可動リニアモジュール20bを高さ位置H1に上昇して位置決めする(ステップS2)。ここで、単軸ロボット用ドライバ43による可動リニアモジュール20bの上昇・位置決め処理の説明に先立って、本発明の技術的特徴のひとつであるリニアスケールの構成などについて、図2、図4Aないし図4Cを参照しつつ説明する。
 リニアスケール6は、上下方向Zに延設された2つのスケール61、62と、各スケール61、62に設けられる位置データを検出するセンサ63とを有している。位置データの読み取り方式としては、主として磁気を利用するものと光を利用するものとがあるが、本実施形態では磁気方式を採用している。つまり、スケール61、62は磁気スケールであり、センサ63は磁気センサである。
 スケール61は図4A~図4Cに示すように上方ベース5aの+X側の端面に取り付けられ、スケール62はスケール61の下方で下方ベース5bの+X側の端面に取り付けられている。このように本実施形態では、スケール61、62は上下方向Zに分離して架台(図示省略)に固定配置されている。なお、以下においては、スケール61、62を区別して説明するために、前者を「上方スケール61」と称するとともに後者を「下方スケール62」と称する。
 センサ63は上方スケール61および下方スケール62から+X側に離れた位置でモジュール保持部材21の-X側の端面に固定されている。モジュール保持部材21および可動リニアモジュール20bの上下移動に伴ってセンサ63は上下方向Zに移動する。特に、図4Aに示すように、センサ63は上下方向Zにおける上方リニアスケール区間LS1を通過する間、上方スケール61と対向して位置データを読み取る。この読み取った位置データは上下方向Zにおける上方直線搬送部2Aに対する可動リニアモジュール20bの位置に関する情報を含んでいる。また、図4Cに示すように、センサ63は上下方向Zの下方リニアスケール区間LS2を通過する間、下方スケール62と対向して位置データを読み取る。この読み取った位置データは上下方向Zにおける下方直線搬送部2Bに対する可動リニアモジュール20bの位置に関する情報を含んでいる。一方、センサ63が上方リニアスケール区間LS1、LS2の間を通過する間、センサ63は上方スケール61および下方スケール62のいずれとも対向せず、位置データを読み取ることができない。
 このように本実施形態では、リニアスケール6により検出することができる可動リニアモジュール20bの位置に関する情報(以下「リニアスケール情報」という)を取得可能な範囲は上方リニアスケール区間LS1および下方リニアスケール区間LS2に限定される。これに対し、エンコーダ24から出力される信号には上下方向Zにおける可動リニアモジュール20bの位置に関する情報(以下「エンコーダ情報」という)が含まれている。つまり、エンコーダ情報により可動リニアモジュール20bの高さ位置を取得することができる。そこで、リニアスケール区間LS1、LS2においてはリニアスケール情報に基づき可動リニアモジュール20bの高さ位置に関する情報を取得し、これに基づいて可動リニアモジュール20bを制御してもよい。また、リニアスケール区間LS1、LS2以外の区間(後で説明する非リニアスケール区間を含む)においてはエンコーダ情報に基づき可動リニアモジュール20bの高さ位置に関する情報を取得し、これに基づいて可動リニアモジュール20bを制御してもよい。ただし、エンコーダ24はモータ232によるボールネジ231の回転量を検出するものであり、その回転量から直線搬送部2A、2Bに対する可動リニアモジュール20bの高さ位置を正確に求めることは困難である。
 そこで、本実施形態では、図4A~図4Cに示すように、エンコーダ情報を求める範囲ESをリニアスケール区間LS1、LS2と一部重複させ、上下方向Zにおいて5つの区間を設定している。つまり、これら5つの区間は
 (1)非リニアスケール区間NLS:
 エンコーダ24により検出されるエンコーダ情報のみに基づいて可動リニアモジュール20bの高さ位置を取得する区間
 (2)上方合成区間USS:
 上方リニアスケール区間LS1のうち非リニアスケール区間NLSと隣接する一部区間であって、上方スケール61をセンサ63で検出して読み取ったリニアスケール情報と、エンコーダ24により検出されるエンコーダ情報とに基づき可動リニアモジュール20bの高さ位置を取得する区間
 (3)上方精密検出区間UFS:
 上方リニアスケール区間LS1のうち区間USSを除く区間であって、上方スケール61をセンサ63で検出して読み取ったリニアスケール情報のみに基づいて高さ位置H1の近傍において可動リニアモジュール20bの高さ位置を高精度に取得する区間
 (4)下方合成区間DSS:
 下方リニアスケール区間LS2のうち非リニアスケール区間NLSと隣接する一部区間であって、下方スケール62をセンサ63で検出して読み取ったリニアスケール情報と、エンコーダ24により検出されるエンコーダ情報とに基づき可動リニアモジュール20bの高さ位置を取得する区間
 (5)下方精密検出区間DFS:
 下方リニアスケール区間LS2のうち区間USSを除く区間であって、下方スケール62をセンサ63で検出して読み取ったリニアスケール情報のみに基づいて高さ位置H2の近傍において可動リニアモジュール20bの高さ位置を高精度に取得する区間、
である。なお、上方合成区間USSおよび下方合成区間DSSを設けた理由は、図5に示すように、エンコーダ情報とリニアスケール情報との不連続性を解消して可動リニアモジュール20bを円滑に移動させるためである。
