WO2021228054A1 - 屏蔽罩、天线和天线安装架 - Google Patents

屏蔽罩、天线和天线安装架 Download PDF

Info

Publication number
WO2021228054A1
WO2021228054A1 PCT/CN2021/092893 CN2021092893W WO2021228054A1 WO 2021228054 A1 WO2021228054 A1 WO 2021228054A1 CN 2021092893 W CN2021092893 W CN 2021092893W WO 2021228054 A1 WO2021228054 A1 WO 2021228054A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
shielding cover
shielding
antenna body
housing
Prior art date
Application number
PCT/CN2021/092893
Other languages
English (en)
French (fr)
Inventor
黄兴
傅锋
于亚非
王仁为
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021228054A1 publication Critical patent/WO2021228054A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure

Definitions

  • This application relates to the field of antenna technology, in particular to a shielding cover, an antenna, and an antenna mounting frame.
  • TDD Time Division Duplexing, Time Division Duplexing
  • the TDD system generally uses a GPS (Global Positioning System) antenna to obtain a reference time source from a satellite. If the GPS antenna receives interference from an interference signal, it will cause a deviation of the reference time source and seriously affect the performance of the TDD system.
  • GPS Global Positioning System
  • This application provides a shielding cover, an antenna, and an antenna mounting frame, which can solve the technical problem that antennas are easily interfered by interference signals in related technologies.
  • the technical solutions of the shielding cover, antenna and antenna mounting frame can be as follows:
  • a shielding case is provided, the top of the shielding case is provided with a top opening, the shielding case is used to enclose the antenna body of the antenna to shield interference signals, and the antenna is used to receive signals from satellites. Signal.
  • the shielding cover is placed in a space outside the antenna body and inside the antenna housing of the antenna.
  • the above-mentioned antenna may be an antenna for receiving signals from satellites, such as a GPS antenna and a Beidou satellite navigation system antenna.
  • the BeiDou satellite navigation system antenna can also be referred to as BeiDou antenna, BeiDou satellite antenna and BDS (BeiDou Navigation Satellite System) antenna, etc. for short.
  • GPS antenna Take the GPS antenna as an example. Since the GPS antenna needs to receive satellite signals, it is required to install the GPS antenna in an open field of view, without being blocked by tall buildings, so it is generally installed at a very high position. Therefore, most of the interference signal of the GPS antenna comes from the bottom and the horizontal direction of the GPS antenna.
  • the shielding cover provided by this application is used to shield interference signals from below and horizontal directions of the antenna.
  • the antenna body refers to the main part of the electrical device in the antenna, which can receive satellite signals transmitted by satellites.
  • the antenna body may be a rectangular parallelepiped antenna body or a cylindrical antenna body.
  • the specific shape of the antenna body is not limited in this application.
  • the shield is used to shield interference signals from below the antenna body and in the horizontal direction.
  • the top is provided with a top opening, so that the antenna body can normally receive satellite signals transmitted from the satellite above the antenna body.
  • the material of the shielding cover may be a metal material, specifically, the metal material may be red copper, but is not limited to this.
  • the shielding cover may adopt a net-like structure or a non-net-like structure, which is not limited in this application.
  • the shielding cover 1 can be a screen with a mesh number of 100 mesh or more, where the number of meshes refers to the number of holes in the screen per square inch. . The higher the mesh, the tighter the mesh and the smaller the mesh; conversely, the lower the mesh, the sparser the mesh.
  • the thickness of the shield is not limited.
  • the shielding cover provided in the embodiment of the present application can surround the antenna body of the antenna, so that interference signals from below the antenna body and in the horizontal direction can be shielded.
  • the top of the shielding cover is provided with a top opening, which does not affect the normal reception of the antenna body from the signal transmitted by the satellite above the antenna body. Therefore, by using the shielding cover provided by the present application, the antenna can effectively resist interference signals.
  • the shielding cover can be rain-proof and moisture-proof through the existing antenna housing, and the structure is simple.
  • the specific position of the shielding cover fixed inside the antenna housing is not limited in this application.
  • the opening angle of the top opening relative to the receiving area of the antenna body is greater than or equal to 90 degrees. °, or the degree of the receiving opening angle of the top opening relative to the housing of the antenna body is greater than or equal to 90°.
  • the receiving area of the antenna body refers to the area where the antenna body can receive satellite signals, and the area of the receiving area is generally smaller than the area of the upper surface of the antenna body.
  • the shielding cover may have a shielding effect on normal satellite signals.
  • the opening angle of the shielding cover relative to the receiving area of the antenna body should ensure that the antenna body can receive effective signals from at least four satellites.
  • the degree of the receiving opening angle of the top opening relative to the receiving area of the antenna body is greater than or equal to 90°, it can be ensured that the antenna body can receive at least four satellites' effective signals.
  • the line between the edge of the top opening and the edge of the receiving area of the antenna body can be set to the vertical line between the two closest points.
  • the angle of the direction is greater than or equal to 45°.
  • the shielding cover may be coaxially arranged with the antenna body, or may be arranged on a different axis, which is not limited in this application.
  • electrical components on the circuit board may interfere with the coaxial arrangement of the shielding cover and the antenna body.
  • the antenna body and the shielding cover can also be arranged on different axes to facilitate installation.
  • the receiving area of the antenna body is difficult to accurately measure, when setting the receiving opening angle, it can also be defined based on the housing of the entire antenna body. That is, the degree of the receiving opening angle of the top opening relative to the housing of the antenna body is greater than or equal to 90°. In order to achieve a receiving opening angle greater than or equal to 90°, in a possible implementation manner, the line between the edge of the top opening and the two closest points on the upper edge of the antenna body and the vertical direction can be set. The included angle is greater than or equal to 45°.
  • the bottom of the shielding cover is further provided with a bottom opening.
  • the bottom opening includes a flange portion extending to the outside or inside of the shielding cover, and the flange portion is fixed on the circuit board by a first fixing member.
  • One end of the circuit board is connected to the antenna body, and the other end is connected to the transmission line, so that the satellite signal received by the antenna body can be transmitted to other electronic devices through the circuit board and the transmission line.
  • the flange part may also be referred to as a mounting part.
  • the installation of the shielding cover is convenient and firm, without changing the antenna housing, etc., which facilitates the utilization of the existing antenna housing.
  • By providing a bottom opening at the bottom of the shielding cover it is convenient for the shielding cover to be installed on the circuit board and avoiding interference between the bottom of the shielding cover and the antenna body.
  • the shielding cover is mounted on the circuit board through the flange part.
  • the flange part can be soldered to the circuit board, or mounting holes are provided on both the flange part and the circuit board, and the first fixing member (for example, , Fasten screws or rivets) to fix the shielding cover on the circuit board.
  • the shielding cover provided by the embodiment of the present application may also be fixed on the circuit board by other fixing methods, which is not limited in the present application.
  • a height adjustment device is provided on the first fixing member for adjusting the relative position of the shielding cover and the antenna body, and a plurality of scales are provided on the inner side of the shielding cover, Each scale is used to indicate the degree of the receiving opening angle when each scale is flush with the top of the antenna body.
  • the antenna when used in different scenarios, it may have different requirements for the receiving opening angle.
  • the requirements for the receiving opening angle may be different in the plains and mountainous areas.
  • the relative position of the shielding cover and the antenna body can be adjusted by the height adjusting device, thereby adjusting the degree of the receiving opening angle.
  • the plurality of scales can be matched with the top of the antenna body for observing the receiving opening angle of the top opening relative to the housing or receiving area of the antenna body.
  • the staff it is convenient for the staff to adjust the receiving opening angle.
  • the height adjustment device includes a compression spring and a screw.
  • the screw may pass through the flange portion, the compression spring and the circuit board in sequence. Therefore, the length of the compression spring can be adjusted by the length of the screw screwed into the circuit board, and further, the height of the edge of the top opening relative to the antenna body can be adjusted, which realizes the adjustment of the receiving opening angle.
  • the shielding cover has a mesh structure.
  • the shielding cover is a cylindrical shielding cover, and a projection of the bottom opening of the cylindrical shielding cover on a horizontal plane surrounds the projection of the antenna body on the horizontal plane;
  • the shielding cover is a square cylindrical shielding cover, and the bottom opening of the square cylindrical shielding cover is projected on a horizontal plane, which surrounds the projection of the antenna body on the horizontal plane; or
  • the shielding cover is a truncated cone-shaped shielding cover, and the inner diameter of the truncated cone-shaped shielding cover gradually decreases from top to bottom. Projection of a horizontal plane; or
  • the shielding cover is a bowl-shaped shielding cover, and the inner diameter of the bowl-shaped shielding cover gradually decreases from the top to the bottom.
  • the bottom opening of the bowl-shaped shielding The projection of the horizontal plane.
  • the shielding cover can be a cylindrical shielding cover, a square cylindrical shielding cover, a truncated cone-shaped shielding cover, and a bowl-shaped shielding cover.
  • the projection of the bottom opening of the shielding cover on the horizontal plane can be set to surround the projection of the antenna body on the horizontal plane, that is, the size of the bottom opening is larger than that of the antenna. The size of the body's shell.
  • another shielding cover is provided, the top of the shielding cover is provided with a top opening, the shielding cover is used to surround the antenna body of the antenna to shield interference signals, and the antenna is used to receive signal of.
  • the shielding case surrounds the outside of the antenna housing of the antenna.
  • the above-mentioned antenna may be an antenna for receiving signals from satellites, such as a GPS antenna and a Beidou satellite navigation system antenna.
  • the BeiDou satellite navigation system antenna can also be referred to as BeiDou antenna, BeiDou satellite antenna and BDS (BeiDou Navigation Satellite System) antenna, etc. for short.
  • GPS antenna Take the GPS antenna as an example. Since the GPS antenna needs to receive satellite signals, it is required to install the GPS antenna in an open field of view, without being blocked by tall buildings, so it is generally installed at a very high position. Therefore, most of the interference signal of the GPS antenna comes from the bottom and the horizontal direction of the GPS antenna.
  • the shielding cover provided by this application is used to shield interference signals from below and horizontal directions of the antenna.
  • the antenna body refers to the main part of the electrical device in the antenna, which can receive satellite signals transmitted by satellites.
  • the antenna body may be a rectangular parallelepiped antenna body or a cylindrical antenna body.
  • the specific shape of the antenna body is not limited in this application.
  • the shield is used to shield interference signals from below the antenna body and in the horizontal direction.
  • the top is provided with a top opening, so that the antenna body can normally receive satellite signals transmitted from the satellite above the antenna body.
  • the material of the shielding cover may be a metal material, specifically, the metal material may be red copper, but is not limited to this.
  • the shielding cover may adopt a net-like structure or a non-net-like structure, which is not limited in this application.
  • the shielding cover 1 can be a screen with a mesh number of 100 mesh or more, where the number of meshes refers to the number of holes in the screen per square inch. . The higher the mesh, the tighter the mesh and the smaller the mesh; conversely, the lower the mesh, the sparser the mesh.
  • the thickness of the shield is not limited.
  • the shielding cover provided in the embodiment of the present application can surround the antenna body of the antenna, so that interference signals from below the antenna body and in the horizontal direction can be shielded.
  • the top of the shielding cover is provided with a top opening, which does not affect the normal reception of the antenna body from the signal transmitted by the satellite above the antenna body. Therefore, by using the shielding cover provided by the present application, the antenna can effectively resist interference signals.
  • the existing antenna can be unchanged, and therefore, the existing antenna production line and the existing antenna do not need to be improved.
  • this application does not limit this.
  • the degree of the receiving opening angle of the top opening relative to the receiving area of the antenna body is greater than or equal to 90°, Alternatively, the degree of the receiving opening angle of the top opening relative to the housing of the antenna body is greater than or equal to 90°.
  • the shielding cover may have a shielding effect on normal satellite signals.
  • the receiving opening angle of the shielding cover relative to the receiving area of the antenna should ensure that the antenna body can receive effective signals from at least four satellites.
  • the degree of the receiving opening angle of the top opening relative to the receiving area of the antenna body is greater than or equal to 90°, it can be ensured that the antenna body can receive at least four satellites' effective signals.
  • the line between the edge of the top opening and the edge of the receiving area of the antenna body can be set to the vertical line between the two closest points.
  • the angle of the direction is greater than or equal to 45°.
  • the degree of the receiving opening angle of the top opening relative to the housing of the antenna body is greater than or equal to 90°.
  • the line between the edge of the top opening and the two closest points on the upper edge of the antenna body and the vertical direction can be set.
  • the degree of the included angle is greater than or equal to 45°.
  • the inner wall of the shielding cover is pasted on the outer wall of the antenna housing.
  • the shielding cover can be pasted on the outer wall of the antenna housing.
  • the shielding cover can be pasted on the outer wall of the antenna housing.
  • a waterproof structure can also be provided to prevent water from accumulating in the shielding cover.
  • the shielding cover is fixed on the outer wall of the antenna housing by a second fixing member.
  • the shielding cover may be fixed on the outer wall of the antenna housing through the second fixing member, and the specific position of the second fixing member is not limited in this application.
  • the second fixing member may be a fastening screw and a clamp, but it is not limited thereto.
  • the shielding cover can be fixed on the outer wall of the antenna housing in a different relative position to the antenna housing, and a plurality of scales are provided on the inner side of the shielding cover, and each scale is used for each scale. To indicate the degree of the receiving opening angle when each scale is flush with the reference mark of the antenna housing.
  • the antenna when used in different scenarios, it may have different requirements for the receiving opening angle.
  • the requirements for the receiving opening angle may be different in the plains and mountainous areas.
  • the shielding cover By setting the shielding cover, it can be fixed on the outer wall of the antenna housing at a different relative position to the antenna housing, so that the degree of the receiving opening angle can be adjusted by adjusting the installation position of the shielding cover.
  • the multiple scales can be matched with the reference marks provided on the outer wall of the antenna housing for observing the top opening relative to the housing of the antenna body or the receiving area of the receiving area. Quarrel. Thus, it is convenient for the staff to adjust the receiving opening angle.
  • a rain cover is further provided above the top opening, and the projection of the top opening on the horizontal plane falls within the projection of the rain cover on the horizontal plane.
  • the material of the rain cover is non-metal, thereby preventing the rain cover from shielding the signals normally transmitted by the satellite.
  • the projection of the top opening on the horizontal plane falls within the projection of the rain cover on the horizontal plane, that is, the rain cover completely covers the top opening. It can prevent rainwater from entering the inside of the shield through the top opening. Therefore, the antenna corrosion phenomenon caused by the accumulation of water in the shield can be avoided.
  • the rain cover is fixed on the outer wall of the antenna housing.
  • the rain cover is fixed on the shielding cover.
  • a drain hole is provided at the bottom of the shielding cover.
  • the bottom of the shielding cover is provided with drainage holes, so that rainwater can be discharged through the drainage holes at the bottom of the shielding cover, and no water will accumulate in the shielding cover. Therefore, the antenna corrosion phenomenon caused by the accumulation of water in the shield can be avoided.
  • the shielding cover has a mesh structure.
  • the shielding cover has a mesh structure, so that rainwater can be discharged through the mesh of the shielding cover, and no water will accumulate in the shielding cover. Therefore, the antenna corrosion phenomenon caused by the accumulation of water in the shield can be avoided.
  • the shielding cover is a cylindrical shielding cover
  • the shielding cover is a square cylindrical shielding cover
  • the shielding cover is a truncated cone-shaped shielding cover, and the inner diameter of the truncated cone-shaped shielding cover gradually decreases from the top to the bottom; or
  • the shielding cover is a bowl-shaped shielding cover, and the inner diameter of the bowl-shaped shielding cover gradually decreases from the top to the bottom.
  • the shielding cover can be a cylindrical shielding cover, a square cylindrical shielding cover, a truncated cone-shaped shielding cover, and a bowl-shaped shielding cover.
  • a through hole for the legs of the antenna housing or the pillar of the antenna mounting frame can be provided at the bottom of the shielding cover.
  • drainage holes can also be provided at the bottom of the shielding cover.
  • an antenna in a third aspect, includes an antenna housing, an antenna body, and the shielding cover according to the first or second aspect, wherein the shielding cover surrounds the antenna body, and Antennas are used to receive signals from satellites.
  • the antenna may be a GPS antenna, a Beidou antenna, etc., and the antenna may be applied in a TDD (Time Division Duplexing, Time Division Duplexing) system.
  • TDD Time Division Duplexing, Time Division Duplexing
  • the antenna can shield interference signals from below the antenna body and in the horizontal direction, and the top of the shielding cover is provided with The top opening does not affect the antenna body to receive signals from the satellite above the antenna body. Therefore, the antenna provided by the embodiment of the present application is not easily affected by interference signals, and the reference source signal obtained by using the antenna is also relatively accurate.
  • an antenna in a fourth aspect, includes an antenna body and an antenna housing, wherein a shielding layer is provided on the inner or outer wall of the antenna housing, and the shielding layer surrounds the antenna body to shield interference
  • the shielding layer has a top opening, and the antenna is used to receive signals from satellites.
  • the above-mentioned antenna may be an antenna for receiving signals from satellites, such as a GPS antenna and a Beidou antenna.
  • the antenna body refers to the main part of the electrical device in the antenna, which can receive satellite signals transmitted by satellites.
  • the antenna body may be a rectangular parallelepiped antenna body or a cylindrical antenna body.
  • the specific shape of the antenna body is not limited in this application.
  • the shielding layer has the function of shielding signals and can be a shielding coating or a shielding tape.
  • the shielding coating includes resin, diluents, additives and conductive fillers.
  • the conductive fillers are generally metal powders such as gold, silver, copper, nickel and non-metallic powders such as carbon black and graphite.
  • the shielding coating can be coated on the antenna shell
  • the inner wall will be on the outer wall.
  • the shielding tape may be an adhesive tape with metal on the surface, such as a tin foil tape, and the shielding tape may be pasted on the inner or outer wall of the antenna housing.
  • a shielding layer is provided on the inner or outer wall of the antenna housing, and the shielding layer surrounds the antenna body, so that interference signals from below the antenna body and in the horizontal direction can be shielded.
  • the top of the shielding layer is provided with a top opening, which does not affect the antenna body to normally receive signals transmitted from the satellite above the antenna body. Therefore, the antenna provided by the embodiment of the present application can effectively resist interference signals.
  • the projection of the top opening on the horizontal plane surrounds the projection of the antenna body on the horizontal plane.
  • the solution shown in the embodiment of this application encloses the projection of the antenna body on the horizontal plane by setting the projection of the top opening on the horizontal plane, that is, the inner diameter of the top opening is larger than the outer diameter of the antenna body, so that the top opening is open relative to the antenna body.
  • the design of the port reduces the influence of the shielding layer on the inner or outer wall on the normal reception of satellite signals by the antenna body.
  • the degree of the receiving opening angle of the top opening relative to the receiving area of the antenna body is greater than or equal to 90°, or the top opening is relative to the receiving area of the antenna body.
  • the degree of the opening angle is greater than or equal to 90°.
  • the receiving area of the antenna body refers to the area where the antenna body can receive satellite signals, and the area of the receiving area is generally smaller than the area of the upper surface of the antenna body.
