WO2021228277A1 - 利用离心风机送风的风冷冰箱 - Google Patents

利用离心风机送风的风冷冰箱 Download PDF

Info

Publication number
WO2021228277A1
WO2021228277A1 PCT/CN2021/100125 CN2021100125W WO2021228277A1 WO 2021228277 A1 WO2021228277 A1 WO 2021228277A1 CN 2021100125 W CN2021100125 W CN 2021100125W WO 2021228277 A1 WO2021228277 A1 WO 2021228277A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fan
cavity
side wall
volute
Prior art date
Application number
PCT/CN2021/100125
Other languages
English (en)
French (fr)
Inventor
陈建全
朱小兵
费斌
王常志
冯衬
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to US18/042,085 priority Critical patent/US20230243568A1/en
Priority to EP21803711.7A priority patent/EP4174409A4/en
Priority to AU2021270948A priority patent/AU2021270948B2/en
Publication of WO2021228277A1 publication Critical patent/WO2021228277A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/30Insulation with respect to sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0651Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/068Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans
    • F25D2317/0683Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the fans the fans not of the axial type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0028Details for cooling refrigerating machinery characterised by the fans

Definitions

  • the invention relates to refrigeration and freezing technology, in particular to an air-cooled refrigerator that uses a centrifugal fan to supply air.
  • the fan is one of the indispensable components in the refrigerator, and it is generally arranged in the fan volute to pressurize the cooling airflow.
  • the fan volute in the prior art is not an optimal spiral design, and there is a wall transition point, so that the fluid pressure cannot be transferred naturally on the inner wall. When the fluid passes the transition point, the fluid flow state and flow rate will change significantly, which will cause a pressure difference and aerodynamic noise, which will affect the user experience.
  • An object of the present invention is to overcome at least one defect in the prior art and provide an air-cooled refrigerator that uses a centrifugal fan to supply air.
  • a further objective of the present invention is to optimize the flow characteristics of the refrigerating airflow and reduce energy consumption.
  • Another further object of the present invention is to simplify the installation process of the refrigerator.
  • the present invention provides an air-cooled refrigerator that uses a centrifugal fan to supply air, including:
  • the bottom liner defines a cooling chamber and a storage space, and the cooling chamber is arranged below the storage space;
  • the air duct backboard is arranged in front of the back wall of the bottom liner and defines a supply air duct with the back wall of the bottom liner, and the air duct backboard is provided with at least one air supply opening, so The air supply port is used to connect the air supply duct and the storage space;
  • Centrifugal fan which includes:
  • the volute is arranged at the rear of the cooling chamber obliquely from front to back, and defines a fan cavity at the front and a gradual exhaust cavity at the rear of the fan cavity, wherein the fan cavity is formed as a continuous
  • the upper cover is provided with an air inlet facing forward and upward, and the gradual exhaust cavity is set to widen backward from the fan cavity, and is formed at the rear end to be connected to the lower end of the air supply duct
  • the exhaust vent ;
  • the impeller is arranged in the fan cavity, the axis of which is opposite to the air inlet, and is used to promote the formation of the cooling air flow from the cooling chamber to the air supply duct, and the inner wall surface of the fan cavity is continuously smooth Transition to avoid turning points.
  • the side wall on the lateral side of the gradual exhaust air cavity is gradually recessed from the rear to the front inward from the air outlet, and is finally connected with the side wall of the fan cavity, thereby A volute tongue is formed with the side wall of the fan cavity, and the side wall on the other lateral side of the gradual exhaust cavity is a flat surface extending back and forth;
  • the side wall of the fan cavity forms a continuous logarithmic spiral line from the position of the volute tongue, and finally connects with the front end of the flat side wall of the gradual exhaust air cavity.
  • the distance from the center of the air inlet to the side wall of the fan cavity gradually increases from the position of the volute tongue to the position where it is in contact with the flat side wall of the gradual exhaust air cavity.
  • the distance from the center of the air inlet to the side plates on both sides of the bottom liner is different, and the distance from the center of the air inlet to the side plate on the side of the bottom liner close to the volute tongue is greater than to The distance between the bottom liner and the side plate on one side of the flat side wall of the gradual exhaust cavity.
  • volute includes:
  • the fan bottom shell is fixed to the rear of the bottom wall of the bottom liner;
  • the upper cover of the fan extends obliquely downward from the lower end of the air duct backboard into the cooling chamber, and is buckled on the bottom shell of the fan.
  • the upper cover of the fan and the back plate of the air duct are integrally formed.
  • the air duct back plate is further provided with at least one laterally extending water retaining rib below the air supply opening, which is used to block the condensed water at the air supply opening from flowing downward into the volute.
  • the air-cooled refrigerator also includes:
  • the evaporator is in the shape of a flat rectangular parallelepiped as a whole, and is arranged at the front of the cooling chamber;
  • the bottom wall of the bottom liner includes:
  • the evaporator support part is used to support the evaporator
  • the fan support part is arranged obliquely upwards from front to back from the rear end of the evaporator support part, and the fan bottom shell is fixed on the fan support part.
  • the bottom of the fan bottom case is provided with a plurality of damping viscous pads, and the plurality of damping viscous pads are used for bonding with the fan support part.
  • the fan bottom shell is also provided with a wire routing groove for accommodating the cables connected to the impeller.
  • a fan cavity and a gradual exhausting cavity are formed in the volute for accommodating the centrifugal fan, the fan cavity is formed into a continuous spiral shape, and the gradual exhausting cavity is arranged backward from the fan cavity
  • the inner wall of the fan cavity is continuously and smoothly transitioned to smoothly divert the cooling air flow pressurized by the centrifugal fan to the gradual exhaust air cavity, avoiding the turning point of the air flow, and minimizing the energy loss of the cooling air flow.
  • the air duct cover and the upper cover of the fan are integrally formed to form a modularization, which is convenient for mass production.
  • the installer can install the integrally formed part first, and then The upper cover of the evaporator can be directly connected with the integral molded part, which not only simplifies the installation process and reduces the cost, but also makes the entire air duct structure more stable.
  • Fig. 1 is a schematic diagram of a refrigerator according to an embodiment of the present invention.
  • Figure 2 is an exploded view of a refrigerator according to an embodiment of the present invention, with the outer shell concealed;
  • Figure 3 is a cross-sectional view of a refrigerator according to an embodiment of the present invention, with the outer shell concealed;
  • FIG. 4 is a positional relationship diagram of the fan bottom shell, the impeller, the fan upper cover and the air duct back plate in the refrigerator according to an embodiment of the present invention, in which the bent section above the air duct back plate is hidden;
  • FIG. 5 is a schematic diagram of the installation relationship between the fan upper cover and the air duct back plate viewed from the angle of the bottom of the fan upper cover in the refrigerator according to an embodiment of the present invention
  • Fig. 6 is a bottom view of the bottom case of the fan in the refrigerator according to an embodiment of the present invention, in which the vibration-damping adhesive pad and the wire groove are shown.
  • the refrigerator 1 of this embodiment may generally include a box body 10, and the box body 10 may include an outer shell, an inner liner, an insulation layer, and other accessories.
  • the outer shell is the outer structure of the refrigerator, which protects the entire refrigerator.
  • a heat insulation layer is added between the outer shell and the inner container of the box body 10, and the heat insulation layer is generally formed by a foaming process.
  • the liner includes at least a bottom liner 100, and the bottom liner 100 may generally be a frozen liner.
  • the air-cooled refrigerator 1 of this embodiment may further include a bottom liner 100, the bottom liner 100 defines a storage space 110 and a cooling chamber 120, and the cooling chamber 120 is disposed below the storage space 110 .
