WO2021227894A1 - 冷媒智能加注控制系统 - Google Patents

冷媒智能加注控制系统 Download PDF

Info

Publication number
WO2021227894A1
WO2021227894A1 PCT/CN2021/091366 CN2021091366W WO2021227894A1 WO 2021227894 A1 WO2021227894 A1 WO 2021227894A1 CN 2021091366 W CN2021091366 W CN 2021091366W WO 2021227894 A1 WO2021227894 A1 WO 2021227894A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning system
refrigerant
control system
air conditioning
control
Prior art date
Application number
PCT/CN2021/091366
Other languages
English (en)
French (fr)
Inventor
蒋友荣
Original Assignee
浙江飞越机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江飞越机电有限公司 filed Critical 浙江飞越机电有限公司
Publication of WO2021227894A1 publication Critical patent/WO2021227894A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/003Control issues for charging or collecting refrigerant to or from a cycle

Definitions

  • the invention relates to a control system, in particular to a refrigerant intelligent filling control system with simple operation, full-process automatic identification control, time-saving and labor-saving, and safe and reliable.
  • the refrigerant filling operation steps of the existing air-conditioning system generally include multiple steps such as recovery, vacuuming, and filling, but the following problems often exist in the process:
  • the present invention mainly provides a refrigerant intelligent filling control system that is convenient to operate, full-process automatic identification control, time-saving and labor-saving, safe and reliable, and solves the manual operation in the prior art. It is not only time-consuming and labor-intensive, but also easy to operate. Improper or misoperation causes technical problems such as safety issues and waste of resources.
  • a refrigerant intelligent charging control system including an air conditioning system
  • the high and low pressure ends of the air conditioning system are connected to the vacuum pump and the recovery machine through the control valve or the refrigerant is filled
  • On the tank there is a pressure sensor on the air-conditioning system.
  • the detection information of the pressure sensor is sent to the control system through the wireless communication module.
  • the control system After the control system is analyzed and processed, it controls the path state of the control valve to select and control the start and stop of the vacuum pump and the recovery machine.
  • the pressure status of the air conditioning system can be monitored at any time through the pressure sensor.
  • the wireless communication module can be Bluetooth or wireless wifi, etc., various data
  • instructions are transmitted to automatically select and control the start and stop of the vacuum pump and the recovery machine, the connection of the air conditioning system with the vacuum pump, the recovery machine or the refrigerant tank, and the size of each corresponding passageway diameter when connected, such as The opening and closing of the access valve, as well as the size of the opening, etc., to adapt to the requirements of use under various working conditions, so as to ensure the safe and reliable operation of the entire system, the entire process of automatic identification and control, convenient operation, and saves time and effort, improves the work efficient.
  • control valve is provided with a high-pressure passage and a low-pressure passage respectively connected to the high and low-pressure ends of the air conditioning system, and the high-pressure passage and the low-pressure passage are connected to the vacuum pump and the recovery machine or the refrigerant tank through the electric three-way valve, The electric three-way valve is connected to the control system.
  • the air conditioning system By setting an electric three-way valve on the connecting path, and selecting the way of communication through the electric three-way valve, that is, the air conditioning system is connected to the vacuum pump, the air conditioning system is connected to the recovery machine, or the refrigerant tank is connected, corresponding to the vacuuming operation and the refrigerant recovery Or refrigerant filling, simple structure, intelligent control system operation mode, completely out of manual operation, saving time and effort.
  • control valves corresponding to the high and low pressure ends of the air conditioning system are respectively provided with electric flow control valves, and the electric flow control valves are connected to the control system through a wireless communication module.
  • the electric flow control valve can be a needle valve, a ball valve, a butterfly valve, a gate valve, etc.
  • the opening of the passage is controlled by the electric flow control valve, which is simple and convenient.