 図5はエンコーダ情報およびリニアスケール情報に基づき取得される可動リニアモジュールの高さ位置を示すグラフである。同グラフでは、目標位置、つまり連結位置H1に向けて上昇している可動リニアモジュール20bの現在高さ位置を、リニアスケール情報のみにより取得したケース(1点鎖線)と、エンコーダ情報のみにより取得したケース(2点鎖線)とが示されている。これらを比較して明らかなように、両者は不連続である。例えば可動リニアモジュール20bが上方リニアスケール区間LS1に入り、リニアスケール6により検出可能となった時点では、リニアスケール情報に基づく高さ位置HLと、エンコーダ情報に基づく高さ位置HEとは、大きく相違している。したがって、可動リニアモジュール20bの上昇移動制御をエンコーダ情報からリニアスケール情報に切り替えると、可動リニアモジュール20bの移動速度が急激に変動することがある。その結果、スライダ3に衝撃が与えられ、搬送対象物WKを円滑に安定して搬送することが難しくなり、最悪の場合、搬送対象物WKがスライダ3から脱落する。
 そこで、本実施形態では、上方合成区間USSを設け、リニアスケール情報およびエンコーダ情報に基づき可動リニアモジュール20bの高さ位置を取得している。より詳しくは、同図に示すように、リニアスケール情報(センサ63の検出結果)に応じた重み付け係数k(ただし、0≦k≦1)を求め、次式
 高さ位置=(リニアスケール情報)*k+(エンコーダ情報)*(1-k)…(1)式
に基づいて可動リニアモジュール20bの高さ位置を求める。これによって、上方合成区間USSにおいても、可動リニアモジュール20bの高さを連続的に取得することができる。それに基づいて可動リニアモジュール20bの上昇移動を制御することで可動リニアモジュール20bを円滑に上昇させて高さ位置H1に近づけることができる。そして、最終的には直線搬送部2Aに対する可動リニアモジュール20bの高さ位置を正確に示すリニアスケール情報に基づいて可動リニアモジュール20bを高さ位置H1に位置決め可能となっている。なお、下方合成区間DSSを設けている点も、上方合成区間USSと同様である。
 次に、可動リニアモジュール20bの上昇・位置決め処理(ステップS2)について、図4A~図4Cおよび図6を参照しつつ説明する。図6は可動リニアモジュールの上昇・位置決め処理を示すフローチャートである。この上昇・位置決め処理は、センサ63から出力されるリニアスケール情報と、エンコーダ24から出力されるエンコーダ情報とに基づいて単軸ロボット用ドライバ43により実行される。単軸ロボット用ドライバ43は、空の可動リニアモジュール20bが高さ位置H1まで上昇して位置決めされるまで、以下のステップS201~S211を繰り返して実行する。
 ステップS201では、エンコーダ24から出力されるエンコーダ情報が取得される。これと並行してセンサ63により検出された位置データHsが取得され(ステップS202)、さらに当該位置データHsに対して補正処理が施されて直線搬送部2Aに対する可動リニアモジュール20bの高さ位置に相当するリニアスケール情報が求められる(ステップS203)。より具体的には、非リニアスケール区間NLSから上方合成区間USSに切り替わる際のエンコーダ情報Haおよびリニアスケール情報Hbが予めオペレータにより教示され、単軸ロボット用ドライバ43のメモリ(図示省略)に記憶されている。そして、ステップS203では、次式、
 リニアスケール情報=(Hs-Hb)*KS+Ha …(2)式
   ただし、KSはエンコーダーリニアスケール間のスケーリング係数
に基づいて可動リニアモジュール20bの高さ位置に相当するリニアスケール情報が算出される。
 こうして得られた可動リニアモジュール20bの高さ位置に関する2つの情報に基づいて可動リニアモジュール20bが位置している区間(以下「現在区間」という)が判定される(ステップS204)。そして、現在区間が精密検出区間である場合(ステップS205で「YES」)には、補正済のリニアスケール情報が可動リニアモジュール20bの高さ位置、つまり第1モジュール位置情報とされる(ステップS206)。また、現在区間が合成区間である場合(ステップS207で「YES」)には、上記(1)式に基づいて高さ位置が算出され、第1モジュール位置情報とされる(ステップS208)。さらに、現在区間が上方精密検出区間UFSおよび上方合成区間USSのいずれでもない、つまり非リニアスケール区間NLSである場合(ステップS205で「NO」)には、エンコーダ情報が可動リニアモジュール20bの高さ位置、つまり第1モジュール位置情報とされる(ステップS209)。
 そして、上記のようにして決定された可動リニアモジュール20bの第1モジュール位置情報に基づいて可動リニアモジュール20bが単軸ロボット23により上昇駆動される(ステップS210)。それに続いて、可動リニアモジュール20bが高さ位置H1に到達しているか否かが判定される(ステップS211)。可動リニアモジュール20bが高さ位置H1に到達していない間(ステップS211で「NO」)、ステップS201、S202に戻って上記一連の工程が繰り返され、可動リニアモジュール20bが徐々に高さ位置H1に近づいてくる。
 一方、可動リニアモジュール20bの高さ位置H1への到着が確認されると、単軸ロボット23による可動リニアモジュール20bの上昇駆動が停止され、可動リニアモジュール20bが高さ位置H1に位置決めされる(ステップS212)。これによって、図4Cに示すように、可動リニアモジュール20bは乗継位置P1に位置決めされ、上方直線搬送部2Aの最も+X側に位置する固定リニアモジュール20aに連結される。
 図3に戻って搬送処理の説明を続ける。上記のように乗継位置P1へのスライダ3の移動(ステップS1)と可動リニアモジュール20bの位置決め(ステップS2)が完了して乗継位置P1でのスライダ3の乗継準備が完了する(ステップS3で「YES」)と、次のステップS4でスライダ3の乗継が実行される。すなわち、リニアモジュールドライバ41は固定子のコイルへの通電を制御して図4Cの矢印で示すように搬送対象物WKを保持したスライダ3を固定リニアモジュール20aから可動リニアモジュール20bに移動させる。これにより、搬送対象物WKはスライダ3に保持されたまま上方直線搬送部2Aから垂直移動部2Cに移動する(ステップS4)。