  • An upper evaporator cover 250 is arranged under the bottom liner 100, and the evaporator upper cover 250 is transversely arranged in the bottom liner 100 for defining the inner liner 100 to define the storage space 110 and the cooling chamber 120, wherein the cooling chamber 120 is provided Below the storage space 110, the evaporator 300 is disposed in the cooling chamber 120.
  • the evaporator 300 in this embodiment is located below the bottom liner 100.
  • This arrangement can prevent the evaporator in the traditional refrigerator from occupying the rear space of the freezer compartment and resulting in a reduction in the depth of the freezer compartment, especially for side-opening doors.
  • the horizontal dimension of the freezer compartment is inherently small, it is particularly important to increase the depth dimension, thereby improving the space utilization of the refrigerator 1 and facilitating the storage of large and difficult-to-separate items.
  • the lowermost freezer compartment is located at a low position, and the user needs to bend over or squat down to pick and place items in the freezer compartment, which is not convenient for the user to use, especially for the elderly.
  • the cooling chamber 120 occupies the space below the bottom liner 100, the height of the storage space 110 above the cooling chamber 120 is raised, and the bending of the storage space 110 when the user picks and places items is reduced.
  • the waist level can improve the user experience.
  • the evaporator 300 is in the shape of a flat rectangular parallelepiped as a whole, is arranged at the front of the cooling chamber 120 and is inclinedly arranged in the cooling chamber 120.
  • This method breaks through the technical shackles of the prior art that require the evaporator to be placed horizontally to reduce the depth size.
  • the oblique placement of the flat rectangular evaporator 300 will increase the length in the front and rear directions, the oblique placement makes the arrangement of other components in the cooling chamber 120 more reasonable, and the actual air flow field analysis proves that the wind circulation efficiency is also higher, and the drainage Also smoother.
  • the oblique arrangement of the evaporator 300 is one of the main technical improvements made in this embodiment.
  • the inclination angle range of the evaporator 300 is set to 7-8°, for example, it can be set to 7°, 7.5°, 8°, and preferably 7.5°.
  • the air-cooled refrigerator 1 of this embodiment may further include an air duct back plate 230 and a centrifugal fan.
  • the air duct back plate 230 is disposed in front of the rear wall 112 of the bottom liner 100, which can be used as at least a part of the air duct plate of the bottom liner 100, is substantially parallel to the rear wall 112 of the bottom liner 100, and is connected to the bottom liner 100.
  • the rear wall 112 of 100 defines a blowing air duct 130.
  • the air duct back plate 230 is provided with at least one air outlet 232, and the air outlet 232 is used to connect the air duct 130 and the storage space 110.
  • the centrifugal fan may also include a volute and an impeller 220.
  • the volute is arranged at the rear of the cooling chamber 120 obliquely from front to back.
  • the air outlet 140 connected to the lower end of the air supply duct 130; the impeller 220 is arranged in the fan cavity 242, and its axis 222 is opposite to the air inlet 244, and is used to promote the formation of cooling from the cooling chamber 120 to the air supply duct 130
  • the air flow and the inner wall surface 242a of the fan cavity 242 continuously and smoothly transition to avoid turning points.
  • the centrifugal fan can discharge the airflow from the air inlet 244 in a direction perpendicular to the air inlet 244, and the airflow in the cooling chamber 120 is sucked by the centrifugal fan from the air inlet 244 and then discharged in a direction perpendicular to the air inlet 244.
  • the fan chamber 242 then enters the gradual exhaust chamber 246 through the fan chamber 242.
  • the gradual exhaust chamber 246 connects the fan chamber 242 and the air supply duct 130, and finally discharges the refrigerating air after being pressurized by the fan centrifugal fan into the supply air Air duct 130.
  • the air supply air duct 130 is jointly defined by the air duct back plate 230 and the rear wall 112 of the bottom liner 100, and the air duct back plate 230 is provided with at least one connecting air duct 130 and the storage space 110
  • the air outlet 232, the cooling air discharged into the air duct 130 can be discharged from the air outlet 232 into the storage space 110 to exchange heat with the hot air in the storage space 110 and reduce the temperature of the storage space 110.
  • the front side of the upper cover 250 of the evaporator can also be provided with a return air port (not shown in the figure) connecting the storage space 110 and the cooling chamber 120.
  • the hot air after heat exchange can flow back to the cooling chamber 120 from the return air port, and continue to evaporate.
  • the heat exchanger 300 exchanges heat, thereby forming a circulating air flow path.
  • the inner wall surface 242a of the fan cavity 242 for accommodating the impeller 220 has a continuous smooth transition.
  • the continuous smooth transition referred to here can be understood as the inner wall surface 242a of the fan cavity 242 is a continuous and smooth arc-shaped wall surface, so as to smoothly divert the cooling air flow pressurized by the centrifugal fan to the gradual exhaust cavity 246.
  • the vortex generated by the turning point in the air flow field is greatly reduced, and the energy loss of the cooling air flow is minimized.
  • the lateral side wall of the gradual exhaust air cavity 246 is gradually recessed from the rear to the front inward from the air outlet 140, and finally faces the side wall of the fan cavity 242. Connected to the inner wall surface 242a of the fan cavity 242 to form a volute tongue 248.
  • the side wall on the other lateral side of the gradual exhaust air cavity 246 is a flat surface extending back and forth; It starts from a continuous logarithmic spiral line, and finally connects with the front end of the planar side wall of the gradual exhaust cavity 246.
  • the side walls of the gradual exhaust cavity 246 in this embodiment may include a first side wall 246a close to the volute tongue 248 and a second side wall 246b away from the volute tongue 248.
  • the first side wall 246a and the second side wall 246a are at opposite positions to jointly define a gradual exhaust cavity 246.
  • the first side wall 246a is gradually recessed from back to front inward from the beginning on one side of the air outlet 140, and the second side wall 246b is a flat shape extending back and forth from the beginning on the other side of the air outlet 140. Extending to the inner wall surface 242a of the fan cavity 242.
  • the first side wall 246a, the inner wall surface 242a of the fan cavity 242, and the second side wall 246b are arranged in sequence.
  • the inner part of the airflow circulates in the vicinity of the volute tongue 248 to optimize the flow characteristics of the airflow.
  • the technical effects achieved by the volute tongue 248 formed in the volute and the inner wall surface 242a of the fan cavity 242 in a logarithmic spiral shape in this embodiment have been verified by trial products.
  • backward-to-front direction can be understood as the direction from the air duct 130 to the storage space 110, and the inward direction can be understood as the direction toward the inner wall surface 242a of the fan cavity 242.
  • the distance from the center of the air inlet 244 to the inner wall surface 242a of the fan cavity 242 gradually increases from the position of the volute tongue 248 to the position where it is in contact with the planar side wall of the gradual exhaust cavity 246.
  • point O represents the center of the air inlet 244, and R represents the distance from the center of the air inlet 244 to the inner wall surface 242 a of the fan cavity 242. It is not difficult to see that the inner wall surface 242a of the fan cavity 242 can gradually expand from the end close to the volute tongue 248 to the end far away from the volute tongue 248 to further optimize the flow characteristics of the airflow. Its technical effect has been verified by trial products.
  • the distance from the center of the air inlet 244 to the side plates 114 on both sides of the bottom liner 100 is different.
  • the distance is greater than the distance to the side plate 114 of the bottom liner 100 that is close to the planar side wall of the gradual exhaust cavity 246.
  • L1 represents the distance between the center O of the air inlet 244 and the side of the air duct back plate 230 close to the volute tongue 248, and L2 represents the center O of the air inlet 244 and the wind away from the volute tongue 248.
  • the air duct back plate 230 is located in front of the rear wall 112 of the bottom liner 100, and the sides of the air duct back plate 230 are connected to the side plates 114 of the bottom liner 100, respectively.
  • L1 can represent the distance from the center O of the air inlet 244 to the side plate 114 on the side of the bottom liner 100 close to the volute tongue 248, and L2 can represent the center O of the air inlet 244 to the bottom liner 100 away from the volute tongue 248.