  • the refrigerant filling tank is placed on a wireless electronic scale, and the wireless electronic scale is connected to the control system via Bluetooth.
  • the wireless electronic scale Through the wireless electronic scale, the refrigerant filling amount of the system can be intelligently and precisely controlled.
  • the start-up time of the vacuum pump is earlier than the pipeline connection between the air-conditioning system and the vacuum pump; the closing of the vacuum pump is later than the cutting off of the pipeline between the air-conditioning system and the vacuum pump.
  • the flow control valve is opened first, the external air will leak into the air conditioning system through the vacuum pump to make the air conditioning The original vacuum of the system becomes worse, which will increase the vacuuming time.
  • the vacuum sent by the vacuum sensor reaches the set vacuum value
  • the flow control valve is closed first, and then the vacuum pump is turned off. If the vacuum pump is turned off first, the same will happen. There is a situation where air enters the air conditioning system from the vacuum pump.
  • the filling refrigerant tank and the pipe route of the air conditioning system are in a continuous state from the closed state to the fully open state, and it takes 3 to 5 seconds to reach the fully open state. Since there is a large pressure difference between the refrigerant tank and the air conditioning system in the early stage of refrigerant filling, if the passage is opened instantly, it will inevitably have a huge impact on the air conditioning system, which will not only affect the air conditioning system, but also has certain safety hazards. Therefore, At the beginning of filling, the flow control valve of the intelligent control channel is gradually opened to the maximum and the time is shorter to reduce the impact on the air conditioning system and improve safety and reliability.
  • the filling refrigerant tank and the pipe route of the air conditioning system are in a continuous state from a fully opened state to a closed state, and it takes 0.5 to 1 second to reach the closed state.
  • the flow valve control valve is gradually closed to gradually reduce the passage diameter to a very short time for complete closure, so as to ensure the precise control of the actual refrigerant filling volume under dynamic conditions.
  • the pipe route of the recovery machine and the air-conditioning system is in a continuous state from the closed state to the fully open state, and it takes 3 to 5 seconds to reach the fully open state. Due to the large pressure difference between the air conditioning system and the recovery machine in the early stage of recovery, it takes a short time for the flow control valve of the passage to gradually open to the maximum, which can reduce the impact of the high pressure of the air conditioning system on the recovery machine.
  • the recycled refrigerant tank on the recycling machine is placed on a wireless electronic scale, which is connected to the control system through a wireless communication module, and when the recycled refrigerant tank is close to the maximum set value of the capacity, the recycling machine and the air conditioning system pipe
  • the route is in a continuous state from the fully open state to the closed state, and it takes 0.5 to 1 second to the closed state.
  • the weight of the refrigerant stored in the return refrigerant collection tank generally cannot exceed 80% of its capacity. Therefore, according to the size of the recovered refrigerant tank, set the corresponding recovery weight value in advance. Before the weight will reach the set value, the flow valve is gradually closed through the control method. That is, the time for the diameter to be reduced until it is completely closed is extremely short, so as to control the accuracy of the actual refrigerant recovery.
  • temperature sensors are respectively provided on the communication pipelines between the high and low pressure ends of the air conditioning system and the control valve.
  • the amount of refrigerant in the system can be determined according to the type of refrigerant to facilitate subsequent operations, such as increasing or decreasing the amount of refrigerant in the system, to ensure reliable operation of the air-conditioning system under the best conditions.
  • the intelligent refrigerant filling control system of the present invention has the following advantages:
  • control system After the data analysis and processing, the control system is quickly transmitted to the executive components, which is fast, accurate, safe and reliable;
  • the valve opening is automatically adjusted to ensure the normal operation of the system under the safest working conditions.
  • FIG. 1 is a schematic diagram of the structure of the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of the second embodiment of the present invention.