 それに続いて、ホスト42は垂直移動部2Cを駆動制御するための単軸ロボット用ドライバ43に可動リニアモジュール20bの移動先として高さ位置H2を与える。この移動先指令を受けた単軸ロボット用ドライバ43はエンコーダ24およびリニアスケール6からの位置データに基づいて搬送対象物WKを保持している可動リニアモジュール20bを高さ位置H2に下降して位置決めする(ステップS5)。
 図7は可動リニアモジュールの下降・位置決め処理を示すフローチャートである。この下降・位置決め処理は、上昇・位置決め処理(ステップS2)と同様の手法で単軸ロボット用ドライバ43により実行される。すなわち、単軸ロボット用ドライバ43は、搬送対象物WKを保持している可動リニアモジュール20bが高さ位置H2まで下降して位置決めされるまで、上下方向Zにおける可動リニアモジュール20bの高さ位置に関する情報、つまり本発明の「第2モジュール位置情報」の取得(ステップS501~S509)と第2モジュール位置情報に基づく可動リニアモジュール20bの下降駆動(ステップS510)とを実行する。これにより、可動リニアモジュール20bが高さ位置H2に到達していない間(ステップS511で「NO」)、上記一連の工程(ステップS501~S510)が繰り返され、可動リニアモジュール20bが徐々に高さ位置H2に近づいてくる。
 一方、可動リニアモジュール20bの高さ位置H2への到着が確認されると、単軸ロボット23による可動リニアモジュール20bの下降駆動が停止され、可動リニアモジュール20bが高さ位置H2に位置決めされる(ステップS512)。これによって、可動リニアモジュール20bは搬送対象物WKを保持したまま乗継位置P2に位置決めされ、下方直線搬送部2Bの最も+X側に位置する固定リニアモジュール20aに連結される。
 図3に戻って搬送処理の説明を続ける。上記のように高さ位置H2への可動リニアモジュール20bの位置決め(ステップS5)が完了すると、次のステップS6でスライダ3の乗継が実行される。すなわち、リニアモジュールドライバ41は固定子のコイルへの通電を制御して搬送対象物WKを保持したスライダ3を可動リニアモジュール20bから固定リニアモジュール20aに移動させる。これにより、搬送対象物WKはスライダ3に保持されたまま垂直移動部2Cから下方直線搬送部2Bに移動する(ステップS6)。
 なお、上方ベース5aおよび下方ベース5bの-X側(図1の左手側)の端面にスケール61、62がそれぞれ取り付けられるとともに、垂直移動部2Dのモジュール保持部材21の+X側の端面に固定されている。そして、垂直移動部2Dを経由した下方直線搬送部2Bから上方直線搬送部2Aへの搬送対象物WKの搬送も上記と同様にして実行される。このように第1実施形態では、搬送対象物WKを、いわゆる縦循環で搬送することが可能となっている。
 以上のように、第1実施形態では、上下方向Zに延設されたスケール61、62がそれぞれ直線搬送部2A、2Bに取り付けられる一方、センサ63が垂直移動部2C、2Dに取り付けられている。つまり、リニアスケール6により、固定リニアモジュール20aに対する可動リニアモジュール20bの上下方向Zにおける位置を示す第1モジュール位置情報および第2モジュール位置情報を正確に取得することが可能となっている。そして、第1モジュール位置情報および第2モジュール位置情報に基づいて可動リニアモジュール20bが高さ位置H1、H2に正確に位置決めされる。また、垂直移動部2Dにおいても垂直移動部2Cと同様に、可動リニアモジュール20bが高さ位置H3、H4(図1)に正確に位置決めされる。その結果、従来技術のような特別な精度調整を行うことなく、固定リニアモジュール20aと可動リニアモジュール20b間でのスライダ3の乗り継ぎを長期的に安定して行うことができる。その結果、搬送対象物WKを良好に搬送することができる。
 また、センサ63により上下方向Zにおける可動リニアモジュール20bの位置を示すモジュール位置情報を取得するために、例えばスケールを上方ベース5aから下方ベース5bに延設させてもよい。しかしながら、スケールの長尺化によりリニアスケール6のコスト上昇を招く。これに対し、第1実施形態では、第1モジュール位置情報を取得するのに好適な短尺のスケール61と、第2モジュール位置情報を取得するのに好適な短尺のスケール62とを設けている。つまり、必要最小限のスケールによりモジュール位置情報を取得しているため、リニアスケール6のコストを効果的に抑制することができる。
 また、第1実施形態では、垂直移動部2Cにおいて上下方向Zのうちリニアスケール6により検出できない非リニアスケール区間NLSについてはエンコーダ情報を基づいて可動リニアモジュール20bを移動させている。しかも、上方合成区間USSおよび下方合成区間DSSでは、エンコーダ情報とリニアスケール情報とを合成してモジュール位置情報を取得している。このため、可動リニアモジュール20bの移動速度が急激に変動するのを防止し、可動リニアモジュール20bを高さ位置H1、H2の間で円滑に移動させることができる。この点については、垂直移動部2Dにおいても同様であり、可動リニアモジュール20bを高さ位置H3、H4(図1)の間で円滑に移動させることができる。その結果、乗継位置P3、P4(図1)における固定リニアモジュール20aと可動リニアモジュール20b間でのスライダ3の乗り継ぎを安定して行うことができる。