  • the distance from the side plate 114 to the side It is not difficult to see from Figure 5 that the length of L1 is greater than the length of L2. That is to say, the air inlet 244 is not located in the middle under the air duct back plate 230. This unique setting is the conclusion drawn by the inventor after many experiments to further optimize the flow characteristics of the airflow.
  • this arrangement allows the centrifugal fan to be located on one side of the cooling chamber 120 to make room for a part of the lower part of the space, which facilitates the arrangement of pipe sections or other components of the evaporator 300, thereby making the layout of the entire cooling chamber 120 more reasonable. compact.
  • the volute includes a fan bottom case 210 and a fan upper cover 240.
  • the fan bottom shell 210 is fixed to the rear of the bottom wall of the bottom inner liner 100; the fan upper cover 240 extends from the lower end of the air duct back plate 230 obliquely downward into the cooling chamber 120, and is buckled on the fan bottom shell 210.
  • the fan upper cover 240 is located above the fan bottom housing 210, that is, the air inlet 244 can be opened on the fan upper cover 240, and the fan bottom housing 210 and the fan upper cover 240 can jointly define the above embodiment The fan cavity 242 and the gradual exhaust air cavity 246 in the middle.
  • the fan bottom case 210 After the fan bottom case 210 is connected with the fan upper cover 240, it can also extend downwardly into the cooling chamber 120 obliquely, and an air outlet 140 is formed at the position where the rear end of the fan bottom case 210 is connected with the air duct back plate 230.
  • the fan bottom housing 210 and the fan upper cover 240 may be connected together in a snap-fit manner.
  • a plurality of hooks 215 are provided on the outer edge of the fan bottom housing 210.
  • the upper cover 240 of the fan may be provided with a plurality of buckles (not shown in the figure) that cooperate with the hooks 215.
  • the hook 215 and the buckle are used to fix the fan bottom case 210 and the fan upper cover 240 together, and are easy to disassemble and install. Of course, it can also be connected in other fixed ways, which will not be repeated here.
  • the fan upper cover 240 and the air duct back plate 230 are integrally formed. This method is different from the air duct plate and the fan volute in the prior art.
  • the air duct plate and the fan volute arranged in the air duct are generally two relatively independent components. When assembling, the installer generally needs to connect the air duct plate and the fan volute through a large number of fasteners, which will cause the installation process to be complicated and increase the cost, which is not conducive to mass production.
  • the air duct back plate 230 and the fan upper cover 240 are integrally formed to form a modularity, which is convenient for mass production. And when assembling, the installer can install the integral part first, and then directly connect the evaporator upper cover 250 with the integral part, which not only simplifies the installation process, reduces the cost, but also makes the entire air duct structure more stable .
  • the air duct back plate 230 is further provided with at least one laterally extending water retaining rib 235 below the air outlet 232 to block the condensed water at the air outlet 232 downward. Flow into the volute.
  • the water retaining ribs 235 may be arranged on the side of the air duct back plate 230 facing the storage compartment 110. Since the air flow contains some condensed water, when the air flow encounters the air duct back plate 230, it may adhere to its surface , The water retaining ribs 235 can delay the descending speed of the condensed water, try to make all the condensed water evaporate, and avoid falling into the fan cavity 242 to accumulate and causing malfunctions.
  • the lateral extension can refer to horizontal extension, or it can be understood that the water retaining ribs 235 have a certain inclination angle. Both of the above two methods can delay the falling speed of the condensed water on the water retaining ribs 235.
  • the bottom wall of the bottom liner 100 may include an evaporator support portion 150 and a fan support portion 160.
  • the evaporator support portion 150 is used to support the evaporator 300; the fan support portion 160 is inclined upward from the front to the back from the rear end of the evaporator support portion 150, and the fan bottom case 210 is fixed on the fan support portion 160, thereby making the fan cavity 242 as a whole It is installed obliquely at the rear of the evaporator 300.
  • the evaporator support portion 150 and the fan support portion 160 are connected, and it can be used as a part of the partition plate for separating the inner tank 100 and the press chamber 180 in the box body 10.
  • the front part of the evaporator support 150 can also be provided with an inclined part 170.
  • the inclined part 170 is inclined from the front end of the bottom wall of the bottom liner 100 from the front to the back and downward.
  • the evaporator 300 is obliquely installed in the cooling chamber 120, and a drainage groove 152 is formed at the position where the inclined portion 170 and the evaporator support portion 150 meet to receive the defrosting water on the evaporator 300. .
  • the fan support portion 160 is inclined upward from the front to the back from the rear end of the evaporator support portion 150.
  • the inclination angle of the fan support portion 160 is greater than the inclination angle of the evaporator support portion 150, and the fan support portion 160 is opposite to
  • the inclination angle in the horizontal direction is set to 36-37°, for example, it can be set to 36°, 36.5°, 37°, and preferably 36.7°.
  • the fan bottom case 210 acts on the fan support portion 160, and it can also be inclined at the above-mentioned angle.
  • a plurality of damping adhesive pads 212 are provided at the bottom of the fan bottom case 210, and the plurality of damping adhesive pads 212 are bonded to the fan support portion 160.
  • the damping viscous pad 212 can be made of a flexible and viscous material.
  • the bottom of the fan bottom housing 210 is provided with three damping viscous pads 212 protruding outward, and they are approximately 120° distributed on the fan bottom housing 210
  • the vibration-damping adhesive pad 212 made of flexible material can also effectively reduce the noise of the fan blade 220 during operation, and reduce the fan blade 220 The efficiency of vibration transmission during operation improves the user experience.
  • the number of the vibration-damping adhesive pads 212 can also be set to two, four, five or more, and the present invention does not specifically limit the specific number and distribution positions of the vibration-damping adhesive pads 212.
  • the fan bottom housing 210 is further provided with a wiring groove 214 for accommodating the cables connected to the impeller 220.
  • the bottom of the fan bottom housing 210 is recessed inward to form a wiring groove 214, that is, the wiring groove 214 is located on the outer surface of the fan bottom housing 210, and an elastic pressure can be set above the surface of the wiring groove 214.
  • the wiring board 216 and the front part of the wiring groove 214 may also be provided with a threading hole 218.
  • the cables of the impeller 220 can be arranged in the cable trough 214 along the length direction, and the elastic crimping plate 216 can fix the position of the cables of the impeller 220 to prevent the cables from slipping out of the cable trough 214 loosely.
  • the cable of the impeller 220 is fixed by the wire groove 214 and the elastic crimping plate 216 and then enters the inner surface of the fan bottom housing 210 (that is, enters the fan cavity 242) through the thread hole 218, and then can be electrically connected to the impeller 220.
  • the air duct back plate 230 is an integrally injection molded single-layer plate, and the upper part of the air duct back plate 230 has a crease groove 236 for easy use during installation.
  • the crease groove 236 bends the air duct back plate 230.
  • the upper part of the air duct back plate 230 is provided with a bending section 238, and the lower part of the bending section 238 can extend into the crease groove 236, and can rotate a certain angle around the crease groove 236 to reduce The height of the air duct backboard 230.
  • the installer can extend the bending section 238 into the crease groove 236 and rotate it outward by a certain angle, so that the height of the air duct back plate 230 is reduced, and then the installer can first remove the rest of the air duct cover. The position is connected with the inner liner 100 or other parts, and finally the bending section 238 is folded back to its position to simplify the installation process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种利用离心风机送风的风冷冰箱,包括底部内胆、风道背板和离心风机,底部内胆限定有冷却室和储物空间,风道背板设置于底部内胆的后壁的前方,并与所述底部内胆的后壁限定出送风风道,离心风机包括蜗壳和叶轮,蜗壳从前向后向上倾斜地布置于冷却室的后部,其内部限定有风机腔以及渐阔排风腔,风机腔成型为连续的螺旋状,渐阔排风腔设置为从风机腔向后渐阔,叶轮设置于风机腔内,风机腔的内壁面连续光滑过渡。本发明的蜗壳的风机腔内壁面连续光滑过渡,能够顺畅地将经离心风机增压的制冷气流导流至渐阔排风腔,避免出现气流的转捩点,减小了制冷气流的能量损失,实用性强,可以推广使用。

