WO2021229682A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2021229682A1
WO2021229682A1 PCT/JP2020/018962 JP2020018962W WO2021229682A1 WO 2021229682 A1 WO2021229682 A1 WO 2021229682A1 JP 2020018962 W JP2020018962 W JP 2020018962W WO 2021229682 A1 WO2021229682 A1 WO 2021229682A1
Authority
WO
WIPO (PCT)
Prior art keywords
φos
scroll
winding start
fixed
stage
Prior art date
Application number
PCT/JP2020/018962
Other languages
English (en)
French (fr)
Inventor
祐司 ▲高▼村
友寿 松井
浩平 達脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022522135A priority Critical patent/JPWO2021229682A1/ja
Priority to PCT/JP2020/018962 priority patent/WO2021229682A1/ja
Priority to GB2214508.0A priority patent/GB2609324A/en
Priority to US17/910,426 priority patent/US20230132581A1/en
Publication of WO2021229682A1 publication Critical patent/WO2021229682A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • This disclosure relates to a scroll compressor that compresses working gas.
  • Patent Document 1 discloses a configuration in which the winding start portion, which is the central portion of the spiral portion of the spiral portion, has a stepped shape in which the wall thickness decreases from the root side to the tip side in this type of scroll compressor. ing.
  • Patent Document 1 by making the winding start portion stepped, the innermost compression chamber of the plurality of compression chambers and the second compression chamber radially outer of the innermost compression chamber are gradually communicated with each other for winding. The stress generated at the base of the beginning is reduced. However, no specific study has been made on which range of the winding start portion should be stepped, and it is unclear whether sufficient stress can be reduced.
  • Patent Document 1 does not consider this point at all.
  • the present disclosure has been made to solve at least one of the above-mentioned problems, and an object of the present disclosure is to provide a scroll compressor capable of reducing the stress generated at the root of the winding start portion. do.
  • a plurality of compression chambers are formed by combining the swinging spiral portion of the swinging scroll and the fixed spiral portion of the fixed scroll, and the swinging scroll driven by the spindle is used with respect to the fixed scroll.
  • It is a scroll compressor that compresses the working gas in a plurality of compression chambers by performing a revolving motion.
  • Each has a winding start portion having a bulb shape connected to the extension start point by a plurality of arcs, and at least one winding start portion has n (n ⁇ 2) bulb shapes in the axial direction of the main axis.
  • the extension start point angle of the outward surface involute curve at each step of the winding start portion formed in a stepped shape of n stacked steps is ⁇ os (1) in order from the tip side to the root side.
  • ⁇ os (2), ⁇ os (3), ..., ⁇ os (n) ⁇ os (1)> ⁇ os (2)> ⁇ os (3) >> ...> ⁇ os (n) and 0. It satisfies the relationship of 3 ⁇ ⁇ os (1) ⁇ os (n) ⁇ 0.7 ⁇ .
  • a plurality of compression chambers are formed by combining the swinging spiral portion of the swinging scroll and the fixed spiral portion of the fixed scroll, and the swinging scroll driven by the spindle is used with respect to the fixed scroll.
  • It is a scroll compressor that compresses the working gas in a plurality of compression chambers by performing a revolving motion.
  • Each has a winding start portion having a bulb shape connected to the extension start point by a plurality of arcs, and at least one winding start portion has n (n ⁇ 2) bulb shapes in the axial direction of the main axis.
  • each step at the start of winding is from the tip side to the root side.
  • the nth stage was set toward, and the swinging spiral portion and the fixed spiral portion were separated from each other in the nth stage of the winding start portion, so that there was no communication before the separation.
  • the communication between the two compression chambers is expressed as the communication of the nth stage, the line while the swing scroll revolves in the range from the crank angle at which the first stage communicates to the crank angle at which the nth stage communicates.
  • a relief portion is formed on the outward surface of the swinging spiral portion or the fixed spiral portion so that at least the outermost contact point is non-contact.
  • the scroll compressor according to the present disclosure by making the winding start portion stepped, the innermost compression chamber among the plurality of compression chambers and the second compression chamber radially outer of the innermost compression chamber are staged. It is possible to reduce the stress generated at the base of the winding start part by communicating with each other. Then, by setting 0.3 ⁇ ⁇ os (1) ⁇ os (n) ⁇ 0.7 ⁇ , a sufficient strength improving effect of the winding start portion can be obtained.
  • the winding start portion of the spiral portion on the material side having a large coefficient of linear expansion is the innermost compression chamber and the innermost compression chamber, which are two compression chambers that were not communicated before separation. 2 Until the pressure equalization with the compression chamber is completed, it is supported by the side surface of the spiral portion of the scroll made of the material on the side having the smaller coefficient of linear expansion. Therefore, it is possible to suppress the generation of a large stress at the root of the winding start portion of the spiral portion made of the material on the side having the larger coefficient of linear expansion.
  • the gap between the spiral portion on the material side having a large linear expansion coefficient during operation can be made smaller than that in the case where the relief portion is not provided. , It is possible to suppress the generation of large stress at the base of the winding start part.
  • FIG. 3 is an enlarged perspective view showing a winding start portion of a fixed scroll of the scroll compressor according to the first embodiment.
  • FIG. 3 is an enlarged perspective view showing a winding start portion of a swing scroll of the scroll compressor according to the first embodiment.
  • FIG. 3 is a plan view showing a further enlarged view of a winding start portion of a fixed scroll of the scroll compressor according to the first embodiment.
  • FIG. 3 is an enlarged plan view showing a winding start portion of a fixed scroll and a swing scroll of the scroll compressor according to the first embodiment. It is explanatory drawing of the pressure acting on the winding start part at the start of pressure equalization in a comparative example. It is explanatory drawing of the pressure acting on the winding start part at the start of pressure equalization in the scroll compressor which concerns on Embodiment 1. FIG. It is explanatory drawing of the pressure acting on the winding start part after the pressure equalization completion in the scroll compressor which concerns on Embodiment 1. FIG. It is a figure which shows the change of the stress generated at the root of the winding start part with the change of the crank angle in the scroll compressor which concerns on Embodiment 1. FIG. FIG. FIG.
  • FIG. 5 is an enlarged view of a winding start portion when ⁇ os (1) ⁇ os (n) is 0.2 ⁇ in the scroll compressor according to the first embodiment.
  • FIG. 5 is an enlarged view of a winding start portion when ⁇ os (1) ⁇ os (n) is 0.5 ⁇ in the scroll compressor according to the first embodiment.
  • It is a comparative example, and is a figure which shows the relationship between the direction of action of a load with respect to the winding start part in the conventional structure, and the wall thickness of the winding start part which receives the load.
  • ⁇ os (1) ⁇ os (n) is 0. It is a figure which shows the case of .2 ⁇ . In the figure showing the relationship between the acting direction of the load on the winding start portion and the wall thickness of the winding start portion that receives the load in the scroll compressor according to the first embodiment, ⁇ os (1) ⁇ os (n) is 0. It is a figure which shows the case of .5 ⁇ .
  • FIG. 5 is an enlarged schematic view of a vertical cross section around a winding start portion in the scroll compressor according to the first embodiment. It is a cross-sectional schematic diagram of the compression part of the scroll compressor which concerns on Embodiment 2. FIG. It is a perspective view which shows the relief part of the scroll compressor which concerns on Embodiment 2.
  • FIG. 1 It is a figure which shows the gap dimension ⁇ s of each gap at the time of operation in the compression part of the scroll compressor which concerns on Embodiment 2.
  • FIG. It is a cross-sectional schematic diagram of the compression part of the scroll compressor which concerns on Embodiment 3.
  • FIG. 1 is a figure which shows the gap dimension ⁇ s of each gap at the time of operation in the compression part of the scroll compressor which concerns on Embodiment 2.
  • FIG. It is a cross-sectional schematic diagram of the compression part of the scroll compressor which concerns on Embodiment 3.
  • FIG. 1 is a schematic vertical cross-sectional view of the scroll compressor according to the first embodiment.
  • the scroll compressor 1 sucks in a working gas such as a refrigerant that circulates in the refrigeration cycle, compresses it, and discharges it in a high temperature and high pressure state.
  • the scroll compressor 1 has a compression unit 5, a motor 4 that drives the compression unit 5 via a spindle 7, and other components, and these are housed inside a shell 2 that constitutes an outer shell. have.
  • the compression unit 5 is arranged on the upper side and the motor 4 is arranged on the lower side in the shell 2.
  • Below the shell 2 is an oil sump 3a for storing lubricating oil.
  • the frame 6 and the subframe 20 are arranged on the shell 2 so as to face each other with the motor 4 interposed therebetween.
  • the frame 6 is arranged on the upper side of the motor 4 and is located between the motor 4 and the compression unit 5, and the subframe 20 is located on the lower side of the motor 4.
  • the frame 6 and the subframe 20 are fixed to the inner peripheral surface of the shell 2 by shrink fitting, welding, or the like.
  • a main bearing 8a is provided in the central portion of the frame 6, and an auxiliary bearing 8b composed of, for example, a ball bearing is press-fitted and fixed in the central portion of the subframe 20.
  • the spindle 7 is rotatably supported by the main bearing 8a and the auxiliary bearing 8b.
  • the subframe 20 is equipped with a positive displacement oil pump 3, and a pump shaft that transmits rotational force to the oil pump 3 is integrally molded with the main shaft 7.
  • An oil hole 7b penetrating from the lower end of the pump shaft to the upper end of the main shaft 7 is provided in the center of the spindle 7, and the oil hole 7b communicates with the oil pump 3 on the lower end side.
  • the shell 2 is composed of three parts, an upper shell 2a, a middle shell 2b, and a lower shell 2c.
  • the shell 2 is provided with a suction pipe 11 for sucking the refrigerant and a discharge pipe 12 for discharging the refrigerant.
  • the refrigerant sucked into the shell 2 from the suction pipe 11 is sucked into the compression chamber 5a described later of the compression unit 5 via the suction port 6a formed in the frame 6.
  • the compression unit 5 has a function of compressing the refrigerant sucked from the suction pipe 11 and discharging the compressed refrigerant to the high-pressure unit formed above the shell 2.
  • the compression unit 5 includes a fixed scroll 30, a swing scroll 40, an old dam ring 15 for preventing the swing scroll 40 from rotating during an eccentric turning motion (swing motion) of the swing scroll 40, and the like.
  • the fixed scroll 30 is arranged on the upper side and fixed to the shell 2 via the frame 6, and the swing scroll 40 is arranged on the lower side and is swingably supported by the spindle 7.
  • the fixed scroll 30 includes a fixed base plate portion 30a and a spiral-shaped fixed spiral portion 30b formed on one surface of the fixed base plate portion 30a.
  • the swing scroll 40 includes a swing base plate portion 40a and a spiral swing spiral portion 40b formed on one surface of the swing base plate portion 40a.
  • the fixed spiral portion 30b and the rocking spiral portion 40b are formed, for example, following an involute curve.
  • the fixed scroll 30 and the swing scroll 40 are arranged in the shell 2 in a state where the fixed spiral portion 30b and the swing spiral portion 40b are combined so as to mesh with each other.
  • a plurality of compression chambers 5a whose volume decreases from the outer side to the inner side in the radial direction are formed as the spindle 7 rotates.
  • a discharge port 30f for discharging a compressed and high-pressure refrigerant is formed in the central portion of the fixed scroll 30.
  • a discharge chamber 13 is provided on the outlet side of the discharge port 30f.
  • a discharge valve 13a having a reed valve structure is provided at the discharge port of the discharge chamber 13.
  • a muffler 14 that suppresses the pulsation of the working gas discharged from the discharge chamber 13 is provided.
  • a swing bearing 40f is formed in the center of the surface of the swing base plate portion 40a of the swing scroll 40 opposite to the surface on which the swing spiral portion 40b is formed.
  • the inner diameter portion of the oscillating bearing 40f rotatably supports the slider 9 described later.
  • the central axis of the oscillating bearing 40f is parallel to the central axis of the main shaft 7.
  • An old dam ring 15 is provided between the swing scroll 40 and the frame 6.
  • the old dam ring 15 has a ring portion, a pair of old dam keys formed on the upper surface of the ring portion, and a pair of old dam keys formed on the lower surface of the ring portion.
  • the old dam key on the upper surface is inserted into a key groove formed in the swing scroll 40, and is slidable in one direction.
  • the old dam key on the lower surface is inserted into a key groove formed in the frame 6 and is slidable in a direction intersecting the above one direction. With this configuration, the swing scroll 40 revolves without rotating.
  • the motor 4 has a stator 4b fixed to the inner circumference of the shell 2 and a rotor 4a arranged on the inner circumference side of the stator 4b.
  • the rotor 4a is fixed to the spindle 7 by shrink fitting or the like. Power is supplied to the stator 4b via the power supply terminal 21 provided on the shell 2.
  • the rotor 4a rotates integrally with the spindle 7 when the stator 4b is energized.
  • An eccentric shaft portion 7a is provided at the upper end portion of the spindle 7.
  • the eccentric shaft portion 7a is arranged eccentrically in a predetermined eccentric direction with respect to the central axis of the main shaft 7.
  • the eccentric shaft portion 7a is slidably fitted with the slider 9 described later.
  • the slider 9 constitutes a variable crank mechanism in which the orbital radius of the swing scroll 40 is variable along the side surface shape of the fixed spiral portion 30b of the fixed scroll 30.
  • the side surface of the fixed spiral portion 30b and the side surface of the rocking spiral portion 40b come into contact with each other during the revolution operation of the swing scroll 40.
  • the overall operation of the scroll compressor 1 will be briefly explained.
  • the stator 4b When the stator 4b is energized, the rotor 4a rotates.
  • the rotational driving force of the rotor 4a is transmitted to the swing scroll 40 via the spindle 7, the eccentric shaft portion 7a, and the slider 9.
  • the swing scroll 40 to which the rotational driving force is transmitted is restricted from rotating by the old dam ring 15, and swings with respect to the fixed scroll 30.
  • the low-pressure gas refrigerant sucked into the shell 2 from the suction pipe 11 is taken into the compression chamber 5a through the suction port 6a formed in the frame 6 and is taken into the compression chamber 5a. Compressed within.
  • the compressed high-pressure gas refrigerant is discharged into the discharge chamber 13 via the discharge port 30f.
  • the high-pressure gas refrigerant in the discharge chamber 13 pushes up the discharge valve 13a and is discharged into the space in the muffler 14, and then is discharged into the shell 2 from the discharge hole of the muffler 14.
  • the discharged refrigerant is discharged from the discharge pipe 12 to the outside of the scroll compressor 1.
  • FIG. 2 is a spiral operation diagram showing a compression process of the scroll compressor according to the first embodiment.
  • the compression process will be described with reference to FIG. The details of the shape of the central portion of the spiral, which is the starting portion of the winding, will be described later.
  • the innermost compression chamber 5a is the innermost compression chamber 5a1
  • the outermost compression chamber 5a is the outermost compression chamber 5a3, the innermost compression chamber 5a1 and the outermost compression chamber 5a3.
  • the compression chamber 5a between them is referred to as a second compression chamber 5a2.
  • FIG. 2A shows a state when the swing scroll 40 combined with the fixed scroll 30 is in the position where the suction is completed forming the outermost compression chamber 5a3.
  • B shows a state when the swing scroll 40 is in a position where the swing scroll 40 revolves 90 deg from the state when the suction is completed in (a).
  • C shows a state when the swing scroll 40 is in a position where the swing scroll 40 revolves 180 deg from the state when the suction is completed in (a).
  • D shows the state when the swing scroll 40 is in the position where the swing scroll 40 revolves 270 deg from the state when the suction is completed in (a).
  • the swing scroll 40 performs a swing motion in the order of (a) ⁇ (b) ⁇ (c) ⁇ (d) ⁇ (a), that is, a revolution motion without rotation.
  • the volume of each compression chamber 5a is reduced from the outermost compression chamber 5a3 to the innermost compression chamber 5a1 via the second compression chamber 5a2.
  • the sucked refrigerant is compressed and sequentially sent to the center, and is discharged from the innermost compression chamber 5a1 to the outside of the scroll compressor 1 via the discharge port 30f provided in the fixed scroll 30.
  • the winding start portion which is the spiral center portion of the spiral portion of the fixed scroll 30 and the swing scroll 40, connects the extension start points of each involute curve constituting the inward surface and the outward surface with two arcs of a small circle and a great circle. It has a so-called bulb shape.
  • the winding start portion of the first embodiment is formed in a stepped shape in which a plurality of bulb shapes are overlapped in the axial direction of the main shaft 7.
  • the shape of such a winding start portion may be referred to as a staircase bulb shape.
  • FIG. 3 is a schematic cross-sectional view of the compressor mechanism portion of the scroll compressor according to the first embodiment.
  • FIG. 4 is an enlarged perspective view showing the winding start portion of the fixed scroll of the scroll compressor according to the first embodiment.
  • FIG. 5 is an enlarged perspective view showing the winding start portion of the oscillating scroll of the scroll compressor according to the first embodiment.
  • the winding start portion 30e of the fixed spiral portion 30b of the fixed scroll 30 has a three-stage stacking shape of, for example, the first stage 30e1, the second stage 30e2, and the third stage 30e3 from the tip side. Is formed in.
  • the winding start portion 30e of the fixed spiral portion 30b of the fixed scroll 30 is arranged so that the position of the small arc portion gradually shifts toward the winding start end direction from the tip side (upper part in the figure) to the root side (lower part in the figure). Has been done.
  • an example of stacking three stages is shown, but the number of stages may be n stages (n ⁇ 2). That is, the winding start portion 30e of the fixed spiral portion 30b may be formed in an n-step stacking step shape in which n (n ⁇ 2) bulb shapes are stacked in the axial direction.
  • the small arc portion on the most tip side is the small arc portion 301