 さらに、第1実施形態では、単軸ロボット用ドライバ43は、ホスト42から移動先指令を受けると、エンコーダ情報およびリニアスケール情報から可動リニアモジュール20bが存在している区間を判定し、それに応じた態様でモジュール位置情報を取得するとともに当該モジュール位置情報に基づいて単軸ロボット23を制御している。すなわち、単軸ロボット用ドライバ43は、図1に示すように、区間判別部、位置情報取得部およびロボット制御部を備え、ホスト42から独立して可動リニアモジュール20bの移動および位置決め制御を行う専用ドライバ部として機能している。このため、搬送装置1の構成、特に制御構成が簡素化されるとともに可動リニアモジュール20bの高速な位置決めが可能となる。その結果、搬送装置1のスループットを向上させることができる。
 このように第1実施形態では、上方ベース5aおよび下方ベース5bがそれぞれ本発明の「第1ベース」および「第2ベース」の一例に相当している。また、X方向およびZ方向がそれぞれ本発明の「第1方向」および「第2方向」に相当している。また、垂直移動部2C、2Dが本発明の「モジュール移動部」の一例に相当している。また、センサ63により検出された位置データが本発明の「センサの検出結果」の一例に相当している。また、統合コントローラ4が本発明の「制御部」の一例に相当している。
 図8は本発明に係る搬送装置の第2実施形態における垂直移動部の構成を示す斜視図である。この第2実施形態が第1実施形態(図2)と大きく相違する点は、垂直移動部2C(2D)の構成であり、その他の構成は第1実施形態と同一である。したがって、以下のおいては相違点を中心に説明し、同一構成については同一符号を付して説明を省略する。
 第2実施形態では、モジュール保持部材21が2つの単軸ロボット23と連結されている。より詳しくは、モジュール保持部材21の後側部位が後側の単軸ロボット23Aのナット233と接合されている。また、モジュール保持部材21の前側部位が前側の単軸ロボット23Bのナット(図示省略)と接合されている。また、図8には図示されていないが、単軸ロボット23A、23B毎にリニアスケール(図1、図4A~図4C参照)および単軸ロボット用ドライバ43が設けられている。
 このように構成された垂直移動部2C(2D)では、ホスト42から移動先指令を受けると、単軸ロボット23A、23Bが相互に独立作動しながらモジュール保持部材21の後側部位および前側部位をそれぞれ同一方向Zに昇降させる。これによって、モジュール保持部材21が全体的に昇降される。ここで、例えば同図に示すように、スライダ3上の搬送対象物WKが後側(+Y側)に突出し、その重心位置(図示省略)が後側に偏ると、それに応じて可動リニアモジュール20bが傾くことがある。その状態では乗継動作を円滑に行うことができない。
 そこで、第2実施形態では、前側に設けられるリニアスケールのセンサの検出結果に基づく前側の単軸ロボット23Bによるモジュール保持部材21の移動制御と、後側に設けられるリニアスケールのセンサの検出結果に基づく後側の単軸ロボット23Aによるモジュール保持部材21の移動制御とが独立して実行される。これによって、可動リニアモジュール20bの傾きが補正され、固定リニアモジュール20aと連結される。その結果、可動リニアモジュール20bの傾きが補正され、固定リニアモジュール20aとの乗継を円滑に安定して行うことが可能となる。
 このように第2実施形態では、単軸ロボット23A、23Bがそれぞれ本発明の「第1移動機構」および「第2移動機構」の一例に相当している。また、モジュール保持部材21の後側部位および前側部位がそれぞれ本発明の「第1保持部位」および「第2保持部位」の一例に相当している。
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。そこで、例えば上記第1実施形態および第2実施形態では、いわゆる縦循環タイプの搬送装置1に対して本発明を適用しているが、例えば図9および図10に示すように、いわゆる水平循環タイプの搬送装置1に適用することができる。
 図9は本発明に係る搬送装置の第3実施形態を示す図である。搬送装置1は、一対の直線搬送部2A、2Bと、水平移動部2E、2Fと、複数のスライダ3と、を有している。直線搬送部2Aは架台(図示省略)のベース5c上に設けられている。一方、直線搬送部2Bはベース5cから+Y側に離間して平行配置されたベース5d上において直線搬送部2Aと平行に配置されている。なお、直線搬送部2A、2Bの構成は第1実施形態と同一である。水平移動部2Eは直線搬送部2A、2Bの+X側(同図の右側)の側端部に対応して設けられている。水平移動部2Eは可動リニアモジュール20bを水平方向Yに移動させて直線搬送部2A、2Bの固定リニアモジュール20aと連結させる機能を有している。
 図10は水平移動部の構成を示す図である。水平移動部2Eは可動リニアモジュール20bを下方から保持する断面略L字状のモジュール保持部材21を有している。このモジュール保持部材21は、ベース5c、5dに跨って水平方向Yに延設された一対のガイドレール22、22に沿って水平方向Yに移動自在に設けられている。そして、モジュール保持部材21に対して単軸ロボット23が接続されている。
 この単軸ロボット23は、例えばY方向に平行なボールネジ(図示省略)と、ボールネジを回転駆動するモータ232と、を備えた移動機構である。また、単軸ロボット23のモータ232には、エンコーダ24が取り付けられてモータ232の回転に関連する回転情報を当該単軸ロボット23を制御する専用の単軸ロボット用ドライバ(図示省略)に出力する。単軸ロボット23では、単軸ロボット用ドライバによりモータ232が駆動制御されると、ガイドレール22、22に沿ってモジュール保持部材21および可動リニアモジュール20bが一体的に水平方向Yに移動される。これにより、例えば図9に示すように可動リニアモジュール20bが水平位置L2に位置して乗継位置P2で直線搬送部2Bの固定リニアモジュール20aと一列に並ぶ。また、逆にモータ232を逆回転させると、例えば図10に示すように可動リニアモジュール20bが水平位置L1に位置して乗継位置P1で直線搬送部2Aの固定リニアモジュール20aと一列に並ぶ。これにより乗継位置P1、P2でのスライダ3の乗継が可能となる。なお、水平移動部2Fも水平移動部2Eと同様に構成されており、可動リニアモジュール20bの水平移動により乗継位置P3、P4でのスライダ3の乗継が可能となる。