  • the shielding layer may have a shielding effect on normal satellite signals.
  • the opening angle of the top opening relative to the receiving area of the antenna should ensure that the antenna body can receive effective signals from at least four satellites.
  • the degree of the receiving opening angle of the top opening relative to the receiving area of the antenna body is greater than or equal to 90°, it can be ensured that the antenna body can receive at least four satellites' effective signals.
  • the receiving area of the antenna body is difficult to accurately measure, when setting the receiving opening angle, it can also be defined based on the housing of the entire antenna body. That is, the degree of the receiving opening angle of the top opening relative to the housing of the antenna body is greater than or equal to 90°.
  • the shielding layer is a shielding coating
  • the shielding coating is coated on the inner wall or the outer wall of the antenna housing.
  • the shielding coating may include resin, diluent, additives, and conductive fillers.
  • the conductive fillers may be metal powders such as gold, silver, copper, and nickel, and non-metallic powders such as carbon black and graphite.
  • the shielding coating can be coated on the inner or outer wall of the antenna housing.
  • the shielding layer is a shielding tape
  • the shielding tape is pasted on the inner wall or the outer wall of the antenna housing.
  • the shielding tape may be an adhesive tape with a metal on the surface, such as a tin foil tape, but it is not limited thereto.
  • the shielding tape can be pasted on the inner or outer wall of the antenna housing.
  • the shielding layer is formed by splicing a plurality of annular horizontal shielding tapes adjacent to each other up and down.
  • the shielding layer includes a plurality of annular horizontal shielding bands adjacent to each other up and down, so that the degree of the receiving opening angle can be changed by changing the number of the annular horizontal shielding bands.
  • each shielding tape is provided with receiving opening angle indication information, which is used to indicate the degree of the receiving opening angle when all the shielding tapes are reserved.
  • an antenna mounting frame is provided, the antenna mounting frame is used to install an antenna, and the shielding cover according to the second aspect is fixed in the antenna mounting frame, wherein the antenna is used to receive signals from satellites. signal of.
  • the antenna installed in the antenna mounting frame may be a GPS antenna, a Beidou antenna, and the like.
  • a shielding cover may be fixed in the antenna mounting frame, and when the antenna is installed in the antenna mounting frame, the shielding cover surrounds the antenna body. Therefore, the shield can shield interference signals from below the antenna and in the horizontal direction.
  • the antenna can also normally receive satellite signals transmitted from the satellite above the antenna through the top opening of the shielding cover. Therefore, the antenna installed in the antenna mounting frame provided in the embodiment of the present application is not easily affected by interference signals, and the reference source signal obtained by using the antenna is also relatively accurate.
  • the embodiment of the present application provides a shielding cover that can surround the antenna body of the antenna, so that interference signals from below the antenna body and in the horizontal direction can be shielded.
  • the top of the shielding cover is provided with a top opening, so that the antenna body can normally receive signals transmitted from the satellite above the antenna body. Therefore, by using the shielding cover provided by the embodiment of the present application, the antenna can be effectively resisted to interfere with the signal.
  • FIG. 1 is a cross-sectional view of an antenna provided by an embodiment of the present application.
  • Figure 2 is a cross-sectional view of an antenna provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a receiving area of an antenna body provided by an embodiment of the present application.
  • FIG. 4 is a three-dimensional schematic diagram of a shielding cover provided by an embodiment of the present application.
  • FIG. 5 is a cross-sectional view of an antenna provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an installation position of a shielding cover provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an installation position of a shielding cover provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an installation position of a shielding cover provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an installation position of a shielding cover provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a shielding cover installation method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a shielding cover installation method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a shielding cover installation method provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a shielding cover installation method provided by an embodiment of the present application.
  • FIG. 14 is a cross-sectional view of a shielding cover provided by an embodiment of the present application.
  • 15 is a cross-sectional view of a shielding cover provided by an embodiment of the present application.
  • FIG. 16 is a three-dimensional schematic diagram of a shielding cover provided by an embodiment of the present application.
  • Figure 17 is a cross-sectional view of a shielding cover provided by an embodiment of the present application.
  • FIG. 18 is a cross-sectional view of a shielding cover provided by an embodiment of the present application.
  • 19 is a cross-sectional view of a shielding cover provided by an embodiment of the present application.
  • FIG. 20 is a cross-sectional view of a shielding cover provided by an embodiment of the present application.
  • Figure 21 is a cross-sectional view of a shielding cover provided by an embodiment of the present application.
  • Figure 22 is a cross-sectional view of a shielding cover provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of a mounting hole of a shielding cover provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of the appearance of an antenna housing provided by an embodiment of the present application.
  • Figure 25 is a cross-sectional view of a shielding cover provided by an embodiment of the present application.
  • FIG. 26 is a three-dimensional schematic diagram of a shielding cover provided by an embodiment of the present application.
  • FIG. 27 is a cross-sectional view of an antenna provided by an embodiment of the present application.
  • FIG. 28 is a cross-sectional view of an antenna provided by an embodiment of the present application.
  • FIG. 29 is a cross-sectional view of an antenna provided by an embodiment of the present application.
  • FIG. 30 is a cross-sectional view of an antenna mounting frame provided by an embodiment of the present application.
  • FIG. 31 is a cross-sectional view of an antenna mounting frame provided by an embodiment of the present application.
  • Shielding cover 101, top opening, 102, bottom opening, 103, flange, 104, drain hole, 105, scale, 106, first mounting hole, 107, second mounting hole, 108, jack; 11 , Cylindrical shielding cover, 12, square cylindrical shielding cover, 13, truncated cone-shaped shielding cover, 14, bowl-shaped shielding cover; 111, shielding tape; 2. antenna body, 20, receiving area; 3. antenna housing, 301 , Reference mark, 302, Tightening slot; 4. Circuit board; 5. Transmission line; 6. Rain cover; 7. Antenna mounting frame; 8. Clamp; 9. First fixing part, 91, screw, 92, compression Spring; 10. The second fixing member.
  • the embodiment of the present application provides a shielding cover 1, as shown in FIG. 1, FIG. 2, FIG. 4 to FIG. 23, FIG. 25, and FIG.
  • the antenna body 2 of the antenna is external to shield interference signals.
  • the above-mentioned antenna is used to receive signals from satellites, and may be a GPS antenna, a Beidou antenna, and the like.
  • the GPS antenna Take the GPS antenna as an example. Since the GPS antenna needs to receive satellite signals, it is required to install the GPS antenna in an open field of view, without being blocked by tall buildings, so it is generally installed at a very high position. Therefore, most of the interference signal of the GPS antenna comes from the bottom and the horizontal direction of the GPS antenna.
  • the shielding cover provided by the embodiment of the present application is used to shield interference signals from below the antenna body 2 and in the horizontal direction.
  • the antenna body 2 refers to the main part of the electrical device in the antenna, which can receive satellite signals transmitted by satellites.
  • the antenna body 2 may belong to any antenna that can receive satellite signals transmitted by satellites.
  • the antenna body may be the antenna body in a GPS antenna or the antenna body in a Beidou antenna.
  • the antenna body 2 in the embodiment of this application can be a rectangular parallelepiped antenna body (as shown in Figures 3, 6 and 7) or a cylindrical antenna body (as shown in Figures 8 and 9).
  • the specific shape of 2 is not limited.
  • the shielding case 1 is used for shielding interference signals from below the antenna body 2 and in the horizontal direction.
  • a top opening 101 is provided at the top, so that the antenna body 2 can normally receive satellite signals transmitted from the satellite above the antenna body 2.
  • the material of the shielding cover 1 may be a metal material. Specifically, the metal material may be red copper, but is not limited to this.
  • the shielding cover 1 may adopt a net-like structure or a non-net-like structure, which is not limited in this application. Specifically, when the shielding cover 1 adopts a mesh structure, the shielding cover 1 can be a screen with a mesh number of 100 mesh or more, where the number of meshes refers to the number of holes in the screen per square inch of area. quantity. The higher the mesh, the tighter the mesh and the smaller the mesh; conversely, the lower the mesh, the sparser the mesh. The thickness of the shielding cover 1 is not limited.
  • the shielding cover 1 may also be provided with a bottom opening 102 at the bottom. That is, the shielding cover 1 may have a cylindrical structure, and the top and bottom of the shielding cover 1 are bottomless. Of course, the bottom of the shielding cover 1 can also be closed, which is not limited in this application.
  • the shielding cover 1 provided in the embodiment of the present application can surround the outside of the antenna body 2 of the antenna, so that interference signals from below the antenna body 2 and in the horizontal direction can be shielded.
  • a top opening 101 is provided on the top of the shielding cover 1, which does not affect the normal reception of the antenna body 2 from the signal transmitted by the satellite above the antenna body 2. Therefore, by using the shielding cover provided by the present application, the antenna can effectively resist interference signals.
  • the projection of the top opening 101 on the horizontal plane is provided to surround the projection of the antenna body 2 on the horizontal plane, that is, the inner diameter of the top opening 101 is larger than the outer diameter of the antenna body 2, so that the top opening 101 is relative to
  • the antenna body 2 is an open design, which reduces the influence of the addition of the shielding cover 1 on the normal reception of satellite signals by the antenna body 2.
  • the shielding cover provided in the embodiment of the present application can be placed inside the antenna housing 3 or outside the antenna housing 3. In the following, these two situations are explained separately.
  • the embodiment of the present application provides a shielding cover 1, as shown in FIGS. 1, 2, and 4 to 13.
  • the top of the shielding cover 1 is provided with a top opening 101, and the shielding cover 1 is used to surround the antenna
  • the antenna body 2 is external to shield interference signals.
  • the shield can be placed in the space outside the antenna body 2 and inside the antenna housing 3 of the antenna.
  • the shielding cover 1 can be rain-proof and moisture-proof through the existing antenna housing 3, and the structure is simple.
  • the specific position where the shielding cover 1 is fixed inside the antenna housing 3 is not limited in this application.
  • the shielding cover 1 may be fixed on the inner wall of the antenna housing 3, for example, it may be pasted on the inner wall of the antenna housing 3.
  • the antenna housing 3 is also provided with a circuit board 4 inside, and the antenna body 2 and the shielding cover 1 are both fixed on the circuit On board 4.
  • One end of the circuit board 4 is connected to the antenna body 2 and the other end is connected to the transmission line 5 so that the satellite signal received by the antenna body 2 can be transmitted to other electronic devices through the circuit board 4 and the transmission line 5.
  • the bottom of the shielding cover 1 is also provided with a bottom opening 102, and the edge of the bottom opening 102 includes The flange portion 103 extending into the inside of the shield case 1 is fixed to the circuit board 4 by the flange portion 103.
  • the flange portion 103 may also be referred to as a mounting portion.
  • the contact between the shielding cover 1 and the circuit board 4 can be made more stable, and the connection can be firmer.
  • the shielding cover 1 is mounted on the circuit board 4 through the flange portion 103.
  • the flange portion 103 can be welded to the circuit board 4, or the flange portion 103 and
  • the circuit board 4 is provided with second mounting holes 107, and the shielding cover 1 is fixed on the circuit board 4 by fastening screws or rivets (as shown in Figs. 10-13).
  • the shielding cover 1 provided by the embodiment of the present application can also be fixed on the circuit board 4 by other fixing methods, which is not limited in the present application.
  • FIG. 4 a three-dimensional schematic diagram of a shielding case 1 provided by an embodiment of this application.
  • the edge of the bottom opening 102 of the shielding case 1 includes a flange portion 103 extending toward the inside of the shielding case 1.
  • a second mounting hole 107 is opened on the 103, which is used for passing through fixing members such as fastening screws or rivets to fix the shielding cover 1 on the circuit board 4.
  • the edge of the bottom opening 102 includes a flange portion 103 extending to the outside of the shielding cover 1.
  • the shield cover 1 is mounted on the circuit board 4 through the flange portion 103.
  • the flange portion 103 may also extend to the outside of the shielding cover 1.
  • the flange portion 103 can be soldered to the circuit board 4, or the flange portion 103 and the circuit board 4 can be installed on both the flange portion 103 and the circuit board 4.
  • the shield cover 1 is fixed on the circuit board 4 by fastening screws or rivets (as shown in Figs. 10-13).
  • the shielding cover 1 may have a shielding effect on normal satellite signals.
  • the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 should ensure that the antenna body 2 can receive effective signals from at least four satellites. Therefore, the degree of the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 should be set.
  • the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 can be understood as follows: As shown in FIG. The intersection points are A and B, and the intersection points with the receiving area 20 of the antenna body 2 are A2 and B2, then the straight lines AA2 and BB2 intersect at the point O, forming an angle A2OB2. As the vertical section rotates around the longitudinal center axis, countless angles similar to the angle A2OB2 are formed. The angle with the smallest degree among these countless angles is the receiving of the top opening 101 with respect to the antenna body 2. Receiving opening angle of area 20.
  • the degree of the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 is greater than or equal to 90°.
  • the receiving area 20 of the antenna body 2 refers to an area where the antenna body 2 can receive satellite signals, and the area of the receiving area 20 is generally smaller than the area of the upper surface of the antenna body 2.
  • the receiving area of the antenna body 2 may be a smaller rectangular area in the upper surface of the rectangle, that is, the dotted rectangular area in FIG. 3.
  • the antenna body 2 by setting the degree of the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area of the antenna body 2 to be greater than or equal to 90°, the antenna body 2 can ensure that the antenna body 2 receives at least four satellites' effective signals.
  • the edge of the top opening 101 can be set to The antenna body 2 is flat or slightly lower than the antenna body 2.
  • the angle between the line between the edge of the top opening 101 and the edge of the receiving area 20 of the antenna body 2 and the vertical direction is greater than Or equal to 45°.
  • the degree of the receiving opening angle A1OB1 of the top opening 101 relative to the housing of the antenna body 2 is greater than or equal to 90°.
  • the receiving opening angle A1OB1 of the top opening 101 relative to the housing of the antenna body 2 can be understood as follows: As shown in FIG. 1 and FIG. The intersection points of the opening 101 are A and B, and the intersection points with the housing of the antenna body 2 are A1 and B1. The straight lines AA1 and BB1 intersect at a point O, forming an angle A1OB1. As the vertical section rotates around the longitudinal center axis, countless angles similar to the angle A1OB1 are formed. The angle with the smallest degree among these countless angles is the shell of the top opening 101 relative to the antenna body 2. The receiving opening angle of the body.
  • the receiving area 20 of the antenna body 2 is difficult to accurately measure, when setting the receiving opening angle, it can also be set based on the housing of the entire antenna body 2. That is, the degree of the receiving opening angle A1OB1 of the top opening 101 relative to the housing of the antenna body 2 is greater than or equal to 90°.
  • the degree of the top opening 101 relative to the receiving opening angle A1OB1 of the housing of the antenna body 2 is greater than or equal to 90°, the degree of the receiving opening angle A2OB2 relative to the receiving area 20 of the antenna body 2 must be greater than At 90°, it can be ensured that the antenna body 2 receives at least four satellites' effective signals.
  • the edge of the top opening 101 and the antenna can be set
  • the body 2 is flat or slightly lower than the antenna body 2.
  • the angle between the line AA1 and the vertical direction between the edge of the top opening 101 and the upper edge of the housing of the antenna body 2 can be set. Greater than or equal to 45°.
  • the antenna body 2 and the shielding cover 1 are coaxially arranged, and the two closest horizontal distances AA1 on the top view of the antenna body 2 and the shielding cover 1 are the upper edges of the housing of the antenna body 2
  • the angle between the two points closest to the edge of the top opening 101 and the vertical direction is greater than or equal to 45°.
  • 6 shows a schematic diagram of a cylindrical shielding cover 11 and a rectangular parallelepiped antenna body 2 coaxially arranged
  • FIG. 7 shows a schematic diagram of a square cylindrical shielding cover 12 and a rectangular parallelepiped antenna body 2 coaxially arranged
  • FIG. 8 shows a schematic diagram of a truncated cone-shaped shielding cover 13 and a cylindrical antenna body 2 coaxially arranged
  • FIG. 9 shows a schematic diagram of a bowl-shaped shielding cover 14 and a cylindrical antenna body 2 coaxially arranged.
  • the specific size of the shielding cover 1 can be calculated according to the requirement that the included angle is greater than or equal to 45° and the size of the antenna body 2.
  • the specific calculation method can be as follows:
  • the height difference between the shielding case 1 and the antenna body 2 is H-h.
  • the minimum horizontal distance between the antenna body 2 and the edge of the top opening 101 should be greater than H-h.
  • the antenna body 2 is a cylindrical antenna body with a radius of r in a plan view, or a plan view
  • the diagonal length is 2r cuboid antenna body.
  • H, h, R and r should satisfy: (H-h)/(R-r) ⁇ 1.
  • the shielding cover 1 and the antenna body 2 can be arranged coaxially (as shown in Figure 1, Figure 5 to Figure 13), or can be arranged on different axes (as shown in Figure 2).
  • L1 represents the vertical center axis of the shielding cover 1
  • L2 represents the vertical center axis of the antenna body 2.
  • Figure 1 and L2 overlap
  • Figure 2 L1 and L2 Do not overlap.
  • the shielding case 1 and the antenna body 2 can be arranged in different axes.
  • the degree of the above-mentioned receiving opening angle is greater than or equal to 90 degrees, so that the antenna body 2 can receive the effective signals of at least four satellites through the top opening 101.
  • the receiving opening angle A2OB2 or A1OB1 can also be slightly less than 90°.
  • a height adjustment device is provided on the first fixing member 9 for adjusting the relative position of the shielding cover 1 and the antenna body 2, and a plurality of scales 105 are provided on the inner side of the shielding cover 1, each The scale 105 is used to indicate the degree of the receiving opening angle A1OB1 or the receiving opening angle A2OB2 when each scale 105 is flush with the top of the antenna body 2.
  • the first fixing member 9 is provided with a height adjustment device, so that the relative position of the shielding cover 1 and the antenna body 2 can be adjusted, thereby adjusting the degree of the receiving opening angle.
  • the staff can cooperate with the top of the antenna body 2 through the plurality of scales 105 to observe the top opening 101 relative to the housing of the antenna body 2 or the receiving area 20.
  • the degree of the receiving opening angle is convenient for the staff to know what degree to adjust the receiving opening angle.
  • the height adjustment device includes a compression spring 91 and a screw 92.
  • a compression spring 91 is provided between the flange portion 103 and the circuit board 4, and the screw 92 passes through the flange portion 103, the compression spring 91 and the circuit board 4 in sequence.
  • the length of the screw 92 screwed into the circuit board 4 the length of the compression spring 91 can be adjusted, so that the height of the edge of the top opening 101 relative to the antenna body 2 can be adjusted, and the receiving opening angle can be adjusted.
  • the top opening 101 can also be set as an adjustable inner diameter opening, so that the receiving opening angle can be adjusted by adjusting the size of the top opening 101.
  • the shielding case 1 is a cylindrical shielding case 11, and the bottom opening 102 of the cylindrical shielding case 11 is projected on a horizontal plane to surround the antenna body 2. Projection on the horizontal plane.
  • the shielding case 1 is a square cylindrical shielding case 12, and the bottom opening 102 of the square cylindrical shielding case 12 is projected on a horizontal plane, surrounding the antenna body 2 Projection on the horizontal plane.
  • the shielding cover 1 is a truncated cone-shaped shielding cover 13, and the inner diameter of the truncated cone-shaped shielding cover 13 gradually decreases from the top to the bottom, and the truncated cone-shaped shielding cover 13
  • the projection of the bottom opening 102 on the horizontal plane surrounds the projection of the antenna body 2 on the horizontal plane.
  • the shielding case 1 is a bowl-shaped shielding case 14, and the inner diameter of the bowl-shaped shielding case 14 gradually decreases from the top to the bottom, and the bowl-shaped shielding case 14
  • the projection of the bottom opening 102 on the horizontal plane surrounds the projection of the antenna body 2 on the horizontal plane.
  • the shielding cover 1 may be a cylindrical shielding cover 11, a square cylindrical shielding cover 12, a truncated cone-shaped shielding cover 13, and a bowl shape. Shield cover 14 and so on.