Description

利用离心风机送风的风冷冰箱 技术领域
本发明涉及冷藏冷冻技术,特别是涉及一种利用离心风机送风的风冷冰箱。
背景技术
风机是冰箱中必不可少的器件之一,其一般设置在风机蜗壳内,以对冷却气流进行增压。但是现有技术中的风机蜗壳不是最优的螺旋线设计,存在壁面转捩点,这样流体压力不能自然地在内壁面过渡传递。当流体通过转捩点时,流体的流动状态和流速会发生明显地变化,进而引起压力段差和气动噪声,影响用户的体验感。
发明内容
本发明的一个目的旨在克服现有技术中的至少一个缺陷,提供一种利用离心风机送风的风冷冰箱。
本发明一个进一步的目的是要使得优化制冷气流的流动特性,降低能耗。
本发明另一个进一步的目的是要简化冰箱的安装流程。
特别地,本发明提供了一种利用离心风机送风的风冷冰箱,包括:
底部内胆,限定有冷却室和储物空间,所述冷却室设置于所述储物空间的下方;
风道背板,设置于所述底部内胆的后壁的前方,并与所述底部内胆的后壁限定出送风风道,并且所述风道背板开设有至少一个送风口,所述送风口用于连通所述送风风道以及所述储物空间;
离心风机,其包括:
蜗壳,从前向后向上倾斜地布置于所述冷却室的后部,其内部限定有位于前部的风机腔以及位于风机腔后部的渐阔排风腔,其中所述风机腔成型为连续的螺旋状,其上盖开设有朝向前上方的进风口,所述渐阔排风腔设置为从所述风机腔向后渐阔,并在后端形成与所述送风风道的下端相连的排风口;
叶轮,设置于所述风机腔内,其轴线与所述进风口相对,用于促使形成 从所述冷却室排向所述送风风道的制冷气流,并且所述风机腔的内壁面连续光滑过渡,以避免出现转捩点。
进一步地,所述渐阔排风腔的横向一侧的侧壁从所述排风口处起始从后向前向内逐渐凹入,并最终与所述风机腔的侧壁相接,从而与所述风机腔的侧壁形成蜗舌,所述渐阔排风腔的横向另一侧的侧壁为前后延伸的平面状;
所述风机腔的侧壁从所述蜗舌的位置处起始呈连续的对数螺旋型线,并最终与所述渐阔排风腔的平面状侧壁的前端相接。
进一步地,所述进风口的中心至所述风机腔的侧壁的距离从所述蜗舌的位置至与所述渐阔排风腔的平面状侧壁相接的位置逐渐增大。
进一步地,所述进风口的中心至所述底部内胆两侧侧板的距离不同,所述进风口的中心至所述底部内胆靠近于所述蜗舌一侧的侧板的距离大于至所述底部内胆靠近于所述渐阔排风腔的平面状侧壁一侧的侧板的距离。
进一步地,所述蜗壳包括:
风机底壳,固定于所述底部内胆底壁的后部;
风机上盖,从所述风道背板的下端倾斜向下伸入所述冷却室内,并罩扣在所述风机底壳上。
进一步地,所述风机上盖与所述风道背板为一体成型件。
进一步地,所述风道背板在所述送风口的下方还设置有至少一条横向延伸的挡水筋,用于阻挡所述送风口处的冷凝水向下流入所述蜗壳。
进一步地,风冷冰箱还包括:
蒸发器,整体呈扁平长方体状,布置于所述冷却室的前部;
所述底部内胆的底壁包括:
蒸发器支撑部,用于支撑所述蒸发器;
风机支撑部,从所述蒸发器支撑部的后端从前至后向上倾斜设置,所述风机底壳固定于所述风机支撑部上。
进一步地,所述风机底壳的底部设置有多个减振黏性垫,并利用多个所述减振黏性垫与所述风机支撑部粘接。
进一步地,所述风机底壳还开设有走线槽,用于容纳连接所述叶轮的线缆。
本发明的风冷冰箱中,用于容置离心风机的蜗壳中形成有风机腔和渐阔排风腔,风机腔成型为连续的螺旋状,渐阔排风腔设置为从风机腔向后渐阔, 风机腔的内壁面连续光滑过渡,以顺畅地将经离心风机增压的制冷气流导流至渐阔排风腔,避免出现气流的转捩点,尽量减小制冷气流的能量损失,并且其技术效果已经得到试制产品的验证。
进一步地,本发明的风冷冰箱中,风道盖板与风机上盖为一体成型件,以形成模块化,便于批量生产,并且在组装时,安装人员可以先安装该一体成型件,并且然后可以直接将蒸发器上盖与该一体成型件连接,不仅可以简化安装流程,降低成本,又可以使得整个风道结构更加稳固。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意图;
图2是根据本发明一个实施例的冰箱的分解图,其中隐去了外壳;
图3是根据本发明一个实施例的冰箱的截面图,其中隐去了外壳;
图4是根据本发明一个实施例的冰箱中风机底壳、叶轮、风机上盖和风道背板的位置关系图,其中隐去了风道背板上方的弯折段;
图5是根据本发明一个实施例的冰箱中以正视于风机上盖底部的角度观察到的风机上盖与风道背板安装关系示意图;
图6是根据本发明一个实施例的冰箱中风机底壳的仰视图,其中示出了减振黏性垫和走线槽。
具体实施方式
在本实施例的描述中,需要理解的是,术语“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“进深”等指示的方位或置关系为基于冰箱正常使用状态下的方位作为参考,并参考附图所示的方位或位置关系可以确定,例如指示方位的“前”指的是冰箱朝向用户的一侧。这仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发 明的限制。
请参见图1,本实施例的冰箱1一般性地可包括箱体10,箱体10可以包括外壳、内胆、隔热层及其他附件等构成。外壳是冰箱的外层结构,保护着整个冰箱。为了隔绝与外界的热传导,在箱体10的外壳和内胆之间加有隔热层,隔热层一般通过发泡工艺构成。内胆可以为一个或多个,根据功能可以任意被划分为冷藏内胆、变温内胆、冷冻内胆等,具体的内胆个数以及功能可以根据冰箱的使用需求进行配置。在本实施例中内胆至少包括底部内胆100,底部内胆100一般可为冷冻内胆。
请参见图2和图3,本实施例的风冷冰箱1还可以包括底部内胆100,底部内胆100限定有储物空间110和冷却室120,冷却室120设置于储物空间110的下方。底部内胆100的下方设置有蒸发器上盖250,蒸发器上盖250横向设置于底部内胆100内,用于将内胆100限定出储物空间110和冷却室120,其中冷却室120设置于储物空间110的下方,蒸发器300设置在冷却室120内。
也即是,本实施例中的蒸发器300位于底部内胆100的下方,这种设置方式能够避免传统冰箱中蒸发器占用冷冻室后部空间而导致冷冻室的进深减小,尤其对于对开门的冰箱来说,在冷冻室横向尺寸本就较小的情况下,增加其深度尺寸尤为重要,由此提升了冰箱1的空间利用率,方便了体积较大且不易分隔物品的存放。