 このように構成された搬送装置1においては、Y方向に延設されるスケール61、62をそれぞれベース5c、5dに取り付けている。また、水平移動部2Eのモジュール保持部材21にセンサ63が取り付けられている。こうしてリニアスケール6が水平移動部2E側に設けられている。なお、水平移動部2F側においても同様にリニアスケール6が設けられている。
 センサ63は単軸ロボット用ドライバ(図示省略)と電気的に接続されている。そして、単軸ロボット用ドライバは、第1実施形態と同様にセンサ62の検出結果に基づいて固定リニアモジュール20aに対する可動リニアモジュール20bの水平方向Yにおける位置を示すモジュール位置情報を取得する。そして、単軸ロボット用ドライバは当該モジュール位置情報に基づいてモジュール保持部材21の移動を制御して可動リニアモジュール20bを位置L1、L2に位置決めする。その結果、従来技術のような特別な精度調整を行うことなく、固定リニアモジュール20aと可動リニアモジュール20b間でのスライダ3の乗り継ぎを長期的に安定して行うことができる。その結果、搬送対象物WKを良好に搬送することができる。
 このように第3実施形態では、ベース5c、5dがそれぞれ本発明の「第1ベース」および「第2ベース」の一例に相当している。また、Y方向が本発明の「第2方向」に相当している。また、水平移動部2E、2Fが本発明の「モジュール移動部」の一例に相当している。
 また、上記実施形態では、直線搬送部2A、2Bにスケール61、62を取り付けるとともにモジュール移動部(垂直移動部2C、2Dや水平移動部2E、2F)にセンサ63を取り付けている。ただし、スケールとセンサの配設関係については上記実施形態と反転させてもよい。
 また、第1実施形態では、上方合成区間USSおよび下方合成区間DSSにおいて常時エンコーダ情報とリニアスケール情報とを合成してモジュール位置情報を取得しているが、リニアスケール6の検出特性を考慮してもよい。この検出特性とは、合成区間USS、DSSであっても非リニアスケール区間に近い領域、つまりスケール61、62に対してセンサ63が対向し始める領域では、センサ63による検出が不安定であるという特性である。この検出特性を有するリニアスケール6では、センサ63から正しい位置データが出力されないことがある。そこで、位置データがセンサ63から正常に出力されているか否かを判定した上でリニアスケール情報(位置データ)の利用を決定してもよい。つまり、位置データの出力が異常であると判定する間は、区間にかかわらずエンコーダ情報のみによりモジュール位置情報を取得するように構成してもよい(第4実施形態)。
 また、上記実施形態では、2つの直線搬送部2A、2Bを有する搬送装置1に対して本発明を適用しているが、3つ以上の直線搬送部を有する搬送装置に対しても本発明を適用することができる。
 さらに、上記実施形態では、各直線搬送部2A、2Bを構成する固定リニアモジュール20aの個数は「6」であったが、当該個数はこれに限定されるものではなく、任意である。
 本発明は、固定リニアモジュールに対して可動リニアモジュールを位置決めした後で固定リニアモジュールおよび可動リニアモジュールの間でスライダを乗り移らせて搬送対象物を搬送する搬送技術全般に適用することができる。
 1…搬送装置
 2A…上方直線搬送部
 2B…下方直線搬送部
 2C,2D…垂直移動部(モジュール移動部)
 2E,2F…水平移動部(モジュール移動部)
 3…スライダ
 4…統合コントローラ(制御部)
 5a…上方ベース(第1ベース)
 5b…下方ベース(第2ベース)
 5c…ベース(第1ベース)
 5d…ベース(第2ベース)
 6…リニアスケール
 20a…固定リニアモジュール
 20b…可動リニアモジュール
 21…モジュール保持部材
 23…単軸ロボット(移動機構)
 23A…単軸ロボット(第1移動機構)
 23B…単軸ロボット(第2移動機構)
 24…エンコーダ
 43…単軸ロボット用ドライバ(専用ドライバ部)
 61…上方スケール
 62…下方スケール
 63…センサ
 DFS…下方精密検出区間
 DSS…下方合成区間
 H1…高さ位置(第1連結位置)
 H2…高さ位置(第2連結位置
 L1…水平位置(第1連結位置)
 L1…水平位置(第1連結位置)
 NLS…非リニアスケール区間
 P1,P2,P3,P4…乗継位置
 ULS…上方精密検出区間
 USS…上方合成区間
 WK…搬送対象物
 X…第1方向
 Y…水平方向(第2方向)
 Z…上下方向(第2方向)

Claims (9)

  1.  搬送対象物を保持するスライダを移動させて前記搬送対象物を搬送する搬送装置であって、
     第1ベース上に固定される第1固定リニアモジュールにより前記スライダを第1方向に移動させる第1直線搬送部と、
     可動リニアモジュールを保持するモジュール保持部材を前記第1方向と異なる第2方向に移動させ、前記可動リニアモジュールを前記第1固定リニアモジュールと連結される第1連結位置に位置決めして前記第1固定リニアモジュールとの間で前記スライダの乗り継ぎを可能とするモジュール移動部と、
     前記第2方向に延設されるスケールと、前記スケールを検出するセンサとを有し、前記スケールおよび前記センサのうちの一方を前記第1直線搬送部に取り付け、他方を前記モジュール移動部に取り付けたリニアスケールと、