  • the small arc portion closer to the root is the small arc portion 301a, which is the most root side (third stage).
  • the small arc portion is the small arc portion 301b.
  • the small arc portion 301a of the second stage is arranged so as to be offset in the winding start end direction from the small arc portion 301 of the first stage.
  • the small arc portion 301b in the third stage is arranged so as to be further displaced in the winding start end direction than the small arc portion 301a in the second stage.
  • the great circle radius of the great circle radius of the winding start portion 30e of the fixed spiral portion 30b is the same in all of the first stage, the second stage, and the third stage, and the great circle portion of each stage is the common great circle portion 302. It has become.
  • the fixed scroll 30 ends the contact with the inward surface of the spiral portion on the swing scroll 40 side at different timings in the order of the first stage, the second stage, and the third stage. ..
  • the winding start portion 40e of the swing spiral portion 40b of the swing scroll 40 is, for example, from the tip side, for example, the first stage 40e1 and the second stage 40e2, as in the fixed scroll 30.
  • the third step 40e3 is formed in a three-tiered staircase shape.
  • the position of the small arc portion gradually shifts in the winding start direction from the tip side (upper part in the figure) to the root side (lower part in the figure).
  • the number of stages may be n stages (n ⁇ 2). That is, the winding start portion 40e of the swing spiral portion 40b may be formed in an n-step stacking step shape in which n (n ⁇ 2) bulb shapes are stacked in the axial direction.
  • the small arc portion on the most tip side (first stage) is the small arc portion 401
  • the small arc portion closer to the root (second stage) is the small arc portion 401a, which is the most root side (third stage).
  • the small arc portion is the small arc portion 401b.
  • the small arc portion 401a of the second stage is arranged so as to be offset in the winding start end direction from the small arc portion 401 of the first stage.
  • the small arc portion 401b of the third stage is arranged so as to be further displaced in the winding start end direction than the small arc portion 401a of the second stage.
  • the great circle radius of the winding start portion 40e of the swing spiral portion 40b of the swing scroll 40 is the largest.
  • the great circle radius of the great circle portion 402a of the second stage is smaller than that of the great circle portion 402.
  • the great circle radius of the great circle portion 402b of the third stage is further smaller than that of the great circle portion 402a.
  • the extension start point angle of the involute introvert curve in the swing scroll 40 is the same in all of the first stage, the second stage, and the third stage. That is, the great circle radius in each stage of the swing scroll 40 changes according to the change in the small circle radius.
  • the swing scroll 40 ends the contact with the inward surface of the spiral on the fixed scroll 30 side at different timings in the order of the first stage, the second stage, and the third stage. Further, when the stages of the winding start portion 30e of the fixed spiral portion 30b and the stages of the winding start portion 40e of the swinging spiral portion 40b are not distinguished, no reference numerals are given and the first stage and the second stage are simply used. , There is a third stage.
  • the small circle radius and the great circle radius are the same in all of the first, second, and third stages, but on the swing scroll 40 side, the small circle radius and the great circle radius are the same.
  • the small circle radius of the small arc portion 401 of the first stage is the smallest
  • the small circle radius of the small arc portion 401a of the second stage is larger than that of the small arc portion 401
  • the small arc portion of the third stage is even larger than that of the small arc portion 401a.
  • the great circle radius of the great circle portion 402 of the first stage is the largest, the great circle radius of the great circle portion 402a of the second stage is smaller than that of the large arc portion 402, and the third stage.
  • the great circle radius of the great arc portion 402b is even smaller than that of the great arc portion 402a.
  • the extension start point angle of the involute surface involute curve in the swing scroll 40 is the same in all of the first stage, the second stage, and the third stage. That is, the great circle radius in each stage of the swing scroll 40 changes according to the change in the small circle radius.
  • FIG. 6 is a plan view showing a further enlarged view of the winding start portion of the fixed scroll of the scroll compressor according to the first embodiment.
  • the extension angle (extension start point angle) of the connection point (extension start point 303) between the small arc portion 301 of the first stage and the outward involute curve is ⁇ os (1).
  • ⁇ os (2) be the extension angle (extension start point angle) of the connection point (extension start point 303a) between the small arc portion 301a of the second stage and the outward surface involute curve.
  • ⁇ os (3) be the extension angle (extension start point angle) of the connection point (extension start point 303b) between the small arc portion 301b of the third stage and the outward plane involute curve.
  • the extension start point angle of each stage is ⁇ os (1)> ⁇ os (2)> ⁇ os (3). Since the number of stages is the nth stage (n ⁇ 2), the extension start point angle of each stage is ⁇ os (1)> ⁇ os (2) ...> ⁇ os (n) in a generalized expression. It's a relationship.
  • the central portion of the spiral of the swing scroll 40 has the same configuration as that of the fixed scroll 30 in terms of the extension start point angle of the outward surface involute curve. That is, the extension start point angle of the outward surface involute curve of the first stage is ⁇ os (1), the extension start point angle of the outward surface involute curve of the second stage is ⁇ os (2), and the outward surface involute curve of the third stage is set. Assuming that the extension start point angle of is ⁇ os (3), ⁇ os (1)> ⁇ os (2)> ⁇ os (3).
  • FIG. 7 is an enlarged plan view showing the winding start portion of the fixed scroll and the swing scroll of the scroll compressor according to the first embodiment.
  • the spiral shape of the fixed scroll 30 and the swing scroll 40 of the scroll compressor 1 will be described in detail with reference to FIG. 7.
  • FIG. 7A shows a state (crank angle: ⁇ 0) when the second compression chamber 5a2 communicates with the innermost compression chamber 5a1 in the center.
  • FIG. 7B shows a state (crank angle: ⁇ 0 + 15deg) when the swing scroll revolves by 15deg after communication.
  • FIG. 7 (c) shows a state (crank angle: ⁇ 0 + 30 deg) when the swing scroll revolves 30 deg after communication.
  • FIG. 7A shows a state (crank angle: ⁇ 0) when the second compression chamber 5a2 communicates with the innermost compression chamber 5a1 in the center.
  • FIG. 7B shows a state (crank angle: ⁇ 0 + 15deg) when the swing scroll revolves by 15deg
  • FIG. 7D shows a state (crank angle: ⁇ 0 + 45deg) when the swing scroll revolves 45 deg after communication.
  • FIG. 7 (e) shows a state (crank angle: ⁇ 0 + 60 deg) when the swing scroll revolves 60 deg after communication.
  • FIG. 7 (f) shows a state (crank angle: ⁇ 0 + 90 deg) when the swing scroll revolves 90 deg after communication.
  • the contact point t between the winding start portion of the fixed scroll 30 and the winding start portion of the swing scroll 40 is the extension angle of the involute curve constituting the side surface of the spiral portion. Moves to the smaller side.
  • the position of the crank angle ⁇ 0 at the time of communication shown in FIG. 7A shows a state in which the contact point t reaches the extension start point angle ⁇ os (1) of the involute curve of the first stage.
  • the second compression chamber 5a2 communicates with the innermost compression chamber 5a1 via the communication flow path 50 (see FIG. 9 described later) formed in the stepped portion with the second stage.
  • the high-pressure refrigerant flows from the innermost compression chamber 5a1 to the second compression chamber 5a2, and pressure equalization begins.
  • the second compression occurs.
  • the chamber 5a2 further communicates with the innermost compression chamber 5a1 via a communication flow path 51 formed in a step portion between the second stage and the third stage. In this way, communication between the second compression chamber 5a2 and the innermost compression chamber 5a1 occurs step by step, first in the first stage, then in the second stage, and finally in the third stage.
  • the winding start portion of the conventional structure corresponds to a shape in which the first stage and the second stage are not provided in the winding start portion of the first embodiment, and the third stage continues from the root side to the tip side.
  • an example of the pressure acting on the winding start portion of the swinging spiral portion will be described, but the same applies to the winding start portion of the fixed spiral portion.
  • FIG. 8 is an explanatory diagram of the pressure acting on the winding start portion at the start of pressure equalization in the comparative example.
  • the load due to the difference pressure between the pressure of the second compression chamber 5a2 and the pressure of the innermost compression chamber 5a1 swings and swirls. It acts on the portion 40b. Since the swinging spiral portion 40b and the fixed spiral portion 30b are separated from each other at the time of communication, as shown in FIG. 8, the swinging spiral portion 40b is tilted by the load due to the differential pressure, and the swinging spiral portion 40b becomes the root portion of the swinging spiral portion 40b. Has a large stress. A similar stress state also occurs in a compressor that does not have a variable crank mechanism and is operated in a state where the contact between the side surfaces of both spiral portions is not maintained.
  • the stress generated at the root of the spiral portion can be reduced by forming the winding start portion into a staircase bulb shape. This point will be described with reference to FIGS. 9, 10 and 11 below.
  • FIG. 9 is an explanatory diagram of the pressure acting on the winding start portion at the start of pressure equalization in the scroll compressor according to the first embodiment.
  • FIG. 10 is an explanatory diagram of the pressure acting on the winding start portion after the pressure equalization is completed in the scroll compressor according to the first embodiment.
  • the scroll compressor 1 of the first embodiment is equipped with a variable crank mechanism, the side surface of the swinging spiral portion 40b and the side surface of the fixed spiral portion 30b are in contact with each other during operation.
  • the contact point t reaches the extension start point angle ⁇ os (1) of the involute curve of the first stage, as described above, the fixed spiral portion 30b and the swinging spiral portion 40b are separated from each other in the first stage and communicate with each other.
  • Pressure equalization is started through the flow path 50.
  • the swinging spiral portion 40b is supported in contact with the side surface of the fixed spiral portion 30b as shown in FIG.
  • the reaction force R acts from the fixed spiral portion 30b on the load P due to the differential pressure between the pressures of the innermost compression chamber 5a1 and the second compression chamber 5a2 acting on the swinging spiral portion 40b, so that the swinging portion R swings.
  • the stress generated at the base of the spiral portion 40b can be reduced.
  • FIG. 11 is a diagram showing a change in stress generated at the root of a winding start portion with a change in the crank angle in the scroll compressor according to the first embodiment.
  • the horizontal axis is the crank angle and the vertical axis is the stress.
  • the solid line shows the stress at the winding start portion of the first embodiment, and the broken line shows the stress at the winding start portion of the conventional structure.
  • the crank angle is the extension start angle of the first stage (the extension start angle of the first stage).
  • the first stage communicates and pressure equalization starts, so that the stress generated at the base of the winding start portion decreases.
  • the stress continues to increase, and when the extension start angle ( ⁇ 0 in this example) is reached, the stress increases due to the winding start portion losing support, and then the stress increases. The stress decreases due to the pressure equalization.
  • the maximum stress acting on the root of the winding start portion is ⁇ 2
  • the maximum stress in the first embodiment is ⁇ 1, which can be reduced as compared with the conventional structure.
  • the extension start point angle of each step has a relationship of ⁇ os (1)> ⁇ os (2) ...> ⁇ os (n) as described above.
  • the staircase bulb shape at the winding start portion has a structure satisfying the relationship of 0.3 ⁇ ⁇ os (1) ⁇ os (n) ⁇ 0.7 ⁇ . By satisfying this relationship, it is possible to further reduce the stress generated at the base of the winding start portion.
  • the difference in the shape of the staircase bulb at the winding start portion according to the value of " ⁇ os (1) - ⁇ os (n)" will be described.
  • FIG. 12 is an enlarged view of the winding start portion when ⁇ os (1) ⁇ os (n) is 0.2 ⁇ in the scroll compressor according to the first embodiment.
  • FIG. 13 is an enlarged view of a winding start portion when ⁇ os (1) ⁇ os (n) is 0.5 ⁇ in the scroll compressor according to the first embodiment.
  • FIG. 14 is a comparative example and is a diagram showing the relationship between the direction of action of a load on the winding start portion and the wall thickness of the winding start portion that receives the load in the conventional structure.
  • the arrow indicates the direction of action of the load determined by integrating the differential pressure acting on the bulb portion.
  • the length of the arrow indicates the wall thickness of the winding start portion on the cut surface where the winding start portion is cut at the position of the arrow, in other words, the wall thickness of the winding start portion with respect to the acting direction of the load.
  • the meaning of the arrow is the same in FIG. 15 below.
  • FIG. 14 only the first stage and the nth stage are shown, and the illustration of the other stages is omitted. This point is the same in FIGS. 15 to 17 below.
  • FIG. 15 is a diagram showing the relationship between the direction of action of a load on the winding start portion and the wall thickness of the winding start portion that receives the load in the scroll compressor according to the first embodiment, and is a diagram showing ⁇ os (1) ⁇ os ( It is a figure which shows the case where n) is 0.2 ⁇ .
  • FIG. 16 is a diagram showing the relationship between the direction of action of a load on the winding start portion and the wall thickness of the winding start portion that receives the load in the scroll compressor according to the first embodiment, and is a diagram showing ⁇ os (1) ⁇ os ( It is a figure which shows the case where n) is 0.5 ⁇ .
  • FIG. 15 is a diagram showing the relationship between the direction of action of a load on the winding start portion and the wall thickness of the winding start portion that receives the load in the scroll compressor according to the first embodiment, and is a diagram showing ⁇ os (1) ⁇ os ( It is a figure which shows the case where n) is 0.5
  • 17 is a diagram showing the relationship between the direction of action of a load on the winding start portion and the wall thickness of the winding start portion that receives the load in the scroll compressor according to the first embodiment, and is a diagram showing ⁇ os (1) ⁇ os ( It is a figure which shows the case where n) is 0.7 ⁇ .
  • ⁇ os (1) - ⁇ os (n) When ⁇ os (1) - ⁇ os (n) is 0.2 ⁇ , it corresponds to a state where the stress decreases from the position of the crank angle ⁇ 0.2 ⁇ in light of FIG. 11 above.
  • ⁇ os (1) ⁇ os (n) When ⁇ os (1) ⁇ os (n) is 0.5 ⁇ , it corresponds to a state where the stress decreases from the position of the crank angle ⁇ 0.5 ⁇ in light of FIG. 11 above. In this way, the maximum stress acting at the start of winding can be changed according to the value of ⁇ os (1) ⁇ os (n).
  • the strength improvement range when changing ⁇ os (1) - ⁇ os (n) from 0.5 ⁇ to 0.7 ⁇ is when changing ⁇ os (1) - ⁇ os (n) from 0.2 ⁇ to 0.5 ⁇ . Is smaller than. That is, if the difference between the extension start point angles of the first stage and the nth stage ( ⁇ os (1) - ⁇ os (n)) is small, the amount of increase in the moment of inertia is small, which is commensurate with the increase in the cost of processing in a stepped shape. The strength improvement effect cannot be obtained.
  • ⁇ os (1) - ⁇ os (n) the more the strength does not increase endlessly, but the strength improving effect shrinks, while the performance under the high compression ratio condition is ⁇ os (1)-.
  • FIG. 18 is a diagram showing the strength analysis result of the winding start portion in the scroll compressor according to the first embodiment.
  • the horizontal axis is ⁇ os (1) ⁇ os (n)
  • the vertical axis is the winding start stress reduction rate.
  • the bulb shape at the start of winding so that the degree of decrease in the stress reduction rate is within the range of 0.3 ⁇ ⁇ os (1) - ⁇ os (n) ⁇ 0.7 ⁇ .
  • the strength improving effect can be obtained.
  • the nth stage can be communicated.
  • the boundary at which the nth stage can communicate after the innermost compression chamber 5a1 and the second compression chamber 5a2 are surely equalized satisfies the relationship of ⁇ os (1) ⁇ os (n)> 0.3 ⁇ . If. Conversely, if ⁇ os (1) ⁇ os (n) ⁇ 0.3 ⁇ , the nth stage communicates with the innermost compression chamber 5a1 and the second compression chamber 5a2 before the pressure is surely equalized.
  • the nth stage communicates with the innermost compression chamber 5a1 and the second compression chamber 5a2 before the pressure is surely equalized, the nth stage is not supported by the spiral portion on the other side at the time of communication. Therefore, by satisfying the relationship of ⁇ os (1) ⁇ os (n)> 0.3 ⁇ , the innermost compression chamber 5a1 and the second compression chamber 5a2 are surely equalized in pressure until the differential pressure becomes 0.
  • the n-stage can be configured to be supported by the spiral portion on the other side.
  • the size of the small circle at each stage of the winding start can be decided without any restrictions. However, as shown in FIG. 3, since the winding start portion 40e of the swing spiral portion 40b exists at a position overlapping with the discharge port 30f, the flow path area of the discharge port 30f is partially blocked. In order to avoid this, the small circle of the first stage of the winding start portion 40e of the swing spiral portion 40b may be set small so as not to block the discharge port 30f. By reducing the wall thickness of the first stage of the winding start portion 40e, the discharge port 30f is prevented from being blocked, and a secondary effect of improving the performance by reducing the discharge pressure loss can be obtained.
  • FIG. 19 is an enlarged schematic view of a vertical cross section around a winding start portion in the scroll compressor according to the first embodiment.
  • the radius of curvature R1 at the base of the first stage is made larger than the radius of curvature Rn at the base of the nth stage.
  • the reason why the radius of curvature R1 at the base of the first stage can be made larger than the radius of curvature at the base of the nth stage is as follows.
  • the root portion of the nth stage forms a leakage flow path of the compression chamber 5a, and if the radius of curvature is increased, performance deterioration due to refrigerant leakage occurs.
  • the radius of curvature R1 of the first stage can be set larger than the radius of curvature Rn of the root of the nth stage.
  • the second to n-1th stages can be set to be larger than the radius of curvature Rn at the base of the nth stage.