  • the projection of the bottom opening 102 of the shielding case 1 on the horizontal plane can be set to surround the projection of the antenna body 2 on the horizontal plane. That is, the size of the bottom opening 102 is larger than the size of the housing of the antenna body 2 so that the antenna body 2 can pass through the bottom opening 102.
  • the embodiment of the present application also provides a shielding cover 1, as shown in Figs. 14-23, 25 and 26.
  • the top of the shielding cover 1 is provided with a top opening 101, and the shielding cover 1 is used to enclose
  • the antenna body 2 of the antenna is external to shield interference signals.
  • the shielding case 1 is placed outside the antenna housing 3 of the antenna.
  • the existing antenna may not be changed. Therefore, the existing antenna production line and the existing antenna do not need to be improved.
  • the shielding cover 1 can be fixed on the outer wall of the antenna housing 3 (as shown in Figure 14, Figure 15, Figure 17-22 and Figure 25), and can also be fixed on other parts other than the antenna, for example, on the antenna mounting frame ( As shown in Figure 30 and Figure 31).
  • the inner wall of the shielding case 1 is pasted on the outer wall of the antenna housing 3.
  • the shielding cover 1 can be pasted on the outer wall of the antenna housing 3. As shown in FIG. 25, when all the walls of the inner wall of the shielding case 1 and the outer wall of the antenna housing 3 are adhered tightly, there is no gap between the shielding case 1 and the antenna case 3, and no water will accumulate in the shielding case 1. The corrosion of the antenna due to the accumulation of water in the shielding cover 1 is avoided.
  • the adhesion between the inner wall of the shielding cover 1 and the outer wall of the antenna housing 3 can be achieved by glue, which can be AB glue, but is not limited to this.
  • a rain cover 6 can be provided above the top opening 101, or a drainage hole 106 can be provided on the wall surface of the shielding cover 1 corresponding to the bottom of the cavity, thereby preventing water accumulation.
  • the shield cover 1 is fixed on the outer wall of the antenna housing 3 through the second fixing member 10.
  • the shielding cover 1 may also be fixed on the outer wall of the antenna housing 3 by the second fixing member 10, and the specific position of the second fixing member 10 is not limited in this application.
  • the second fixing member 10 may be a fastening screw, a rivet, a clamp, etc., but is not limited thereto.
  • a rain cover 6 is also provided above the top opening 101, and the projection of the top opening 101 on the horizontal plane falls within the projection of the rain cover 6 on the horizontal plane. .
  • the material of the rain cover 6 is non-metal, thereby preventing the rain cover 6 from shielding satellite signals.
  • the rain cover 6 is provided so that the projection of the top opening 101 on the horizontal plane falls within the projection of the rain cover 6 on the horizontal plane, that is, the rain cover 6 completely covers the top opening 101 . It is possible to prevent rainwater from entering the inside of the shielding case 1 through the top opening 101. Therefore, the antenna corrosion phenomenon caused by the accumulation of water in the shielding case 1 is avoided.
  • the fixed position of the waterproof cover 6 is not limited in this application.
  • the rain cover 6 is fixed on the outer wall of the antenna housing 3.
  • the rain cover 6 is fixed on the shielding cover 1.
  • the rain cover 6 may also be fixed on a component other than the antenna.
  • the rain cover 6 may be fixed on the antenna mounting frame.
  • a drain hole 104 is provided at the bottom of the shielding cover 1.
  • the drainage hole 104 is provided at the bottom of the shielding cover 1, so that rainwater can be discharged through the drainage hole 104 at the bottom of the shielding cover 1, and no water will accumulate in the shielding cover 1. Therefore, the phenomenon of damage to the antenna housing 3 or the antenna body 2 due to the accumulation of water in the shielding cover 1 and even shielding of satellite signals is avoided.
  • FIG. 16 a three-dimensional schematic diagram of a shielding cover 1 provided by an embodiment of this application.
  • a first mounting hole 106 is opened on the side wall of the shielding cover 1, and the second fixing member 10 passes through the first mounting hole 106 to The shielding cover 1 is fixed on the antenna housing 3.
  • a drainage hole 104 is provided at the bottom of the shielding case 1.
  • the bottom of the shielding case 1 can also be provided for the legs of the antenna case 3 or antenna installation
  • the socket 108 through which the pillar of the frame passes.
  • the shielding cover 1 has a mesh structure.
  • the above three anti-water accumulation measures can be used alone or in combination to achieve a better anti-water accumulation effect.
  • a drainage hole 104 is also provided at the bottom of the shielding cover 1.
  • the shielding can 1 has a mesh structure, a rain cover 6 is also provided above the top opening 101 of the shielding can 1.
  • the shielding cover 1 may have a shielding effect on normal satellite signals.
  • the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 should ensure that the antenna body 2 can receive effective signals from at least four satellites. Therefore, the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 should be set.
  • the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 is greater than or Equal to 90°.
  • the degree of the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 it can be ensured that the antenna body 2 receives at least four satellites' effective signals.
  • the edge of the top opening 101 can be set to The antenna body 2 is flat or slightly lower than the antenna body 2.
  • the angle between the line AA2 and the vertical direction between the edge of the top opening 101 and the edge of the receiving area 20 of the antenna body 2 can be set. Greater than or equal to 45°.
  • the top opening 101 is opposite to the housing of the antenna body 2.
  • the degree of the receiving opening angle A1OB1 is greater than or equal to 90°.
  • the receiving area 20 of the antenna body 2 is difficult to accurately measure, when setting the receiving opening angle, it can also be set based on the housing of the entire antenna body 2. That is, the degree of the receiving opening angle A1OB1 of the top opening 101 relative to the housing of the antenna body 2 is greater than or equal to 90°.
  • the degree of the top opening 101 relative to the receiving opening angle A1OB1 of the housing of the antenna body 2 is greater than or equal to 90°, the degree of the receiving opening angle A2OB2 relative to the receiving area 20 of the antenna body 2 must be greater than At 90°, it can be ensured that the antenna body 2 receives at least four satellites' effective signals.
  • the edge of the top opening 101 and the antenna can be set The body 2 is flat or slightly lower than the antenna body 2.
  • the angle between the line AA1 and the vertical direction between the edge of the top opening 101 and the upper edge of the housing of the antenna body 2 can be set. Greater than or equal to 45°.
  • antennas When antennas are used in different scenarios, they may have different requirements for the receiving opening angle. For example, an antenna installed in the plain may require a smaller receiving opening angle (under the premise of not less than 90 degrees), in order to shield the surroundings as much as possible.
  • the interference signal below; and the antenna installed on the top of the mountain may require a larger receiving opening angle (for example, 120 degrees), which can not only shield the interference signal from the mountain, but also receive signals from more satellites.
  • the shielding cover 1 can be fixed on the outer wall of the antenna housing 3 in a different relative position to the antenna housing 3.
  • a plurality of scales 105 are provided on the inner side of the shielding cover 1, and each scale 105 is used for It indicates the degree of the receiving opening angle A1OB1 or the receiving opening angle A2OB2 when each scale 105 is flush with the reference mark 301 provided on the outer wall of the antenna housing 3.
  • fiducial mark 301 can be set in multiple ways:
  • the antenna housing 3 and the shielding cover 1 can be produced by the same manufacturer, and the manufacturer can produce the antenna housing 3 and the shielding cover 1 as a set, and place them at the corresponding positions of the antenna housing 3 and the shielding cover 1.
  • a reference mark 301 and a scale 105 are provided.
  • the manufacturer of the antenna housing 3 sets a reference mark 301 at a suitable position of the housing, and the manufacturer of the shielding cover 1 can refer to the marked reference mark 301 to adaptively produce the shielding cover 1 and Mark the scale 105.
  • the manufacturer of the antenna housing 3 may not additionally set the fiducial mark 301.
  • the manufacturer of the shielding cover 1 takes an edge of the antenna housing 3 (as shown in FIG. 18) as the reference mark 301 by default, and produces the shielding cover 1 and the marking scale 105 adaptively. In this case, the manufacturer that produces the shielding cover 1 also needs to add a description of which edge is used as the reference mark 301.
  • an observation hole can be provided beside each scale 105 of the shielding cover 1.
  • a reference mark 301 on the antenna case 3 at a position flush with the observation hole (for example, place The location is painted with a special color).
  • the shielding cover 1 when the shielding cover 1 is arranged outside the antenna housing 3, the shielding cover 1 may have multiple installation positions. When the shielding cover 1 is installed at different installation positions, the degree of the receiving opening angle is different. .
  • the plurality of scales 105 can be matched with the reference marks 301 provided on the outer wall of the antenna housing 3 for observing the top opening 101 relative to the housing of the antenna body 2.
  • the receiving opening angle of the body or receiving area is convenient for the staff to adjust the receiving opening angle.
  • the shielding cover 1 is provided with at least two first mounting holes 106 of different heights.
  • a clamping groove 302 of a height may be provided on the antenna housing 3.
  • the shielding cover 1 has two mounting positions, which can form two receiving opening angles of different degrees. As shown in FIG. 20, the second fixing member 10 passes through the first mounting hole 106 located above; as shown in FIG. 22, the second fixing member 10 passes through the first mounting hole 106 located below.
  • the antenna housing 3 is provided with at least two types of clamping grooves 302 with different heights.
  • the shielding cover 1 may be provided with a first mounting hole 106 of a height. Then, when the second fixing member 10 passes through the same first mounting hole 106 and is tightened in different tightening grooves 302, different receiving opening angles will be formed. Assuming that there are two tightening grooves 302, as shown in FIG. 20 and FIG. 21, the shielding cover 1 has two installation positions, and two different receiving opening angles can be formed. As shown in FIG. 20, the second fixing member 10 is tightened in the tightening groove 302 located below; as shown in FIG. 21, the second fixing member 10 is tightened in the tightening groove 302 located above.
  • the antenna housing 3 can be provided with M types of heights of the clamping grooves 302
  • the shielding cover 1 can be provided with N types of heights of the first mounting holes 106, then theoretically It can realize up to M ⁇ N installation positions and M ⁇ N receiving opening angles, where M and N are both positive integers, which can be the same or different.
  • the second fixing member 10 may be a fastening screw.
  • the above-mentioned tightening groove 302 can be replaced with a threaded hole, and the threaded hole can be a blind hole or a through hole, and the second fixing member 10 is a screw matching the threaded hole.
  • the top opening 101 can also be set as an adjustable inner diameter opening, so that the receiving opening angle can be adjusted by adjusting the size of the top opening 101.
  • the shielding cover 1 is a cylindrical shielding cover 11.
  • the shielding cover 1 is a square cylindrical shielding cover 12.
  • the shielding can 1 is a truncated cone-shaped shielding can 13, and the inner diameter of the truncated cone-shaped shielding can 13 gradually decreases from the top to the bottom.
  • the shielding case 1 is a bowl-shaped shielding case 14, and the inner diameter of the bowl-shaped shielding case 14 gradually decreases from the top to the bottom.
  • the shielding cover 1 may be a cylindrical shielding cover 11, a square cylindrical shielding cover 12, a truncated cone-shaped shielding cover 13, and a bowl shape. Shield cover 14 and so on.
  • the bottom of the shielding cover 1 can be provided for the legs of the antenna housing 2 or the pillars of the antenna mounting frame to pass through. Through the jack 108 (as shown in Figure 16). In order to avoid the accumulation of water inside the shielding cover 1, drainage holes 104 can also be provided at the bottom of the shielding cover 1 (as shown in FIG. 16).
  • the embodiment of the present application also provides an antenna, as shown in FIG. 1, FIG. 2, FIG. 5, FIG. 14, FIG. 15, FIG. 17-22, and FIG. 25.
  • the antenna includes an antenna housing 3, an antenna body 2 and the above
  • the shielding case 1 is enclosed by the antenna body 2, and the antenna is used to receive signals from the satellite.
  • the antenna provided in the embodiment of the present application may be any antenna that receives satellite signals, for example, it may be a GPS antenna, a Beidou antenna, and the like.
  • the antenna can be used in TDD (Time Division Duplexing, Time Division Duplexing) systems.
  • the shielding cover 1 can be arranged inside the antenna housing 3 (as shown in Figures 1, 2 and 5), or can be arranged outside the antenna housing 3 (as shown in Figures 14, 15, and 5). 17-FIG. 22 and FIG. 25), the present application does not limit the specific location of the shielding cover 1.
  • the antenna can shield interference signals from below the antenna body 2 and in the horizontal direction, and can normally receive from the antenna through the top opening 101 of the shielding cover 1. Satellite signals transmitted by the upper satellite. Therefore, the antenna provided by the embodiment of the present application is not easily affected by interference signals, and the reference source signal obtained by using the antenna is also relatively accurate.
  • the embodiment of the present application also provides an antenna.
  • the antenna includes an antenna body 2 and an antenna housing 3.
  • a shielding layer is provided on the inner or outer wall of the antenna housing 3, and the shielding layer surrounds the antenna body. 2 Externally to shield interference signals, the shielding layer has a top opening 101, and the antenna is used to receive signals from satellites.
  • the above-mentioned antenna may be an antenna for receiving signals from satellites, such as a GPS antenna and a Beidou antenna.
  • the antenna body refers to the main part of the electrical device in the antenna, which can receive satellite signals transmitted by satellites.
  • the antenna body may be a rectangular parallelepiped antenna body or a cylindrical antenna body.
  • the specific shape of the antenna body is not limited in this application.
  • the shielding layer has the function of shielding signals. It can be a shielding coating or a shielding tape.
  • the shielding coating includes resin, diluents, additives and conductive fillers.
  • the conductive fillers are generally metal powders such as gold, silver, copper, nickel and non-metallic powders such as carbon black and graphite.
  • the shielding coating can be coated on the antenna shell 3 on the inner or outer wall.
  • the shielding tape 111 may be an adhesive tape with metal on the surface, such as a tin foil tape, and the shielding tape 111 may be pasted on the inner or outer wall of the antenna housing 3.
  • a shielding layer is provided on the inner or outer wall of the antenna housing 3, and the shielding layer surrounds the antenna body 2, thereby shielding interference signals from below the antenna body 2 and in the horizontal direction .
  • a top opening 101 is provided on the top of the shielding layer, which does not affect the normal reception of the antenna body 101 from the signal transmitted by the satellite above the antenna body 2. Therefore, the antenna provided by the embodiment of the present application can effectively resist interference signals.
  • FIG. 27 is a schematic diagram of an antenna with a shielding layer as a shielding coating according to an embodiment of the present application, and the receiving opening angle A1OB1 of the top opening 101 relative to the housing of the antenna body 2 is marked.
  • FIG. 28 is a schematic diagram of an antenna with a shielding layer as a shielding coating according to an embodiment of the present application, and the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 is marked.
  • FIG. 29 is a schematic diagram of an antenna with a shielding layer 111 as a shielding band 111 according to an embodiment of the present application, and the receiving opening angle A1OB1 of the top opening 101 relative to the housing of the antenna body 2 is marked.
  • the projection of the top opening 101 on the horizontal plane surrounds the projection of the antenna body 2 on the horizontal plane.
  • the solution shown in the embodiment of the present application encloses the projection of the top opening 101 on the horizontal plane by setting the projection of the antenna body 2 on the horizontal plane, that is, the inner diameter of the top opening 101 is larger than the outer diameter of the antenna body 2, so that the top opening 101 is relative to
  • the antenna body 2 is an open design, which reduces the influence of the shielding layer provided on the inner wall or the outer wall on the antenna body 2 normally receiving satellite signals.
  • the shielding layer may have a shielding effect on normal satellite signals.
  • the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 should ensure that the antenna body 2 can receive effective signals from at least four satellites. Therefore, the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 should be defined.
  • the degree of the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 is greater than or equal to 90°.
  • the degree of the receiving opening angle A1OB1 of the top opening 101 relative to the housing of the antenna body 2 is greater than or equal to 90°
  • the antenna body 2 by setting the receiving opening angle A2OB2 of the top opening 101 relative to the receiving area 20 of the antenna body 2 to be greater than or equal to 90°, the antenna body 2 can ensure that the antenna body 2 receives at least four satellites' effective signals.
  • the upper edge of the top opening 101 can be set not lower than the top of the antenna body 2, and the bottom of the shielding layer is not higher than the bottom of the antenna body 2, thereby improving the shielding effect of the shielding layer on interference signals.
  • the receiving area 20 of the antenna body 2 is difficult to accurately measure, when setting the receiving opening angle, it can also be set based on the housing of the entire antenna body 2. That is, the degree of the receiving opening angle A1OB1 of the top opening 101 relative to the housing of the antenna body 2 is greater than or equal to 90°.
  • the degree of the top opening 101 relative to the receiving opening angle A1OB1 of the housing of the antenna body 2 is greater than or equal to 90°, the degree of the receiving opening angle A2OB2 relative to the receiving area 20 of the antenna body 2 must be greater than At 90°, it can be ensured that the antenna body 2 receives at least four satellites' effective signals.
  • the shielding layer is formed by splicing a plurality of annular horizontal shielding bands 111 adjacent to each other up and down.
  • the shielding layer includes a plurality of annular transverse shielding bands 111 adjacent to each other, so that the degree of the receiving opening angle can be changed by changing the number of annular transverse shielding bands 111.
  • the receiving opening angle is A1OB1 or A2OB2.
  • the shielding layer includes three ring-shaped horizontal shielding tapes 111.
  • the receiving opening angle is the smallest; when the upper shielding tape 111 is removed, the receiving opening angle becomes larger; When only the lower shielding tape 111 is retained, the receiving opening angle has the largest degree.
  • the receiving opening angle in the figure at this time is 180°, that is, the edge of the top opening 101 is flush with the upper surface of the antenna body 2.
  • each shielding tape 111 is provided with receiving opening angle indication information for indicating the degree of the receiving opening angle A1OB1 or the receiving opening angle A2OB2 when all the shielding tapes 111 and below are reserved.
  • the receiving opening angle indication information may be indication text.
  • the receiving opening angle indication information on the shielding belt 111, it is convenient for the staff to understand the degree of the receiving opening angle A1OB1 or the receiving opening angle A2OB2, and for the staff to check the receiving opening angle A1OB1 or the receiving opening angle A1OB1 or the receiving opening angle.
  • the quarrel A2OB2 is adjusted accordingly.
  • the shielding layer includes three ring-shaped lateral shielding bands 11.
  • the degrees of the receiving opening angle indicated by the receiving opening angle indication information set on the upper shielding tape, the middle shielding tape and the lower shielding tape are respectively 90°, 120° and 180°.
  • the embodiment of the present application also provides an antenna mounting frame 7. As shown in FIG. 30 and FIG. 31, the antenna mounting frame 7 is used to install an antenna, and the antenna mounting frame 7 is provided with the above-mentioned shielding cover 1.
  • the antenna installed in the antenna mounting frame 7 is used to receive signals from satellites.
  • it can be a GPS antenna and a Beidou antenna.
  • the antenna mounting frame 7 may include an antenna mounting groove, and the groove wall of the antenna mounting groove may be set as a shielding cover 1. Therefore, when the antenna is installed in the antenna installation slot, the shield cover 1 surrounds the antenna body 2, and the shield cover 1 can shield interference signals from below the antenna and in the horizontal direction.
  • the antenna body 2 normally receives signals transmitted from the satellite above the antenna. Therefore, the antenna installed in the antenna mounting frame 7 provided in the embodiment of the present application is not easily affected by interference signals, and the reference source signal obtained by using the antenna is also relatively accurate.
  • another form of antenna mounting frame 7 provided by this embodiment of the application includes a supporting column and a clamp 8.
  • the clamp 8 is fixed on the supporting column, so that the clamp 8
  • the shielding case 1 and the antenna housing 3 can be tightly fixed together, and the shielding case 1 surrounds the antenna body 2.
  • the shielding cover 1 can shield interference signals from below the antenna and in the horizontal direction, and the antenna body 2 normally receives signals transmitted from the satellite above the antenna. Therefore, the antenna installed in the antenna mounting frame 7 provided in the embodiment of the present application is not easily affected by interference signals, and the reference source signal obtained by using the antenna is also relatively accurate.
  • FIG. 30 and FIG. 31 are only specific examples of the two antenna mounting brackets 7 provided in this application, and do not constitute a limitation to the application. Any antenna mounting frame provided with a shielding cover 1 should be within the protection scope of this application.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本申请公开了屏蔽罩、天线和天线安装架,属于天线技术领域。该屏蔽罩的顶部设置有顶部开口,该屏蔽罩用于包围在天线的天线本体外部以屏蔽干扰信号,其中,该天线用于接收来自于卫星的信号。在本申请提供的屏蔽罩包围在天线外部时,可以屏蔽来自天线本体下方和水平方向上的干扰信号。并且,由于屏蔽罩的顶部设置有顶部开口,不影响天线本体正常接收来自于天线本体上方的卫星传输的信号。因此,通过采用本申请实施例提供的屏蔽罩,可以使得天线有效抵抗干扰信号。