     前記センサの検出結果に基づいて前記第1固定リニアモジュールに対する前記可動リニアモジュールの前記第2方向における位置を示す第1モジュール位置情報を取得し、前記第1モジュール位置情報に基づいて前記モジュール保持部材の移動を制御する制御部と、を備えることを特徴とする搬送装置。
  2.  請求項1に記載の搬送装置であって、
     前記モジュール移動部は、前記モジュール保持部材を前記第2方向に移動させる移動機構と、前記第2方向における前記モジュール保持部材の位置を示すエンコーダ情報を取得するエンコーダとを有し、
     前記制御部は、前記センサの検出結果と前記エンコーダ情報とに基づいて前記第1モジュール位置情報を取得し、前記第1モジュール位置情報に基づいて前記可動リニアモジュールを前記第1連結位置に位置決めする搬送装置。
  3.  請求項2に記載の搬送装置であって、
     前記第2方向において前記センサが前記スケールを検出する区間をリニアスケール区間とし、前記センサが前記スケールを検出しない区間を非リニアスケール区間としたとき、
     前記制御部は、
     前記リニアスケール区間では前記センサの検出結果に基づいて前記第1モジュール位置情報を取得し、
     前記非リニアスケール区間では前記エンコーダ情報に基づいて前記第1モジュール位置情報を取得する搬送装置。
  4.  請求項2に記載の搬送装置であって、
     前記第2方向において前記センサが前記スケールを検出する区間をリニアスケール区間とし、前記センサが前記スケールを検出しない区間を非リニアスケール区間とし、前記リニアスケール区間のうち前記非リニアスケール区間に隣接する一部区間を合成区間としたとき、
     前記制御部は、
     前記リニアスケール区間のうち前記合成区間を除く精密検出区間では前記センサの検出結果に基づいて前記第1モジュール位置情報を取得し、
     前記合成区間では前記センサの検出結果と前記エンコーダ情報とに基づいて前記第1モジュール位置情報を取得し、
     前記非リニアスケール区間では前記エンコーダ情報に基づいて前記第1モジュール位置情報を取得する搬送装置。
  5.  請求項4に記載の搬送装置であって、
     前記制御部は、前記合成区間では、前記センサの検出結果に応じた重み付け係数k(ただし、0≦k≦1)を求め、次式
     (前記第1モジュール位置情報)=(前記センサの検出結果)*k+(前記エンコーダ情報)*(1-k)
    に基づいて前記第1モジュール位置情報を求める搬送装置。
  6.  請求項1ないし5のいずれか一項に記載の搬送装置であって、
     前記第2方向において前記第1ベースから離れて設けられた第2ベース上に固定される第2固定リニアモジュールにより前記スライダを前記第1方向に移動させる第2直線搬送部をさらに備え、
     前記モジュール移動部は、前記可動リニアモジュールを前記第2固定リニアモジュールと連結される第2連結位置に位置決めして前記第2固定リニアモジュールとの間で前記スライダの乗り継ぎを可能とし、
     前記制御部は、
     前記センサの検出結果に基づいて前記第2固定リニアモジュールに対する前記可動リニアモジュールの前記第2方向における位置を示す第2モジュール位置情報を取得し、
     前記第1モジュール位置情報および前記第2モジュール位置情報に基づいて前記可動リニアモジュールを前記第1連結位置と前記第2連結位置との間を移動させる搬送装置。
  7.  請求項1に記載の搬送装置であって、
     前記モジュール移動部は、前記モジュール保持部材の第1保持部位に連結されて前記モジュール保持部材を前記第2方向に移動させる第1移動機構と、前記モジュール保持部材の前記第1保持部位と異なる第2保持部位に連結されて前記モジュール保持部材を前記第2方向に移動させる第2移動機構と、を有し、
     前記第1移動機構および前記第2移動機構の各々に対応して前記リニアスケールが設けられる搬送装置。
  8.  請求項1ないし7のいずれか一項に記載の搬送装置であって、
     前記制御部は、
     前記可動リニアモジュールの移動先を指示するホストと、
     前記移動先を受け取ると前記ホストから独立して前記センサの検出結果に基づいて前記モジュール保持部材の移動を制御して前記可動リニアモジュールを前記移動先に位置決めする専用ドライバ部と、
    を有する搬送装置。
  9.  ベース上に固定される固定リニアモジュールによりスライダを第1方向に移動させる直線搬送部と、可動リニアモジュールを保持するモジュール保持部材を前記第1方向と異なる第2方向に移動させるモジュール移動部との間で、搬送対象物を保持する前記スライダを移動させて前記搬送対象物を搬送する搬送方法であって、
     前記直線搬送部および前記モジュール移動部のうちの一方にスケールが前記第2方向に延設して取り付けられ、他方に前記スケールを検出するセンサが取り付けられ、
     前記センサの検出結果に基づいて前記固定リニアモジュールに対する前記可動リニアモジュールの前記第2方向における位置を示すモジュール位置情報を取得する工程と、
     前記モジュール位置情報に基づいて前記モジュール保持部材を前記第2方向に移動させて前記可動リニアモジュールを前記固定リニアモジュールと連結される連結位置に位置決めして前記固定リニアモジュールとの間で前記スライダの乗り継ぎを可能とする工程と、
     互いに連結された前記固定リニアモジュールと前記可動リニアモジュールとの間で前記スライダを前記第1方向に移動させる工程と、
    を備えることを特徴とする搬送方法。
PCT/JP2020/019376 2020-05-15 2020-05-15 搬送装置および搬送方法 WO2021229781A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080099930.0A CN115461971A (zh) 2020-05-15 2020-05-15 输送装置及输送方法