  • the ratio of the total height Hn-1 of the first to n-1 steps of the winding start portion to the total Hn of the heights of the first step to the nth step should be set to 25% to 50%.
  • this ratio is less than 25%, the flow path area for the innermost compression chamber 5a1 and the second compression chamber 5a2 to equalize the pressure is insufficient, and when the nth stage communicates, the innermost compression chamber 5a1 and the second compression chamber 5a1 are communicated with each other. 2
  • the differential pressure of the compression chamber 5a2 remains, and a sufficient strength improving effect cannot be obtained.
  • the above ratio exceeds 50%, the stress at the roots of the first to n-1 stages increases, and the first to n-1 stages can be destroyed before the roots of the nth stage. There is sex.
  • both the fixed scroll 30 and the swing scroll 40 have a stepped winding start portion, but only one of the fixed scroll 30 and the swing scroll 40 has a stepped winding start portion. You may have.
  • the swing scroll 40b of the swing scroll 40 and the fixed spiral portion 30b of the fixed scroll 30 are combined to form a plurality of compression chambers 5a, and the swing scroll 40 is driven by the spindle 7.
  • Each of the winding start portions having a bulb shape connecting the start point and the extension start point of the involute of a circle with a plurality of arcs is provided, and at least one winding start portion has n (n ⁇ 2).
  • the shape of the bulb is formed in an n-step stacking step shape in which the main shaft 7 is stacked in the axial direction. Further, the extension start point angle of the outward surface involute curve at each step of the winding start portion formed in a stepped shape is set in order from the tip side to the root side, ⁇ os (1), ⁇ os (2), ⁇ os (3), and so on. ..., When ⁇ os (n) is set, ⁇ os (1)> ⁇ os (2)> ⁇ os (3) >> ...> ⁇ os (n) and 0.3 ⁇ ⁇ os (1) - ⁇ os (n) The relationship of ⁇ 0.7 ⁇ , is satisfied.
  • the innermost compression chamber 5a1 of the plurality of compression chambers 5a and the second compression chamber 5a2 on the radial outer side of the innermost compression chamber 5a1 are communicated stepwise. It is possible to reduce the stress generated at the base of the winding start portion. Then, by satisfying the relationship of 0.3 ⁇ ⁇ os (1) ⁇ os (n) ⁇ 0.7 ⁇ , a sufficient strength improving effect of the winding start portion corresponding to the cost increase of processing in a stepped shape can be obtained. Further, the nth stage can be supported by the spiral portion on the other side until the innermost compression chamber 5a1 and the second compression chamber 5a2 are surely equalized and the differential pressure becomes zero.
  • Embodiment 2 Hereinafter, the second embodiment will be described, but some of the parts that overlap with the first embodiment will be omitted.
  • the temperature of the swing scroll 40 and the fixed scroll 30 becomes a high temperature of 100 ° C. or higher, so that the swing spiral portion 40b and the fixed spiral portion 30b thermally expand. It will be described in detail later that materials having different linear expansion coefficients are used, such as one of the swing scroll 40 and the fixed scroll 30 being made of aluminum and the other being made of cast iron. Can generate a large amount of pressure.
  • the second embodiment reduces the stress generated at the root of the winding start portion due to the difference in the linear expansion coefficient between the material constituting the swing scroll 40 and the material constituting the fixed scroll 30.
  • the linear expansion coefficient of the swing scroll 40 is larger than the linear expansion coefficient of the fixed scroll 30 will be described as an example.
  • FIG. 20 is a schematic cross-sectional view of the compression portion of the scroll compressor according to the second embodiment.
  • FIG. 21 is a perspective view showing a relief portion of the scroll compressor according to the second embodiment.
  • a relief portion 30c1 is provided on the inward surface involute 30c (hereinafter referred to as the fixed inward surface involute 30c) of the fixed spiral portion 30b.
  • the relief portion 30c1 is a recess provided in the fixed inward surface involute 30c in parallel with the axial direction.
  • the relief portion 30c1 is provided to partially make the fixed inward surface involute 30c and the outward surface involute 40d of the swinging spiral portion 40b (hereinafter referred to as swinging outward surface involute 40d) non-contact.
  • the range in which the relief portion 30c1 is provided is defined by using the following seven parameters.
  • -Outward surface involute extension start point angle of the nth stage of the swinging spiral portion 40b: ⁇ os4 (n) -Number of contact points of the swinging outer surface involute 40d with the fixed inward surface involute 30c (hereinafter referred to as swinging outer surface side contact points): m [(
  • a relief portion 30c1 is provided so that the swinging outer surface involute 40d and the fixed inward surface involute 30c are not in contact with each other.
  • the swing scroll 40 revolves in the range from the crank angle with which the first stage communicates to the crank angle with which the nth stage communicates, the swing spiral portion made of the material on the side having the larger linear expansion coefficient.
  • a relief portion 30c1 is provided in the fixed inward surface involute 30c so that the contact points other than the innermost contact points among the contact points on the swinging outward surface side of 40b are non-contact.
  • FIG. 22 is a schematic cross-sectional view when the swing scroll is combined without being eccentric with respect to the fixed scroll in the compression portion of the comparative example, and is between the swing outward surface involute and the fixed inward surface involute at room temperature. It is explanatory drawing of the gap.
  • FIG. 23 is a schematic cross-sectional view when the swing scroll is combined without being eccentric with respect to the fixed scroll in the compression portion of the comparative example, and is between the swing outward surface involute and the fixed inward surface involute during operation. It is explanatory drawing of the gap.
  • FIG. 24 is a diagram showing the gap dimension ⁇ 0 in each gap when the swing scroll is eccentric to the fixed scroll and combined at room temperature in the compression portion of the comparative example.
  • FIG. 25 is a diagram showing the amount of change ⁇ a of the gap dimension between normal temperature and operation in the compressed portion of the comparative example.
  • FIG. 26 is a diagram showing the gap dimension ⁇ s of each gap during operation in the compression portion of the comparative example.
  • the horizontal axis indicates the position of each gap, and the vertical axis indicates the gap dimension ( ⁇ m).
  • each point of i is a swinging outward surface side contact point.
  • the swinging outer surface side contact point is a point where the swinging outer surface involute 40d comes into contact with the fixed inward surface involute 30c when the swinging scroll 40 is eccentric with respect to the fixed scroll 30.
  • the swinging inward surface side contact point is a point where the swinging inward surface involute 40c comes into contact with the fixed outward surface involute 30d when the swinging scroll 40 is eccentric with respect to the fixed scroll 30.
  • the same notation shall be applied to the contact points of other numbers.
  • each gap between the swinging outward surface involute 40d and the fixed inward surface involute 30c is set to ⁇ o1, ⁇ o2, and ⁇ o3 from the winding start portion toward the radial outer side. Further, the gaps between the swinging inward surface involute 40c and the fixed outward surface involute 30d are set to ⁇ i1, ⁇ i2, and ⁇ i3 in the order of radial outside from the winding start portion.
  • the temperature of the swing scroll 40 and the fixed scroll 30 becomes a high temperature of 100 ° C. or higher as described above, so that the swing spiral portion 40b and the fixed spiral portion 30b thermally expand. .. Since the swinging spiral portion 40b is made of a material having a coefficient of linear expansion larger than that of the fixed spiral portion 30b, it expands more than the fixed spiral portion 30b as shown in FIG. 23.
  • the amount of change ⁇ a in the gap dimension of each gap during operation with respect to normal temperature increases from the winding start portion toward the outer side in the radial direction.
  • the gap size is narrower in each gap of ⁇ o1, ⁇ o2, and ⁇ o3 during operation than at room temperature.
  • the clearance dimension is narrower on the outer side in the radial direction. Therefore, as shown in FIG. 25, in each of the gaps of ⁇ o1, ⁇ o2, and ⁇ o3, the amount of change ⁇ a obtained by subtracting the gap size at room temperature from the gap size during operation becomes a negative value and changes more in the radial direction.
  • the quantity ⁇ a increases.
  • each gap between normal temperature and operation in a state where the swing scroll 40 is combined without being eccentric with respect to the fixed scroll 30 has been described, but during actual operation, the swing scroll 40 is referred to by the arrow in FIG. 23. It will be driven in a state of being eccentric in the direction.
  • the gap dimension ⁇ s of the gap ⁇ o3 becomes 0 as shown in FIG.
  • the gap dimension ⁇ s of each of the other gaps of ⁇ o2, ⁇ o1, ⁇ i1, ⁇ i2, and ⁇ i3 does not become 0, and increases in this order.
  • the gap ⁇ o1 and the gap ⁇ i1 are gaps located at the winding start portion, and if the operation is performed in a state where the gap dimension ⁇ s in the gap ⁇ o1 and the gap ⁇ i1 is not 0, the following problems occur. That is, before the innermost compression chamber 5a1 and the second compression chamber 5a2 equalize the pressure, each of the fixed spiral portion 30b and the swinging spiral portion 40b loses support at the winding start portion, and at the root of the winding start portion. Large stress is generated. Therefore, it is required to make the gap dimension ⁇ s in the gap ⁇ o1 and the gap ⁇ i1 at the winding start portion 0 or small.
  • the gap ⁇ o3 and the gap ⁇ o2 excluding the gap ⁇ o1 at the winding start portion. It is effective to make the gap dimension ⁇ 0 at room temperature as large as possible.
  • the introverted surface involute 30c is provided in anticipation of the expansion of the swinging spiral portion 40b that occurs during operation.
  • the gap ⁇ o3 and the gap ⁇ o2 when the swing scroll 40 is eccentrically combined with respect to the fixed scroll 30 at room temperature can be expanded in advance as shown in FIG. 27 below.
  • FIG. 27 is a diagram showing a gap dimension ⁇ 0 in each gap when a swing scroll is eccentricly combined with respect to a fixed scroll at room temperature in the compression portion of the scroll compressor according to the second embodiment.
  • FIG. 28 is an explanatory diagram of the action of the relief portion in the compression portion of the scroll compressor according to the second embodiment, and is a difference between the gap dimension at room temperature of the comparative example and the gap dimension during operation of the second embodiment. It is a figure which shows ⁇ b.
  • the value shown in FIG. 28 corresponds to the sum of the value in FIG. 25 and the value in FIG. 27.
  • FIG. 29 is a diagram showing the gap dimension ⁇ s of each gap during operation in the compression unit of the scroll compressor according to the second embodiment.
  • the horizontal axis indicates the position of each gap
  • the vertical axis indicates the gap dimension ( ⁇ m).
  • the gap dimension ⁇ 0 of the gap ⁇ o2 and the gap ⁇ o3 at room temperature can be secured in advance as shown in FIG. 27.
  • the state where the gap dimension ⁇ s of the gap ⁇ o1 is 0 is maintained at least from the communication of the first stage of the winding start portion to the communication of the nth stage. That is, until the pressure equalization of the innermost compression chamber 5a1 and the second compression chamber 5a2 is completed, the winding start portion 40e of the swing spiral portion 40b is supported by the side surface of the fixed spiral portion 30b and is at the base of the winding start portion. It is possible to suppress the generation of large stress, and the effect of improving strength can be obtained.
  • the gap dimension is as shown in FIG. ⁇ s does not become 0, and a gap remains.
  • the winding start portion 30e of the fixed spiral portion 30b collapses when it receives a load due to the differential pressure between the pressure of the second compression chamber 5a2 and the pressure of the innermost compression chamber 5a1. Deform.
  • the winding start portion 30e of the fixed spiral portion 30b is deformed so as to fall down, it is supported by the spiral side surface on the swinging spiral portion 40b side when it is deformed by the gap size ⁇ s. Therefore, the smaller the gap size ⁇ s, the smaller the stress generated at the base of the winding start portion. Comparing the gap dimension ⁇ s in the gap ⁇ i1 of FIG. 29 with the gap dimension ⁇ s in the same gap ⁇ i1 of FIG. 26 when there is no relief portion 30c1, the gap dimension ⁇ s in the gap ⁇ i1 of FIG. 29 is smaller. ing. Therefore, by providing the relief portion 30c1, the strength improving effect can be obtained also for the winding start portion 30e of the fixed spiral portion 30b.
  • a relief portion 30c1 may be provided. That is, while the swing scroll 40 revolves in the range from the crank angle through which the first stage communicates to the crank angle through which the nth stage communicates, the swing spiral portion 40b made of the material on the side having the larger linear expansion coefficient
  • the relief portion 30c1 may be provided on the fixed inward surface involute 30c so that at least the outermost contact point among the swinging outward surface side contact points is non-contact.
  • the strength improving effect can be obtained.
  • the relief portion 30c1 is provided only on the outermost side, it corresponds to providing the relief portion 30c1 only in the portion where the differential pressure is relatively small and the refrigerant leakage is unlikely to occur, so that the refrigerant leakage can be suppressed. , High performance can be obtained.
  • the number of places where the relief portion 30c1 is provided may be determined with a degree of freedom according to the strength and performance required for the product.
  • the strength improving effect by providing the relief portion 30c1 of the second embodiment is that the shape of the staircase bulb at the winding start portion described in the first embodiment is 0.3 ⁇ ⁇ os (1) ⁇ os (n). ) It is more effective when applied to a structure satisfying the relationship of ⁇ 0.7 ⁇ .
  • the second embodiment is not limited to the application to this structure.
  • the swinging scroll portion 40b of the swinging scroll 40 and the fixed spiral portion 30b of the fixed scroll 30 are combined to form a plurality of compression chambers 5a, and the swinging scroll 40 driven by the spindle 7.
  • the swinging spiral portion 40b and the fixed spiral portion 30b have a winding start portion having a bulb shape in which the extension start point of the outward surface involute curve and the extension start point of the inward surface involute curve are connected by a plurality of arcs.
  • At least one of the winding start portions is formed in an n-step stacking step shape in which n (n ⁇ 2) bulb shapes are stacked in the axial direction of the main shaft 7.
  • the swing scroll 40 and the fixed scroll 30 are configured by using materials having different linear expansion coefficients.
  • Each stage of the winding start portion is defined as a first stage, a second stage, ... Nth stage from the tip side to the root side.
  • the communication between the two compression chambers that were not in communication before the separation is expressed as the nth stage communicating. do.
  • the gap between the spiral portion on the material side having a large linear expansion coefficient during operation can be made smaller than that in the case where the relief portion 30c1 is not provided. Therefore, it is possible to suppress the generation of a large stress at the base of the winding start portion, and the effect of improving the strength of the winding start portion can be obtained.
  • Embodiment 3 Hereinafter, the third embodiment will be described, but some of the parts that overlap with the first and second embodiments will be omitted.
  • FIG. 30 is a schematic cross-sectional view of the compression portion of the scroll compressor according to the third embodiment.
  • the fixed inward surface involute 30c is provided with the relief portion 30c1
  • the rocking outward surface involute 40d is provided with the relief portion 40d1.
  • the range in which the relief portion 40d1 is provided is defined by using the following seven parameters.
  • -Outward surface involute extension start point angle of the nth stage of the swinging spiral portion 40b: ⁇ os4 (n) -Number of contact points of the swinging outward surface involute 40d with the fixed inward surface involute 30c: m [( ⁇ ie3- ⁇ is3 (n)) / 2 ⁇
  • a relief portion 40d1 is provided so that the swinging outer surface involute 40d and the fixed inward surface involute 30c are not in contact with each other.
  • the swing scroll 40 revolves in the range from the crank angle with which the first stage communicates to the crank angle with which the nth stage communicates, the swing spiral portion made of the material on the side having the larger coefficient of linear expansion.
  • a relief portion 40d1 is provided in the swing outward surface involute 40d so that the contact points other than the innermost contact points among the swing outward surface side contact points of 40b are non-contact.
  • 40d1 may be provided. That is, while the swing scroll 40 revolves in the range from the crank angle through which the first stage communicates to the crank angle through which the nth stage communicates, the swing spiral portion 40b made of the material on the side having the larger coefficient of linear expansion is used.
  • a relief portion 40d1 may be provided on the swing outward surface involute 40d so that at least the outermost contact point of the swing outward surface side contact points is non-contact.
  • the swing scroll 40 and the fixed scroll 30 are configured by using materials having different linear expansion coefficients.
  • Each stage of the winding start portion is defined as a first stage, a second stage, ... Nth stage from the tip side to the root side.
  • the communication between the two compression chambers that were not in communication before the separation is expressed as the nth stage communicating. do.
  • the swing scroll 40 revolves in the range from the crank angle through which the first stage communicates to the crank angle through which the nth stage communicates, the spiral portion of the scroll made of the material on the side having the larger linear expansion coefficient.
  • a relief portion 40d1 is formed in the swinging swirl portion 40b so that at least the outermost contact point is non-contact among a plurality of contact points in which the outward surface involute of a circle is in contact with the inward surface involute of the spiral portion on the other side. Has been done.
  • the effect obtained by the third embodiment is the same as that of the second embodiment.
  • 1 scroll compressor 2 shell, 2a upper shell, 2b middle shell, 2c lower shell, 3 oil pump, 3a oil reservoir, 4 motor, 4a rotor, 4b stator, 5 compression part, 5a compression chamber, 5a1 innermost compression chamber, 5a2 2nd compression chamber, 5a3 outermost compression chamber, 6 frame, 6a suction port, 7 spindle, 7a eccentric shaft, 7b oil hole, 8a main bearing, 8b auxiliary bearing, 9 slider, 11 suction pipe, 12 discharge pipe, 13 discharge chamber, 13a discharge valve, 14 muffler, 15 oldam ring, 20 subframe, 21 power supply terminal, 30 fixed scroll, 30a fixed base plate part, 30b fixed spiral part, 30c fixed inward surface involute, 30c1 relief part, 30c1a start point , 30c1b end point, 30c2 extension end point, 30d fixed outward surface involut, 30e winding start part, 30e1 first stage, 30e2 second stage, 30e3 third stage, 30f discharge port, 40 rocking scroll,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