另外,传统冰箱中,位于最下方的冷冻室所处位置较低,用户需要大幅度弯腰或蹲下才能对该冷冻室进行取放物品的操作,不便于用户使用,尤其不方便老人使用。而本实施例中,由于冷却室120占用了底部内胆100的下方空间,抬高了冷却室120上方的储物空间110的高度,降低用户对储物空间110进行取放物品操作时的弯腰程度,从而可提升用户的使用体验。
在实施例中,蒸发器300整体呈扁平长方体状,布置于冷却室120的前部,并倾斜设置在冷却室120中。这种方式突破了现有技术减少进深尺寸需要使蒸发器水平放置的技术桎梏。虽然扁平长方体的蒸发器300倾斜放置会导致前后方向的长度增加,但是将其斜置使得冷却室120内其他部件的布置更加合理,而且经过实际气流流场分析证实风循环效率也更加高,排水也更加顺畅。蒸发器300倾斜设置的布局方式是本实施例做出的主要技术改进之一。在一些具体的实施例中,蒸发器300的倾斜角度范围设置为7~8°,例 如可以设置为7°、7.5°、8°,优选为7.5°。
请参见图2至图5,本实施例的风冷冰箱1还可以包括风道背板230和离心风机。风道背板230设置于底部内胆100的后壁112的前方,其可以作为底部内胆100的风道板的至少一部分,大致平行于底部内胆100的后壁112,并与底部内胆100的后壁112限定出送风风道130。并且风道背板230开设有至少一个送风口232,送风口232用于连通送风风道130以及储物空间110。
离心风机还可以包括蜗壳和叶轮220,蜗壳从前向后向上倾斜地布置于冷却室120的后部,其内部限定有位于前部的风机腔242以及位于风机腔242后部的渐阔排风腔246,其中风机腔242成型为连续的螺旋状,其上盖开设有朝向前上方的进风口244,渐阔排风腔246设置为从风机腔242向后渐阔,并在后端形成与送风风道130的下端相连的排风口140;叶轮220设置于风机腔242内,其轴线222与进风口244相对,用于促使形成从冷却室120排向送风风道130的制冷气流,并且风机腔242的内壁面242a连续光滑过渡,以避免出现转捩点。
在本实施例中,离心风机可以将来自进风口244的气流沿垂直于进风口244的方向排出,冷却室120的气流被离心风机从进风口244吸入后沿垂直于进风口244的方向排至风机腔242,然后通过风机腔242进入渐阔排风腔246,渐阔排风腔246连接风机腔242与送风风道130,最终将经过风机离心风机增压后的制冷气流排入送风风道130。
送风风道130是由风道背板230和底部内胆100的后壁112共同限定出的,并且风道背板230开设有至少一个用于连通送风风道130以及储物空间110的送风口232,排入送风风道130的制冷气流能够从送风口232排入储物空间110,以与储物空间110的热空气进行换热,降低储物空间110的温度。蒸发器上盖250的前侧还可以设置连通储物空间110和冷却室120的回风口(图中未示出),经过换热的热空气可以由回风口回流至冷却室120,继续与蒸发器300进行换热,从而形成循环的气流路径。
本实施例中,用于容纳叶轮220的风机腔242的内壁面242a为连续光滑过渡。此处所指的连续光滑过渡可以理解为风机腔242的内壁面242a为一段连续且光滑的弧形壁面,以顺畅地将经离心风机增压的制冷气流导流至渐阔排风腔246,以降低出现转捩点的概率,使得气流流场中因转捩点产生 的涡流大大减少,尽量减小制冷气流的能量损失。
在本发明的一些实施例中,渐阔排风腔246的横向一侧的侧壁从排风口140处起始从后向前向内逐渐凹入,并最终与风机腔242的侧壁相接,从而与风机腔242的内壁面242a形成蜗舌248,渐阔排风腔246的横向另一侧的侧壁为前后延伸的平面状;风机腔242的内壁面242a从蜗舌248的位置处起始呈连续的对数螺旋型线,并最终与渐阔排风腔246的平面状侧壁的前端相接。
请参见图5,本实施例中的渐阔排风腔246的侧壁可以包括靠近蜗舌248的第一侧壁246a和远离蜗舌248的第二侧壁246b,第一侧壁246a和第二侧壁246b处于相对的位置,以共同限定出渐阔排风腔246。第一侧壁246a从排风口140一侧的起始处从后向前向内逐渐凹入,第二侧壁246b为前后延伸的平面状,从排风口140另外一侧的起始处延伸至风机腔242的内壁面242a。也即是,第一侧壁246a、风机腔242的内壁面242a和第二侧壁246b依次设置,第一侧壁246a和风机腔242的内壁面242a连接处形成蜗舌248,使风机腔242内部分气流在蜗舌248附近内循环流动,以优化气流的流动特性。本实施例蜗壳中形成的蜗舌248以及呈对数螺旋型线的风机腔242的内壁面242a所取得的技术效果已经得到试制产品的验证。
需要说明的是,上述所指的从后向前的方向可以理解为由送风风道130指向储物空间110的方向,向内的方向可以理解为朝向风机腔242的内壁面242a的方向。
在一些具体的实施例中,进风口244的中心至风机腔242的内壁面242a的距离从蜗舌248的位置至与渐阔排风腔246的平面状侧壁相接的位置逐渐增大。
请参见图5,图5中O点表示进风口244的中心,R表示进风口244的中心至风机腔242的内壁面242a的距离。不难看出,风机腔242的内壁面242a可以呈由靠近蜗舌248的一端向远离靠近蜗舌248的一端渐扩,进一步优化气流的流动特性,其技术效果已经得到试制产品的验证。
在本发明的一些实施例中,进风口244的中心至底部内胆100两侧侧板114的距离不同,进风口244的中心至底部内胆100靠近于蜗舌248一侧的侧板114的距离大于至底部内胆100靠近于渐阔排风腔246的平面状侧壁一侧的侧板114的距离。
请参见图2和图5,图5中L1表示进风口244的中心O与靠近蜗舌248的风道背板230侧边的距离,L2表示进风口244的中心O与远离蜗舌248的风道背板230侧边的距离。风道背板230位于底部内胆100的后壁112前方,风道背板230的侧边与底部内胆100的侧板114分别连接。也即是,L1可以表示进风口244的中心O至底部内胆100靠近蜗舌248一侧的侧板114的距离,L2可以表示进风口244的中心O至底部内胆100远离蜗舌248一侧的侧板114的距离。由图5不难看出,L1的长度大于L2的长度。也就是说,进风口244并非位于风道背板230下方中间,这种独特的设置是发明人经过多次试验得出的结论,进一步优化气流的流动特性。另外,这种设置方式能够使离心风机处于冷却室120的一侧,以让出其下部的一部分空间,便于布置蒸发器300的管段或其他元器件,进而使整个冷却室120的布置更加合理、紧凑。