JP2022522462A JPWO2021229781A1 (ja) 2020-05-15 2020-05-15
DE112020007209.6T DE112020007209T5 (de) 2020-05-15 2020-05-15 Transfervorrichtung und Transferverfahren
US17/759,090 US12034349B2 (en) 2020-05-15 2020-05-15 Transfer apparatus and transfer method
PCT/JP2020/019376 WO2021229781A1 (ja) 2020-05-15 2020-05-15 搬送装置および搬送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019376 WO2021229781A1 (ja) 2020-05-15 2020-05-15 搬送装置および搬送方法

Publications (1)

Publication Number Publication Date
WO2021229781A1 true WO2021229781A1 (ja) 2021-11-18

Family

ID=78525160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019376 WO2021229781A1 (ja) 2020-05-15 2020-05-15 搬送装置および搬送方法

Country Status (5)

Country Link
US (1) US12034349B2 (ja)
JP (1) JPWO2021229781A1 (ja)
CN (1) CN115461971A (ja)
DE (1) DE112020007209T5 (ja)
WO (1) WO2021229781A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702300B2 (en) * 2019-04-23 2023-07-18 Yamaha Hatsudoki Kabushiki Kaisha Linear conveyor system, a control method for a linear conveyor system, a control program for a linear conveyor system and a recording medium
CN116553122A (zh) * 2023-07-06 2023-08-08 上海果栗自动化科技有限公司 物流输送线及其控制方法
WO2023162165A1 (ja) * 2022-02-25 2023-08-31 ヤマハ発動機株式会社 搬送路切換装置、搬送システムおよび搬送路切換方法
WO2023162167A1 (ja) * 2022-02-25 2023-08-31 ヤマハ発動機株式会社 搬送路切換装置、搬送システムおよび搬送路切換方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11945665B1 (en) * 2022-08-03 2024-04-02 Amazon Technologies, Inc. Automated lateral transfer and elevation of sortation shuttles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141141A (ja) * 2004-11-12 2006-06-01 Konica Minolta Medical & Graphic Inc 搬送装置、画像読取装置及び画像形成装置
US20180095112A1 (en) * 2015-03-31 2018-04-05 Siemens Aktiengesellschaft Current-Measuring Device And Method For Determining An Electric Current
JP2019103225A (ja) * 2017-11-30 2019-06-24 キヤノン株式会社 搬送装置、加工システム、および物品の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7731330B2 (en) * 2005-09-26 2010-06-08 Seiko Epson Corporation Position detecting device, liquid ejecting apparatus and method of detecting smear of scale
JP5443718B2 (ja) 2008-08-28 2014-03-19 Thk株式会社 リニアモータシステム及び制御装置
CN109643948B (zh) 2016-09-21 2020-11-10 雅马哈发动机株式会社 线性传送装置
JP7023649B6 (ja) 2017-09-25 2022-04-18 キヤノン株式会社 搬送システム及び加工システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141141A (ja) * 2004-11-12 2006-06-01 Konica Minolta Medical & Graphic Inc 搬送装置、画像読取装置及び画像形成装置
US20180095112A1 (en) * 2015-03-31 2018-04-05 Siemens Aktiengesellschaft Current-Measuring Device And Method For Determining An Electric Current
JP2019103225A (ja) * 2017-11-30 2019-06-24 キヤノン株式会社 搬送装置、加工システム、および物品の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11702300B2 (en) * 2019-04-23 2023-07-18 Yamaha Hatsudoki Kabushiki Kaisha Linear conveyor system, a control method for a linear conveyor system, a control program for a linear conveyor system and a recording medium
WO2023162165A1 (ja) * 2022-02-25 2023-08-31 ヤマハ発動機株式会社 搬送路切換装置、搬送システムおよび搬送路切換方法
WO2023162167A1 (ja) * 2022-02-25 2023-08-31 ヤマハ発動機株式会社 搬送路切換装置、搬送システムおよび搬送路切換方法
JP7543598B2 (ja) 2022-02-25 2024-09-02 ヤマハ発動機株式会社 搬送路切換装置、搬送システムおよび搬送路切換方法
JP7543597B2 (ja) 2022-02-25 2024-09-02 ヤマハ発動機株式会社 搬送路切換装置、搬送システムおよび搬送路切換方法
DE112022006380T5 (de) 2022-02-25 2024-10-24 Yamaha Hatsudoki Kabushiki Kaisha Vorrichtung zum wechseln des förderwegs, fördersystem, sowie verfahren zum wechseln des förderwegs
DE112022006388T5 (de) 2022-02-25 2024-10-24 Yamaha Hatsudoki Kabushiki Kaisha Vorrichtung zum wechseln eines förderwegs, fördersystem, sowie verfahren zum wechseln des förderwegs
CN116553122A (zh) * 2023-07-06 2023-08-08 上海果栗自动化科技有限公司 物流输送线及其控制方法
CN116553122B (zh) * 2023-07-06 2023-11-17 果栗智造(上海)技术股份有限公司 物流输送线及其控制方法

Also Published As

Publication number Publication date
US12034349B2 (en) 2024-07-09
US20230040955A1 (en) 2023-02-09
DE112020007209T5 (de) 2023-08-10
JPWO2021229781A1 (ja) 2021-11-18
CN115461971A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2021229781A1 (ja) 搬送装置および搬送方法
TWI538381B (zh) Discrete configuration linear motor system
US9579763B2 (en) Machine tool
US20100264755A1 (en) Dual-axis planar motor providing force constant and thermal stability
JP2010162635A (ja) 自走式ロボットの位置および姿勢の補正方法
US7292002B2 (en) Control method for twin synchronization
TWI516012B (zh) 馬達控制裝置、馬達控制方法及控制程式
JP3235708B2 (ja) リニアモータ利用の搬送設備
CN109465817B (zh) 机器人系统、机器人控制装置和被加工物的制造方法
JP4402078B2 (ja) ステージ装置
JP2019103225A (ja) 搬送装置、加工システム、および物品の製造方法
JP5566042B2 (ja) 移動棚設備
JP7083964B2 (ja) リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体
US6246203B1 (en) Direct skew control and interlock of gantry
JP7286803B2 (ja) 搬送装置
JP7083963B2 (ja) リニアコンベアシステム、リニアコンベアシステムの制御方法、リニアコンベアシステムの制御プログラムおよび記録媒体
JP2516825B2 (ja) 二次元相対位置決め方法
CN114450130A (zh) 高度校正系统
TW201709662A (zh) 移動體、及移動體系統
JP2006192558A (ja) テーブル装置及びその制御方法
JP2005259738A (ja) 位置決め装置
JP2008059016A (ja) 位置決め制御装置および位置決め制御方法
JP4291313B2 (ja) ヘッド作動制御装置及び制御方法及びステージ装置
CN114521164A (zh) 高度校正系统
JP5241346B2 (ja) 電子部品実装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935161

Country of ref document: EP

Kind code of ref document: A1