スクロール圧縮機の揺動渦巻部及び固定渦巻部は、外向面インボリュート曲線の伸開始点と内向面インボリュート曲線の伸開始点との間を複数の円弧で結んだ球根形状を有する巻き始め部をそれぞれ備えており、少なくとも一方の巻き始め部は、n個(n≧2)の球根形状が主軸の軸方向に重ねられたn段重ねの階段状に形成されている。階段状に形成された巻き始め部の各段における外向面インボリュート曲線の伸開始点角を、先端側から根元側に向かって順にφos(1),φos(2),φos(3),・・・,φos(n)としたとき、φos(1)>φos(2)>φos(3)>・・・>φos(n)かつ、0.3π<φos(1)-φos(n)<0.7π、の関係を満たす。

Description

スクロール圧縮機
 本開示は、作動ガスを圧縮するスクロール圧縮機に関するものである。
 従来、固定スクロール及び揺動スクロールの渦巻部同士を組み合わせることで複数の圧縮室を形成し、揺動スクロールを固定スクロールに対して公転運動させることで作動ガスの圧縮を行うスクロール圧縮機がある。特許文献1には、この種のスクロール圧縮機において、渦巻部の渦巻中央部である巻き始め部を、根元側から先端側に向かうに連れて肉厚が薄くなる階段状にした構成が開示されている。
国際公開第2015/040720号
 特許文献1では、巻き始め部を階段状にすることで、複数の圧縮室のうちの最内圧縮室と最内圧縮室の径方向外側の第2圧縮室とを段階的に連通させ、巻き始め部の根元に発生する応力の軽減が行われている。しかし、巻き始め部のどの範囲を階段状とするかといった具体的な検討がされておらず、十分な応力の軽減が可能であるか不明である。
 また、固定スクロールと揺動スクロールとが互いに異なる線膨張係数の素材で構成されている場合、運転時に温度上昇した際の熱膨張量の差に起因して、巻き始め部の根元に大きな応力が発生する可能性があるが、特許文献1では、この点について何ら検討されていない。
 本開示は、上述のような課題の少なくとも一つを解決するためになされたものであり、巻き始め部の根元に発生する応力を低減することが可能なスクロール圧縮機を提供することを目的とする。
 本開示に係るスクロール圧縮機は、揺動スクロールの揺動渦巻部と固定スクロールの固定渦巻部とが組み合わされて複数の圧縮室が形成され、主軸によって駆動された揺動スクロールが固定スクロールに対して公転運動を行うことで複数の圧縮室にて作動ガスの圧縮を行うスクロール圧縮機であって、揺動渦巻部及び固定渦巻部は、外向面インボリュート曲線の伸開始点と内向面インボリュート曲線の伸開始点との間を複数の円弧で結んだ球根形状を有する巻き始め部をそれぞれ備えており、少なくとも一方の巻き始め部は、n個(n≧2)の球根形状が主軸の軸方向に重ねられたn段重ねの階段状に形成され、階段状に形成された巻き始め部の各段における外向面インボリュート曲線の伸開始点角を、先端側から根元側に向かって順にφos(1),φos(2),φos(3),・・・,φos(n)としたとき、φos(1)>φos(2)>φos(3)>・・・>φos(n)かつ、0.3π<φos(1)-φos(n)<0.7π、の関係を満たすものである。
 本開示に係るスクロール圧縮機は、揺動スクロールの揺動渦巻部と固定スクロールの固定渦巻部とが組み合わされて複数の圧縮室が形成され、主軸によって駆動された揺動スクロールが固定スクロールに対して公転運動を行うことで複数の圧縮室にて作動ガスの圧縮を行うスクロール圧縮機であって、揺動渦巻部及び固定渦巻部は、外向面インボリュート曲線の伸開始点と内向面インボリュート曲線の伸開始点との間を複数の円弧で結んだ球根形状を有する巻き始め部をそれぞれ備えており、少なくとも一方の巻き始め部は、n個(n≧2)の球根形状が主軸の軸方向に重ねられたn段重ねの階段状に形成され、揺動スクロールと固定スクロールとは、互いに異なる線膨張係数の素材を用いて構成されており、巻き始め部の各段を、先端側から根元側に向かって第1段、第2段、・・・第n段とし、巻き始め部の第n段において揺動渦巻部と固定渦巻部とが離間することで、離間前に非連通であった2つの圧縮室が連通することを、第n段が連通すると表現するとき、第1段が連通するクランク角からn段が連通するクランク角までの範囲で揺動スクロールが公転運動する間、線膨張係数の大きい側の素材で構成されたスクロールの渦巻部の外向面インボリュートが、線膨張係数の小さい側の素材で構成されたスクロールの渦巻部の内向面インボリュートと接触する複数の接触点のうち、少なくとも最も外側の接触点が非接触となるように、揺動渦巻部の外向面又は固定渦巻部に逃がし部が形成されているものである。
 本開示に係るスクロール圧縮機によれば、巻き始め部を階段状にすることで、複数の圧縮室のうちの最内圧縮室と最内圧縮室の径方向外側の第2圧縮室とを段階的に連通させ、巻き始め部の根元に発生する応力を軽減できる。そして、0.3π<φos(1)-φos(n)<0.7πとすることで、巻き始め部の十分な強度改善効果が得られる。
 また、本開示に係るスクロール圧縮機によれば、線膨張係数の大きい素材側の渦巻部の巻き始め部については、離間前に非連通であった2つの圧縮室である最内圧縮室と第2圧縮室との均圧が完了するまで、線膨張係数の小さい側の素材で構成されたスクロールの渦巻部の側面に支えられる。このため、線膨張係数の大きい側の素材で構成された渦巻部の巻き始め部の根元に大きな応力が発生することを抑制できる。線膨張係数の小さい素材側の渦巻部の巻き始め部についても、運転中における、線膨張係数の大きい素材側の渦巻部との間の隙間を、逃がし部を設けない場合に比べて小さくできるため、巻き始め部の根元に大きな応力が発生することを抑制できる。
実施の形態1に係るスクロール圧縮機の縦断面模式図である。 実施の形態1に係るスクロール圧縮機の圧縮工程を示す渦巻動作図である。 実施の形態1に係るスクロール圧縮機の圧縮機機構部の横断面模式図である。 実施の形態1に係るスクロール圧縮機の固定スクロールの巻き始め部を拡大して示す斜視図である。 実施の形態1に係るスクロール圧縮機の揺動スクロールの巻き始め部を拡大して示す斜視図である。 実施の形態1に係るスクロール圧縮機の固定スクロールの巻き始め部を更に拡大して示す平面図である。 実施の形態1に係るスクロール圧縮機の固定スクロール及び揺動スクロールの巻き始め部を拡大して示す平面図である。 比較例において均圧開始時に巻き始め部に作用する圧力の説明図である。 実施の形態1に係るスクロール圧縮機において均圧開始時に巻き始め部に作用する圧力の説明図である。 実施の形態1に係るスクロール圧縮機において均圧完了後の巻き始め部に作用する圧力の説明図である。 実施の形態1に係るスクロール圧縮機における、クランク角の変化に伴う、巻き始め部の根元に発生する応力の変化を示す図である。 実施の形態1に係るスクロール圧縮機において、φos(1)-φos(n)が0.2πの場合の巻き始め部の拡大図である。 実施の形態1に係るスクロール圧縮機において、φos(1)-φos(n)が0.5πの場合の巻き始め部の拡大図である。 比較例であって、従来構造における、巻き始め部に対する荷重の作用方向と、その荷重を受ける巻き始め部の肉厚との関係を示す図である。 実施の形態1に係るスクロール圧縮機における、巻き始め部に対する荷重の作用方向と、その荷重を受ける巻き始め部の肉厚との関係を示す図で、φos(1)-φos(n)が0.2πの場合を示す図である。 実施の形態1に係るスクロール圧縮機における、巻き始め部に対する荷重の作用方向と、その荷重を受ける巻き始め部の肉厚との関係を示す図で、φos(1)-φos(n)が0.5πの場合を示す図である。 実施の形態1に係るスクロール圧縮機における、巻き始め部に対する荷重の作用方向と、その荷重を受ける巻き始め部の肉厚との関係を示す図で、φos(1)-φos(n)が0.7πの場合を示す図である。 実施の形態1に係るスクロール圧縮機における巻き始め部の強度解析結果を示す図である。 実施の形態1に係るスクロール圧縮機における巻き始め部周辺の縦断面拡大模式図である。 実施の形態2に係るスクロール圧縮機の圧縮部の横断面模式図である。 実施の形態2に係るスクロール圧縮機の逃がし部を示す斜視図である。 比較例の圧縮部において、揺動スクロールを固定スクロールに対して偏心させずに組み合わせた際の横断面模式図であり、常温時の揺動外向面インボリュートと固定内向面インボリュート間の隙間の説明図である。 比較例の圧縮部において、揺動スクロールを固定スクロールに対して偏心させずに組み合わせた際の横断面模式図であり、運転時の揺動外向面インボリュートと固定内向面インボリュート間の隙間の説明図である。 比較例の圧縮部において常温にて揺動スクロールを固定スクロールに対して偏心させて組み合わせた際の各隙間における隙間寸法δ0を示す図である。 比較例の圧縮部において常温時と運転時との隙間寸法の変化量δaを示す図である。 比較例の圧縮部における運転時の各隙間の隙間寸法δsを示す図である。 実施の形態2に係るスクロール圧縮機の圧縮部において常温にて揺動スクロールを固定スクロールに対して偏心させて組み合わせた際の各隙間における隙間寸法δ0を示す図である。 実施の形態2に係るスクロール圧縮機の圧縮部における逃がし部の作用の説明図であって、比較例の常温時の隙間寸法と実施の形態2の運転時の隙間寸法との差δbを示す図である。 実施の形態2に係るスクロール圧縮機の圧縮部における運転時の各隙間の隙間寸法δsを示す図である。 実施の形態3に係るスクロール圧縮機の圧縮部の横断面模式図である。
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
 図1は、実施の形態1に係るスクロール圧縮機の縦断面模式図である。
 以下、図1に基づいて、スクロール圧縮機1について説明する。スクロール圧縮機1は、冷凍サイクルを循環する冷媒等の作動ガスを吸入して圧縮し、高温高圧の状態にして吐出するものである。スクロール圧縮機1は、圧縮部5と、主軸7を介して圧縮部5を駆動するモータ4と、その他の構成部品とを有し、これらが外郭を構成するシェル2の内部に収納された構成を有している。そして、図1に示すように、シェル2内において圧縮部5が上側に、モータ4が下側に、それぞれ配置されている。そして、シェル2の下方は潤滑油を貯留する油溜り3aとなっている。
 シェル2には更に、モータ4を挟んで対向するようにフレーム6とサブフレーム20とが配置されている。フレーム6は、モータ4の上側に配置されてモータ4と圧縮部5との間に位置しており、サブフレーム20は、モータ4の下側に位置している。フレーム6及びサブフレーム20は、焼き嵌め又は溶接等によってシェル2の内周面に固着されている。フレーム6の中央部には主軸受8aが設けられており、サブフレーム20の中央部には、たとえばボールベアリングで構成された副軸受8bが圧入固定されている。この主軸受8a及び副軸受8bに主軸7が回転自在に支持されている。
 サブフレーム20には、容積型のオイルポンプ3が備わっており、オイルポンプ3に回転力を伝達するポンプ軸が主軸7に一体成形されている。主軸7の中央にはポンプ軸の下端から主軸7の上端まで貫通する油穴7bが設けられており、油穴7bは下端側でオイルポンプ3と連通している。
 シェル2は、アッパーシェル2a、ミドルシェル2b及びロアーシェル2cの3つの部分から構成されている。シェル2には、冷媒を吸入するための吸入管11と、冷媒を吐出するための吐出管12とが設けられている。吸入管11からシェル2内に吸入された冷媒は、フレーム6に形成された吸入ポート6aを介して圧縮部5の後述の圧縮室5aに吸入される。
 圧縮部5は、吸入管11から吸入した冷媒を圧縮し、圧縮した冷媒を、シェル2内の上方に形成されている高圧部に排出する機能を有している。圧縮部5は、固定スクロール30、揺動スクロール40、揺動スクロール40の偏心旋回運動(揺動運動)中における揺動スクロール40の自転を防止するためのオルダムリング15等を備えている。
 固定スクロール30は上側に配置されてフレーム6を介してシェル2に固定されており、揺動スクロール40は下側に配置されて主軸7に揺動自在に支持されている。
 固定スクロール30は、固定台板部30aと、固定台板部30aの一方の面に形成された渦巻状の固定渦巻部30bとを備えている。揺動スクロール40は、揺動台板部40aと、揺動台板部40aの一方の面に形成された渦巻状の揺動渦巻部40bとを備えている。固定渦巻部30b及び揺動渦巻部40bは、例えばインボリュート曲線にならって形成されている。固定スクロール30及び揺動スクロール40は、固定渦巻部30bと揺動渦巻部40bとが互いに噛み合うように組み合わされた状態でシェル2内に配置されている。固定渦巻部30bと揺動渦巻部40bとの間には、主軸7の回転に伴い、半径方向外側から内側へ向かうにしたがって容積が縮小する複数の圧縮室5aが形成されている。
 固定スクロール30の中央部には、圧縮されて高圧となった冷媒を吐出する吐出ポート30fが形成されている。吐出ポート30fの出口側には、吐出チャンバー13が設けられている。吐出チャンバー13の吐出口には、リード弁構造の吐出弁13aが設けられている。吐出チャンバー13の上方には、吐出チャンバー13から吐出された作動ガスの脈動を抑えるマフラー14が設けられている。
 揺動スクロール40の揺動台板部40aにおいて揺動渦巻部40bが形成された面とは反対側の面の中心部には、揺動軸受40fが形成されている。揺動軸受40fの内径部は、後述のスライダ9を回転自在に支持する。揺動軸受40fの中心軸は、主軸7の中心軸と平行になっている。
 揺動スクロール40とフレーム6との間には、オルダムリング15が設けられている。オルダムリング15は、リング部と、リング部の上面に形成された一対のオルダムキーと、リング部の下面に形成された一対のオルダムキーと、を有している。上面のオルダムキーは、揺動スクロール40に形成されたキー溝に挿入されており、一方向に摺動自在となっている。下面のオルダムキーは、フレーム6に形成されたキー溝に挿入されており、上記一方向と交差する方向に摺動自在となっている。この構成により、揺動スクロール40は、自転せずに公転運動するようになっている。
 モータ4は、シェル2の内周に固定されたステータ4bと、ステータ4bの内周側に配置されたロータ4aとを有している。ロータ4aは、焼嵌め等により主軸7に固定されている。ステータ4bには、シェル2に設けられた電源端子21を介して電源が供給される。ロータ4aは、ステータ4bに通電されることにより、主軸7と一体となって回転する。
 主軸7の上端部には、偏心軸部7aが設けられている。偏心軸部7aは、主軸7の中心軸に対して所定の偏心方向に偏心して配置されている。偏心軸部7aは、後述するスライダ9と摺動自在に嵌入している。
 スライダ9は、揺動スクロール40の公転半径を固定スクロール30の固定渦巻部30bの側面形状に沿って可変とする可変クランク機構を構成するものである。この可変クランク機構により、揺動スクロール40の公転運転中、固定渦巻部30bの側面と揺動渦巻部40bの側面とが接触する。
 ここで、スクロール圧縮機1の全体的な動作を簡単に説明する。ステータ4bに通電されると、ロータ4aが回転する。ロータ4aの回転駆動力は、主軸7、偏心軸部7a及びスライダ9を介して揺動スクロール40に伝達される。回転駆動力が伝達された揺動スクロール40は、オルダムリング15により自転を規制され、固定スクロール30に対して揺動運動を行う。
 揺動スクロール40の揺動運動に伴い、吸入管11からシェル2内に吸入された低圧のガス冷媒は、フレーム6に形成された吸入ポート6aを通って圧縮室5aに取り込まれ、圧縮室5a内で圧縮される。圧縮された高圧のガス冷媒は、吐出ポート30fを介して吐出チャンバー13内に吐出される。吐出チャンバー13内の高圧のガス冷媒は、吐出弁13aを押し上げてマフラー14内に空間に吐出された後、マフラー14の吐出穴からシェル2内に吐出される。吐出された冷媒は、吐出管12からスクロール圧縮機1の外部に吐出される。
 図2は、実施の形態1に係るスクロール圧縮機の圧縮工程を示す渦巻動作図である。図2に基づいて圧縮工程について説明する。なお、巻き始め部である渦巻中央部の形状の詳細については後述する。図2において、複数の圧縮室5aのうち、最も内側の圧縮室5aを最内圧縮室5a1、最も外側の圧縮室5aを最外圧縮室5a3、最内圧縮室5a1と最外圧縮室5a3との間の圧縮室5aを第2圧縮室5a2という。
 図2の(a)は、固定スクロール30に組み合わされた揺動スクロール40が最外圧縮室5a3を形成した吸入完了の位置にあるときの状態を示している。(b)は、(a)の吸入完了時の状態から揺動スクロール40が90deg公転した位置にあるときの状態を示している。(c)は、(a)の吸入完了時の状態から揺動スクロール40が180deg公転した位置にあるときの状態を示している。(d)は、(a)の吸入完了時の状態から揺動スクロール40が270deg公転した位置にあるときの状態を示している。揺動スクロール40は、(a)→(b)→(c)→(d)→(a)の順に揺動運動、すなわち自転を伴わない公転運動を行う。これにより、各圧縮室5aは、最外圧縮室5a3から第2圧縮室5a2を経て最内圧縮室5a1へと容積を減じていく。それに伴い、吸入された冷媒は、圧縮されるとともに順次中央へ送られ、最内圧縮室5a1から固定スクロール30に設けられた吐出ポート30fを経てスクロール圧縮機1の外部へ吐出される。
 固定スクロール30及び揺動スクロール40の渦巻部の渦巻中央部である巻き始め部は、内向面と外向面を構成する各インボリュート曲線の伸開始点間を小円と大円の二円弧で結んだ所謂球根形状となっている。本実施の形態1の巻き始め部は、複数の球根形状が主軸7の軸方向に重ねられた階段状に形成されている。以下、このような巻き始め部の形状を階段球根形状という場合がある。
 図3は、実施の形態1に係るスクロール圧縮機の圧縮機機構部の横断面模式図である。図4は、実施の形態1に係るスクロール圧縮機の固定スクロールの巻き始め部を拡大して示す斜視図である。図5は、実施の形態1に係るスクロール圧縮機の揺動スクロールの巻き始め部を拡大して示す斜視図である。
 図3及び図4に示すように、固定スクロール30の固定渦巻部30bの巻き始め部30eは、先端側から例えば第1段30e1、第2段30e2、第3段30e3の3段重ねの階段状に形成されている。固定スクロール30の固定渦巻部30bの巻き始め部30eは、先端側(図中上方)から根元側(図中下方)に向かって、小円弧部の位置が徐々に巻き始め端方向にずれて配置されている。ここでは、3段重ねの例を示しているが、段数はn段(n≧2)であればよい。つまり、固定渦巻部30bの巻き始め部30eは、n個(n≧2)の球根形状が軸方向に重ねられたn段重ねの階段状に形成されていればよい。
 最も先端側(第1段)の小円弧部は小円弧部301であり、それより根元寄り(第2段)の小円弧部は小円弧部301aであり、最も根元側(第3段)の小円弧部は小円弧部301bである。第2段の小円弧部301aは第1段の小円弧部301よりも巻き始め端方向にずれて配置されている。第3段の小円弧部301bは第2段の小円弧部301aよりも更に巻き始め端方向にずれて配置されている。また、固定渦巻部30bの巻き始め部30eの大円半径については、第1段、第2段、第3段の全てにおいて同一であって、各段の大円弧部は共通の大円弧部302となっている。
 このような構成により、固定スクロール30は、揺動スクロール40側の渦巻部の内向面との接触が、第1段、第2段、第3段の順に異なるタイミングで終了するようになっている。
 また、図3及び図5に示すように、揺動スクロール40の揺動渦巻部40bの巻き始め部40eは、固定スクロール30と同様に、先端側から例えば第1段40e1、第2段40e2、第3段40e3の3段重ねの階段状に形成されている。揺動スクロール40の揺動渦巻部40bの巻き始め部40eは、先端側(図中上方)から根元側(図中下方)に向かって、小円弧部の位置が徐々に巻き始め方向にずれて配置されている。ここでは、3段重ね例を示しているが、段数はn段(n≧2)であればよい。つまり、揺動渦巻部40bの巻き始め部40eは、n個(n≧2)の球根形状が軸方向に重ねられたn段重ねの階段状に形成されていればよい。
 最も先端側(第1段)の小円弧部は小円弧部401であり、それより根元寄り(第2段)の小円弧部は小円弧部401aであり、最も根元側(第3段)の小円弧部は小円弧部401bである。第2段の小円弧部401aは第1段の小円弧部401よりも巻き始め端方向にずれて配置されている。第3段の小円弧部401bは第2段の小円弧部401aよりも更に巻き始め端方向にずれて配置されている。
 また、揺動スクロール40の揺動渦巻部40bの巻き始め部40eの大円半径については、第1段の大円弧部402の大円半径が最も大きい。第2段の大円弧部402aの大円半径は大円弧部402よりも小さい。第3段の大円弧部402bの大円半径は大円弧部402aよりも更に小さい。本実施の形態1の構成では、揺動スクロール40における内向面インボリュート曲線の伸開始点角は、第1段、第2段、第3段の全てにおいて同一である。すなわち、揺動スクロール40の各段における大円半径は、小円半径の変化に応じて変化している。
 このような構成により、揺動スクロール40は、固定スクロール30側の渦巻の内向面との接触が、第1段、第2段、第3段の順に異なるタイミングで終了するようになっている。また、固定渦巻部30bの巻き始め部30eの各段と揺動渦巻部40bの巻き始め部40eの各段とを区別しないときは、符号を付さず、単に、第1段、第2段、第3段ということがある。
 ここで、固定スクロール30側では、小円半径及び大円半径を第1段、第2段、第3段の全てにおいて同一としているが、揺動スクロール40側では、小円半径及び大円半径を第1段、第2段、第3段で異ならせている。小円半径については、第1段の小円弧部401の小円半径が最も小さく、第2段の小円弧部401aの小円半径は小円弧部401よりも大きく、第3段の小円弧部401bの小円半径は小円弧部401aよりも更に大きい。逆に、大円半径については、第1段の大円弧部402の大円半径が最も大きく、第2段の大円弧部402aの大円半径は大円弧部402よりも小さく、第3段の大円弧部402bの大円半径は大円弧部402aよりも更に小さい。本実施の形態の構成では、揺動スクロール40における内向面インボリュート曲線の伸開始点角は、第1段、第2段、第3段の全てにおいて同一である。すなわち、揺動スクロール40の各段における大円半径は、小円半径の変化に応じて変化している。
 図6は、実施の形態1に係るスクロール圧縮機の固定スクロールの巻き始め部を更に拡大して示す平面図である。図6に示すように、第1段の小円弧部301と外向面インボリュート曲線との接続点(伸開始点303)の伸開角(伸開始点角)をφos(1)とする。第2段の小円弧部301aと外向面インボリュート曲線との接続点(伸開始点303a)の伸開角(伸開始点角)をφos(2)とする。第3段の小円弧部301bと外向面インボリュート曲線との接続点(伸開始点303b)の伸開角(伸開始点角)をφos(3)とする。このとき、各段の伸開始点角は、φos(1)>φos(2)>φos(3)となっている。なお、段数は、第n段(n≧2)であるため、一般化した表現にすると各段の伸開始点角は、φos(1)>φos(2)・・・>φos(n)の関係になっている。
 図示は省略するが、揺動スクロール40の渦巻中央部は、外向面インボリュート曲線の伸開始点角については固定スクロール30と同様の構成を有している。すなわち、第1段の外向面インボリュート曲線の伸開始点角をφos(1)とし、第2段の外向面インボリュート曲線の伸開始点角をφos(2)とし、第3段の外向面インボリュート曲線の伸開始点角をφos(3)とすると、φos(1)>φos(2)>φos(3)となっている。
 図7は、実施の形態1に係るスクロール圧縮機の固定スクロール及び揺動スクロールの巻き始め部を拡大して示す平面図である。図7に基づいて、スクロール圧縮機1の固定スクロール30及び揺動スクロール40の渦巻形状について詳細に説明する。図7の(a)は第2圧縮室5a2が中央の最内圧縮室5a1と連通したときの状態(クランク角:ψ0)を示している。図7の(b)は連通後、揺動スクロールが15deg公転したときの状態(クランク角:ψ0+15deg)を示している。図7の(c)は連通後、揺動スクロールが30deg公転したときの状態(クランク角:ψ0+30deg)を示している。図7の(d)は連通後、揺動スクロールが45deg公転したときの状態(クランク角:ψ0+45deg)を示している。図7の(e)は連通後、揺動スクロールが60deg公転したときの状態(クランク角:ψ0+60deg)を示している。図7の(f)は連通後、揺動スクロールが90deg公転したときの状態(クランク角:ψ0+90deg)を示している。
 図7に示すように、クランク角が進む毎に、固定スクロール30の巻き始め部と揺動スクロール40の巻き始め部との接触点tは、渦巻部の側面を構成するインボリュート曲線の伸開角が小さい側に移動する。図7(a)に示す連通時のクランク角ψ0の位置では、接触点tが第1段のインボリュート曲線の伸開始点角φos(1)に到達した状態を示している。このように、接触点tが第1段のインボリュート曲線の伸開始点角φos(1)に到達すると、第1段において固定渦巻部30bと揺動渦巻部40bとが離間し、第1段と第2段との段差部分に形成される連通流路50(後述の図9参照)を介して、第2圧縮室5a2が最内圧縮室5a1に連通する。これにより、最内圧縮室5a1から第2圧縮室5a2へ高圧冷媒の流動が起こり、均圧し始める。
 なお、「第1段において固定渦巻部30bと揺動渦巻部40bとが離間し、第1段と第2段との段差部分に形成された連通流路50(後述の図9参照)を介して、離間前に非連通であった2つの圧縮室5aである第2圧縮室5a2と最内圧縮室5a1とが連通する」ことを、以下では、略して「第1段で連通」と表現する。他の段においても同様の表現とする。
 図7(a)の状態からクランク角が進み、接触点tが更にインボリュート曲線の伸開角が小さい側に移動して、インボリュート曲線の伸開始点角φos(2)に到達すると、第2圧縮室5a2が、更に第2段と第3段との段差部分に形成される連通流路51を介して最内圧縮室5a1に連通する。このように、初めに第1段、次に第2段、最後に第3段、と段階的に第2圧縮室5a2と最内圧縮室5a1との連通が発生する。
 第1段が連通して最内圧縮室5a1と第2圧縮室5a2との均圧が始まったとき、第2段及び第3段では、相手側の渦巻部の側面と接触した状態が維持される。やがて、更にクランク角が進み、第3段が連通する際には、最内圧縮室5a1と第2圧縮室5a2の均圧が完了している。このとき、巻き始め部は、第1段から第3段の全体に渡って、相手側の渦巻部とは接触していない状態となる。
 次に、巻き始め部に作用する荷重について説明する。まず比較例として、階段形状を持たない巻き始め部を有し、且つ可変クランク機構を搭載した従来構造について説明する。従来構造の巻き始め部は、本実施の形態1の巻き始め部において第1段及び第2段が設けられておらず、第3段が根元側から先端側まで続いた形状に相当する。以下、揺動渦巻部の巻き始め部に作用する圧力の例で説明するが、固定渦巻部の巻き始め部においても同様である。
 図8は、比較例において均圧開始時に巻き始め部に作用する圧力の説明図である。比較例の従来構造の場合、第2圧縮室5a2が最内圧縮室5a1に連通した際、第2圧縮室5a2の圧力と最内圧縮室5a1の圧力との差圧による荷重が、揺動渦巻部40bに作用する。連通時には揺動渦巻部40bと固定渦巻部30bとは離間しているため、図8に示すように、前記差圧による荷重によって揺動渦巻部40bが傾き、揺動渦巻部40bの根元部には大きな応力が作用する。なお、可変クランク機構を持たず、両渦巻部の側面同士の接触が維持されない状態で運転する圧縮機についても同様の応力状態が発生する。
 これに対し、本実施の形態1では、巻き始め部を階段球根形状としたことで、渦巻部の根元部に発生する応力を軽減できる。この点について次の図9、図10及び図11を参照して説明する。
 図9は、実施の形態1に係るスクロール圧縮機において均圧開始時に巻き始め部に作用する圧力の説明図である。図10は、実施の形態1に係るスクロール圧縮機において均圧完了後の巻き始め部に作用する圧力の説明図である。
 実施の形態1のスクロール圧縮機1は可変クランク機構を搭載しているため、運転中、揺動渦巻部40bの側面と固定渦巻部30bの側面とは接触している。しかし、接触点tが第1段のインボリュート曲線の伸開始点角φos(1)に到達すると、上述したように、第1段において固定渦巻部30bと揺動渦巻部40bとが離間し、連通流路50を介して均圧が開始される。このような均圧開始直後において揺動渦巻部40bは、図9に示すように固定渦巻部30bの側面に接触して支持されている。このため、揺動渦巻部40bに作用する、最内圧縮室5a1と第2圧縮室5a2の圧力との差圧による荷重Pに対し、固定渦巻部30bから反力Rが作用するため、揺動渦巻部40bの根元に発生する応力を小さくできる。
 そして、揺動渦巻部40bが、第1段から第3段の全体に渡って固定渦巻部30bから離間した状態では、図10に示すように第2圧縮室5a2と最内圧縮室5a1とが均圧しており、最内圧縮室5a1と第2圧縮室5a2との差圧はゼロとなり、揺動渦巻部40bの根元には応力が発生しない。
 図11は、実施の形態1に係るスクロール圧縮機における、クランク角の変化に伴う、巻き始め部の根元に発生する応力の変化を示す図である。図11において横軸はクランク角、縦軸は応力である。実線は、本実施の形態1の巻き始め部の応力、破線は従来構造の巻き始め部の応力を示している。
 図11に示すように、本実施の形態1では、実線に示すようにクランク角が進むにつれて、巻き始め部に発生する応力は増加していき、クランク角が第1段の伸開開始角(この例では、ψ0-0.3π)に達すると、第1段が連通して均圧が始まることで、巻き始め部の根元に発生する応力は低下していく。一方、従来構造では、破線に示すように、そのまま応力は増加していき、伸開始角(この例ではψ0)に達すると、巻き始め部が支えを失うことによる応力増加が発生し、その後、均圧によって応力が低下していく。
 図11から明らかなように、従来構造において巻き始め部の根元に作用する最大応力はσ2であるのに対し、本実施の形態1の最大応力はσ1であり、従来構造に比べて軽減できる。
 次に、巻き始め部の根元に発生する応力を更に軽減する構造について説明する。本実施の形態1の巻き始め部の階段球根形状において、各段の伸開始点角は、上述したようにφos(1)>φos(2)・・・>φos(n)の関係になっている。そして、本実施の形態1では、巻き始め部の階段球根形状が、0.3π<φos(1)-φos(n)<0.7πの関係を満たす構造を有する。この関係を満たすことで、巻き始め部の根元に発生する応力の更なる軽減が可能となっている。この点について説明するに先立って、まず、「φos(1)-φos(n)」の値に応じた巻き始め部の階段球根形状の違いについて説明する。
 図12は、実施の形態1に係るスクロール圧縮機において、φos(1)-φos(n)が0.2πの場合の巻き始め部の拡大図である。図13は、実施の形態1に係るスクロール圧縮機において、φos(1)-φos(n)が0.5πの場合の巻き始め部の拡大図である。図12と図13とを比較して明らかなように、φos(1)-φos(n)の値が大きくなるに連れて、第1段の小円弧部301の位置が、巻き終わり方向に移動することとなる。
 次に、上記の関係を満足することで、巻き始め部の根元に発生する応力の更なる軽減が可能な理由について説明する。まず、比較例として、階段形状を持たない巻き始め部を有する従来構造のものについて説明する。
 図14は、比較例であって、従来構造における、巻き始め部に対する荷重の作用方向と、その荷重を受ける巻き始め部の肉厚との関係を示す図である。図14において矢印は、球根部に作用する差圧を積分することにより決まる荷重の作用方向を示している。矢印の長さは、矢印の位置で巻き始め部を切断した切断面における巻き始め部の肉厚、言い換えれば荷重の作用方向に対する巻き始め部の肉厚、を示している。矢印の意味は、以下の図15においても同様である。なお、図14では、第1段と第n段のみを示し、その他の段の図示は省略している。この点は、以下の図15~図17においても同様である。