请参见图2至图6,在本发明的一些实施例中,蜗壳包括风机底壳210和风机上盖240。风机底壳210固定于底部内胆100底壁的后部;风机上盖240从风道背板230的下端倾斜向下伸入冷却室120内,并罩扣在风机底壳210上。
在本实施例中,风机上盖240位于风机底壳210的上方,也就是说,进风口244可以开设于风机上盖240上,风机底壳210和风机上盖240可以共同限定出上述实施例中的风机腔242和渐阔排风腔246。风机底壳210与风机上盖240连接后同样可以倾斜地向下伸入冷却室120内,并且风机底壳210的后端与风道背板230相接的位置处形成排风口140。
请参见图6,风机底壳210和风机上盖240可以采用卡接的形式连接在一起。具体地,风机底壳210的外缘上设置有多个卡钩215,对应地,风机上盖240上可以设置有多个与卡钩215相配合的卡扣(图中未示出),通过卡钩215和卡扣以将风机底壳210和风机上盖240固定连接一起,而且便于拆卸和安装。当然还可以通过其他固定的方式进行连接,在此不作赘述。
进一步地,风机上盖240与风道背板230为一体成型件。这种方式区别于现有技术中风道板与风机蜗壳。现有冰箱中,风道板与设置在风道中的风机蜗壳一般为两个相对独立的器件。在组装时,安装人员一般需要将风道板与风机蜗壳通过大量的紧固件连接起来,这会造成安装工艺复杂且增大成本,不利于批量生产。
而本实施例中的风道背板230与风机上盖240为一体成型件,以形成模块化,便于批量生产。并且在组装时,安装人员可以先安装该一体成型件,并且然后可以直接将蒸发器上盖250与该一体成型件连接,不仅可以简化安装流程,降低成本,又可以使得整个风道结构更加稳固。
请参见图4,在本发明的一些实施例中,风道背板230在送风口232的下方还设置有至少一条横向延伸的挡水筋235,用于阻挡送风口232处的冷凝水向下流入蜗壳。
本实施例中,挡水筋235可以设置在风道背板230朝向储物间室110的一面上,由于气流中含有部分冷凝水,当气流遇到风道背板230时可能会附着其表面,挡水筋235可以延缓冷凝水的下降速度,尽量使得冷凝水全部蒸发,避免落入风机腔242堆积,造成故障。
在本实施例中,横向延伸可以指水平延伸,也可以理解为挡水筋235具有一定的倾斜角度,上述两种方式均可以延缓挡水筋235上的冷凝水下落速度。
请参见图3,在本发明的一些实施例中,底部内胆100的底壁可以包括蒸发器支撑部150和风机支撑部160。蒸发器支撑部150用于支撑蒸发器300;风机支撑部160从蒸发器支撑部150的后端从前至后向上倾斜设置,风机底壳210固定于风机支撑部160上,从而使得风机腔242整体倾斜设置于蒸发器300的后部。
在本实施例中,蒸发器支撑部150和风机支撑部160相连接,并且其可以作为箱体10中用于分隔内胆100与压机仓180的分隔板一部分。其中蒸发器支撑部150的前部还可以设置倾斜部170,倾斜部170从底部内胆100的底壁的前端从前至后向下倾斜设置,蒸发器支撑部150从倾斜部170的后端从前至后向上倾斜设置,以将蒸发器300倾斜地设置在冷却室120,并且倾斜部170与蒸发器支撑部150相接的位置处形成有排水槽152,以承接蒸发器300上的化霜水。
风机支撑部160从蒸发器支撑部150的后端从前至后向上倾斜设置,在一些优选的实施例中,风机支撑部160的倾斜角度大于蒸发器支撑部150的倾斜角度,风机支撑部160相对于水平方向的倾斜角度设置为36~37°,例如可以设置为36°、36.5°、37°,优选为36.7°。相应地,风机底壳210作用于风机支撑部160,同样也可以呈上述角度倾斜设置。
请参见图6,在本发明的一些实施例中,风机底壳210的底部设置有多个减振黏性垫212,并利用多个减振黏性垫212与风机支撑部160粘接。
减振黏性垫212可以为柔性且具有粘滞力的材料制成,风机底壳210的底部设置向外凸起有三个减振黏性垫212,且大致呈120°分布在风机底壳210的下部,以实现将风机支撑部160与风机底壳210粘连,同时柔性材料制成的减振黏性垫212还可以有效地降低风机叶片220在运行时的噪音,且减小了风机叶片220在运行时振动传递效率,提高了用户的体验感。需要说明的是,减振黏性垫212的数量还可以设置为两个、四个、五个或更多,本发明对减振黏性垫212的具体数量和分布位置不作特殊限定。
请参见图6,在本发明的一些实施例中,风机底壳210还开设有走线槽214,用于容纳连接叶轮220的线缆。
具体地,风机底壳210的底部向内部凹入以形成走线槽214,也就是说,走线槽214处于风机底壳210的外表面上,走线槽214的表面上方还可以设置弹性压线板216,走线槽214的前部还可以设置穿线孔218。叶轮220的线缆可以沿长度方向设置在走线槽214内,弹性压线板216可以固定叶轮220的线缆的位置,避免线缆松动滑出走线槽214。叶轮220的线缆经过线槽214和弹性压线板216的固定后由穿线孔218进入风机底壳210的内表面(也即是进入风机腔242),然后可以与叶轮220电连接。
请参见图2至图4,在本发明的一些实施例中,风道背板230为一体注塑成型的单层板,风道背板230的上部具有折痕槽236,以便于在安装时利用折痕槽236对风道背板230进行弯折。
在本实施例中,风道背板230的上部设置有弯折段238,弯折段238的下部可以伸入至折痕槽236,并能够绕折痕槽236转动一定的角度,以减小风道背板230的高度。安装时,安装人员可以将弯折段238伸入至折痕槽236内并向外旋转一定的角度,使得风道背板230的高度减小,然后安装人员可以先将风道盖板的其余位置与内胆100或其他部件连接,最后将弯折段238翻折归位,以简化安装流程。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修 改。