  • Fig. 3 is a working flow chart of the present invention.
  • the intelligent refrigerant filling control system of the present invention includes an air conditioning system 1.
  • the high and low pressure ends of the air conditioning system 1 are connected to a control valve 2, and the control valve 2 has a high pressure passage 21.
  • the low-pressure passage 22 and the electric three-way valve 23 the open end of the high-pressure passage 21 is connected to the high-pressure end of the air-conditioning system 1
  • the open end of the low-pressure passage 22 is connected to the low-pressure end of the air-conditioning system 1
  • the other of the high-pressure passage 21 and the low-pressure passage 22 One end is connected to an interface of the electric three-way valve 23, and the other two interfaces of the electric three-way valve 23 are respectively connected to the vacuum pump 3 and the recovery machine 4.
  • the output end of the recovery machine 4 is connected to the recovery refrigerant tank 41 to recover the refrigerant.
  • the tank 41 is placed on the wireless electronic scale 9, the electric three-way valve 23 is connected to the control system 7, and the wireless electronic scale 9 is connected to the control system 7 through the wireless communication module.
  • the communicating pipelines are equipped with temperature sensors 10 respectively.
  • In the high-pressure passage 21 and the low-pressure passage 22 are respectively equipped with a pressure sensor 6 and an electric flow control valve 8.
  • the electric flow control valve 8 is also connected to the control system 7 through a wireless communication module, and the pressure sensor
  • the detection information of 6 is sent to the control system 7 through the wireless communication module.
  • the control system 7 controls the passage state of the control valve 2 after analysis and processing, so as to select and control the communication between the air conditioning system 1 and the vacuum pump 3 and the recovery machine 4, and through the control when communicating
  • the electric flow control valve 8 adjusts the size and switch of the corresponding passage diameter.
  • the signal is transmitted to the vacuum pump 3 to make the vacuum pump 3 execute the start operation command; when the vacuum value reaches the set target vacuum degree, the signal is transmitted to the vacuum pump 3 while the passage is closed, and the vacuum pump 3 is turned on.
  • Execute the shutdown command the start time of the vacuum pump 3 is earlier than the connection time of the air conditioning system 1 and vacuum pump 3, and the shutdown of the vacuum pump 3 is later than the disconnection time of the air conditioning system 1 and the vacuum pump 3.
  • the two time differences are generally controlled within 2 seconds .
  • the signal is transmitted to the recovery machine 4 to make the recovery machine 4 execute the start operation command; when the recovery weight reaches the set target weight, the channel is closed and the signal is transmitted to the recovery machine 4 to enable the recovery
  • the machine 4 executes the shutdown command, and the pipe route of the recovery machine 4 and the air conditioning system 1 changes continuously at constant speed from the closed state to the fully open state (ie, the opening degree of the electric flow control valve 8), and it takes 3 to 5 seconds to fully open.
  • the pipe routing of the recovery machine 4 and the air conditioning system 1 is fully opened
  • the state to the closed state presents a continuous and constant change state, and the time to the fully closed state is 0.5 to 1 second.
  • the wireless communication module in this embodiment adopts Bluetooth transmission.
  • control valve 2 is connected to the vacuum pump 3 and the refrigerant filling tank 5, and the refrigerant filling tank 5 is placed on the wireless electronic scale 9.
  • the refrigerant tank 5 and the pipe route of the air conditioning system 1 are continuously changed from the closed state to the fully open state, and the time to fully open is 3 To 5 seconds.
  • the refrigerant filling tank 5 and the pipe route of the air conditioning system 1 are continuously changed from the fully opened state to the closed state, and it takes 0.5 to 1 second to reach the fully closed state.
  • the wireless communication module in the module adopts wireless wifi transmission. The rest is exactly the same as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种控制系统,包括空调系统(1),空调系统(1)的高、低压端通过控制阀(2)连接在真空泵(3)和回收机(4)或加注冷媒罐(41)上,在空调系统(1)上设有压力传感器(6),压力传感器(6)的检测信息通过无线通信模块连接至控制系统(7),控制系统(7)经分析处理后再控制控制阀(2)的通路状态,以选择控制真空泵(3)和回收机(4)启停、空调系统(1)与真空泵(3)、回收机(4)或加注冷媒罐(41)的连通及连通时对应通路通径的大小。这种控制系统是一种冷媒智能加注控制系统,其结构简单,操作方便,全程自动化识别控制,省时省力,安全可靠。