Description

屏蔽罩、天线和天线安装架
本申请要求于2020年5月15日提交的申请号为202010414051.4、发明名称为“屏蔽罩、天线和天线安装架”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别涉及一种屏蔽罩、天线和天线安装架。
背景技术
TDD(Time Division Duplexing,时分双工)系统是严格的时间同步系统,对时间同步要求非常高。TDD系统一般采用GPS(Global Positioning System,全球定位系统)天线从卫星获取参考时间源,如果GPS天线收到干扰信号的干扰,会造成参考时间源偏差,严重影响TDD系统的性能。
因此,如何使得GPS天线有效的抵抗干扰信号有重大意义。
发明内容
本申请提供了屏蔽罩、天线和天线安装架,可以解决相关技术中天线容易受到干扰信号干扰的技术问题,所述屏蔽罩、天线和天线安装架的技术方案可以如下所述:
第一方面,提供了一种屏蔽罩,所述屏蔽罩的顶部设置有顶部开口,所述屏蔽罩用于包围在天线的天线本体外部以屏蔽干扰信号,所述天线用于接收来自于卫星的信号。所述屏蔽罩放置于所述天线本体以外、所述天线的天线外壳以内的空间内。
其中,上述天线可以为GPS天线和北斗卫星导航系统天线等用于接收来自于卫星的信号的天线。北斗卫星导航系统天线还可以简称为北斗天线、北斗卫星天线和BDS(北斗卫星导航系统,BeiDou Navigation Satellite System)天线等。以GPS天线为例,由于GPS天线需要接收卫星信号,所以要求GPS天线安装在视野开阔处,周围没有高大的建筑物阻挡,因此一般安装在很高的位置。所以GPS天线的干扰信号大部分来自于GPS天线的下方和水平方向。本申请提供的屏蔽罩即是用于屏蔽来自于天线的下方和水平方向的干扰信号。
天线本体是指天线中的电性器件主体部分,可以接收卫星传输的卫星信号。天线本体可以是长方体天线本体,也可以是圆柱体天线本体,本申请对天线本体的具体形状不做限定。
屏蔽罩用于屏蔽来自天线本体的下方和水平方向的干扰信号。顶部设置有顶部开口,以使得天线本体可以正常接收自天线本体上方的卫星传输的卫星信号。屏蔽罩的材质可以为金属材质,具体的,该金属材质可以为紫铜,但不限于此。屏蔽罩可以采用网状结构,也可以采用非网状结构,本申请对此不做限定。具体的,当屏蔽罩采用网状结构时,屏蔽罩1可以为目数为100目或100目以上的筛网,其中,目数是指每平方英寸的面积内,筛网具有的孔的数量。目数越高,网孔越紧密,网孔越小;反之,目数越低,网孔越稀疏。屏蔽罩的厚度不做限定。
本申请实施例所示的方案,本申请实施例提供的屏蔽罩可以包围在天线的天线本体外部,从而,可以屏蔽来自天线本体下方和水平方向上的干扰信号。并且,屏蔽罩的顶部设置有顶 部开口,不影响天线本体正常接收来自于天线本体上方的卫星传输的信号。因此,通过采用本申请提供的屏蔽罩,使得天线可以有效的抵抗干扰信号。
并且,通过将屏蔽罩固定在天线外壳的内部,屏蔽罩可以通过已有的天线外壳进行防雨防潮,结构简单。对于屏蔽罩固定在天线外壳内部的具体位置,本申请不做限定。
在一种可能的实现方式中,当所述屏蔽罩的底部固定在所述天线的电路板上时,所述顶部开口相对于所述天线本体的接收区域的接收敞口角的度数大于或等于90°,或者所述顶部开口相对于所述天线本体的壳体的接收敞口角的度数大于或等于90°。
其中,天线本体的接收区域是指天线本体可以接收卫星信号的区域,该接收区域的面积一般小于天线本体的上表面的面积。
本申请实施例所示的方案,由于增设了屏蔽罩,所以,屏蔽罩可能会对正常的卫星的信号起到屏蔽作用。为了保证天线的正常工作,屏蔽罩相对于天线本体的接收区域的接收敞口角,应当保证天线本体可以接收到至少四颗卫星的有效信号。
通过设置顶部开口相对于天线本体的接收区域的接收敞口角的度数大于或等于90°,可以保证天线本体至少接收到四颗卫星的有效信号。
为了实现度数大于或等于90°的接收敞口角,在一种可能的实现方式中,可以设置顶部开口的边缘和天线本体的接收区域的边缘上距离最近的两点之间的连线与竖直方向的夹角大于或等于45°。
另外,需要说明的是,屏蔽罩可以与天线本体同轴设置,也可以不同轴设置,本申请对此不做限定。例如,电路板上的电器件可能会干涉屏蔽罩与天线本体同轴设置,则此时,也可以使天线本体与屏蔽罩不同轴设置,以便于安装。
由于天线本体的接收区域是很难精确的测量的,所以在设置接收敞口角时,还可以以整个天线本体的壳体为基准进行限定。也即,顶部开口相对于天线本体的壳体的接收敞口角的度数大于或等于90°。为了实现度数大于或等于90°的接收敞口角,在一种可能的实现方式中,可以设置顶部开口的边缘和天线本体的上边缘上距离最近的两点之间的连线与竖直方向的夹角大于或等于45°。
在一种可能的实现方式中,所述屏蔽罩的底部还设置有底部开口。所述底部开口包括向所述屏蔽罩的外部或内部延伸的凸缘部,所述凸缘部通过第一固定件固定在所述电路板上。
其中,电路板一端与天线本体连接,另一端与传输线连接,从而天线本体接收到的卫星信号可以通过电路板和传输线传输到其它电子设备中。
凸缘部也可以称为安装部。通过设置凸缘部,可以使得屏蔽罩与电路板的接触更加稳定,使得连接更加牢固。
本申请实施例所示的方案,通过将屏蔽罩固定在电路板上,使得屏蔽罩的安装方便且牢固,不用对天线外壳等进行更改,便于对现有天线外壳的利用。通过在屏蔽罩的底部设置底部开口,便于屏蔽罩安装在电路板上,避免屏蔽罩的底部与天线本体干涉。
屏蔽罩通过凸缘部安装在电路板上,具体的,可以是将凸缘部焊接在电路板上,也可以是在凸缘部和电路板上均开设安装孔,通过第一固定件(例如,紧固螺钉或铆钉)将屏蔽罩固定在电路板上。当然,本申请实施例提供的屏蔽罩,还可以通过其他固定方式固定在电路板上,本申请对此不做限定。
在一种可能的实现方式中,所述第一固定件上设有高度调节装置,用于调节所述屏蔽罩 与所述天线本体的相对位置,所述屏蔽罩的内侧设有多个刻度,每个刻度用于指示在所述每个刻度与所述天线本体的顶部平齐时所述接收敞口角的度数。
本申请实施例所示的方案,天线在不同的场景中使用时,可能对接收敞口角有不同的要求,例如,在平原和山区可能对接收敞口角的要求不同。
通过在第一固定件上设有高度调节装置,使得可以通过高度调节装置调节屏蔽罩与天线本体的相对位置,从而,调节接收敞口角的度数。
并且,通过在屏蔽罩的内侧设有多个刻度,使得可以通过多个刻度与天线本体的顶部配合,用于观测顶部开口相对于天线本体的壳体或接收区域的接收敞口角。从而,便于工作人员调整接收敞口角。
在一种可能的实现方式中,所述高度调节装置包括压缩弹簧和螺钉。
本申请实施例所示的方案,螺钉可以依次穿过凸缘部、压缩弹簧和电路板。从而,可以通过螺钉旋入电路板的长度来调整压缩弹簧的长度,进而,实现了顶部开口的边缘相对于天线本体的高度可调,这就实现了接收敞口角的可调。
在一种可能的实现方式中,所述屏蔽罩具有网状结构。
在一种可能的实现方式中,所述屏蔽罩为圆筒形屏蔽罩,且所述圆筒形屏蔽罩的底部开口在水平平面的投影,包围所述天线本体在所述水平平面的投影;或者
所述屏蔽罩为方筒形屏蔽罩,且所述方筒形屏蔽罩的底部开口在水平平面的投影,包围所述天线本体在所述水平平面的投影;或者
所述屏蔽罩为圆台形屏蔽罩,且所述圆台形屏蔽罩的内径自顶部到底部逐渐减小,所述圆台形屏蔽罩的底部开口在水平平面的投影,包围所述天线本体在所述水平平面的投影;或者
所述屏蔽罩为碗形屏蔽罩,且所述碗形屏蔽罩的内径自顶部到底部逐渐减小,所述碗形屏蔽罩的底部开口在水平平面的投影,包围所述天线本体在所述水平平面的投影。
本申请实施例所示的方案,本申请对屏蔽罩的具体形状不作限定,例如,屏蔽罩可以是圆筒形屏蔽罩、方筒形屏蔽罩、圆台形屏蔽罩和碗形屏蔽罩等。并且,为了避免在安装屏蔽罩时,屏蔽罩的底部开口与天线本体产生干涉,可以设置屏蔽罩的底部开口在水平平面的投影,包围天线本体在水平平面的投影,即底部开口的尺寸大于天线本体的壳体的尺寸。
第二方面,提供了另一种屏蔽罩,所述屏蔽罩的顶部设置有顶部开口,所述屏蔽罩用于包围在天线的天线本体外部以屏蔽干扰信号,所述天线用于接收来自于卫星的信号。所述屏蔽罩包围在所述天线的天线外壳的外部。
其中,上述天线可以为GPS天线和北斗卫星导航系统天线等用于接收来自于卫星的信号的天线。北斗卫星导航系统天线还可以简称为北斗天线、北斗卫星天线和BDS(北斗卫星导航系统,BeiDou Navigation Satellite System)天线等。以GPS天线为例,由于GPS天线需要接收卫星信号,所以要求GPS天线安装在视野开阔处,周围没有高大的建筑物阻挡,因此一般安装在很高的位置。所以GPS天线的干扰信号大部分来自于GPS天线的下方和水平方向。本申请提供的屏蔽罩即是用于屏蔽来自于天线的下方和水平方向的干扰信号。
天线本体是指天线中的电性器件主体部分,可以接收卫星传输的卫星信号。天线本体可以是长方体天线本体,也可以是圆柱体天线本体,本申请对天线本体的具体形状不做限定。
屏蔽罩用于屏蔽来自天线本体的下方和水平方向的干扰信号。顶部设置有顶部开口,以使得天线本体可以正常接收自天线本体上方的卫星传输的卫星信号。屏蔽罩的材质可以为金属材质,具体的,该金属材质可以为紫铜,但不限于此。屏蔽罩可以采用网状结构,也可以采用非网状结构,本申请对此不做限定。具体的,当屏蔽罩采用网状结构时,屏蔽罩1可以为目数为100目或100目以上的筛网,其中,目数是指每平方英寸的面积内,筛网具有的孔的数量。目数越高,网孔越紧密,网孔越小;反之,目数越低,网孔越稀疏。屏蔽罩的厚度不做限定。
本申请实施例所示的方案,本申请实施例提供的屏蔽罩可以包围在天线的天线本体外部,从而,可以屏蔽来自天线本体下方和水平方向上的干扰信号。并且,屏蔽罩的顶部设置有顶部开口,不影响天线本体正常接收来自于天线本体上方的卫星传输的信号。因此,通过采用本申请提供的屏蔽罩,使得天线可以有效的抵抗干扰信号。
并且,通过将屏蔽罩固定在天线外壳外部,对于现有的天线来说,可以不作改变,从而,现有的天线生产线和现有天线也不用进行任何改进。而对于屏蔽罩设置在天线外壳的外部的具体位置,本申请对此不做限定。
在一种可能的实现方式中,当所述屏蔽罩固定在所述天线外壳的外壁上时,所述顶部开口相对于所述天线本体的接收区域的接收敞口角的度数大于或等于90°,或者,所述顶部开口相对于所述天线本体的壳体的接收敞口角的度数大于或等于90°。
本申请实施例所示的方案,由于增设了屏蔽罩,所以,屏蔽罩可能会对正常的卫星的信号起到屏蔽作用。为了保证天线的正常工作,屏蔽罩相对于天线的接收区域的接收敞口角,应当保证天线本体可以接收到至少四颗卫星的有效信号。
通过设置顶部开口相对于天线本体的接收区域的接收敞口角的度数大于或等于90°,可以保证天线本体至少接收到四颗卫星的有效信号。
为了实现度数大于或等于90°的接收敞口角,在一种可能的实现方式中,可以设置顶部开口的边缘和天线本体的接收区域的边缘上距离最近的两点之间的连线与竖直方向的夹角的度数大于或等于45°。
由于天线本体的接收区域是很难精确的测量的,所以在设置接收敞口角时,还可以以整个天线本体的壳体为基准进行限定。也即,顶部开口相对于天线本体的壳体的接收敞口角的度数大于或等于90°。为了实现度数大于或等于90°的接收敞口角,在一种可能的实现方式中,可以设置顶部开口的边缘和天线本体的上边缘上距离最近的两点之间的连线与竖直方向的夹角的度数大于或等于45°。
在一种可能的实现方式中,所述屏蔽罩的内壁粘贴在所述天线外壳的外壁上。
本申请实施例所示的方案,屏蔽罩可以粘贴在天线外壳的外壁上。当屏蔽罩的内壁的所有壁面均和天线外壳的外壁粘贴紧密时,屏蔽罩和天线外壳之间不存在缝隙,屏蔽罩内也就不会积水。避免了天线因屏蔽罩积水而腐蚀的现象发生。
而当屏蔽罩的内壁的部分壁面和天线外壳粘贴时,则还可以设置防水结构,以防止屏蔽罩内积水。
在一种可能的实现方式中,所述屏蔽罩通过第二固定件固定在所述天线外壳的外壁上。
本申请实施例所示的方案,屏蔽罩可以通过第二固定件固定在天线外壳的外壁上,而对于第二固定件设置的具体位置本申请不做限定。具体的,该第二固定件可以为紧固螺钉和卡 箍,但不限于此。
在一种可能的实现方式中,所述屏蔽罩可在与所述天线外壳呈不同相对位置下固定于所述天线外壳的外壁上,所述屏蔽罩内侧设有多个刻度,每个刻度用于指示在所述每个刻度与所述天线外壳的基准标记平齐时接收敞口角的度数。
本申请实施例所示的方案,天线在不同的场景中使用时,可能对接收敞口角有不同的要求,例如,在平原和山区可能对接收敞口角的要求不同。
通过设置屏蔽罩可在与天线外壳呈不同相对位置下固定于天线外壳的外壁上,使得可以通过调整屏蔽罩的安装位置,来调节接收敞口角的度数。
并且,通过在屏蔽罩的内侧设有多个刻度,使得可以通过多个刻度与天线外壳的外壁上设置的基准标记配合,用于观测顶部开口相对于天线本体的壳体或接收区域的接收敞口角。从而,便于工作人员调整接收敞口角。
在一种可能的实现方式中,所述顶部开口上方还设置有防雨盖,所述顶部开口在水平平面的投影落在所述防雨盖在水平平面的投影以内。
其中,防雨盖的材质为非金属,从而,避免防雨盖屏蔽掉卫星正常传输来的信号。
本申请实施例所示的方案,在屏蔽罩放置于天线的天线外壳的外部时,由于屏蔽罩具有朝上的顶部开口,所以雨水可能会通过顶部开口进入到屏蔽罩内部,导致屏蔽罩内积水,而积水可能会腐蚀天线,造成天线损坏。
通过设置防雨盖,并使得顶部开口在水平平面的投影落在所述防雨盖在水平平面的投影以内,即防雨盖完全盖住顶部开口。可以避免雨水通过顶部开口进入到屏蔽罩内部。从而,避免因屏蔽罩积水而导致的天线腐蚀现象的发生。
在一种可能的实现方式中,所述防雨盖固定在所述天线外壳的外壁上。
在一种可能的实现方式中,所述防雨盖固定在所述屏蔽罩上。
在一种可能的实现方式中,所述屏蔽罩的底部设置有排水孔。
本申请实施例所示的方案,通过设置屏蔽罩的底部具有排水孔,使得雨水可以通过屏蔽罩底部的排水孔排出,屏蔽罩内不会积水。从而,避免因屏蔽罩积水而导致的天线腐蚀现象的发生。
在一种可能的实现方式中,所述屏蔽罩具有网状结构。
本申请实施例所示的方案,通过设置屏蔽罩具有网状结构,使得雨水可以通过屏蔽罩的网孔排出,屏蔽罩内不会积水。从而,避免因屏蔽罩积水而导致的天线腐蚀现象的发生。
在一种可能的实现方式中,所述屏蔽罩为圆筒形屏蔽罩;或者
所述屏蔽罩为方筒形屏蔽罩;或者
所述屏蔽罩为圆台形屏蔽罩,且所述圆台形屏蔽罩的内径自顶部到底部逐渐减小;或者
所述屏蔽罩为碗形屏蔽罩,且所述碗形屏蔽罩的内径自顶部到底部逐渐减小。
本申请实施例所示的方案,本申请对屏蔽罩的具体形状不作限定,例如,屏蔽罩可以是圆筒形屏蔽罩、方筒形屏蔽罩、圆台形屏蔽罩和碗形屏蔽罩等。并且,为了避免在安装屏蔽罩时,屏蔽罩的底部与天线外壳、天线安装架发生干涉,可以在屏蔽罩的底部设置供天线外壳的腿部或供天线安装架的支柱穿过的通孔。而为了避免屏蔽罩内部积水,还可以在屏蔽罩的底部设置排水孔。
第三方面,提供了一种天线,所述天线包括天线外壳、天线本体和如第一方面或第二方面所述的屏蔽罩,其中,所述屏蔽罩包围在所述天线本体外部,所述天线用于接收来自于卫星的信号。
其中,该天线可以为GPS天线和北斗天线等,该天线可以应用在TDD(Time Division Duplexing,时分双工)系统中。
本申请实施例所示的方案,通过为天线增设屏蔽罩,并使屏蔽罩包围在天线本体的外部,使得天线可以屏蔽来自天线本体下方和水平方向的干扰信号,并且,屏蔽罩的顶部设置有顶部开口,不影响天线本体正常接收来自于天线本体上方的卫星传输的信号。因此,本申请实施例提供的天线,不易受到干扰信号的影响,利用该天线获得的参考源信号,也较为准确。
第四方面,提供了一种天线,所述天线包括天线本体和天线外壳,其中,所述天线外壳的内壁或外壁上设置有屏蔽层,所述屏蔽层包围在所述天线本体外部以屏蔽干扰信号,所述屏蔽层具有顶部开口,所述天线用于接收来自于卫星的信号。
其中,上述天线可以为GPS天线和北斗天线等用于接收来自于卫星的信号的天线。
天线本体是指天线中的电性器件主体部分,可以接收卫星传输的卫星信号。天线本体可以是长方体天线本体,也可以是圆柱体天线本体,本申请对天线本体的具体形状不做限定。
屏蔽层,具有屏蔽信号的功能,可以是屏蔽涂层或屏蔽带等。屏蔽涂层包括树脂、稀释剂、添加剂以及导电性填料等,导电性填料一般是金、银、铜、镍等金属粉末和炭黑、石墨等非金属粉末,屏蔽涂层可以涂覆在天线外壳的内壁会外壁上。屏蔽带可以为表面具有金属的胶带,例如锡箔胶带,屏蔽带可以粘贴在天线外壳的内壁或外壁上。
本申请实施例所示的方案,通过在天线外壳的内壁或外壁上设置屏蔽层,并使屏蔽层包围在天线本体外部,从而,可以屏蔽来自天线本体下方和水平方向上的干扰信号。并且,屏蔽层的顶部设置有顶部开口,不影响天线本体正常接收来自于天线本体上方的卫星传输的信号。因此,采用本申请实施例提供的天线,可以有效的抵抗干扰信号。
在一种可能的实现方式中,所述顶部开口在水平平面的投影,包围所述天线本体在所述水平平面的投影。
本申请实施例所示的方案,通过设置顶部开口在水平平面的投影,包围天线本体在水平平面的投影,即顶部开口的内径大于天线本体的外径,使得顶部开口相对于天线本体为一个敞口设计,减少了在内壁或外壁上设置屏蔽层对天线本体正常接收卫星信号的影响。
在一种可能的实现方式中,所述顶部开口相对于所述天线本体的接收区域的接收敞口角的度数大于或等于90°,或者所述顶部开口相对于所述天线本体的壳体的接收敞口角的度数大于或等于90°。
其中,天线本体的接收区域是指天线本体可以接收卫星信号的区域,该接收区域的面积一般小于天线本体的上表面的面积。
本申请实施例所示的方案,由于在天线外壳3的内壁或外壁上设置了屏蔽层,所以,屏蔽层可能会对正常的卫星的信号起到屏蔽作用。为了保证天线的正常工作,顶部开口相对于天线的接收区域的接收敞口角,应当保证天线本体可以接收到至少四颗卫星的有效信号。
通过设置顶部开口相对于天线本体的接收区域的接收敞口角的度数大于或等于90°,可以保证天线本体至少接收到四颗卫星的有效信号。
由于天线本体的接收区域是很难精确的测量的,所以在设置接收敞口角时,还可以以整个天线本体的壳体为基准进行限定。也即,顶部开口相对于天线本体的壳体的接收敞口角的度数大于或等于90°。
在一种可能的实现方式中,所述屏蔽层为屏蔽涂层,所述屏蔽涂层涂覆在所述天线外壳的内壁或外壁上。
本申请实施例所示的方案,屏蔽涂层可以包括树脂、稀释剂、添加剂以及导电性填料等,导电性填料可以是金、银、铜、镍等金属粉末和炭黑、石墨等非金属粉末,屏蔽涂层可以涂覆在天线外壳的内壁或外壁上。
在一种可能的实现方式中,所述屏蔽层为屏蔽带,所述屏蔽带粘贴在所述天线外壳的内壁或外壁上。
本申请实施例所示的方案,屏蔽带可以为表面具有金属的胶带,例如锡箔胶带,但不限于此。屏蔽带可以粘贴在天线外壳的内壁或外壁上。
在一种可能的实现方式中,所述屏蔽层由多条上下相邻的环状横向屏蔽带拼接而成。
本申请实施例所示的方案,通过使屏蔽层包括上下相邻的多条环状横向屏蔽带,使得可以通过改变环状横向屏蔽带的数量,来改变接收敞口角的度数。
在一种可能的实现方式中,每条屏蔽带设有接收敞口角指示信息,用于指示在保留该条及以下所有的屏蔽带时,接收敞口角的度数。
本申请实施例所示的方案,通过在屏蔽带上设置接收敞口角指示信息,便于工作人员了解接收敞口角的度数,并便于工作人员对接收敞口角进行调整。
第五方面,提供了一种天线安装架,所述天线安装架用于安装天线,所述天线安装架中固定有如第二方面所述的屏蔽罩,其中,所述天线用于接收来自于卫星的信号。
其中,天线安装架中安装的天线可以为GPS天线和北斗天线等。
本申请实施例所示的方案,天线安装架中可以固定有屏蔽罩,并且,在天线安装在天线安装架中时,屏蔽罩包围天线本体。从而,屏蔽罩可以屏蔽来自天线的下方和水平方向的干扰信号。并且,天线也可以通过屏蔽罩的顶部开口正常接收来自天线上方的卫星传输的卫星信号。因此,安装在本申请实施例提供的天线安装架中的天线,不易受到干扰信号的影响,利用该天线获得的参考源信号,也较为准确。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供了一种屏蔽罩,该屏蔽罩可以包围在天线的天线本体外部,从而,可以屏蔽来自天线本体下方和水平方向上的干扰信号。并且,屏蔽罩的顶部设置有顶部开口,这样,天线本体可以正常接收来自于天线本体上方的卫星传输的信号。因此,通过采用本申请实施例提供的屏蔽罩,可以使得天线有效抵抗来干扰信号。
附图说明
图1是本申请实施例提供的一种天线的剖视图;
图2是本申请实施例提供的一种天线的剖视图;
图3是本申请实施例提供的一种天线本体的接收区域的示意图;
图4是本申请实施例提供的一种屏蔽罩的三维示意图;
图5是本申请实施例提供的一种天线的剖视图;
图6是本申请实施例提供的一种屏蔽罩的安装位置示意图;
图7是本申请实施例提供的一种屏蔽罩的安装位置示意图;
图8是本申请实施例提供的一种屏蔽罩的安装位置示意图;
图9是本申请实施例提供的一种屏蔽罩的安装位置示意图;
图10是本申请实施例提供的一种屏蔽罩安装方式示意图;
图11是本申请实施例提供的一种屏蔽罩安装方式示意图;
图12是本申请实施例提供的一种屏蔽罩安装方式示意图;
图13是本申请实施例提供的一种屏蔽罩安装方式示意图;
图14是本申请实施例提供的一种屏蔽罩的剖视图;
图15是本申请实施例提供的一种屏蔽罩的剖视图;
图16是本申请实施例提供的一种屏蔽罩的三维示意图;
图17是本申请实施例提供的一种屏蔽罩的剖视图;
图18是本申请实施例提供的一种屏蔽罩的剖视图;
图19是本申请实施例提供的一种屏蔽罩的剖视图;
图20是本申请实施例提供的一种屏蔽罩的剖视图;
图21是本申请实施例提供的一种屏蔽罩的剖视图;
图22是本申请实施例提供的一种屏蔽罩的剖视图;
图23是本申请实施例提供的一种屏蔽罩的安装孔示意图;
图24是本申请实施例提供的一种天线外壳的外形示意图;
图25是本申请实施例提供的一种屏蔽罩的剖视图;
图26是本申请实施例提供的屏蔽罩的三维示意图;
图27是本申请实施例提供的一种天线的剖视图;
图28是本申请实施例提供的一种天线的剖视图;
图29是本申请实施例提供的一种天线的剖视图;
图30是本申请实施例提供的一种天线安装架的剖视图;
图31是本申请实施例提供的一种天线安装架的剖视图。
图例说明
1、屏蔽罩,101、顶部开口,102、底部开口,103、凸缘部,104、排水孔,105、刻度,106、第一安装孔,107、第二安装孔,108、插孔;11、圆筒形屏蔽罩,12、方筒形屏蔽罩,13、圆台形屏蔽罩,14、碗形屏蔽罩;111、屏蔽带;2、天线本体,20、接收区域;3、天线外壳,301、基准标记,302、顶紧槽;4、电路板;5、传输线;6、防雨盖;7、天线安装架;8、卡箍;9、第一固定件,91、螺钉,92、压缩弹簧;10、第二固定件。
具体实施方式
本申请实施例提供了屏蔽罩1,如图1、图2、图4-图23、图25和图26所示,该屏蔽罩1的顶部设置有顶部开口101,屏蔽罩1用于包围在天线的天线本体2外部以屏蔽干扰信号。
其中,上述天线用于接收来自于卫星的信号,可以是GPS天线和北斗天线等。以GPS 天线为例,由于GPS天线需要接收卫星信号,所以要求GPS天线安装在视野开阔处,周围没有高大的建筑物阻挡,因此一般安装在很高的位置。所以GPS天线的干扰信号大部分来自于GPS天线的下方和水平方向。本申请实施例提供的屏蔽罩即是用于屏蔽来自于天线本体2下方和水平方向的干扰信号。
天线本体2是指天线中的电性器件主体部分,可以接收卫星传输的卫星信号。天线本体2可以属于任意可以接收卫星传输的卫星信号的天线,例如,天线本体可以是GPS天线中的天线本体,也可以是北斗天线中的天线本体。本申请实施例中天线本体2可以是长方体天线本体(如图3、图6和图7所示),也可以是圆柱体天线本体(如图8和图9所示),本申请对天线本体2的具体形状不做限定。
屏蔽罩1用于屏蔽来自天线本体2的下方和水平方向的干扰信号。顶部设置有顶部开口101,以使得天线本体2可以正常接收自天线本体2上方的卫星传输的卫星信号。屏蔽罩1的材质可以为金属材质,具体的,该金属材质可以为紫铜,但不限于此。屏蔽罩1可以采用网状结构,也可以采用非网状结构,本申请对此不做限定。具体的,当屏蔽罩1采用网状结构时,屏蔽罩1可以为目数为100目或100目以上的筛网,其中,目数是指每平方英寸的面积内,筛网具有的孔的数量。目数越高,网孔越紧密,网孔越小;反之,目数越低,网孔越稀疏。屏蔽罩1的厚度不做限定。
另外,屏蔽罩1除了在顶部设置有顶部开口101之外,还可以在底部设置有底部开口102,即屏蔽罩1可以为一个筒形结构,屏蔽罩1的上下均无底。当然,该屏蔽罩1的底部也可以是封闭的,本申请对此不做限定。
本申请实施例所示的方案,本申请实施例提供的屏蔽罩1可以包围在天线的天线本体2外部,从而,可以屏蔽来自天线本体2下方和水平方向上的干扰信号。并且,屏蔽罩1的顶部设置有顶部开口101,不影响天线本体2正常接收来自于天线本体2上方的卫星传输的信号。因此,通过采用本申请提供的屏蔽罩,使得天线可以有效的抵抗干扰信号。
在一种可能的实现方式中,如图1、图2、图5-图15、图17-图22、图25和图27所示,当将天线本体2放置于屏蔽罩1内时,顶部开口101在水平平面的投影,包围天线本体在水平平面的投影。
本申请实施例所示的方案,通过设置顶部开口101在水平平面的投影,包围天线本体2在水平平面的投影,即顶部开口101的内径大于天线本体2的外径,使得顶部开口101相对于天线本体2为一个敞口设计,减少了屏蔽罩1的加入对天线本体2正常接收卫星信号的影响。
需要说明的是,本申请实施例提供的屏蔽罩可以放置在天线外壳3内部,也可以放置在天线外壳3外部。下面,分别对这两种情况进行说明。
(1)本申请实施例提供了一种屏蔽罩1,如图1、图2、图4-图13所示,该屏蔽罩1的顶部设置有顶部开口101,屏蔽罩1用于包围在天线的天线本体2外部以屏蔽干扰信号。屏蔽罩可放置于天线本体2以外、天线的天线外壳3以内的空间内。
本申请实施例所示的方案,通过将屏蔽罩1固定在天线外壳3的内部,屏蔽罩1可以通过已有的天线外壳3进行防雨防潮,结构简单。对于屏蔽罩1固定在天线外壳3内部的具体位置,本申请不做限定。在一种可能的实现方式中,屏蔽罩1可以固定在天线外壳3的内壁 上,例如可以粘贴在天线外壳3的内壁上。
在另一种可能的实现方式中,如图1、图2、图5、图10-图13所示,天线外壳3内部还设置有电路板4,天线本体2和屏蔽罩1均固定在电路板4上。
其中,电路板4一端与天线本体2连接,另一端与传输线5连接,从而天线本体2接收到的卫星信号可以通过电路板4和传输线5传输到其它电子设备中。
本申请实施例所示的方案,通过将屏蔽罩1固定在电路板4上,使得屏蔽罩1的安装方便且牢固,不用对天线外壳3等进行更改,便于对现有天线外壳和现有生产线的利用。
为了便于安装屏蔽罩1,在一种可能的实现方式中,如图10-图13中的上方的子图所示,屏蔽罩1的底部还设置有底部开口102,且底部开口102的边缘包括向屏蔽罩1的内部延伸的凸缘部103,屏蔽罩1通过凸缘部103固定在电路板4上。
其中,凸缘部103也可以称为安装部。通过设置凸缘部103,可以使得屏蔽罩1与电路板4的接触更加稳定,连接更加牢固。
本申请实施例所示的方案,屏蔽罩1通过凸缘部103安装在电路板4上,具体的,可以是将凸缘部103焊接在电路板4上,也可以是在凸缘部103和电路板4上均开设第二安装孔107,通过紧固螺钉或铆钉将屏蔽罩1固定在电路板4上(如图10-图13所示)。当然,本申请实施例提供的屏蔽罩1,还可以通过其他固定方式固定在电路板4上,本申请对此不做限定。
如图4所示,为本申请实施例提供的一种屏蔽罩1的三维示意图,该屏蔽罩1的底部开口102的边缘包括向屏蔽罩1的内部延伸的凸缘部103,在凸缘部103上开设有第二安装孔107,用于供紧固螺钉或铆钉等固定件穿过,以将屏蔽罩1固定在电路板4上。
在另一种可能的实现方式中,如图11,以及图10、图12和图13中的下方的子图所示,底部开口102的边缘包括向屏蔽罩1的外部延伸的凸缘部103,屏蔽罩1通过凸缘部103安装在电路板4上。
本申请实施例所示的方案,凸缘部103还可以是向屏蔽罩1外部延伸的。同样的,在屏蔽罩1通过凸缘部103安装在电路板4上时,可以是将凸缘部103焊接在电路板4上,也可以是在凸缘部103和电路板4上均开设安装孔107,通过紧固螺钉或铆钉将屏蔽罩1固定在电路板4上(如图10-图13所示)。
由于在天线外壳3内部增设了屏蔽罩1,所以,屏蔽罩1可能会对正常的卫星的信号起到屏蔽作用。为了保证天线的正常工作,顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2,应当保证天线本体2可以接收到至少四颗卫星的有效信号。因此,应当对顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2的度数进行设置。
其中,顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2可以这样理解:如图5所示,假设过天线本体2的纵向中轴线的任一竖直截面,与顶部开口101的交点为A和B,与天线本体2的接收区域20的交点为A2和B2,则直线AA2和BB2相交于点O,形成一个角A2OB2。随着该竖直截面绕着纵向中轴线的旋转,会形成无数个与角A2OB2类似的角,则在这无数个角中的度数最小的角,即为顶部开口101相对于天线本体2的接收区域20的接收敞口角。
在一种可能的实现方式中,如图5所示,顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2的度数大于或等于90°。
其中,天线本体2的接收区域20是指天线本体2可以接收卫星信号的区域,该接收区域20的面积一般小于天线本体2的上表面的面积。例如,天线本体2的接收区域可以是长方形的上表面中一个较小的长方形区域,即图3中的虚线长方形区域。
本申请实施例所示的方案,通过设置顶部开口101相对于天线本体2的接收区域的接收敞口角A2OB2的度数大于或等于90°,可以保证天线本体2至少接收到四颗卫星的有效信号。
关于顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2的度数大于或等于90°,可以有多种实现方式:在一种可能的实现方式中,可以设置顶部开口101的边缘与天线本体2持平,或者,略低于天线本体2。而在顶部开口101的边缘高于天线本体2时,可以设置顶部开口101的边缘和天线本体2的接收区域20的边缘上距离最近的两点之间的连线与竖直方向的夹角大于或等于45°。
在一种可能的实现方式中,顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°。
其中,顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1,可以这样理解:如图1和图2所示,假设过天线本体2的纵向中轴线的任一竖直截面,与顶部开口101的交点为A和B,与天线本体2的壳体的交点为A1和B1,则直线AA1和BB1相交于点O,形成一个角A1OB1。随着该竖直截面绕着纵向中轴线的旋转,会形成无数个与角A1OB1类似的角,则在这无数个角中的度数最小的角,即为顶部开口101相对于天线本体2的壳体的接收敞口角。
本申请实施例所示的方案,由于天线本体2的接收区域20是很难精确的测量的,所以在设置接收敞口角时,还可以以整个天线本体2的壳体为基准进行设置。即,顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°。
可以理解的是,如果顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°,则其相对于天线本体2的接收区域20的接收敞口角A2OB2的度数肯定大于90°,则可以保证天线本体2至少接收到四颗卫星的有效信号。
关于顶部开口101相对于天线本体2的壳体的接收敞口角A2OB2的度数大于或等于90°,可以有多种实现方式:在一种可能的实现方式中,可以设置顶部开口101的边缘与天线本体2持平,或者,略低于天线本体2。
而在顶部开口101的边缘高于天线本体2时,可以设置顶部开口101的边缘和天线本体2的壳体的上边缘上距离最近的两点之间的连线AA1与竖直方向的夹角大于或等于45°。
如图6-图9所示,天线本体2与屏蔽罩1同轴设置,在天线本体2和屏蔽罩1的俯视图上水平距离最近的两点AA1,即为天线本体2的壳体的上边缘与顶部开口101的边缘上距离最近的两点,连线AA1与竖直方向的夹角大于或等于45°。其中,图6示出的是圆筒形屏蔽罩11与长方体的天线本体2同轴设置的示意图;图7示出的是方筒形屏蔽罩12与长方体的天线本体2同轴设置的示意图;图8示出的是圆台形屏蔽罩13与圆柱体的天线本体2同轴设置的示意图;图9示出的是碗形屏蔽罩14与圆柱体的天线本体2同轴设置的示意图。
另外,还可以根据上述夹角大于或等于45°的要求,以及天线本体2的尺寸,来计算屏蔽罩1的具体尺寸,具体的计算方法可以如下所述:
如图6-图9所示,设屏蔽罩1的高度为H,天线本体2的高度h,则屏蔽罩1与天线本体2的高度差为H-h。为了满足上述大于或等于45°的要求,则天线本体2与顶部开口101的 边缘之间的最小水平距离应当大于H-h。
更加具体的,如图6、图8和图9所示,如果屏蔽罩1的顶部开口101为半径为R的圆形,天线本体2为俯视图的半径为r的圆柱体天线本体,或者,俯视图的对角线长度为2r长方体天线本体。
则H、h、R和r应当满足:(H-h)/(R-r)≤1。
需要补充说明的是,屏蔽罩1和天线本体2可以同轴设置(如图1、图5-图13所示),也可以不同轴设置(如图2所示),本申请对此不做限定,其中,L1表示屏蔽罩1的竖直中轴线,L2表示天线本体2的竖直中轴线,在图1、图5-图13中L1和L2重合,而在图2中L1和L2不重合。例如,如图2所示,在电路板4上存在阻碍元器件,阻碍屏蔽罩1的同轴安装布置时,屏蔽罩1和天线本体2可以不同轴设置。但是,不管是否同轴设置,均应保证上述接收敞口角的度数大于或等于90度,以使天线本体2可以通过顶部开口101接收到至少四颗卫星的有效信号。另外,在满足天线本体2可以通过顶部开口101接收到至少四颗卫星的有效信号的情况下,接收敞口角A2OB2或A1OB1也可以略小于90°。
天线在不同的场景中使用时,可能对接收敞口角有不同的要求,例如,在平原和山区可能对接收敞口角的要求不同。则在一种可能的实现方式中,第一固定件9上设有高度调节装置,用于调节屏蔽罩1与天线本体2的相对位置,屏蔽罩1的内侧设有多个刻度105,每个刻度105用于指示在每个刻度105与天线本体2顶部平齐时接收敞口角A1OB1或接收敞口角A2OB2的度数。
本申请实施例所示的方案,通过在第一固定件9上设有高度调节装置,使得可以调节屏蔽罩1与天线本体2的相对位置,从而,调节接收敞口角的度数。
并且,通过在屏蔽罩1的内侧设有多个刻度105,使得工作人员可以通过多个刻度105与天线本体2的顶部配合,观察顶部开口101相对于天线本体2的壳体或接收区域20的接收敞口角的度数。从而,便于工作人员了解将接收敞口角调整到什么度数。
在一种可能的实现方式中,高度调节装置包括压缩弹簧91和螺钉92。
本申请实施例所示的方案,如图11所示,凸缘部103和电路板4之间设置有压缩弹簧91,螺钉92依次穿过凸缘部103、压缩弹簧91和电路板4。通过调整螺钉92旋入电路板4的长度,可以调节压缩弹簧91的长度,进而实现顶部开口101的边缘相对于天线本体2的高度可调,实现接收敞口角的可调。
另外,为了实现接收敞口角的度数的可调,也可将顶部开口101设置为可调内径开口,从而,可以通过调节顶部开口101的大小,来调节接收敞口角。
本申请对屏蔽罩1的具体形状不做限定。参照图6-图9和图26,下面,提供几种可能的屏蔽罩1的形状:
在一种可能的实现方式中,如图26和图6所示,屏蔽罩1为圆筒形屏蔽罩11,且圆筒形屏蔽罩11的底部开口102在水平平面的投影,包围天线本体2在水平平面的投影。
在另一种可能的实现方式中,如图26和图7所示,屏蔽罩1为方筒形屏蔽罩12,且方筒形屏蔽罩12的底部开口102在水平平面的投影,包围天线本体2在水平平面的投影。
在另一种可能的实现方式中,如图26和图8所示,屏蔽罩1为圆台形屏蔽罩13,且圆台形屏蔽罩13的内径自顶部到底部逐渐减小,圆台形屏蔽罩13的底部开口102在水平平面的投影,包围天线本体2在水平平面的投影。
在另一种可能的实现方式中,如图26和图9所示,屏蔽罩1为碗形屏蔽罩14,且碗形屏蔽罩14的内径自顶部到底部逐渐减小,碗形屏蔽罩14的底部开口102在水平平面的投影,包围天线本体2在水平平面的投影。
本申请实施例所示的方案,本申请对屏蔽罩1的具体形状不作限定,例如,屏蔽罩1可以是圆筒形屏蔽罩11、方筒形屏蔽罩12、圆台形屏蔽罩13和碗形屏蔽罩14等。并且,为了避免在安装屏蔽罩1时,屏蔽罩1的底部开口102与天线本体2产生干涉,可以设置屏蔽罩1的底部开口102在水平平面的投影,包围天线本体2在水平平面的投影,即底部开口102的尺寸大于天线本体2的壳体的尺寸,以使天线本体2可以穿过底部开口102。
(2)本申请实施例还提供了一种屏蔽罩1,如图14-图23、图25和图26所示,该屏蔽罩1的顶部设置有顶部开口101,屏蔽罩1用于包围在天线的天线本体2外部以屏蔽干扰信号。屏蔽罩1放置于天线的天线外壳3的外部。
本申请实施例所示的方案,通过将屏蔽罩1固定在天线外壳3外部,对于现有的天线来说,可以不作改变,从而,现有的天线生产线和现有天线也不用进行任何改进。而对于屏蔽罩1放置在天线外壳3的外部的具体位置,本申请对此不做限定。屏蔽罩1可以固定在天线外壳3的外壁上(如图14、图15、图17-图22和图25所示),也可以固定在天线以外的其它部件上,例如,天线安装架上(如图30和图31所示)。
在一种可能的实现方式中,如图25所示,屏蔽罩1的内壁粘贴在天线外壳3的外壁上。
本申请实施例所示的方案,屏蔽罩1可以粘贴在天线外壳3的外壁上。如图25所示,当屏蔽罩1的内壁的所有壁面均和天线外壳3的外壁粘贴紧密时,屏蔽罩1和天线外壳3之间不存在缝隙,屏蔽罩1内也就不会积水。避免了天线因屏蔽罩1积水而腐蚀的现象发生。
具体的,屏蔽罩1的内壁和天线外壳3的外壁之间的粘接可以通过胶水实现,该胶水可以是AB胶,但不限于此。
另外,如果只有屏蔽罩1的内壁的部分壁面和天线外壳3的外壁粘贴,则屏蔽罩1未与天线外壳3粘贴的部分可能会形成一个空腔。为了避免该空腔内积水,则可以在顶部开口101的上部设置防雨盖6,也可以在屏蔽罩1对应空腔底部的壁面上开设排水孔106,从而,防止积水。
在一种可能的实现方式中,如图14、图15和图17-图22所示,屏蔽罩1通过第二固定件10固定在天线外壳3的外壁上。
本申请实施例所示的方案,屏蔽罩1还可以通过第二固定件10固定在天线外壳3的外壁上,而对于第二固定件10设置的具体位置本申请不做限定。具体的,该第二固定件10可以为紧固螺钉、铆钉和卡箍等,但不限于此。
在屏蔽罩1设置在天线外壳3的外部,且屏蔽罩1与天线外壳3的外壁之间存在缝隙时。屏蔽罩1以内、天线外壳3以外的空间内可能会因下雨而导致积水,这就可能导致天线被积水腐蚀的现象的发生。因此,在屏蔽罩1放置在天线外壳3外部时,应当采取相应的防水措施,避免积水现象的发生。
下面,提供几种可能的防止屏蔽罩1积水的措施:
在一种可能的实现方式中,如图17-图22所示,顶部开口101上方还设置有防雨盖6,顶部开口101在水平平面的投影落在防雨盖6在水平平面的投影以内。
其中,防雨盖6的材质为非金属,从而,避免防雨盖6屏蔽掉卫星信号。
本申请实施例所示的方案,通过设置防雨盖6,并使得顶部开口101在水平平面的投影落在防雨盖6在水平平面的投影以内,即防雨盖6完全盖住顶部开口101。可以避免雨水通过顶部开口101进入到屏蔽罩1的内部。从而,避免因屏蔽罩1积水而导致的天线腐蚀现象的发生。
而对于防水盖6固定的位置,本申请不做限定。在一种可能的实现方式中,如图17、图18和图20-图22所示,防雨盖6固定在天线外壳3的外壁上。在另一种可能的实现方式中,如图19所示,防雨盖6固定在屏蔽罩1上。或者,防雨盖6还可以固定在天线以外的部件上,例如,防雨盖6可以固定在天线安装架上。
在一种可能的实现方式中,如图16、图19-图22所示,屏蔽罩1的底部设置有排水孔104。
本申请实施例所示的方案,通过在屏蔽罩1的底部设置排水孔104,使得雨水可以通过屏蔽罩1底部的排水孔104排出,屏蔽罩1内不会积水。从而,避免因屏蔽罩1积水而对天线外壳3或天线本体2造成破坏、甚至对卫星信号造成屏蔽的现象发生。
如图16所示,为本申请实施例提供的一种屏蔽罩1的三维示意图,屏蔽罩1的侧壁上开设有第一安装孔106,第二固定件10穿过第一安装孔106将屏蔽罩1固定在天线外壳3上。
为了防止积水,在屏蔽罩1的底部设置有排水孔104。为了避免安装屏蔽罩1时,屏蔽罩1的底部与天线外壳3的腿部或天线安装架的支柱发生干涉,在屏蔽罩1的底部还可以设置用于供天线外壳3的腿部或天线安装架的支柱穿过的插孔108。
在一种可能的实现方式中,屏蔽罩1具有网状结构。
本申请实施例所示的方案,通过设置屏蔽罩1具有网状结构,使得雨水可以通过屏蔽罩1的网孔排出,屏蔽罩1内不会积水。从而,避免因屏蔽罩1积水而导致的天线腐蚀现象的发生。
需要说明的是,上述三种防积水措施可以单独使用,也可以结合使用,从而达到更好的防积水效果。例如,如图19-图22所示,在屏蔽罩1的顶部开口101上方设置防雨盖6的同时,在屏蔽罩1的底部还设置排水孔104。再例如,在屏蔽罩1具有网状结构的同时,在屏蔽罩1的顶部开口101上方还设置防雨盖6。
由于在天线外壳3的外部增设了屏蔽罩1,所以,屏蔽罩1可能会对正常的卫星的信号起到屏蔽作用。为了保证天线的正常工作,顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2,应当保证天线本体2可以接收到至少四颗卫星的有效信号。因此,应当对顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2进行设置。
在一种可能的实现方式中,如图15所示,当屏蔽罩1固定在天线外壳3的外壁上时,顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2的度数大于或等于90°。
本申请实施例所示的方案,通过设置顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2的度数大于或等于90°,可以保证天线本体2至少接收到四颗卫星的有效信号。
关于顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2的度数大于或等于90°,可以有多种实现方式:在一种可能的实现方式中,可以设置顶部开口101的边缘与天线本体2持平,或者,略低于天线本体2。而在顶部开口101的边缘高于天线本体2时, 可以设置顶部开口101的边缘和天线本体2的接收区域20的边缘上距离最近的两点之间的连线AA2与竖直方向的夹角大于或等于45°。
在一种可能的实现方式中,如图14、图17-图22和图25所示,当屏蔽罩1固定在天线外壳3的外壁上时,顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°。
本申请实施例所示的方案,由于天线本体2的接收区域20是很难精确的测量的,所以在设置接收敞口角时,还可以以整个天线本体2的壳体为基准进行设置。即,顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°。
可以理解的是,如果顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°,则其相对于天线本体2的接收区域20的接收敞口角A2OB2的度数肯定大于90°,则可以保证天线本体2至少接收到四颗卫星的有效信号。
关于顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°,可以有多种实现方式:在一种可能的实现方式中,可以设置顶部开口101的边缘与天线本体2持平,或者,略低于天线本体2。而在顶部开口101的边缘高于天线本体2时,可以设置顶部开口101的边缘和天线本体2的壳体的上边缘上距离最近的两点之间的连线AA1与竖直方向的夹角大于或等于45°。
天线在不同的场景中使用时,可能对接收敞口角有不同的要求,例如,在平原安装的天线可能要求较小的接收敞口角(在不小于90度的前提下),以尽量屏蔽周围及下方的干扰信号;而在山顶上安装的天线可能要求较大的接收敞口角(例如120度),既能屏蔽来自山下的干扰信号,又能接收更多卫星的信号。则在一种可能的实现方式中,屏蔽罩1可在与天线外壳3呈不同相对位置下固定于天线外壳3的外壁上,屏蔽罩1内侧设有多个刻度105,每个刻度105用于指示在每个刻度105与天线外壳3的外壁上设置的基准标记301平齐时接收敞口角A1OB1或接收敞口角A2OB2的度数。
需要说明的是,基准标记301的设置可以有多种方式:
在一种可能的实现方式中,生产天线外壳3和屏蔽罩1的可以是同一厂家,则厂家可以成套的生产天线外壳3和屏蔽罩1,并在天线外壳3和屏蔽罩1的对应位置分别设置基准标记301和刻度105。
在另一种可能的实现方式中,生产天线外壳3的厂家在外壳合适的位置设置基准标记301,而生产屏蔽罩1的厂家可以参照已标记的基准标记301,适应性的生产屏蔽罩1并标记刻度105。
在另一种可能的实现方式中,如图18所示,生产天线外壳3的厂家可以不额外设置基准标记301。生产屏蔽罩1的厂家默认以天线外壳3的某一棱边(如图18所示)为基准标记301,并适应性的生产屏蔽罩1以及标记刻度105。在这种情况下,生产屏蔽罩1的厂家还需要添加以哪一棱边作为基准标记301的相关说明。
在另一种可能的实现方式中,如图17所示,在屏蔽罩1的每个刻度105旁可以设置观测孔。在首次安装屏蔽罩1时,将天线外壳3坐到屏蔽罩1的顶部,然后透过最下方的观测孔,在天线外壳3上与该观测孔平齐的位置设置基准标记301(例如,将该位置涂覆上特殊颜色)。则后续在调整接收敞口角的度数时,在透过120°的刻度对应的观测孔观测到基准标记301时,则说明接收敞口角的度数为120°。
本申请实施例所示的方案,在屏蔽罩1设置在天线外壳3的外部时,屏蔽罩1可以具有多个安装位置,当屏蔽罩1安装在不同的安装位置时,接收敞口角的度数不同。
另外,通过在屏蔽罩1的内侧设有多个刻度105,使得可以通过多个刻度105与天线外壳3的外壁上设置的基准标记301配合,用于观测顶部开口101相对于天线本体2的壳体或接收区域的接收敞口角。从而,便于工作人员调整接收敞口角。
下面,提供屏蔽罩1可在与天线外壳3呈不同相对位置下固定于天线外壳3的外壁上的实现形式:
在一种可能的实现方式中,如图23所示,屏蔽罩1设置有至少两种不同高度的第一安装孔106。而在天线外壳3上可以设置有一种高度的顶紧槽302。则当第二固定件10穿过不同的第一安装孔106顶紧在同一顶紧槽302中时,则会形成不同的接收敞口角。假设,存在两个第一安装孔106,如图20和图22所示,则屏蔽罩1具有两个安装位置,可以形成两种不同度数的接收敞口角。如图20所示,第二固定件10穿过位于上方的第一安装孔106;如图22所示,第二固定件10穿过位于下方的第一安装孔106。
在另一种可能的实现方式中,如图24所示,天线外壳3设置有至少两种不同高度的顶紧槽302。而在屏蔽罩1上可以设置有一种高度的第一安装孔106。则当第二固定件10穿过同一第一安装孔106顶紧在不同顶紧槽302中时,则会形成不同的接收敞口角。假设存在两个顶紧槽302,则如图20和图21所示,则屏蔽罩1具有两个安装位置,可以形成两种不同的接收敞口角。如图20所示,第二固定件10顶紧在位于下方的顶紧槽302中;如图21所示,第二固定件10顶紧在位于上方的顶紧槽302中。
需要说明的是,上述两种实现方式可以同时实施,即在天线外壳3上可以设置M种高度的顶紧槽302,且在屏蔽罩1上设置N种高度的第一安装孔106,则理论上最多可以实现M×N个安装位置,实现M×N个接收敞口角,其中,M和N均为正整数,可以相同也可以不同。另外,第二固定件10可以为紧固螺钉。
还需要补充的是,上述顶紧槽302可以替换为螺纹孔,该螺纹孔可以为盲孔,也可以为通孔,则第二固定件10为与螺纹孔匹配的螺钉。
另外,为了实现接收敞口角的度数的可调,也可将顶部开口101设置为可调内径开口,从而,可以通过调节顶部开口101的大小,来调节接收敞口角。
本申请对屏蔽罩1的具体形状不做限定。参照图6-图9、图18和图26,下面,提供几种可能的屏蔽罩1的形状:
在一种可能的实现方式中,如图26和图6所示,屏蔽罩1为圆筒形屏蔽罩11。
在另一种可能的实现方式中,如图26和图7所示,屏蔽罩1为方筒形屏蔽罩12。
在另一种可能的实现方式中,如图26和图8所示,屏蔽罩1为圆台形屏蔽罩13,且圆台形屏蔽罩13的内径自顶部到底部逐渐减小。
在另一种可能的实现方式中,如图26和图9所示,屏蔽罩1为碗形屏蔽罩14,且碗形屏蔽罩14的内径自顶部到底部逐渐减小。
本申请实施例所示的方案,本申请对屏蔽罩1的具体形状不作限定,例如,屏蔽罩1可以是圆筒形屏蔽罩11、方筒形屏蔽罩12、圆台形屏蔽罩13和碗形屏蔽罩14等。
并且,为了避免在安装屏蔽罩1时,屏蔽罩1的底部与天线外壳3、天线安装架发生干 涉,可以在屏蔽罩1的底部设置供天线外壳2的腿部或供天线安装架的支柱穿过的插孔108(如图16所示)。而为了避免屏蔽罩1内部积水,还可以在屏蔽罩1的底部设置排水孔104(如图16所示)。
本申请实施例还提供了一种天线,如图1、图2、图5、图14、图15、图17-图22和图25所示,该天线包括天线外壳3、天线本体2和上述的屏蔽罩1,其中,屏蔽罩1包围在天线本体2外部,天线用于接收来自于卫星的信号。
其中,本申请实施例提供的天线可以为任意接收卫星信号的天线,例如,可以为GPS天线和北斗天线等。该天线可以应用在TDD(Time Division Duplexing,时分双工)系统中。
本申请实施例所示的方案,屏蔽罩1可以设置在天线外壳3内部(如图1、图2和图5所示),也可以设置在天线外壳3外部(如图14、图15、图17-图22和图25所示),本申请对屏蔽罩1设置的具体位置不做限定。
通过增设屏蔽罩1,并使屏蔽罩1包围在天线本体2的外部,使得天线可以屏蔽来自天线本体2下方和水平方向的干扰信号,并可以通过屏蔽罩1的顶部开口101,正常接收来自天线上方的卫星传输的卫星信号。因此,本申请实施例提供的天线,不易受到干扰信号的影响,利用该天线获得的参考源信号,也较为准确。
本申请实施例还提供了一种天线,如图27-图29所示,该天线包括天线本体2和天线外壳3,天线外壳3的内壁或外壁上设置有屏蔽层,屏蔽层包围在天线本体2外部以屏蔽干扰信号,屏蔽层具有顶部开口101,天线用于接收来自于卫星的信号。
其中,上述天线可以为GPS天线和北斗天线等用于接收来自于卫星的信号的天线。
天线本体是指天线中的电性器件主体部分,可以接收卫星传输的卫星信号。天线本体可以是长方体天线本体,也可以是圆柱体天线本体,本申请对天线本体的具体形状不做限定。
屏蔽层,具有屏蔽信号的功能,可以是屏蔽涂层,也可以是屏蔽带。屏蔽涂层包括树脂、稀释剂、添加剂以及导电性填料等,导电性填料一般是金、银、铜、镍等金属粉末和炭黑、石墨等非金属粉末,屏蔽涂层可以涂覆在天线外壳3的内壁或外壁上。屏蔽带111可以为表面具有金属的胶带,例如锡箔胶带,屏蔽带111可以粘贴在天线外壳3的内壁或外壁上。
本申请实施例所示的方案,通过在天线外壳3的内壁或外壁上设置屏蔽层,并使屏蔽层包围在天线本体2外部,从而,可以屏蔽来自天线本体2下方和水平方向上的干扰信号。并且,屏蔽层的顶部设置有顶部开口101,不影响天线本体101正常接收来自于天线本体2上方的卫星传输的信号。因此,采用本申请实施例提供的天线,可以有效的抵抗干扰信号。
图27是本申请实施例示出的一种屏蔽层为屏蔽涂层的天线的示意图,且标记出了顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1。图28是本申请实施例示出的一种屏蔽层为屏蔽涂层的天线的示意图,且标记出了顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2。图29是本申请实施例示出的一种屏蔽层为屏蔽带111的天线的示意图,且标记出了顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1。
在一种可能的实现方式中,如图27-图29所示,顶部开口101在水平平面的投影,包围天线本体2在水平平面的投影。
本申请实施例所示的方案,通过设置顶部开口101在水平平面的投影,包围天线本体2 在水平平面的投影,即顶部开口101的内径大于天线本体2的外径,使得顶部开口101相对于天线本体2为一个敞口设计,减少了在内壁或外壁上设置的屏蔽层对天线本体2正常接收卫星信号的影响。
由于在天线外壳3的内壁或外壁上设置有屏蔽层,所以,屏蔽层可能会对正常的卫星的信号起到屏蔽作用。为了保证天线的正常工作,顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2,应当保证天线本体2可以接收到至少四颗卫星的有效信号。因此,应当对顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2进行限定。
在一种可能的实现方式中,如图27所示,顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2的度数大于或等于90°。或者,如图28和图29所示,顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°
本申请实施例所示的方案,通过设置顶部开口101相对于天线本体2的接收区域20的接收敞口角A2OB2大于或等于90°,可以保证天线本体2至少接收到四颗卫星的有效信号。
另外,还可以设置顶部开口101的上边缘不低于天线本体2的顶部,屏蔽层的底部不高于天线本体2的底部,从而,提高屏蔽层对干扰信号的屏蔽作用较好。
由于天线本体2的接收区域20是很难精确的测量的,所以在设置接收敞口角时,还可以以整个天线本体2的壳体为基准进行设置。也即,顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°。
可以理解的是,如果顶部开口101相对于天线本体2的壳体的接收敞口角A1OB1的度数大于或等于90°,则其相对于天线本体2的接收区域20的接收敞口角A2OB2的度数肯定大于90°,则可以保证天线本体2至少接收到四颗卫星的有效信号。
天线在不同的场景中使用时,可能对接收敞口角的度数有不同的要求,例如,在平原和山区可能对接收敞口角的度数的要求不同。则在一种可能的实现方式中,如图29所示,屏蔽层由多条上下相邻的环状横向屏蔽带111拼接而成。
本申请实施例所示的方案,通过使屏蔽层包括上下相邻的多条环状横向屏蔽带111,使得可以通过改变环状横向屏蔽带111的数目,来改变接收敞口角的度数。其中,该接收敞口角为A1OB1或A2OB2。
例如,如图29所示,屏蔽层包括三条环状横向屏蔽带111,当保留三条屏蔽带11时,接收敞口角的度数最小;当去掉上层屏蔽带111时,接收敞口角的度数变大;而当仅仅保留下层屏蔽带111时,接收敞口角的度数最大,图中此时的接收敞口角为180°,即顶部开口101的边缘与天线本体2的上表面持平。
在一种可能的实现方式中,每条屏蔽带111设有接收敞口角指示信息,用于指示在保留该条及以下所有的屏蔽带111时,接收敞口角A1OB1或接收敞口角A2OB2的度数。
其中,接收敞口角指示信息可以是指示文字。
本申请实施例所示的方案,通过在屏蔽带111上设置接收敞口角指示信息,便于工作人员了解接收敞口角A1OB1或接收敞口角A2OB2的度数,并便于工作人员对接收敞口角A1OB1或接收敞口角A2OB2进行相应的调整。
例如,如图29所示,屏蔽层包括三条环状横向屏蔽带11。上层屏蔽带、中层屏蔽带和下层屏蔽带上分别设置的接收敞口角指示信息指示的接收敞口角的度数分别为90°、120°和180°。
本申请实施例还提供了一种天线安装架7,如图30和图31所示,天线安装架7用于安装天线,天线安装架7中设置有上述屏蔽罩1。
其中,天线安装架7中所安装的天线用于接收来自于卫星的信号。例如,可以为GPS天线和北斗天线等。
本申请实施例所示的方案,如图30所示,天线安装架7可以包括天线安装槽,天线安装槽的槽壁可以设置为屏蔽罩1。从而,当天线安装在天线安装槽中时,屏蔽罩1包围天线本体2,屏蔽罩1可以屏蔽来自天线的下方和水平方向的干扰信号,天线本体2正常接收来自天线上方的卫星传输的信号。因此,安装在本申请实施例提供的天线安装架7中的天线,不易受到干扰信号的影响,利用该天线获得的参考源信号,也较为准确。
如图31所示,为本申请实施例提供的另一种形式的天线安装架7,该天线安装架7包括支撑柱和卡箍8,卡箍8固定在支撑柱上,从而,卡箍8可以将屏蔽罩1和天线外壳3箍紧固定在一起,且屏蔽罩1包围天线本体2。这样,屏蔽罩1可以屏蔽来自天线的下方和水平方向的干扰信号,并且天线本体2正常接收来自天线上方的卫星传输的信号。因此,安装在本申请实施例提供的天线安装架7中的天线,不易受到干扰信号的影响,利用该天线获得的参考源信号,也较为准确。
需要说明的是,上述图30和图31仅仅为本申请提供的两个天线安装架7的具体实例,并不构成对本申请的限定。任何设置有屏蔽罩1的天线安装架均应当在本申请的保护范围之内。
以上所述仅为本申请可选实施例,并不用以限制本申请,凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (27)

  1. 一种屏蔽罩,其特征在于,所述屏蔽罩(1)的顶部设置有顶部开口(101),所述屏蔽罩(1)用于包围在天线的天线本体(2)外部以屏蔽干扰信号,其中,所述天线用于接收来自于卫星的信号;所述屏蔽罩(1)放置于所述天线本体(2)以外、所述天线的天线外壳(3)以内的空间内。
  2. 根据权利要求1所述的屏蔽罩,其特征在于,当所述屏蔽罩(1)的底部固定在所述天线的电路板(4)上时,所述顶部开口(101)相对于所述天线本体(2)的接收区域的接收敞口角(A2OB2)的度数大于或等于90°,或者所述顶部开口(101)相对于所述天线本体(2)的壳体的接收敞口角(A1OB1)的度数大于或等于90°。
  3. 根据权利要求2所述的屏蔽罩,其特征在于,所述屏蔽罩(1)的底部还设置有底部开口(102);
    所述底部开口(102)包括向所述屏蔽罩(1)的外部或内部延伸的凸缘部(103),所述凸缘部(103)通过第一固定件(9)固定在所述电路板(4)上。
  4. 根据权利要求3所述的屏蔽罩,其特征在于,所述第一固定件(9)上设有高度调节装置,用于调节所述屏蔽罩(1)与所述天线本体(2)的相对位置,所述屏蔽罩(1)内侧设有多个刻度(105),每个刻度(105)用于指示在所述每个刻度(105)与所述天线本体(2)顶部平齐时所述接收敞口角(A1OB1)或所述接收敞口角(A2OB2)的度数。
  5. 根据权利要求4所述的屏蔽罩,其特征在于,所述高度调节装置包括压缩弹簧(10)和螺钉(11)。
  6. 根据权利要求1-5任一项所述的屏蔽罩,其特征在于,所述屏蔽罩(1)具有网状结构。
  7. 根据权利要求1-6任一项所述的屏蔽罩,其特征在于,所述屏蔽罩(1)为圆筒形屏蔽罩(11),且所述圆筒形屏蔽罩(11)的底部开口(102)在水平平面的投影,包围所述天线本体(2)在所述水平平面的投影;或者
    所述屏蔽罩(1)为方筒形屏蔽罩(12),且所述方筒形屏蔽罩(12)的底部开口(102)在水平平面的投影,包围所述天线本体(2)在所述水平平面的投影;或者
    所述屏蔽罩(1)为圆台形屏蔽罩(13),且所述圆台形屏蔽罩(13)的内径自顶部到底部逐渐减小,所述圆台形屏蔽罩(13)的底部开口(102)在水平平面的投影,包围所述天线本体(2)在所述水平平面的投影;或者
    所述屏蔽罩(1)为碗形屏蔽罩(14),且所述碗形屏蔽罩(14)的内径自顶部到底部逐渐减小,所述碗形屏蔽罩(14)的底部开口(102)在水平平面的投影,包围所述天线本体(2)在所述水平平面的投影。
  8. 一种屏蔽罩,其特征在于,所述屏蔽罩(1)的顶部设置有顶部开口(101),所述屏蔽罩(1)用于包围在天线的天线本体(2)外部以屏蔽干扰信号,其中,所述天线用于接收来自于卫星的信号;所述屏蔽罩(1)包围在所述天线的天线外壳(3)的外部。
  9. 根据权利要求8所述的屏蔽罩,其特征在于,当所述屏蔽罩(1)固定在所述天线外壳(3)的外壁上时,所述顶部开口(101)相对于所述天线本体(2)的接收区域的接收敞口角(A2OB2)的度数大于或等于90°,或者所述顶部开口(101)相对于所述天线本体(2)的 壳体的接收敞口角(A2OB2)的度数大于或等于90°。
  10. 根据权利要求8或9所述的屏蔽罩,其特征在于,所述屏蔽罩(1)的内壁粘贴在所述天线外壳(3)的外壁上。
  11. 根据权利要求8或9所述的屏蔽罩,其特征在于,所述屏蔽罩(1)通过第二固定件(10)固定在所述天线外壳(3)的外壁上。
  12. 根据权利要求10或11所述的屏蔽罩,其特征在于,所述屏蔽罩(1)可在与所述天线外壳(3)呈不同相对位置下固定于所述天线外壳(3)的外壁上,所述屏蔽罩(1)内侧设有多个刻度(105),每个刻度(105)用于指示在所述每个刻度(105)与所述天线外壳(3)的基准标记(301)平齐时所述接收敞口角(A1OB1)或所述接收敞口角(A2OB2)的度数。
  13. 根据权利要求8-12任一项所述的屏蔽罩,其特征在于,所述顶部开口(101)上方还设置有防雨盖(6),所述顶部开口(101)在水平平面的投影落在所述防雨盖(6)在水平平面的投影以内。
  14. 根据权利要求13所述的屏蔽罩,其特征在于,所述防雨盖(6)固定在所述天线外壳(3)的外壁上。
  15. 根据权利要求13所述的屏蔽罩,其特征在于,所述防雨盖(6)固定在所述屏蔽罩(1)上。
  16. 根据权利要求8-15任一项所述的屏蔽罩,其特征在于,所述屏蔽罩(1)的底部设置有排水孔(104)。
  17. 根据权利要求8-16任一项所述的屏蔽罩,其特征在于,所述屏蔽罩(1)具有网状结构。
  18. 根据权利要求8-17任一项所述的屏蔽罩,其特征在于,所述屏蔽罩(1)为圆筒形屏蔽罩(11);或者
    所述屏蔽罩(1)为方筒形屏蔽罩(12);或者
    所述屏蔽罩(1)为圆台形屏蔽罩(13),且所述圆台形屏蔽罩(13)的内径自顶部到底部逐渐减小;或者
    所述屏蔽罩(1)为碗形屏蔽罩(14),且所述碗形屏蔽罩(14)的内径自顶部到底部逐渐减小。
  19. 一种天线,其特征在于,所述天线包括天线外壳(3)、天线本体(2)和如权利要求1-18任一项所述的屏蔽罩(1),其中,所述屏蔽罩(1)包围在所述天线本体(2)外部,所述天线用于接收来自于卫星的信号。
  20. 一种天线,其特征在于,所述天线包括天线本体(2)和天线外壳(3),其中,
    所述天线外壳(3)的内壁或外壁上设置有屏蔽层,所述屏蔽层包围在所述天线本体(2)外部以屏蔽干扰信号,所述屏蔽层具有顶部开口(101),所述天线用于接收来自于卫星的信号。
  21. 根据权利要求20所述天线,其特征在于,所述顶部开口(101)在水平平面的投影,包围所述天线本体(2)在所述水平平面的投影。
  22. 根据权利要求21所述的天线,其特征在于,所述顶部开口(101)相对于所述天线本 体(2)的接收区域的接收敞口角(A2OB2)的度数大于或等于90°,或者所述顶部开口(101)相对于所述天线本体(2)的壳体的接收敞口角(A1OB1)的度数大于或等于90°。
  23. 根据权利要求20-22任一项所述的天线,其特征在于,所述屏蔽层为屏蔽涂层,所述屏蔽涂层涂覆在所述天线外壳(3)的内壁或外壁上。
  24. 根据权利要求20-22任一项所述的天线,其特征在于,所述屏蔽层为屏蔽带(111),所述屏蔽带(111)粘贴在所述天线外壳(3)的内壁或外壁上。
  25. 根据权利要求24所述的天线,其特征在于,所述屏蔽层由多条上下相邻的环状横向屏蔽带(111)拼接而成。
  26. 根据权利要求25所述的天线,其特征在于,每条屏蔽带(111)上设有接收敞口角指示信息,用于指示在保留该条及以下所有屏蔽带(111)时,所述接收敞口角(A1OB1)或所述接收敞口角(A2OB2)的度数。
  27. 一种天线安装架,其特征在于,所述天线安装架用于安装天线,所述天线安装架中固定有如权利要求8-18任一项所述的屏蔽罩(1),其中,所述天线用于接收来自于卫星的信号。
PCT/CN2021/092893 2020-05-15 2021-05-10 屏蔽罩、天线和天线安装架 WO2021228054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010414051.4A CN113675609B (zh) 2020-05-15 2020-05-15 屏蔽罩、天线和天线安装架
CN202010414051.4 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021228054A1 true WO2021228054A1 (zh) 2021-11-18

Family

ID=78525308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092893 WO2021228054A1 (zh) 2020-05-15 2021-05-10 屏蔽罩、天线和天线安装架

Country Status (2)

Country Link
CN (1) CN113675609B (zh)
WO (1) WO2021228054A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522291B1 (en) * 1999-12-10 2003-02-18 Matsushita Electric Works, Ltd. GPS receiver sharing an antenna ground plane with an EMI shield
CN101710654A (zh) * 2009-04-02 2010-05-19 广东通宇通讯设备有限公司 一种gps接收天线
CN202997034U (zh) * 2012-11-20 2013-06-12 安徽四创电子股份有限公司 北斗一代授时天线
CN208338207U (zh) * 2018-07-09 2019-01-04 深圳市赛维通讯科技有限公司 天线屏蔽结构
CN110416743A (zh) * 2019-07-02 2019-11-05 中国电信集团工会上海市委员会 一种抗干扰天线装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512980B2 (ja) * 1997-05-14 2004-03-31 株式会社東芝 空中線装置用レドーム
JP2008078720A (ja) * 2006-09-19 2008-04-03 Mitsumi Electric Co Ltd アンテナ装置
JP2010103814A (ja) * 2008-10-24 2010-05-06 Yokowo Co Ltd アンテナ装置
TW201216557A (en) * 2010-10-11 2012-04-16 Chipsip Technology Co Ltd Antenna apparatus with shielding case
CN202713889U (zh) * 2012-04-27 2013-01-30 惠州市德赛西威汽车电子有限公司 一种可调车载gps信号机械屏蔽装置
CN207303368U (zh) * 2017-09-11 2018-05-01 广州海格通信集团股份有限公司 一种基于北斗卫星天线的屏蔽罩
CN208970741U (zh) * 2018-11-09 2019-06-11 大唐陈村水力发电厂 一种水电站用卫星定位辅助装置
CN209948059U (zh) * 2019-08-21 2020-01-14 西安空天电子技术有限公司 一种gnss与罗兰c组合一体化接收天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522291B1 (en) * 1999-12-10 2003-02-18 Matsushita Electric Works, Ltd. GPS receiver sharing an antenna ground plane with an EMI shield
CN101710654A (zh) * 2009-04-02 2010-05-19 广东通宇通讯设备有限公司 一种gps接收天线
CN202997034U (zh) * 2012-11-20 2013-06-12 安徽四创电子股份有限公司 北斗一代授时天线
CN208338207U (zh) * 2018-07-09 2019-01-04 深圳市赛维通讯科技有限公司 天线屏蔽结构
CN110416743A (zh) * 2019-07-02 2019-11-05 中国电信集团工会上海市委员会 一种抗干扰天线装置

Also Published As

Publication number Publication date
CN113675609B (zh) 2023-05-12
CN113675609A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
US8420937B2 (en) Enclosure of outdoor apparatus
JP6277665B2 (ja) 携帯機器
US10225939B2 (en) Case structure for electronic control device
JP5763679B2 (ja) Rf干渉抑制器
US8648753B2 (en) Antenna device
TWI525306B (zh) 用於雷達物位指示器的可樞轉喇叭天線
CN107078397A (zh) 包括贴片天线元件的印刷电路板组件和天线组件
HU219748B (hu) Járműantenna elrendezése és kiegészítő járműantenna
WO2021228054A1 (zh) 屏蔽罩、天线和天线安装架
US20110006968A1 (en) Baylyn antenna mounting apparatus and system
US11343932B2 (en) Electrical device and component for electrical device
CN210379398U (zh) 天线安装部件及天线装置
CN207869598U (zh) 5g测试屏蔽箱
CN210576425U (zh) 一种uwb天线装置
CN113745829A (zh) 一种车载天线
CN209948059U (zh) 一种gnss与罗兰c组合一体化接收天线
US20210168939A1 (en) Lens module and electronic device having the same
JP2016213545A (ja) マンホール蓋用アンテナ
JP2016063419A (ja) アンテナ装置
CN218513730U (zh) 一种tnc同轴头连接结构及gnss接收机
CN216214110U (zh) 一种天线盒及工程机械
CN216624554U (zh) 一种具有天线支架的无线麦克风结构
CN211878168U (zh) 一种雷达及其壳体
CN215989203U (zh) 一种车载顶置天线
CN215933825U (zh) 一种车载天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804816

Country of ref document: EP

Kind code of ref document: A1