Claims (10)

  1. 一种利用离心风机送风的风冷冰箱,包括:
    底部内胆,限定有冷却室和储物空间,所述冷却室设置于所述储物空间的下方;
    风道背板,设置于所述底部内胆的后壁的前方,并与所述底部内胆的后壁限定出送风风道,并且所述风道背板开设有至少一个送风口,所述送风口用于连通所述送风风道以及所述储物空间;
    离心风机,其包括:
    蜗壳,从前向后向上倾斜地布置于所述冷却室的后部,其内部限定有位于前部的风机腔以及位于风机腔后部的渐阔排风腔,其中所述风机腔成型为连续的螺旋状,其上盖开设有朝向前上方的进风口,所述渐阔排风腔设置为从所述风机腔向后渐阔,并在后端形成与所述送风风道的下端相连的排风口;
    叶轮,设置于所述风机腔内,其轴线与所述进风口相对,用于促使形成从所述冷却室排向所述送风风道的制冷气流,并且所述风机腔的内壁面连续光滑过渡,以避免出现转捩点。
  2. 根据权利要求1所述的风冷冰箱,其中
    所述渐阔排风腔的横向一侧的侧壁从所述排风口处起始从后向前向内逐渐凹入,并最终与所述风机腔的侧壁相接,从而与所述风机腔的侧壁形成蜗舌,所述渐阔排风腔的横向另一侧的侧壁为前后延伸的平面状;
    所述风机腔的侧壁从所述蜗舌的位置处起始呈连续的对数螺旋型线,并最终与所述渐阔排风腔的平面状侧壁的前端相接。
  3. 根据权利要求2所述的风冷冰箱,其中
    所述进风口的中心至所述风机腔的侧壁的距离从所述蜗舌的位置至与所述渐阔排风腔的平面状侧壁相接的位置逐渐增大。
  4. 根据权利要求2所述的风冷冰箱,其中
    所述进风口的中心至所述底部内胆两侧侧板的距离不同,所述进风口的中心至所述底部内胆靠近于所述蜗舌一侧的侧板的距离大于至所述底部内 胆靠近于所述渐阔排风腔的平面状侧壁一侧的侧板的距离。
  5. 根据权利要求1所述的风冷冰箱,其中所述蜗壳包括:
    风机底壳,固定于所述底部内胆底壁的后部;
    风机上盖,从所述风道背板的下端倾斜向下伸入所述冷却室内,并罩扣在所述风机底壳上。
  6. 根据权利要求5所述的风冷冰箱,其中
    所述风机上盖与所述风道背板为一体成型件。
  7. 根据权利要求6所述的风冷冰箱,其中
    所述风道背板在所述送风口的下方还设置有至少一条横向延伸的挡水筋,用于阻挡所述送风口处的冷凝水向下流入所述蜗壳。
  8. 根据权利要求5所述的风冷冰箱,还包括:
    蒸发器,整体呈扁平长方体状,布置于所述冷却室的前部;
    所述底部内胆的底壁包括:
    蒸发器支撑部,用于支撑所述蒸发器;
    风机支撑部,从所述蒸发器支撑部的后端从前至后向上倾斜设置,所述风机底壳固定于所述风机支撑部上。
  9. 根据权利要求8所述的风冷冰箱,其中
    所述风机底壳的底部设置有多个减振黏性垫,并利用多个所述减振黏性垫与所述风机支撑部粘接。
  10. 根据权利要求5所述的风冷冰箱,其中
    所述风机底壳还开设有走线槽,用于容纳连接所述叶轮的线缆。
PCT/CN2021/100125 2020-08-18 2021-06-15 利用离心风机送风的风冷冰箱 WO2021228277A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/042,085 US20230243568A1 (en) 2020-08-18 2021-06-15 Air-cooled refrigerator supplying air through centrifugal fan
EP21803711.7A EP4174409A4 (en) 2020-08-18 2021-06-15 AIR COOLING REFRIGERATOR FOR SUPPLYING AIR USING A CENTRIFUGAL FAN
AU2021270948A AU2021270948B2 (en) 2020-08-18 2021-06-15 Air-cooling refrigerator supplying air by using centrifugal fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010832823.6 2020-08-18
CN202010832823.6A CN114076449B (zh) 2020-08-18 2020-08-18 利用离心风机送风的风冷冰箱