Description

冷媒智能加注控制系统 技术领域
本发明涉及一种控制系统,尤其涉及一种操作简单,全程自动化识别控制、省时省力,安全可靠的冷媒智能加注控制系统。
背景技术
现有空调系统的冷媒加注操作步骤一般包括回收、抽真空、加注等多个步骤,但过程中往往存在如下问题:
由于全程手动操作,且过程中需要操作人员在设备旁随时监测,期间还需要手动调节相关阀门的位置,如通过调节阀门的开启程度来控制冷媒流量,不仅费时费力,且操作人员的操作经验尤显重要,操作不当或误操作会直接影响整个系统的安全可靠性。
由于动态操作过程中没有精准的传感检测装置(包含真空度、温度、压力、重量等),如在抽真空过程中,无法精准探测到系统的真空度值,真空度也只能靠操作者经验来做判断,因此人为影响因素较大,如果通过长时间的运行来实现要求的真空度,不仅浪费时间和能耗,且抽真空的效果也不一定很好,因此存在很大的资源浪费。
发明内容
本发明主要是提供了一种操作方便,全程自动化识别控制、省时省力,安全可靠的冷媒智能加注控制系统,解决了现有技术中存在的人工操作,不仅费时费力,且极易因操作不当或误操作引发安全问题和资源浪费等的技术问题。
本发明的上述技术问题主要是通过下述技术方案得以解决的:一种冷媒智能加注控制系统,包括空调系统,空调系统的高、低压端通过控制阀连接在真空泵和回收机或加注冷媒罐上,在所述空调系统上设有压力传感器,压力传感器的检测信息通过无线通信模块至控制系统,控制系统经分析处理后再控制控制阀的通路状态,以选择控制真空泵和回收机启停、空调系统与真空泵、回收机或加注冷媒罐的连通及连通时对应通路通径的大小。通过在空调系统设置压力传感器,通过压力传感器随时监测空调系统的压力状态,压力传感器获取探测数据后,又通过无线通信模块传输到控制系统,无线通信模块可以是蓝牙或无线wifi等,各类数据通过控制系统的集成处理,再传输指令以自动选择控制真空泵和回收机启停、空调系统与真空泵、回收机或加注冷媒罐的连通,以及连通时各个对应通路通径的大小等状态,如通路阀门的开、关,以及开度的大小等,以适应各种工况下的使用要求,从而保证整个系统的安全可靠运行,全程自动化识别控制,操作方便,且省时省力,提高了工作效率。
作为优选,在所述控制阀上带有分别与空调系统的高、低压端对接的高压通路和低压 通路,高压通路和低压通路经电动三通阀连通着真空泵和回收机或加注冷媒罐,电动三通阀连接着控制系统。通过在连接通路上设置电动三通阀,并通过电动三通阀选择通路连通方式,即空调系统与真空泵连接、空调系统与回收机连接或者加注冷媒罐连接,对应执行抽真空作业、冷媒回收或者是冷媒加注,结构简单,智能控制系统运行模式,完全脱离手动操作,省时省力。
作为优选,与所述空调系统高、低压端对应的控制阀上分别设有电动流量控制阀,电动流量控制阀通过无线通信模块连接着控制系统。电动流量控制阀可以是针阀、球阀、蝶阀、闸阀等,通过电动流量控制阀控制通路开度,简单方便。
作为优选,所述加注冷媒罐放置在无线电子秤上,无线电子秤通过蓝牙连接着控制系统。通过无线电子秤可智能的精确控制系统的冷媒加注量。
作为优选,对所述空调系统抽真空作业时,真空泵的启动时间早于空调系统与真空泵的管路连通;真空泵的关闭晚于空调系统与真空泵的管路切断。为保持系统内的原有压力,特别是一段时间的抽真空后,人为或其他情况暂停并重新开始抽真空时,如果先开启流量控制阀,外部空气会通过真空泵泄露到空调系统内部,使空调系统的原有真空度变差,由此会增加抽真空的时间,当真空传感器传送的真空度到达设置的真空值后,流量控制阀先关闭,然后再关闭真空泵,如果先关闭真空泵,同样会出现空气从真空泵进入到空调系统的情况。
作为优选,对所述空调系统冷媒加注启始时,加注冷媒罐与空调系统的管路由关闭状态至完全打开状态呈连续状态,且至完全打开状态用时3至5秒。由于冷媒加注前期加注冷媒罐与空调系统间存在较大的压力差,如果通路瞬间开启,势必对空调系统产生巨大的冲击力,不仅对空调系统产生影响,且存在一定的安全隐患,因此加注开始时智能控制通路的流量控制阀逐步开启至最大用时较短,以减小对空调系统的冲击力,提高安全可靠性。
作为优选,所述空调系统冷媒加注临近结束时,加注冷媒罐与空调系统的管路由完全打开状态至关闭状态呈连续状态,且至关闭状态用时0.5至1秒。空调系统接加注的冷媒重量即将达到设置时,通过渐近关闭流量阀控制阀,使通路的通径逐渐变小至完全关闭用时极短,以保证动态下实际冷媒加注量的精准控制。
作为优选,对所述空调系统冷媒回收时,回收机与空调系统的管路由关闭状态至完全打开状态呈连续状态,且至完全打开状态用时3至5秒。由于回收前期空调系统与回收机存在较大压力差,通路的流量控制阀逐步开启至最大时用时较短,可减轻空调系统高压对回收机的冲击。
作为优选,所述回收机上的回收冷媒罐放置在无线电子秤上,无线电子秤通过无线通 信模块连接着控制系统,且当回收冷媒罐临近盛重最大设定值时,回收机与空调系统的管路由完全打开状态至关闭状态呈连续状态,且至关闭状态用时0.5至1秒。回冷媒收罐贮存的冷媒重量一般不能超过其容量的80%,因此根据回收冷媒罐的大小,事先设置对应的回收重量值,在重量将要达到设置值前,通过逐步关闭的流量阀控制方式,即通径变小直至完全关闭用时极短,以此控制实际回收冷媒的精准度。
作为优选,在所述空调系统的高、低压端与控制阀间的连通管路上分别设有温度传感器。通过温度传感器检测值,即可根据冷媒的种类判定系统内的冷媒量,以方便执行后续的操作,如增减系统内的冷媒量等,确保空调系统在最佳状态下可靠运行。
因此,本发明的冷媒智能加注控制系统具有下述优点:
自动化控制,操作简单;
通过压力传感器采集数据,无线通信模块数据实现全程智能控制;
控制系统经过对数据分析处理,迅速传达给执行元件,快速准确,安全可靠;
阀门开度自动调节,确保系统在最安全的工况下正常运行。
附图说明:
图1是本发明第一种实施方式时的结构示意图;
图2是本发明第二种实施方式时的结构示意图;
图3是本发明的工作流程图。
具体实施方式:
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例1:
如图1和图3所示,本发明的一种冷媒智能加注控制系统,包括空调系统1,空调系统1的高、低压端均连接着控制阀2,控制阀2内带有高压通路21、低压通路22和电动三通阀23,高压通路21的开口端连通在空调系统1的高压端,低压通路22的开口端连通在空调系统1的低压端,高压通路21和低压通路22的另一端连接在电动三通阀23的一个接口上,电动三通阀23的另外两个接口又分别连接在真空泵3和回收机4上,回收机4的输出端连接着回收冷媒罐41,回收冷媒罐41放置在无线电子秤9上,电动三通阀23连接着控制系统7,无线电子秤9通过无线通信模块连接着控制系统7,在空调系统1的高、低压端与控制阀2间的连通管路上分别装有温度传感器10,在高压通路21和低压通路22又分别装有压力传感器6和电动流量控制阀8,电动流量控制阀8也通过无线通信模块连接着控制系统7,压力传感器6的检测信息通过无线通信模块至控制系统7,控制系统7经分析处理后再控制控制阀2的通 路状态,以选择控制空调系统1与真空泵3和回收机4的连通,以及连通时通过控制电动流量控制阀8来调节对应通路通径的大小和开关。
当对空调系统1进行抽真空作业时,传输信号至真空泵3,使真空泵3执行启动运行命令;当真空值达到设定的目标真空度时,关闭通路的同时传输信号至真空泵3,使真空泵3执行停机命令,真空泵3的启动时间早于空调系统1与真空泵3的管路连通时间,真空泵3的关闭晚于空调系统1与真空泵3的管路切断时间,两个时间差一般控制在2秒内。
当对空调系统1冷媒回收作业时,传输信号至回收机4,使回收机4执行启动运行命令;当回收重量达到设定的目标重量时,关闭通路的同时传输信号至回收机4,使回收机4执行停机命令,回收机4与空调系统1的管路由关闭状态至完全打开状态呈连续等速变化状态(即电动流量控制阀8开度),至完全打开状态用时3至5秒。且当回收冷媒罐41临近盛重最大设定值时(回收冷媒罐41的最大容量通常为其安全容量值,一般为其真实容量的80%),回收机4与空调系统1的管路由完全打开状态至关闭状态呈连续等速变化状态,且至完全关闭状态的用时为0.5至1秒。
本实施例中的无线通信模块采用蓝牙传输。
实施例2:
如图2所示,控制阀2连接在真空泵3和加注冷媒罐5上,加注冷媒罐5放置在无线电子秤9上。
对空调系统1进行冷媒加注作业时,在作业启始时,加注冷媒罐5与空调系统1的管路由关闭状态至完全打开状态呈连续等速变化状态,且至完全打开状态用时为3至5秒。
空调系统1冷媒加注临近结束时,加注冷媒罐5与空调系统1的管路由完全打开状态至关闭状态呈连续等速变化状态,且至完全关闭状态用时为0.5至1秒,本实施例中的无线通信模块采用无线wifi传输。其余部分与实施例1完全相同。
本文中所描述的具体实施例仅仅是对本发明的构思作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (10)

  1. 一种冷媒智能加注控制系统,包括空调系统(1),空调系统(1)的高、低压端通过控制阀(2)连接在真空泵(3)和回收机(4)或加注冷媒罐(5)上,其特征在于:在所述空调系统(1)上设有压力传感器(6),压力传感器(6)的检测信息通过无线通信模块至控制系统(7),控制系统(7)经分析处理后再控制控制阀(2)的通路状态,以选择控制真空泵(3)和回收机(4)启停、空调系统(1)与真空泵(3)、回收机(4)或加注冷媒罐(5)的连通及连通时对应通路通径的大小。
  2. 根据权利要求1所述的冷媒智能加注控制系统,其特征在于:在所述控制阀(2)上带有分别与空调系统(1)的高、低压端对接的高压通路(21)和低压通路(22),高压通路(21)和低压通路(22)经电动三通阀(23)连通着真空泵(3)和回收机(4)或加注冷媒罐(5),电动三通阀(23)连接着控制系统(7)。
  3. 根据权利要求1所述的冷媒智能加注控制系统,其特征在于:与所述空调系统(1)高、低压端对应的控制阀(2)上分别设有电动流量控制阀(8),电动流量控制阀(8)通过无线通信模块连接着控制系统(7)。
  4. 根据权利要求1所述的冷媒智能加注控制系统,其特征在于:所述加注冷媒罐(5)放置在无线电子秤(9)上,无线电子秤(9)通过无线通信模块连接着控制系统(7)。
  5. 根据权利要求1所述的冷媒智能加注控制系统,其特征在于:对所述空调系统(1)抽真空作业时,真空泵(3)的启动时间早于空调系统(1)与真空泵(3)的管路连通;真空泵(3)的关闭晚于空调系统(1)与真空泵(3)的管路切断。
  6. 根据权利要求1所述的冷媒智能加注控制系统,其特征在于:对所述空调系统(1)冷媒加注启始时,加注冷媒罐(5)与空调系统(1)的管路由关闭状态至完全打开状态呈连续状态,且至完全打开状态用时3至5秒。
  7. 根据权利冷媒要求1所述的冷媒智能加注控制系统,其特征在于:所述空调系统(1)冷媒加注临近结束时,加注冷媒罐(5)与空调系统(1)的管路由完全打开状态至关闭状态呈连续状态,且至关闭状态用时0.5至1秒。
  8. 根据权利要求1所述的冷媒智能加注控制系统,其特征在于:对所述空调系统(1)冷媒回收时,回收机(4)与空调系统(1)的管路由关闭状态至完全打开状态呈连续状态,且至完全打开状态用时3至5秒。
  9. 根据权利要求1所述的冷媒智能加注控制系统,其特征在于:所述回收机(4)上的回收冷媒罐(41)放置在无线电子秤(9)上,无线电子秤(9)通过无线通信模块连接着控制系统(7),且当回收冷媒罐(41)临近盛重最大设定值时,回收机(4)与空调系统(1)的管 路由完全打开状态至关闭状态呈连续状态,且至关闭状态用时0.5至1秒。
  10. 根据权利要求1所述的冷媒智能加注控制系统,其特征在于:在所述空调系统(1)的高、低压端与控制阀(2)间的连通管路上分别设有温度传感器(10)。
PCT/CN2021/091366 2020-05-12 2021-04-30 冷媒智能加注控制系统 WO2021227894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010397644.4A CN111649509A (zh) 2020-05-12 2020-05-12 冷媒智能加注控制系统
CN202010397644.4 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021227894A1 true WO2021227894A1 (zh) 2021-11-18

Family

ID=72346666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091366 WO2021227894A1 (zh) 2020-05-12 2021-04-30 冷媒智能加注控制系统

Country Status (2)

Country Link
CN (1) CN111649509A (zh)
WO (1) WO2021227894A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116538716A (zh) * 2023-04-14 2023-08-04 深圳市泰路科技有限公司 基于数据分析的冷媒回收加注机运行监控系统
EP4317864A1 (fr) * 2022-08-03 2024-02-07 Sndc Station de recharge de fluide réfrigérant connectée

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649509A (zh) * 2020-05-12 2020-09-11 浙江飞越机电有限公司 冷媒智能加注控制系统
CN112344607B (zh) * 2020-10-13 2022-04-15 浙江飞越机电有限公司 制冷剂回收机获得最佳回收速度的智能控制方法
CN112378049A (zh) * 2020-10-21 2021-02-19 浙江飞越机电有限公司 制冷设备的智能化识别与服务匹配管理方法
CN112378048A (zh) * 2020-10-21 2021-02-19 浙江飞越机电有限公司 制冷设备的智能化维修管理系统及维修管理方法
CN113294947B (zh) * 2021-05-25 2021-11-19 安徽万瑞冷电科技有限公司 制冷机自动充排气封装系统、控制方法
CN113531963B (zh) * 2021-06-16 2023-01-13 青岛海尔空调器有限总公司 空调调试设备
CN114215734B (zh) * 2021-11-05 2024-03-19 合肥通用机械研究院有限公司 一种压缩机测试装置用低压工质完全回收系统及回收方法
CN115164454B (zh) * 2022-07-11 2024-02-27 珠海格力电器股份有限公司 电子膨胀阀体的控制方法以及控制装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004063645A1 (ja) * 2003-01-08 2006-05-18 新日本石油株式会社 空調機器用フロンの回収・再生・充填装置及び空調機器潤滑用オイルの補充方法
KR20130120016A (ko) * 2012-04-25 2013-11-04 강진오 증발기 입출구 온도 차에 의한 냉매 주입장치
CN106338166A (zh) * 2016-08-05 2017-01-18 浙江吉利控股集团有限公司 一种智能冷媒加注和回收装置
CN106568250A (zh) * 2016-10-28 2017-04-19 浙江飞越机电有限公司 冷媒加注机及用该设备进行抽真空、检漏和冷媒加注的方法
CN206269441U (zh) * 2016-10-28 2017-06-20 浙江飞越机电有限公司 带有真空检漏功能的全自动冷媒加注机
CN106931692A (zh) * 2015-12-29 2017-07-07 电计科技研发(上海)有限公司 一种车用冷媒加注回收系统
CN110657608A (zh) * 2019-09-29 2020-01-07 赛埃孚汽车保修设备(太仓)有限公司 一种用于汽车空调冷媒的回收加注机及其应用
CN111649509A (zh) * 2020-05-12 2020-09-11 浙江飞越机电有限公司 冷媒智能加注控制系统
CN212362530U (zh) * 2020-05-12 2021-01-15 浙江飞越机电有限公司 冷媒智能加注控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201100800Y (zh) * 2007-09-19 2008-08-13 诸暨市鸿森机械有限公司 一种冷媒回收加注机
CN203132233U (zh) * 2013-02-18 2013-08-14 武汉理工大学 一种汽车空调制冷剂的回收加注机自动荧光剂加注机构
CN104807262B (zh) * 2015-05-05 2017-11-03 上海佐竹冷热控制技术有限公司 用于车辆空调测试系统的制冷剂加注回收系统及方法
CN208998387U (zh) * 2018-09-13 2019-06-18 中山市德奥克机械设备制造有限公司 一种冷媒自动回收加注机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004063645A1 (ja) * 2003-01-08 2006-05-18 新日本石油株式会社 空調機器用フロンの回収・再生・充填装置及び空調機器潤滑用オイルの補充方法
KR20130120016A (ko) * 2012-04-25 2013-11-04 강진오 증발기 입출구 온도 차에 의한 냉매 주입장치
CN106931692A (zh) * 2015-12-29 2017-07-07 电计科技研发(上海)有限公司 一种车用冷媒加注回收系统
CN106338166A (zh) * 2016-08-05 2017-01-18 浙江吉利控股集团有限公司 一种智能冷媒加注和回收装置
CN106568250A (zh) * 2016-10-28 2017-04-19 浙江飞越机电有限公司 冷媒加注机及用该设备进行抽真空、检漏和冷媒加注的方法
CN206269441U (zh) * 2016-10-28 2017-06-20 浙江飞越机电有限公司 带有真空检漏功能的全自动冷媒加注机
CN110657608A (zh) * 2019-09-29 2020-01-07 赛埃孚汽车保修设备(太仓)有限公司 一种用于汽车空调冷媒的回收加注机及其应用
CN111649509A (zh) * 2020-05-12 2020-09-11 浙江飞越机电有限公司 冷媒智能加注控制系统
CN212362530U (zh) * 2020-05-12 2021-01-15 浙江飞越机电有限公司 冷媒智能加注控制系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317864A1 (fr) * 2022-08-03 2024-02-07 Sndc Station de recharge de fluide réfrigérant connectée
FR3138685A1 (fr) * 2022-08-03 2024-02-09 Sndc Station de recharge de fluide réfrigérant connectée
CN116538716A (zh) * 2023-04-14 2023-08-04 深圳市泰路科技有限公司 基于数据分析的冷媒回收加注机运行监控系统
CN116538716B (zh) * 2023-04-14 2023-10-20 深圳市泰路科技有限公司 基于数据分析的冷媒回收加注机运行监控系统

Also Published As

Publication number Publication date
CN111649509A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2021227894A1 (zh) 冷媒智能加注控制系统
CN105650801B (zh) 控制空调进入除霜模式的方法、装置及空调器
CN105546752B (zh) 空调器控制方法及装置
CN204166349U (zh) 先导设备和流体流动设备
CN105485771B (zh) 空调系统及其冷媒回收控制方法和装置
CN107965937B (zh) 一种制冷机组及其抽空停机控制方法
CN106440582B (zh) 水冷螺杆机组的控制方法
CN108072201B (zh) 热泵系统及其启动控制方法
CN104122463A (zh) 电子膨胀阀检测方法和系统
CN105057292A (zh) 一种伺服液压冲洗系统
CN106016866A (zh) 一种空调器冷媒充注方法及系统
CN110530080B (zh) 一种冷媒回收控制方法及空调系统
CN212362530U (zh) 冷媒智能加注控制系统
CN108457933B (zh) 一种页岩气井场安全控制系统适应性测试装置及方法
CN205908361U (zh) 一种自动化控制台架发动机冷却系统压力的装置
CN108917091A (zh) 一种空调智能测试方法及其空调器
CN113125145A (zh) 一种燃气阀测试装置及测试方法
CN110410986B (zh) 一种空调器关机控制方法、装置及空调器
CN109668354B (zh) 防压缩机用气体轴承磨损的冷媒循环系统及其控制方法
WO2020238318A1 (zh) 空调器及其防冻结保护控制方法和控制装置
CN213811067U (zh) 制冷设备的智能化维修管理系统
CN106568163B (zh) 一种空调的控制方法、装置及空调
CN111043788B (zh) 一种热风机空调装置及其控制方法
CN205448431U (zh) 自动排气装置及具有该装置的吸收式制冷系统
CN115540418A (zh) 用于调节冷媒量的方法及装置、冷媒充注回收装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804223

Country of ref document: EP

Kind code of ref document: A1