 巻き始め部の根元応力は、作用荷重÷断面係数に比例して大きくなる。このため、荷重方向に対する断面係数を大きく確保することが、巻き始め部の強度改善のために非常に有効である。荷重方向に対する断面係数を大きく確保するには、荷重の作用方向に対する巻き始め部の肉厚を大きく確保すればよい。しかし、図14に示す従来構造では、クランク角が、ψ0-0.5π、ψ0-0.2πと進むに連れて、荷重の作用方向に対する巻き始め部の肉厚、が薄くなっている。そして、第2圧縮室5a2が最内圧縮室5a1と連通するときのクランク角ψ0では、更に薄くなっている。言い換えれば、断面係数が小さい状態で第2圧縮室5a2が最内圧縮室5a1と連通するため、巻き始め部の根元に大きな応力が発生する。
 図15は、実施の形態1に係るスクロール圧縮機における、巻き始め部に対する荷重の作用方向と、その荷重を受ける巻き始め部の肉厚との関係を示す図で、φos(1)-φos(n)が0.2πの場合を示す図である。図16は、実施の形態1に係るスクロール圧縮機における、巻き始め部に対する荷重の作用方向と、その荷重を受ける巻き始め部の肉厚との関係を示す図で、φos(1)-φos(n)が0.5πの場合を示す図である。図17は、実施の形態1に係るスクロール圧縮機における、巻き始め部に対する荷重の作用方向と、その荷重を受ける巻き始め部の肉厚との関係を示す図で、φos(1)-φos(n)が0.7πの場合を示す図である。
 図15に示すように、φos(1)-φos(n)が0.2πの場合、図14の従来構造の場合よりも0.2π早い、クランク角ψ0-0.2πで第1段が連通して均圧が開始され、クランク角ψ0の時点では均圧しており、作用荷重が無い状態となる。第1段が連通するときの荷重の作用方向の巻き始め部の肉厚は、図14のクランク角ψ0のときの同肉厚に比べて厚いため、連通直前において巻き始め部に発生する応力は従来構造よりも小さくなる。ただし、図15の場合と図14の従来構造とにおいて、連通が始まるクランク角の差は0.2πであるため、連通直前における、荷重方向の巻き始め部の肉厚の差は小さい。よって、強度の改善効果は小さい。
 図16に示すように、φos(1)-φos(n)が0.5πの場合、図15の場合よりも更に0.3π早い、クランク角ψ0-0.5πで第1段が連通して均圧が開始される。このため、図15の場合よりも更に巻き始め部に発生する応力は小さくなる。連通する直前における、荷重方向の巻き始め部の肉厚が図14の従来構造に比べて大幅に増加するため、大きな強度改善効果が得られる。
 なお、φos(1)-φos(n)が0.2πの場合は、上記の図11に照らすと、クランク角-0.2πの位置から応力が低下する状態に相当する。φos(1)-φos(n)が0.5πの場合は、上記の図11に照らすと、クランク角-0.5πの位置から応力が低下する状態に相当する。このように、φos(1)-φos(n)の値に応じて、巻き始めに作用する最大応力を変えることができる。
 図17に示すように、φos(1)-φos(n)が0.7πの場合、図16の場合に比べて更に0.2π早い、クランク角ψ0-0.7πで第1段が連通して均圧が開始される。このため、図16の場合よりも更に巻き始め部に発生する応力は小さくなる。しかし、φos(1)-φos(n)を0.5πから0.7πに変更することによって得られる、連通直前における、荷重方向の巻き始め部の肉厚の増加分は、φos(1)-φos(n)を0.2πから0.5πに変更することによって得られる、同増加分よりも小さい。よって、φos(1)-φos(n)を0.5πから0.7πに変更する場合の強度改善幅は、φos(1)-φos(n)を0.2πから0.5πに変更する場合よりも小さくなる。つまり、第1段と第n段の伸開始点角の差異(φos(1)-φos(n))が小さいと断面係数の増加量が微小であり、階段状に加工するコスト増加に見合った強度改善効果が得られない。また、φos(1)-φos(n)を大きくとればとるほど、際限なく強度がアップするのではなく、強度改善効果は収縮していく一方、高圧縮比条件の性能はφos(1)-φos(n)を大きくとればとるほど低下していく。したがって、φos(1)-φos(n)<0.7πにすることで、性能低下を最小限に抑えつつ、大きな強度改善効果を得られる。
 図18は、実施の形態1に係るスクロール圧縮機における巻き始め部の強度解析結果を示す図である。図18において横軸は、φos(1)-φos(n)、縦軸は巻き始め部応力軽減率である。図18から明らかなように、φos(1)-φos(n)が0.3πから0.7πの範囲で応力が大きく軽減され、0.7π超では応力軽減効果が収束していることがわかる。
 したがって、応力軽減率の低下度合いが高い、0.3π<φos(1)-φos(n)<0.7πの範囲内となるように、巻き始め部の球根形状を設計することで、十分な強度改善効果を得ることができる。
 ところで、第1段と第n段との伸開始点角の差異(φos(1)-φos(n))が大きい程、最内圧縮室5a1と第2圧縮室5a2とが確実に均圧した後に、第n段を連通させることができる。最内圧縮室5a1と第2圧縮室5a2とが確実に均圧した後に、第n段を連通させることができる境界は、φos(1)-φos(n)>0.3πの関係を満足する場合である。逆に言えば、φos(1)-φos(n)≦0.3πであると、最内圧縮室5a1と第2圧縮室5a2とが確実に均圧する前に第n段が連通してしまう。最内圧縮室5a1と第2圧縮室5a2とが確実に均圧する前に第n段が連通してしまうと、連通時に第n段は相手側の渦巻部に支持されなくなる。よって、φos(1)-φos(n)>0.3πの関係を満足することで、最内圧縮室5a1と第2圧縮室5a2とが確実に均圧して差圧が0になるまで、第n段が相手側の渦巻部に支持される構成にできる。
 巻き始め部の各段の小円の大きさについては、制約無く決めることができる。しかし、図3に示す通り、揺動渦巻部40bの巻き始め部40eは、吐出ポート30fと重なる位置に存在するため、吐出ポート30fの流路面積を一部閉塞してしまう。これを回避するために、揺動渦巻部40bの巻き始め部40eの第1段の小円を、吐出ポート30fを塞がないように小さく設定するとよい。巻き始め部40eの第1段の肉厚が小さくなることで、吐出ポート30fの閉塞が防止され、吐出圧損低減による性能改善という副次的な効果が得られる。
 なお、第1段目の小円を小さくすることは、第1段の強度が低下することに繋がる。この強度低下の問題の解決にあたっては、次の図19に示す構造を採用すればよい。
 図19は、実施の形態1に係るスクロール圧縮機における巻き始め部周辺の縦断面拡大模式図である。
 図19に示す通り、第1段の根元の曲率半径R1を第n段の根元の曲率半径Rnよりも大きくしている。これにより、第1段の根元の応力集中を軽減し、強度も確保できる。第1段の根元の曲率半径R1を第n段の根元の曲率半径よりも大きくできる理由としては、次の理由がある。第n段の根元部は、圧縮室5aの漏れ流路を形成していて、曲率半径を大きくすると冷媒漏れによる性能低下が発生する。これに対し、第1段の根元部は漏れ流路ではないため、性能低下の懸念がない。よって、第1段の曲率半径R1は、第n段の根元の曲率半径Rnよりも大きく設定可能である。第2段~第n-1段についても同様の理由で、第n段の根元の曲率半径Rnよりも大きく設定可能である。
 巻き始め部の第1段~第n-1段の高さの合計Hn-1は、第1段~第n段の高さの合計Hnに対する比率は、25%~50%に設定すると良い。この比率が25%を下回ると、最内圧縮室5a1と第2圧縮室5a2が均圧するための流路面積が不十分であり、第n段が連通する時点で、最内圧縮室5a1と第2圧縮室5a2の差圧が残ってしまい、十分な強度改善効果が得られない。また、上記比率が50%を上回ると、第1段~第n-1段の根元の応力が増加し、第n段の根元よりも先に第1段~第n-1段が破壊する可能性がある。
 なお、上記の説明では、固定スクロール30及び揺動スクロール40の双方が階段状の巻き始め部を有しているが、固定スクロール30及び揺動スクロール40の一方のみが階段状の巻き始め部を有していてもよい。
 本実施の形態1は、揺動スクロール40の揺動渦巻部40bと固定スクロール30の固定渦巻部30bとが組み合わされて複数の圧縮室5aが形成され、主軸7によって駆動された揺動スクロール40が固定スクロール30に対して公転運動を行うことで複数の圧縮室にて作動ガスの圧縮を行うスクロール圧縮機であって、揺動渦巻部40b及び固定渦巻部30bは、外向面インボリュート曲線の伸開始点と内向面インボリュート曲線の伸開始点との間を複数の円弧で結んだ球根形状を有する巻き始め部をそれぞれ備えており、少なくとも一方の巻き始め部は、n個(n≧2)の球根形状が主軸7の軸方向に重ねられたn段重ねの階段状に形成されている。また、階段状に形成された巻き始め部の各段における外向面インボリュート曲線の伸開始点角を、先端側から根元側に向かって順にφos(1),φos(2),φos(3),・・・,φos(n)としたとき、φos(1)>φos(2)>φos(3)>・・・>φos(n)かつ、0.3π<φos(1)-φos(n)<0.7π、の関係を満たす。
 このように、巻き始め部を階段状にすることで、複数の圧縮室5aのうちの最内圧縮室5a1と最内圧縮室5a1の径方向外側の第2圧縮室5a2とを段階的に連通させ、巻き始め部の根元に発生する応力を軽減できる。そして、0.3π<φos(1)-φos(n)<0.7π、の関係を満たすことで、階段状に加工するコスト増加に見合った巻き始め部の十分な強度改善効果が得られる。また、最内圧縮室5a1と第2圧縮室5a2とが確実に均圧して差圧が0になるまで、第n段が相手側の渦巻部に支持される構成にできる。
実施の形態2.
 以下、本実施の形態2について説明するが、実施の形態1と重複するものについては、一部の説明を省略する。
 スクロール圧縮機1が運転を開始すると、揺動スクロール40及び固定スクロール30の温度は100℃以上の高温になるため、揺動渦巻部40b及び固定渦巻部30bは熱膨張する。揺動スクロール40及び固定スクロール30の一方が例えばアルミ材、他方が鋳鉄材等といったように、互いに異なる線膨張係数の素材が用いられていると、後で詳述するが、巻き始め部の根元に大きな圧力が発生する可能性がある。
 本実施の形態2は、このような揺動スクロール40を構成する素材と固定スクロール30を構成する素材との線膨張係数が違うことに起因した、巻き始め部の根元に発生する応力を軽減する技術に関する。本実施の形態2では、揺動スクロール40の線膨張係数が固定スクロール30の線膨張係数より大きい場合を例に説明する。
 図20は、実施の形態2に係るスクロール圧縮機の圧縮部の横断面模式図である。図21は、実施の形態2に係るスクロール圧縮機の逃がし部を示す斜視図である。
 固定渦巻部30bの内向面インボリュート30c(以下、固定内向面インボリュート30cという)には、逃がし部30c1が設けられている。逃がし部30c1は、図21に示すように固定内向面インボリュート30cに軸方向と平行に設けられた凹部である。逃がし部30c1は、固定内向面インボリュート30cと揺動渦巻部40bの外向面インボリュート40d(以下、揺動外向面インボリュート40dという)とを部分的に非接触とするために設けられている。
 逃がし部30c1を設ける範囲は、以下の7つのパラメータを用いて定義する。
 ・逃がし部30c1の始点30c1aの伸開角:φia3
 ・逃がし部30c1の終点30c1bの伸開角:φib3
 ・固定内向面インボリュート30cの伸開終点30c2の伸開角:φie3
 ・固定渦巻部30bの第n段の内向面インボリュート伸開始点角:φis3(n)
 ・揺動渦巻部40bの第1段の外向面インボリュート伸開始点角:φos4(1)
 ・揺動渦巻部40bの第n段の外向面インボリュート伸開始点角:φos4(n)
 ・揺動外向面インボリュート40dの固定内向面インボリュート30cとの接触点(以下、揺動外向面側接触点という)の数:m=[(φie3-φis3(n))/2π]ここで、[]は小数点以下切り捨てを表す。
 揺動外向面側接触点の番号:i(内側から1,2,3・・・m)、m≧2としたとき、
 「i≧2」かつ「φia3<(φos1(n)+π)+2π×(i-1)」かつ「φib3>(φos1(1)+π)+2π×(i-1)」を満足する範囲に逃がし部30c1を設ける。なお、図20の例では、m=3の例を示している。以下では、m=3の例で説明を行う。
 すなわち、揺動外向面インボリュート40dの第1段の伸開始点角φos(1)~第n段の伸開始点角φos(n)の方向にクランク角がある際に、i=2番目以降の揺動外向面側接触点において、揺動外向面インボリュート40dと固定内向面インボリュート30cとが非接触になるように逃がし部30c1が設けられている。言い換えれば、第1段が連通するクランク角から第n段が連通するクランク角までの範囲で揺動スクロール40が公転運動する間、線膨張係数の大きい側の素材で構成された揺動渦巻部40bの揺動外向面側接触点のうち、最も内側の接触点以外の接触点が非接触となるように、固定内向面インボリュート30cに逃がし部30c1が設けられている。
 上記した構成の作用について説明する。まず、比較例として、逃がし部30c1を設けていない構成のものについて説明する。以下では、m=3の例で説明を行う。
 図22は、比較例の圧縮部において、揺動スクロールを固定スクロールに対して偏心させずに組み合わせた際の横断面模式図であり、常温時の揺動外向面インボリュートと固定内向面インボリュート間の隙間の説明図である。図23は、比較例の圧縮部において、揺動スクロールを固定スクロールに対して偏心させずに組み合わせた際の横断面模式図であり、運転時の揺動外向面インボリュートと固定内向面インボリュート間の隙間の説明図である。図24は、比較例の圧縮部において常温にて揺動スクロールを固定スクロールに対して偏心させて組み合わせた際の各隙間における隙間寸法δ0を示す図である。図25は、比較例の圧縮部において常温時と運転時との隙間寸法の変化量δaを示す図である。図26は、比較例の圧縮部における運転時の各隙間の隙間寸法δsを示す図である。図24~図26において、横軸は各隙間の位置、縦軸は隙間寸法(μm)を示している。
 図22において、iの各点は、揺動外向面側接触点である。揺動外向面側接触点とは、揺動スクロール40を固定スクロール30に対して偏心させた場合に揺動外向面インボリュート40dが固定内向面インボリュート30cに接触する点である。揺動外向面側接触点は、巻き始め部から径方向外側に向かって番号を振っており、この例では、i=1、i=2、i=3の3点である。また、i2の各点は、揺動内向面側接触点である。揺動内向面側接触点とは、揺動スクロール40を固定スクロール30に対して偏心させた場合に揺動内向面インボリュート40cが固定外向面インボリュート30dに接触する点である。揺動内向面側接触点は、巻き始め部から径方向外側に向かって番号を振っており、この例では、i2=1、i2=2、i2=3の3点である。以下では、i=1の接触点を、接触点(i=1)と表記する。他の番号の接触点においても同様の表記とする。
 揺動スクロール40を固定スクロール30に対して偏心させずに組み合わせた場合の揺動渦巻部40bと固定渦巻部30bの側面同士の隙間は、図22に示すように合計で2×3個所存在する。内訳としては、揺動外向面インボリュート40dと固定内向面インボリュート30c間の隙間が3個所である。揺動内向面インボリュート40cと固定外向面インボリュート30d間の隙間が3個所である。上記2×3個所の各隙間の隙間寸法は、図22に示すように常温においては同寸法である。図22において、揺動外向面インボリュート40dと固定内向面インボリュート30c間の各隙間を、巻き始め部から径方向外側に向かって、δo1、δo2、δo3とする。また、揺動内向面インボリュート40cと固定外向面インボリュート30d間の各隙間を、巻き始め部から径方向外側の順にδi1、δi2、δi3とする。
 揺動スクロール40を図22の矢印方向に偏心させて組み合わせた状態では、各揺動外向面側接触点(i=1,2,3)と、各揺動内向面側接触点(i2=1、2,3)とのそれぞれの接触点では、揺動スクロール40と固定スクロール30とが隙間無く接触する。すなわち、常温において揺動スクロール40を矢印方向に偏心させて組み合わせた状態では、図24に示すように、δo1、δo2、δo3、δi1、δi2、δi3の各隙間における隙間寸法δ0は0になる。
 ただし、スクロール圧縮機1が運転を開始すると、上述したように揺動スクロール40及び固定スクロール30の温度は100℃以上の高温になるため、揺動渦巻部40b及び固定渦巻部30bは熱膨張する。揺動渦巻部40bは、固定渦巻部30bよりも線膨張係数の大きい素材で構成されているため、図23に示すように固定渦巻部30bよりも大きく膨張する。
 常温時に対する運転時の各隙間の隙間寸法の変化量δaは、図23に示すように巻き始め部から径方向外側に向かうにつれて大きくなる。具体的には、巻き始め部から図23の矢印で示した揺動スクロール40の偏心方向では、δo1、δo2、δo3の各隙間において、運転時の方が常温時よりも隙間寸法が狭くなり、且つ径方向外側の方が、より隙間寸法が狭まる。よって、図25に示すようにδo1、δo2、δo3の各隙間において、運転時の隙間寸法から常温時の隙間寸法を差し引いた変化量δaは、負値となり、且つ径方向外側の方がより変化量δaが大きくなる。
 一方、巻き始め部から揺動スクロール40の偏心方向とは反対方向では、図23に示すようにδi1、δi2、δi3の各隙間において、運転時の方が常温時よりも隙間寸法が広くなり、且つ径方向外側の方が、より隙間寸法が広がる。よって、図25に示すようにδi1、δi2、δi3の各隙間位置において、運転時の隙間寸法から常温時の隙間寸法を差し引いた変化量δaは正値となり、且つ径方向外側の方がより変化量δaが大きくなる。
 そして、運転時の各隙間の寸法関係は、δo3<δo2<δo1<δi1<δi2<δi3となる。ここでは、揺動スクロール40を固定スクロール30に対して偏心させずに組み合わせた状態における常温時と運転時との各隙間について説明したが、実際の運転時には、揺動スクロール40を図23の矢印方向に偏心させた状態で運転することになる。
 したがって、揺動スクロール40を図23の状態から矢印方向に偏心させると、図23において最も隙間寸法の小さい隙間δo3に対応する揺動外向面側接触点(i=3)が、まず最初に固定内向面インボリュート30cに接触する。そして、その他の接触点(i=1,2)では固定内向面インボリュート30cに接触せず、隙間ができる。また、揺動スクロール40の偏心方向とは反対側の接触点(i2=1,2,3)においても、揺動内向面インボリュート40cが固定外向面インボリュート30dに接触せず、隙間ができる。つまり、図23において揺動スクロール40を矢印方向に偏心させ、且つ運転時に膨張した状態の各隙間の隙間寸法δsをまとめると、図26に示すように、隙間δo3の隙間寸法δsは0となるが、その他のδo2、δo1、δi1、δi2、δi3の各隙間の隙間寸法δsは0にはならず、この順に大きくなる。
 隙間δo1及び隙間δi1は巻き始め部に位置する隙間であり、隙間δo1及び隙間δi1における隙間寸法δsが0ではない状態で運転すると、以下の問題が生じる。すなわち、最内圧縮室5a1と第2圧縮室5a2とが均圧する前に、固定渦巻部30b及び揺動渦巻部40bのそれぞれが巻き始め部において支えを失うことになり、巻き始め部の根元に大きな応力が発生してしまう。したがって、巻き始め部の隙間δo1及び隙間δi1における隙間寸法δsを0又は小さくしておくことが求められる。隙間δo1及び隙間δi1における隙間寸法δsを小さくするには、揺動スクロール40の偏心方向側のδo3、δo2、δo1の各隙間のうち、巻き始め部の隙間δo1を除く、隙間δo3及び隙間δo2の常温での隙間寸法δ0をできるだけ大きくしておくことが有効である。
 そこで、本実施の形態2では、運転時に生じる揺動渦巻部40bの膨張を予め見越して、内向面インボリュート30cを設けている。これにより、常温で揺動スクロール40を固定スクロール30に対して偏心させて組み合わせた際の、隙間δo3及び隙間δo2を、次の図27に示すように予め広げておくことができる。
 図27は、実施の形態2に係るスクロール圧縮機の圧縮部において常温にて揺動スクロールを固定スクロールに対して偏心させて組み合わせた際の各隙間における隙間寸法δ0を示す図である。図28は、実施の形態2に係るスクロール圧縮機の圧縮部における逃がし部の作用の説明図であって、比較例の常温時の隙間寸法と実施の形態2の運転時の隙間寸法との差δbを示す図である。図28が示す値は、図25の値と図27の値とを合算した値に相当する。図29は、実施の形態2に係るスクロール圧縮機の圧縮部における運転時の各隙間の隙間寸法δsを示す図である。図27~図29において、横軸は各隙間の位置、縦軸は隙間寸法(μm)を示している。
 本実施の形態2では、固定内向面インボリュート30cに逃がし部30c1を設けているため、図27に示すように常温での隙間δo2及び隙間δo3の隙間寸法δ0を予め確保できる。そして、比較例の常温時の隙間寸法に対する運転時の隙間寸法の差δbは、図28に示すように、揺動外向面インボリュート側の最も内側の接触点(i=1)に対応する隙間δo1では、負値となり、運転時の方が比較例の常温時よりも隙間寸法が狭くなっている。揺動外向面インボリュート側のその他の接触点(i=2,3)に対応する隙間δo2、隙間δo3では、差δbは正値となり、隙間寸法が広がっている。したがって、揺動スクロール40を固定スクロール30に対して偏心させ、且つ膨張した状態では、最も隙間寸法の小さい隙間δo1に対応する揺動外向面側接触点(i=1)が、まず最初に固定内向面インボリュート30cに接触し、図29に示すように隙間δo1の隙間寸法δsは0となる。そして、揺動外向面インボリュート側のその他の接触点(i=2,3)では固定内向面インボリュート30cに接触せず、隙間ができる。
 隙間δo1の隙間寸法δsが0の状態は、少なくとも巻き始め部の第1段が連通してから、第n段が連通するまでの間は維持される。すなわち、最内圧縮室5a1と第2圧縮室5a2が均圧が完了するまでは、揺動渦巻部40bの巻き始め部40eは、固定渦巻部30bの側面に支えられ、巻き始め部の根元に大きな応力が発生することを抑制でき、強度改善効果が得られる。
 一方、揺動内向面インボリュート40c側の最も内側の接触点(i2=1)に発生する隙間δi1、言い換えれば固定渦巻部30bの巻き始め部30eの隙間δi1では、図29に示すように隙間寸法δsが0とはならず、隙間が残っている。このように隙間が残っていると、固定渦巻部30bの巻き始め部30eが、第2圧縮室5a2の圧力と最内圧縮室5a1の圧力との差圧による荷重を受けた際に倒れるように変形する。しかし、固定渦巻部30bの巻き始め部30eが倒れるように変形しても、上記隙間寸法δs分変形したところで揺動渦巻部40b側の渦巻側面に支持される。このため、隙間寸法δsが小さい程、巻き始め部の根元に発生する応力を小さくできる。図29の隙間δi1での隙間寸法δsと、逃がし部30c1が無い場合の図26の同隙間δi1での隙間寸法δsとを比較すると、図29の隙間δi1での隙間寸法δsの方が減少している。このため、逃がし部30c1を設けることで、固定渦巻部30bの巻き始め部30eについても強度改善効果が得られる。
 なお、本実施の形態2では、揺動外向面インボリュート側の最も内側の接触点以外の接触点全てに、逃がし部30c1を設けているが、最も外側の接触点(i=3)にのみ、逃がし部30c1を設けても良い。つまり、第1段が連通するクランク角から第n段が連通するクランク角までの範囲で揺動スクロール40が公転運動する間、線膨張係数の大きい側の素材で構成された揺動渦巻部40bの揺動外向面側接触点のうち、少なくとも最も外側の接触点が非接触となるように逃がし部30c1が固定内向面インボリュート30cに設けられていればよい。
 最も外側の接触点(i=3)にのみ、逃がし部30c1を設けた場合、揺動外向面インボリュート側の最も内側の接触点(i=1)に発生する隙間寸法δsを完全に0にすることはできないが、逃がし部30c1を設けない場合よりは隙間寸法δsが小さくなるため、強度改善効果は得られる。この、最も外側にのみ、逃がし部30c1を設けた場合には、比較的差圧が小さく冷媒漏れが発生しにくい部分に逃がし部30c1を限定して設けることに相当するため、冷媒漏れを抑制でき、高い性能を得ることができる。このような、逃がし部30c1を設ける個所の数は、製品に必要な強度と性能に応じて、自由度をもって決定すればよい。
 また、本実施の形態2の逃がし部30c1を設けたことによる強度改善効果は、実施の形態1で説明した、巻き始め部の階段球根形状が、0.3π<φos(1)-φos(n)<0.7π、の関係を満たす構造に適用されることで、より効果的である。しかし、本実施の形態2は、この構造に適用されることに限定されない。
 本実施の形態2は、揺動スクロール40の揺動渦巻部40bと固定スクロール30の固定渦巻部30bとが組み合わされて複数の圧縮室5aが形成され、主軸7によって駆動された揺動スクロール40が固定スクロール30に対して公転運動を行うことで複数の圧縮室にて作動ガスの圧縮を行うスクロール圧縮機であって、揺動スクロール40の公転運動時の公転半径を可変とする可変クランク機構を備え、揺動渦巻部40b及び固定渦巻部30bは、外向面インボリュート曲線の伸開始点と内向面インボリュート曲線の伸開始点との間を複数の円弧で結んだ球根形状を有する巻き始め部をそれぞれ備えており、少なくとも一方の巻き始め部は、n個(n≧2)の球根形状が主軸7の軸方向に重ねられたn段重ねの階段状に形成されている。揺動スクロール40と固定スクロール30とは、互いに異なる線膨張係数の素材を用いて構成されている。巻き始め部の各段を、先端側から根元側に向かって第1段、第2段、・・・第n段とする。巻き始め部の第n段において揺動渦巻部40bと固定渦巻部30bとが離間することで、離間前に非連通であった2つの圧縮室が連通することを、第n段が連通すると表現する。このとき、第1段が連通するクランク角から第n段が連通するクランク角までの範囲で揺動スクロール40が公転運動する間、線膨張係数の大きい側の素材で構成されたスクロールの渦巻部の外向面インボリュートが、線膨張係数の小さい側の素材で構成されたスクロールの渦巻部の内向面インボリュートと接触する複数の接触点のうち、少なくとも最も外側の接触点が非接触となるように、固定渦巻部30bに逃がし部30c1が形成されている。
 これにより、線膨張係数の大きい素材側の渦巻部の巻き始め部については、離間前に非連通であった2つの圧縮室である最内圧縮室5a1と第2圧縮室5a2との均圧が完了するまで、線膨張係数の小さい側の素材で構成されたスクロールの渦巻部の側面に支えられる。このため、線膨張係数の大きい素材側の渦巻部の巻き始め部の根元に大きな応力が発生することを抑制でき、巻き始め部の強度改善効果が得られる。線膨張係数の小さい素材側の渦巻部の巻き始め部についても、運転中における、線膨張係数の大きい素材側の渦巻部との間の隙間を、逃がし部30c1を設けない場合に比べて小さくできるため、巻き始め部の根元に大きな応力が発生することを抑制でき、巻き始め部の強度改善効果が得られる。
実施の形態3.
 以下、本実施の形態3について説明するが、実施の形態1及び実施の形態2と重複するものについては、一部の説明を省略する。
 図30は、実施の形態3に係るスクロール圧縮機の圧縮部の横断面模式図である。
 上記実施の形態2では、固定内向面インボリュート30cに逃がし部30c1を設けていたが、本実施の形態3では、揺動外向面インボリュート40dに逃がし部40d1を設けている。
 逃がし部40d1を設ける範囲は、以下の7つのパラメータを用いて定義する。
 ・逃がし部40d1の始点40d1aの伸開角:φoa4
 ・逃がし部40d1の終点40d1bの伸開角:φob4
 ・固定内向面インボリュート30cの伸開終点30c2の伸開角:φie3
 ・固定渦巻部30bの第n段の内向面インボリュート伸開始点角:φis3(n)
 ・揺動渦巻部40bの第1段の外向面インボリュート伸開始点角:φos4(1)
 ・揺動渦巻部40bの第n段の外向面インボリュート伸開始点角:φos4(n)
 ・揺動外向面インボリュート40dの固定内向面インボリュート30cとの接触点の数:m=[(φie3-φis3(n))/2π]ここで、[]は小数点以下切り捨てを表す。
 揺動スクロール外向面側接触点の番号:i(内側から1,2,3・・・m)、m≧2としたとき、
 「i≧2」かつ「φoa4<(φos1(n))+2π×(i-1)」かつ「φob4>(φos1(1))+2π×(i-1)」を満足する範囲に逃がし部40d1を設ける。
 すなわち、揺動外向面インボリュート40dの第1段の伸開始点角φos(1)~第n段の伸開始点角φos(n)の方向にクランク角がある際に、i=2番目以降の揺動外向面側接触点において、揺動外向面インボリュート40dと固定内向面インボリュート30cとが非接触になるように逃がし部40d1が設けられている。言い換えれば、第1段が連通するクランク角から第n段が連通するクランク角までの範囲で揺動スクロール40が公転運動する間、線膨張係数の大きい側の素材で構成された揺動渦巻部40bの揺動外向面側接触点のうち、最も内側の接触点以外の接触点が非接触となるように逃がし部40d1が揺動外向面インボリュート40dに設けられている。
 本実施の形態3では、揺動外向面インボリュート側の最も内側の接触点以外の接触点全てに、逃がし部40d1を設けているが、最も外側の接触点(i=3)にのみ、逃がし部40d1を設けても良い。つまり、第1段が連通するクランク角から第n段が連通するクランク角までの範囲で揺動スクロール40が公転運動する間、線膨張係数の大きい側の素材で構成された揺動渦巻部40bの揺動外向面側接触点のうち、少なくとも最も外側の接触点が非接触となるように逃がし部40d1が揺動外向面インボリュート40dに設けられていればよい。
 本実施の形態3は、揺動スクロール40と固定スクロール30とは、互いに異なる線膨張係数の素材を用いて構成されている。巻き始め部の各段を、先端側から根元側に向かって第1段、第2段、・・・第n段とする。巻き始め部の第n段において揺動渦巻部40bと固定渦巻部30bとが離間することで、離間前に非連通であった2つの圧縮室が連通することを、第n段が連通すると表現する。このとき、第1段が連通するクランク角から第n段が連通するクランク角までの範囲で揺動スクロール40が公転運動する間、線膨張係数の大きい側の素材で構成されたスクロールの渦巻部の外向面インボリュートが、相手側の渦巻部の内向面インボリュートと接触する複数の接触点のうち、少なくとも最も外側の接触点が非接触となるように、揺動渦巻部40bに逃がし部40d1が形成されている。
 本実施の形態3により得られる効果は、実施の形態2と同様である。
 1 スクロール圧縮機、2 シェル、2a アッパーシェル、2b ミドルシェル、2c ロアーシェル、3 オイルポンプ、3a 油溜り、4 モータ、4a ロータ、4b ステータ、5 圧縮部、5a 圧縮室、5a1 最内圧縮室、5a2 第2圧縮室、5a3 最外圧縮室、6 フレーム、6a 吸入ポート、7 主軸、7a 偏心軸部、7b 油穴、8a 主軸受、8b 副軸受、9 スライダ、11 吸入管、12 吐出管、13 吐出チャンバー、13a 吐出弁、14 マフラー、15 オルダムリング、20 サブフレーム、21 電源端子、30 固定スクロール、30a 固定台板部、30b 固定渦巻部、30c 固定内向面インボリュート、30c1 逃がし部、30c1a 始点、30c1b 終点、30c2 伸開終点、30d 固定外向面インボリュート、30e 巻き始め部、30e1 第1段、30e2 第2段、30e3 第3段、30f 吐出ポート、40 揺動スクロール、40a 揺動台板部、40b 揺動渦巻部、40c 揺動内向面インボリュート、40d 揺動外向面インボリュート、40d1 逃がし部、40d1a 始点、40d1b 終点、40e 巻き始め部、40e1 第1段、40e2 第2段、40e3 第3段、40f 揺動軸受、50 連通流路、51 連通流路、301 小円弧部、301a 小円弧部、301b 小円弧部、302 大円弧部、303 伸開始点、303a 伸開始点、303b 伸開始点、401 小円弧部、401a 小円弧部、401b 小円弧部、402 大円弧部、402a 大円弧部、402b 大円弧部。

Claims (7)

  1.  揺動スクロールの揺動渦巻部と固定スクロールの固定渦巻部とが組み合わされて複数の圧縮室が形成され、主軸によって駆動された前記揺動スクロールが前記固定スクロールに対して公転運動を行うことで前記複数の圧縮室にて作動ガスの圧縮を行うスクロール圧縮機であって、
     前記揺動渦巻部及び前記固定渦巻部は、外向面インボリュート曲線の伸開始点と内向面インボリュート曲線の伸開始点との間を複数の円弧で結んだ球根形状を有する巻き始め部をそれぞれ備えており、少なくとも一方の前記巻き始め部は、n個(n≧2)の球根形状が前記主軸の軸方向に重ねられたn段重ねの階段状に形成され、
     階段状に形成された前記巻き始め部の各段における前記外向面インボリュート曲線の伸開始点角を、先端側から根元側に向かって順にφos(1),φos(2),φos(3),・・・,φos(n)としたとき、
     φos(1)>φos(2)>φos(3)>・・・>φos(n)
     かつ、0.3π<φos(1)-φos(n)<0.7π、の関係を満たすスクロール圧縮機。
  2.  揺動スクロールの揺動渦巻部と固定スクロールの固定渦巻部とが組み合わされて複数の圧縮室が形成され、主軸によって駆動された前記揺動スクロールが前記固定スクロールに対して公転運動を行うことで前記複数の圧縮室にて作動ガスの圧縮を行うスクロール圧縮機であって、
     前記揺動渦巻部及び前記固定渦巻部は、外向面インボリュート曲線の伸開始点と内向面インボリュート曲線の伸開始点との間を複数の円弧で結んだ球根形状を有する巻き始め部をそれぞれ備えており、少なくとも一方の前記巻き始め部は、n個(n≧2)の球根形状が前記主軸の軸方向に重ねられたn段重ねの階段状に形成され、
     前記揺動スクロールと前記固定スクロールとは、互いに異なる線膨張係数の素材を用いて構成されており、
     前記巻き始め部の各段を、先端側から根元側に向かって第1段、第2段、・・・第n段とし、
     前記巻き始め部の前記第n段において前記揺動渦巻部と前記固定渦巻部とが離間することで、離間前に非連通であった2つの前記圧縮室が連通することを、前記第n段が連通すると表現するとき、
     前記第1段が連通するクランク角から前記第n段が連通するクランク角までの範囲で前記揺動スクロールが公転運動する間、線膨張係数の大きい側の素材で構成されたスクロールの渦巻部の外向面インボリュートが、線膨張係数の小さい側の素材で構成されたスクロールの渦巻部の内向面インボリュートと接触する複数の接触点のうち、少なくとも最も外側の接触点が非接触となるように、前記揺動渦巻部又は前記固定渦巻部に逃がし部が形成されているスクロール圧縮機。
  3.  階段状に形成された前記巻き始め部の各段における前記外向面インボリュート曲線の伸開始点角を、先端側から根元側に向かって順にφos(1),φos(2),φos(3),・・・,φos(n)としたとき、
     φos(1)>φos(2)>φos(3)>・・・>φos(n)
     かつ、0.3π<φos(1)-φos(n)<0.7π、の関係を満たす請求項2記載のスクロール圧縮機。
  4.  前記逃がし部は、最も内側の接触点以外が非接触となるように前記揺動渦巻部又は前記固定渦巻部に形成されている請求項2又は請求項3記載のスクロール圧縮機。
  5.  前記揺動スクロールの素材にアルミ材、前記固定スクロールの素材に鋳鉄材を用いた請求項2~請求項4の何れか一項に記載のスクロール圧縮機。
  6.  前記巻き始め部の第1段~第n-1段の高さの合計の、第1段~第n段の高さの合計に対する比率が、25%~50%である請求項1~請求項5の何れか一項に記載のスクロール圧縮機。
  7.  第1段~第n-1段のそれぞれの根元の曲率半径Rが、第n段の根元の曲率半径よりも大きい請求項1~請求項6の何れか一項に記載のスクロール圧縮機。
PCT/JP2020/018962 2020-05-12 2020-05-12 スクロール圧縮機 WO2021229682A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022522135A JPWO2021229682A1 (ja) 2020-05-12 2020-05-12
PCT/JP2020/018962 WO2021229682A1 (ja) 2020-05-12 2020-05-12 スクロール圧縮機
GB2214508.0A GB2609324A (en) 2020-05-12 2020-05-12 Scroll compressor
US17/910,426 US20230132581A1 (en) 2020-05-12 2020-05-12 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018962 WO2021229682A1 (ja) 2020-05-12 2020-05-12 スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2021229682A1 true WO2021229682A1 (ja) 2021-11-18

Family

ID=78525999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018962 WO2021229682A1 (ja) 2020-05-12 2020-05-12 スクロール圧縮機

Country Status (4)

Country Link
US (1) US20230132581A1 (ja)
JP (1) JPWO2021229682A1 (ja)
GB (1) GB2609324A (ja)
WO (1) WO2021229682A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286979A (ja) * 1988-09-26 1990-03-27 Mitsubishi Electric Corp スクロール圧縮機
JPH09151865A (ja) * 1995-12-04 1997-06-10 Mitsubishi Heavy Ind Ltd スクロール流体機械
JP2008309020A (ja) * 2007-06-13 2008-12-25 Panasonic Corp スクロール式流体機械
JP2009174406A (ja) * 2008-01-24 2009-08-06 Panasonic Corp スクロール圧縮機
WO2015040720A1 (ja) * 2013-09-19 2015-03-26 三菱電機株式会社 スクロール圧縮機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709782B (zh) * 2015-06-10 2019-12-10 三菱电机株式会社 涡旋压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286979A (ja) * 1988-09-26 1990-03-27 Mitsubishi Electric Corp スクロール圧縮機
JPH09151865A (ja) * 1995-12-04 1997-06-10 Mitsubishi Heavy Ind Ltd スクロール流体機械
JP2008309020A (ja) * 2007-06-13 2008-12-25 Panasonic Corp スクロール式流体機械
JP2009174406A (ja) * 2008-01-24 2009-08-06 Panasonic Corp スクロール圧縮機
WO2015040720A1 (ja) * 2013-09-19 2015-03-26 三菱電機株式会社 スクロール圧縮機

Also Published As

Publication number Publication date
JPWO2021229682A1 (ja) 2021-11-18
GB202214508D0 (en) 2022-11-16
US20230132581A1 (en) 2023-05-04
GB2609324A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
JP3194076B2 (ja) スクロール形流体機械
US9353751B2 (en) Sealed scroll compressor for helium
US9157438B2 (en) Scroll compressor with bypass hole
JP5985068B2 (ja) スクロール圧縮機
JP2003269346A (ja) スクロール型流体機械
JPH07197891A (ja) スクロール式流体機械
JP5187418B2 (ja) スクロール型圧縮機
JP4789623B2 (ja) スクロール圧縮機
JP3338886B2 (ja) 密閉型電動スクロール圧縮機
JPS6342082B2 (ja)
WO2021229682A1 (ja) スクロール圧縮機
US4927341A (en) Scroll machine with relieved flank surface
JP3291844B2 (ja) スクロール形流体機械
WO2006019010A1 (ja) スクロール圧縮機
JP2001020878A (ja) スクロール圧縮機
JP4131561B2 (ja) スクロール圧縮機
JP2005163745A (ja) スクロール圧縮機
JPS59105986A (ja) スクロ−ル圧縮機
JP6008516B2 (ja) スクロール圧縮機
JP7223929B2 (ja) スクロール圧縮機
WO2023120619A1 (ja) スクロール型圧縮機
CN113316687B (zh) 涡旋式压缩机
JP2672508B2 (ja) スクロール型流体機械
JP2002081387A (ja) スクロール流体機械
JPS60230585A (ja) スクロ−ル圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522135

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202214508

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200512

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936050

Country of ref document: EP

Kind code of ref document: A1