Publications (1)

Publication Number Publication Date
WO2021228277A1 true WO2021228277A1 (zh) 2021-11-18

Family

ID=78525211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100125 WO2021228277A1 (zh) 2020-08-18 2021-06-15 利用离心风机送风的风冷冰箱

Country Status (5)

Country Link
US (1) US20230243568A1 (zh)
EP (1) EP4174409A4 (zh)
CN (1) CN114076449B (zh)
AU (1) AU2021270948B2 (zh)
WO (1) WO2021228277A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531267A (en) * 1994-08-24 1996-07-02 Emerson Electric Co. Refrigeration centrifugal blower system
CN203641106U (zh) * 2013-12-23 2014-06-11 海尔集团公司 束流扩压柜机蜗壳及空调柜机
EP2628416B1 (en) * 2012-02-17 2015-01-21 Hussmann Corporation Refrigerated merchandiser with airflow divider
CN209893738U (zh) * 2018-04-13 2020-01-03 青岛海尔电冰箱有限公司 具有带蜗壳离心风机的冰箱
CN110905854A (zh) * 2019-12-11 2020-03-24 青岛海尔智能技术研发有限公司 离心风机用的蜗壳及离心风机和吸油烟机
CN213040840U (zh) * 2020-08-18 2021-04-23 青岛海尔电冰箱有限公司 蒸发器底置式冰箱
CN213040841U (zh) * 2020-08-18 2021-04-23 青岛海尔电冰箱有限公司 一种增大底部储物空间容积的冰箱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911750A (en) * 1997-06-04 1999-06-15 Maytag Corporation Air flow system for refrigerator freezer compartment
CN104930790B (zh) * 2015-06-24 2018-08-28 合肥华凌股份有限公司 风冷冰箱的机壳、风冷冰箱和风道设计方法
CN106152663B (zh) * 2016-08-26 2018-04-10 合肥美菱股份有限公司 一种智能温控蓄冷箱
CN210832696U (zh) * 2019-09-12 2020-06-23 青岛海尔电冰箱有限公司 冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531267A (en) * 1994-08-24 1996-07-02 Emerson Electric Co. Refrigeration centrifugal blower system
EP2628416B1 (en) * 2012-02-17 2015-01-21 Hussmann Corporation Refrigerated merchandiser with airflow divider
CN203641106U (zh) * 2013-12-23 2014-06-11 海尔集团公司 束流扩压柜机蜗壳及空调柜机
CN209893738U (zh) * 2018-04-13 2020-01-03 青岛海尔电冰箱有限公司 具有带蜗壳离心风机的冰箱
CN110905854A (zh) * 2019-12-11 2020-03-24 青岛海尔智能技术研发有限公司 离心风机用的蜗壳及离心风机和吸油烟机
CN213040840U (zh) * 2020-08-18 2021-04-23 青岛海尔电冰箱有限公司 蒸发器底置式冰箱
CN213040841U (zh) * 2020-08-18 2021-04-23 青岛海尔电冰箱有限公司 一种增大底部储物空间容积的冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4174409A4 *

Also Published As

Publication number Publication date
CN114076449A (zh) 2022-02-22
AU2021270948A1 (en) 2023-03-02
US20230243568A1 (en) 2023-08-03
AU2021270948B2 (en) 2024-05-09
CN114076449B (zh) 2023-03-17
EP4174409A1 (en) 2023-05-03
EP4174409A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
CN110375493A (zh) 冷冻室在冷却室前侧回风的冰箱
CN107560287B (zh) 一种风冷冰箱的风道组件及风冷冰箱
CN113154749B (zh) 风冷卧式冷柜
JP7496031B2 (ja) 蒸発器が箱体の底部に設けられた冷蔵庫
WO2021228277A1 (zh) 利用离心风机送风的风冷冰箱
CN209893735U (zh) 排水口设置有过滤板的冰箱
WO2020173339A1 (zh) 冰箱
WO2022037721A1 (zh) 一种增大底部储物空间容积的冰箱
WO2022037720A1 (zh) 蒸发器底置式冰箱
EP3926266B1 (en) Refrigerator having blower transversely disposed besides and downstream of evaporator
AU2021327817B2 (en) Air-cooled refrigerator
CN114076467A (zh) 制冷风机安装于箱体下部的风冷冰箱
CN219713733U (zh) 蒸发器设置于箱体底部的冰箱
WO2022037381A1 (zh) 风冷冰箱
WO2022037716A1 (zh) 蒸发器设置于箱体底部的冰箱
WO2023123936A1 (zh) 风道组件及制冷设备
AU2020227335B2 (en) Refrigerator having air blower located upstream of transverse side of evaporator
WO2023123937A1 (zh) 风道组件及制冷设备
CN210625070U (zh) 蒸发器固定结构优化的冰箱
CN114076469A (zh) 蒸发器布置于内胆底部的冰箱
CN118189518A (zh) 用于冷柜的内胆和冷柜
CN117824252A (zh) 风冷卧式冷柜
CN117346433A (zh) 冰箱风道系统和包括其的冰箱
CN110017647A (zh) 送风系统及具有其的冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021803711

Country of ref document: EP

Effective date: 20230126

ENP Entry into the national phase

Ref document number: 2021270948

Country of ref document: AU

Date of ref document: 20210615

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE