WO2020238318A1 - 空调器及其防冻结保护控制方法和控制装置 - Google Patents

空调器及其防冻结保护控制方法和控制装置 Download PDF

Info

Publication number
WO2020238318A1
WO2020238318A1 PCT/CN2020/078492 CN2020078492W WO2020238318A1 WO 2020238318 A1 WO2020238318 A1 WO 2020238318A1 CN 2020078492 W CN2020078492 W CN 2020078492W WO 2020238318 A1 WO2020238318 A1 WO 2020238318A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
freezing
refrigerant
bypass
air conditioner
Prior art date
Application number
PCT/CN2020/078492
Other languages
English (en)
French (fr)
Inventor
雷晏瑶
杨坤
司跃元
孙超
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2020238318A1 publication Critical patent/WO2020238318A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater

Definitions

  • the present invention belongs to the technical field of air conditioning. Specifically, it relates to an air conditioner and its control, and more specifically, to an air conditioner and an anti-freezing protection control method and control device thereof.
  • the air conditioner When the air conditioner is cooling under low load operation, frosting of the indoor unit evaporator often occurs. After the evaporator is frosted, the air conditioner activates the anti-freezing protection. By reducing the compressor frequency or stopping the compressor, the temperature of the evaporator will rise to solve the problem of evaporator frosting.
  • temperature is usually used as a judgment parameter to judge whether the evaporator is frosted and whether anti-freezing protection needs to be activated.
  • a temperature sensor is used to detect the temperature on the outer surface of the evaporator pipeline, compare the relationship between the temperature and the set temperature threshold, and determine whether the evaporator is frosted and whether the anti-freezing protection needs to be activated according to the comparison result.
  • the temperature sensor can only collect the temperature of a certain point on the outer surface of the pipeline, and cannot accurately represent the temperature of the entire evaporator. If multiple temperature sensors are installed, the cost is high, the structure is complicated, and the processing process is complicated. Moreover, the temperature of the outer surface of the pipeline detected by the temperature sensor is extremely susceptible to external factors, such as the external environment temperature, thermal insulation jacket, etc., resulting in low temperature detection accuracy. Therefore, the use of temperature as a judgment parameter has limitations, which can easily cause misjudgment of evaporator frosting and poor reliability of anti-freezing protection. Moreover, in the prior art, after the anti-freezing protection is activated, the compressor needs to be controlled to wait for the temperature of the evaporator to rise. This process takes a long time, and the cooling effect is affected when the compressor is down or stopped, which reduces the temperature comfort.
  • One of the objectives of the present invention is to provide an anti-freezing protection control method for an air conditioner to improve the reliability of the anti-freezing protection control, shorten the anti-freezing protection processing time, and improve the cooling comfort.
  • control method provided by the present invention adopts the following solutions to achieve:
  • An air conditioner anti-freezing protection control method including:
  • the first pressure of the refrigerant at the first position, the second pressure of the refrigerant at the second position, and the third pressure of the refrigerant at the outlet of the evaporator are acquired in the refrigerant pipe of the evaporator, Compare with anti-freezing pressure;
  • the anti-freezing protection is performed to control the refrigerant between the first position and the second position
  • the bypass is turned on, so that the refrigerant flows from the high pressure side to the low pressure side through the refrigerant bypass;
  • the anti-freezing protection is executed, and the auxiliary electric heating device in the indoor unit is controlled to turn on.
  • the controlling the conduction of the refrigerant bypass between the first position and the second position specifically includes:
  • the smaller value of the first pressure and the second pressure determine the current first anti-freezing pressure range to which the smaller value belongs according to the known first anti-freezing pressure range, and according to the known first anti-freezing pressure range
  • the correspondence between the antifreeze pressure range and the bypass conduction speed determines the current bypass conduction speed corresponding to the current first antifreeze pressure range, and controls the refrigerant bypass to conduct at the current bypass conduction speed through.
  • the corresponding relationship between the first anti-freezing pressure range and the bypass conduction speed satisfies: the greater the anti-freeze pressure value in the first anti-freeze pressure range, the greater the bypass conduction speed The smaller.
  • the smaller value of the first pressure and the second pressure is obtained, and the current first anti-freeze to which the smaller value belongs is determined according to the known first anti-freeze pressure range
  • the pressure range is to determine the current bypass conduction speed corresponding to the current first anti-freeze pressure range according to the known correspondence between the first anti-freeze pressure range and the bypass conduction speed, and control the refrigerant bypass to
  • the current bypass conduction speed conduction specifically includes:
  • the third anti-freeze pressure is less than the first anti-freeze pressure
  • the fourth anti-freeze pressure is less than the third anti-freeze pressure
  • the third set conduction speed is greater than the second set conduction Speed
  • the second set conduction speed is greater than the first set conduction speed
  • the anti-freezing protection is executed, and the auxiliary electric heating device in the indoor unit is controlled to turn on, which specifically includes:
  • the anti-freezing protection is executed, the auxiliary electric heating device in the indoor unit is controlled to turn on, and the operation continues for the first set time;
  • the third pressure is re-acquired, and the third pressure to which the re-acquired third pressure belongs is determined according to the known second anti-freezing pressure range
  • the current second anti-freeze pressure range determines the current start-stop time corresponding to the current second anti-freeze pressure range according to the known corresponding relationship between the second anti-freeze pressure range and the start-stop time of the auxiliary electric heating device, and controls all
  • the auxiliary electric heating device runs at the current start and stop time.
  • the corresponding relationship between the second anti-freezing pressure range and the start-stop time of the auxiliary electric heating device satisfies: the greater the anti-freezing pressure value in the second anti-freezing pressure range, the greater the start-stop time The shorter the opening time and/or the longer the stopping time.
  • the first position is a position in a designated pipeline in the first half of the evaporator
  • the second position is a position in a designated pipeline in the second half of the evaporator. position.
  • controlling the conduction of the refrigerant bypass between the first position and the second position is specifically:
  • the solenoid valve in the refrigerant bypass between the first position and the second position is controlled to open, so as to realize conduction to the refrigerant bypass.
  • the present invention also provides an anti-freezing protection control device for an air conditioner and an air conditioner provided with the control device, the device comprising:
  • the first pressure acquiring and comparing unit is used to acquire the first pressure of the refrigerant at the first position inside the refrigerant pipeline of the evaporator and compare it with the anti-freezing pressure;
  • the second pressure acquiring and comparing unit is used to acquire the second pressure of the refrigerant at the second position inside the refrigerant pipeline of the evaporator and compare it with the anti-freezing pressure;
  • the third pressure acquisition and comparison unit is used to acquire the third pressure of the refrigerant at the outlet of the evaporator and compare it with the anti-freezing pressure;
  • the refrigerant bypass processing unit is used to perform anti-freezing protection at least when the smaller of the first pressure and the second pressure is less than the first anti-freezing pressure, and to control the first position and The refrigerant bypass between the second positions is turned on, so that the refrigerant flows from the high pressure side to the low pressure side through the refrigerant bypass;
  • the auxiliary electric heating device processing unit is at least used for performing anti-freezing protection when the third pressure is less than the second anti-freezing pressure, and controlling the auxiliary electric heating device in the indoor unit to turn on.
  • the advantages and positive effects of the present invention are: the air conditioner anti-freezing protection control method and control device provided by the present invention add refrigerant bypass between pipes at different positions of the evaporator to detect different positions When the pressure of the refrigerant at the evaporator is lower than the set anti-freezing pressure, the refrigerant bypass is controlled to make the refrigerant flow from the high-pressure side to the low-pressure side, equalize the pressure at the different pipelines of the evaporator, and reduce the low-pressure pipeline The possibility of frost.
  • the refrigerant pressure inside the pipeline is used as the judgment parameter, compared with collecting the outer surface temperature of the pipeline, the pressure more directly reflects the state of the refrigerant and is not affected by external environmental factors. Therefore, the judgment is more real-time. It is stronger and more accurate, thereby improving the reliability of the anti-freezing protection control; moreover, the control process of the refrigerant bypass conduction is simple and fast, can quickly respond to the anti-freezing protection, shortening the anti-freezing protection processing time, and convenient Improve cooling comfort.
  • the refrigerant pressure at the outlet of the evaporator is also obtained, which reflects the total pressure of the evaporator.
  • the auxiliary electric heating device When it is lower than the set anti-freezing pressure, the auxiliary electric heating device is turned on and the auxiliary electric heating device is used to heat the air. It can quickly remove the frost of the evaporator, further shorten the anti-freezing protection processing time, further improve the comfort of refrigeration, and the pressure more directly reflects the state of the refrigerant, and is not affected by external environmental factors, making the judgment more real-time Stronger, higher accuracy, higher reliability of anti-freezing protection control.
  • Fig. 1 is a flowchart of an embodiment of an anti-freezing protection control method for an air conditioner based on the present invention
  • Fig. 2 is a structural block diagram of an embodiment of an anti-freezing protection control device for an air conditioner based on the present invention.
  • FIG. 1 shows a flowchart of an embodiment of an anti-freezing protection control method for an air conditioner based on the present invention.
  • the following process is adopted to realize the anti-freezing protection control of the air conditioner.
  • Step 11 During the cooling operation of the air conditioner, obtain the first pressure of the refrigerant at the first position in the refrigerant pipe of the evaporator, the second pressure of the refrigerant at the second position, and the first pressure of the refrigerant at the outlet of the evaporator. The three pressures are compared with the anti-freezing pressure.
  • the first position and the second position are the positions in the different refrigerant pipelines of the evaporator, and are preset positions. Generally, according to the type of air conditioner, the size of the evaporator, etc., combined with experiment and experience, in the air conditioner Before leaving the factory, the first position and the second position are determined by the R&D personnel. In addition, it is preferable that the first position and the second position are separated by a certain distance along the direction of the refrigerant flow, which is a position that typically reflects that the refrigerant has a large pressure difference in the evaporator pipe.
  • the first position and the second position are determined as: the first position is a position in a designated pipe in the front half of the evaporator, and the second position is a designated pipe in the second half of the evaporator. Location within the road.
  • the evaporator includes the first pipe to the eighth pipe arranged from top to bottom or from left to right, the first to fourth pipes are the first half of the pipe, and the fifth to eighth pipe
  • the pipeline is the second half of the pipeline; the position in one of the first half of the pipeline is selected as the first position, for example, the position in the second pipeline is selected as the first position; the second half of the pipeline is selected The position in one pipeline of is determined as the second position, for example, the position in the sixth pipeline is selected as the second position.
  • the pressure detection unit is set at the first position and the second position, for example, a pressure sensor is set to detect the pressure of the refrigerant at the position respectively, and the pressure at the first position and the pressure at the second position are defined as First pressure and second pressure.
  • a pressure detection unit is also provided at the exit of the evaporator, for example, a pressure sensor is provided to detect the third pressure at the exit of the evaporator.
  • the evaporator outlet refers to the total outlet of the refrigerant in the evaporator, and the third pressure reflects the total pressure of the refrigerant flowing out of the evaporator.
  • the above-mentioned first pressure, second pressure, and third pressure are acquired in real time or at regular time, and compared with the anti-freezing pressure respectively.
  • the anti-freezing pressure is a preset pressure threshold, generally multiple.
  • Step 12 When the condition that the smaller value of the first pressure and the second pressure is less than the first anti-freezing pressure is satisfied, the anti-freezing protection is performed, and the refrigerant bypass between the first position and the second position is controlled to conduct. Make the refrigerant flow from the high pressure side to the low pressure side through the refrigerant bypass;
  • the anti-freezing protection is executed, and the auxiliary electric heating device in the indoor unit is controlled to turn on.
  • the first pressure and the second pressure are used as parameters for controlling the refrigerant bypass in the anti-freezing protection
  • the third pressure is used as the parameters for controlling the auxiliary electric heating device in the anti-freezing protection.
  • two thresholds, a first anti-freezing pressure and a second anti-freezing pressure are set as the threshold for refrigerant bypass control and the threshold for controlling the auxiliary electric heating device, respectively.
  • the specific values of the first anti-freezing pressure and the second anti-freezing pressure are preset. According to the type of air conditioner, the size of the evaporator, etc., combined with experiments and experience, the air conditioner is determined by the research and development personnel before the air conditioner leaves the factory.
  • the anti-freezing protection control of this embodiment includes two control processes of refrigerant bypass control and control of the auxiliary electric heating device.
  • the two control processes use different parameters and conditions to determine whether to execute. That is, the two control processes basically run in parallel, and judge and control independently.
  • a refrigerant bypass is preset between the first position and the second position of the evaporator, and the refrigerant bypass is controllable.
  • Controllable bypass that turns on and off.
  • the controllable refrigerant bypass can be implemented in a variety of ways.
  • an electromagnetic valve is provided in the bypass, and the electromagnetic valve is controlled to realize the conduction or closure of the refrigerant bypass.
  • the first anti-freezing pressure is a pressure threshold that reflects whether the evaporator is prone to frost. If the pressure of the pipeline refrigerant is less than the first anti-freezing pressure, the pipeline is easy to frost; on the contrary, if it is not less than the first anti-freezing pressure, the pipeline is not easy to frost.
  • the anti-freezing protection is performed, and the refrigerant bypass between the first position and the second position is controlled to conduct, so that The refrigerant flows from the high pressure side to the low pressure side through the refrigerant bypass.
  • the refrigerant pressure at different positions inside the evaporator pipe is different, that is, the pressure at the first position and the pressure at the second position are generally different.
  • the pressure at the first position and the pressure at the second position are generally different.
  • the smaller value of the first pressure and the second pressure is less than the first anti-freezing pressure, there is a risk of frosting in the pipeline where the smaller pressure is located. Therefore, control the refrigerant bypass to conduct, and the refrigerant will flow from the high pressure side to the The low-pressure side, that is, flow from the pipeline with the larger value of the first pressure and the second pressure to the pipeline with the smaller value, thereby increasing the pressure in the low-pressure pipeline with the risk of frost and reducing
  • the pipeline is prone to risk of frost due to low pressure, and realizes anti-freezing protection.
  • the refrigerant pressure inside the pipeline is used as the judgment parameter, compared with collecting the outer surface temperature of the pipeline, the pressure reflects the state of the refrigerant more directly and is not affected by external environmental factors. Therefore, the judgment is more real-time. Stronger and higher accuracy, which in turn improves the reliability of anti-freezing protection and control.
  • the control process of the refrigerant bypass conduction is simple and fast, can quickly respond to the anti-freezing protection, shortening the processing time of the anti-freezing protection, and improving the comfort of refrigeration.
  • the second anti-freezing pressure is a pressure threshold reflecting whether the evaporator is frosted, and if the third pressure is less than the second anti-freezing pressure, it indicates that the evaporator has been frosted.
  • the auxiliary electric heating device in the control indoor unit is turned on, and the auxiliary electric heating device is used to heat the air to quickly remove the frost of the evaporator, shorten the anti-freezing protection processing time, and improve the cooling comfort.
  • the pressure more directly reflects the state of the refrigerant, and is not affected by external environmental factors, the judgment is more real-time, the accuracy is higher, and the anti-freezing protection control reliability is higher.
  • the anti-freezing protection is controlled in two aspects based on the relationship between different pressures and anti-freezing pressures: one is to evaporate based on the pressure at different piping positions of the evaporator
  • the self-balance of the refrigerant pressure inside the evaporator achieves anti-freezing control that quickly reduces the possibility of frosting of the evaporator; the other is based on the relationship between the total pressure of the evaporator outlet and the anti-freezing pressure to control the auxiliary electric heating device, using auxiliary electric heating
  • the device accelerates the defrosting of the evaporator, increases the defrosting speed, and solves the problem of uncomfortable refrigeration caused by long-term defrosting. Therefore, the anti-freezing protection is performed from different angles, and the reliability of the anti-freezing protection control is further improved.
  • the conduction speed of the refrigerant bypass is also controlled according to the difference in pressure, so as to achieve more accuracy and Reliable anti-freezing protection control.
  • the smaller value of the first pressure and the second pressure is obtained, and the current first anti-freezing pressure range to which the smaller value belongs is determined according to the known first anti-freezing pressure range; then, according to the known first anti-freezing pressure range
  • the correspondence between the antifreeze pressure range and the bypass conduction speed determines the current bypass conduction speed corresponding to the current first antifreeze pressure range, and controls the refrigerant bypass to conduct at the current bypass conduction speed.
  • the corresponding relationship between the first anti-freezing pressure range and the bypass conduction speed satisfies: the larger the anti-freeze pressure value in the first anti-freeze pressure range, the smaller the bypass conduction speed.
  • the purpose of this design is that the larger the anti-freeze pressure value in the first anti-freeze pressure range, if the smaller value of the first pressure and the second pressure obtained is at the first anti-freeze pressure value with the larger anti-freeze pressure value Range, indicating that the smaller of the two pressures is also larger, and the possibility of frosting is smaller, that is, the less likely to be frosting.
  • control the slow speed of the bypass Conduction on the one hand, can achieve a rise in the pressure of the low-pressure pipeline to avoid frosting, and on the other hand, it can minimize the impact on the normal refrigerant pressure distribution inside the evaporator pipeline.
  • a total of three pressure thresholds, the first anti-freezing pressure, the third anti-freezing pressure, and the fourth anti-freezing pressure are set to form three first anti-freezing pressures.
  • Pressure range, each first anti-freezing pressure range corresponds to a bypass conduction speed.
  • the third anti-freezing pressure is less than the first anti-freezing pressure
  • the fourth anti-freezing pressure is less than the third anti-freezing pressure.
  • the three first anti-freezing pressure ranges are: greater than the third anti-freezing pressure and less than the first Anti-freezing pressure; greater than the fourth anti-freezing pressure and not greater than the third anti-freezing pressure; not greater than the fourth anti-freezing pressure.
  • the three first anti-freezing pressure ranges respectively correspond to the first bypass conduction speed, the second bypass conduction speed, and the third bypass conduction speed. And it is satisfied that the first set conduction speed is less than the second set conduction speed, and the second set conduction speed is less than the third set conduction speed.
  • Each anti-freezing pressure and bypass conduction speed are preset values.
  • the specific control of the refrigerant bypass includes:
  • the refrigerant bypass is controlled to conduct at the second set conduction speed ;
  • the refrigerant bypass is controlled to conduct at the third set conduction speed.
  • the opening time and/or stopping time of the auxiliary electric heating device is also controlled according to the difference of the third pressure, so as to achieve more accurate, reliable, and energy-saving Anti-freezing protection control. Specifically, when the air conditioner meets the condition that the third pressure is less than the second anti-freeze pressure for the first time after the air conditioner is powered on, the anti-freeze protection is executed, and the auxiliary electric heating device in the indoor unit is controlled to turn on and continue to run for the first set time ;
  • the third pressure is re-acquired, and the current second anti-freezing pressure to which the re-acquired third pressure belongs is determined according to the known second anti-freezing pressure range Range, according to the known corresponding relationship between the second anti-freezing pressure range and the start-stop time of the auxiliary electric heating device, determine the current start-stop time corresponding to the current second anti-freeze pressure range, and control the auxiliary electric heating device to use the current start-stop time run.
  • the first set time is also a known preset time.
  • the setting of the second anti-freezing pressure range refers to the above-mentioned setting method of the first anti-freezing pressure range, which may include the first anti-freezing pressure range.
  • a pressure range that does not cross the first anti-freezing pressure range can also be used.
  • the start-stop time corresponding to the second anti-freezing pressure range includes an open time and/or a stop time.
  • the correspondence between the second anti-freezing pressure range and the start-stop time of the auxiliary electric heating device satisfies: the greater the anti-freezing pressure value in the second anti-freezing pressure range, the greater the start-stop time The shorter the opening time and/or the longer the stopping time.
  • the second anti-freezing pressure range with the larger anti-freezing pressure value may only change the opening time in the corresponding start-stop time, and the opening time is shorter; It can only be the change of the stop time, and the longer the stop time; or the change of the start time and the stop time at the same time, and the shorter the start time, the longer the stop time.
  • the working time of the auxiliary electric heating device can be shortened.
  • the working time of the auxiliary electric heating device is shortened, on the one hand, it can be realized by reducing its opening time, on the other hand, it can also be realized by extending its closing time.
  • Fig. 2 is a structural block diagram of an embodiment of an anti-freezing protection control device for an air conditioner based on the present invention.
  • the structural units, the connection relationship between the units, and the functions realized by the units included in the control device of this embodiment are specifically as follows:
  • the first pressure acquiring and comparing unit 21 is configured to acquire the first pressure of the refrigerant at the first position inside the refrigerant pipeline of the evaporator and compare it with the anti-freezing pressure;
  • the second pressure acquiring and comparing unit 22 is used to acquire the second pressure of the refrigerant at the second position inside the refrigerant pipe of the evaporator and compare it with the anti-freezing pressure;
  • the third pressure acquiring and comparing unit 23 is used to acquire the third pressure of the refrigerant at the outlet of the evaporator and compare it with the anti-freezing pressure;
  • the refrigerant bypass processing unit 24 is used to perform anti-freezing protection at least when the smaller of the first pressure and the second pressure is less than the first anti-freezing pressure, and to control the distance between the first position and the second position
  • the refrigerant bypass is turned on, so that the refrigerant flows from the high pressure side to the low pressure side through the refrigerant bypass;
  • the auxiliary electric heating device processing unit 25 is at least used for performing anti-freezing protection when the third pressure is less than the second anti-freezing pressure, and controlling the auxiliary electric heating device in the indoor unit to turn on.
  • the anti-freezing protection control device of the embodiment of FIG. 2 is installed in an air conditioner to realize the anti-freezing protection control of the air conditioner, improve the reliability of the anti-freezing protection control of the air conditioner, shorten the anti-freeze protection processing time, and improve the cooling comfort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种空调器及其防冻结保护控制方法和控制装置,所述方法包括:空调器制冷运行时,获取蒸发器制冷剂管路内部第一位置处的制冷剂的第一压力、第二位置处的制冷剂的第二压力以及蒸发器出口处的制冷剂的第三压力,分别与防冻结压力作比较;在满足所述第一压力和所述第二压力中的较小值小于第一防冻结压力的条件时,执行防冻结保护,控制所述第一位置和所述第二位置之间的制冷剂旁路导通,使得制冷剂经所述制冷剂旁路从高压侧流向低压侧;在满足所述第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启。应用本发明,能提高防冻结保护控制的可靠性,缩短防冻结保护处理时间,提高制冷舒适性。

Description

空调器及其防冻结保护控制方法和控制装置 技术领域
本发明属于空气调节技术领域,具体地说,是涉及空调器及其控制,更具体地说,是涉及空调器及其防冻结保护控制方法和控制装置。
背景技术
空调器在低负荷运行制冷时,经常会发生室内机蒸发器结霜的现象。在蒸发器结霜后,空调器启动防冻结保护,通过降低压缩机频率,或者停止压缩机运行,使得蒸发器温度上升,解决蒸发器结霜问题。
现有技术中,通常采用温度作为判断参数判断蒸发器是否结霜,是否需要启动防冻结保护。具体来说,是采用温度传感器检测蒸发器管路外表面上的温度,比较温度与设定温度阈值的关系,根据比较结果判断蒸发器是否结霜,是否需要启动防冻结保护。
但是,温度传感器只能采集管路外表面某个点的温度,不能准确地代表整个蒸发器的温度。如果设置多个温度传感器,成本高,结构复杂,处理过程复杂。而且,温度传感器所检测的管路外表面的温度极易受外界因素的影响,如受外界环境温度、保温护套等的影响,导致温度检测准确性低。所以,采用温度作为判断参数具有局限性,容易造成蒸发器结霜的误判,防冻结保护可靠性差。而且,现有技术在启动防冻结保护后,需要对压缩机进行控制,等待蒸发器温度上升,该过程耗时长,且压缩机降频或停止运行时影响制冷效果,降低了温度舒适性。
技术问题
本发明的目的之一是提供一种空调器防冻结保护控制方法,以提高防冻结保护控制的可靠性,缩短防冻结保护处理时间,提高制冷舒适性。
技术解决方案
为实现上述技术目的,本发明提供的控制方法采用下述方案来实现:
一种空调器防冻结保护控制方法,包括:
空调器制冷运行时,获取蒸发器制冷剂管路内部第一位置处的制冷剂的第一压力、第二位置处的制冷剂的第二压力以及蒸发器出口处的制冷剂的第三压力,分别与防冻结压力作比较;
在满足所述第一压力和所述第二压力中的较小值小于第一防冻结压力的条件时,执行防冻结保护,控制所述第一位置和所述第二位置之间的制冷剂旁路导通,使得制冷剂经所述制冷剂旁路从高压侧流向低压侧;
在满足所述第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启。
如上所述的控制方法,所述控制所述第一位置和所述第二位置之间的制冷剂旁路导通,具体包括:
获取所述第一压力和所述第二压力中的较小值,根据已知的第一防冻结压力范围确定所述较小值所属的当前第一防冻结压力范围,根据已知的第一防冻结压力范围与旁路导通速度的对应关系确定与所述当前第一防冻结压力范围对应的当前旁路导通速度,控制所述制冷剂旁路以所述当前旁路导通速度导通。
如上所述的控制方法,所述第一防冻结压力范围与旁路导通速度的对应关系满足:所述第一防冻结压力范围中的防冻结压力值越大,所述旁路导通速度越小。
如上所述的控制方法,所述获取所述第一压力和所述第二压力中的较小值,根据已知的第一防冻结压力范围确定所述较小值所属的当前第一防冻结压力范围,根据已知的第一防冻结压力范围与旁路导通速度的对应关系确定与所述当前第一防冻结压力范围对应的当前旁路导通速度,控制所述制冷剂旁路以所述当前旁路导通速度导通,具体包括:
在满足所述第一压力和所述第二压力中的较小值大于第三防冻结压力的条件时,控制所述制冷剂旁路以第一设定导通速度导通;
在满足所述第一压力和所述第二压力中的较小值不大于所述第三防冻结压力、但大于第四防冻结压力的条件时,控制所述制冷剂旁路以第二设定导通速度导通;
在满足所述第一压力和所述第二压力中的较小值不大于所述第四防冻结压力的条件时,控制所述制冷剂旁路以第三设定导通速度导通;
所述第三防冻结压力小于所述第一防冻结压力,所述第四防冻结压力小于所述第三防冻结压力,所述第三设定导通速度大于所述第二设定导通速度,所述第二设定导通速度大于所述第一设定导通速度。
如上所述的控制方法,所述在满足所述第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启,具体包括:
在空调器上电运行后首次满足所述第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启,并持续运行第一设定时间;
在所述辅助电加热装置的持续运行时间达到所述第一设定时间后,重新获取所述第三压力,根据已知的第二防冻结压力范围确定重新获取的所述第三压力所属的当前第二防冻结压力范围,根据已知的第二防冻结压力范围与辅助电加热装置的启停时间的对应关系确定与所述当前第二防冻结压力范围对应的当前启停时间,控制所述辅助电加热装置以所述当前启停时间运行。
如上所述的控制方法,所述第二防冻结压力范围与辅助电加热装置的启停时间的对应关系满足:所述第二防冻结压力范围中的防冻结压力值越大,启停时间中的开启时间越短和/或停止时间越长。
如上所述的控制方法,所述第一位置为蒸发器前半部分管路中的一条指定管路内的位置,所述第二位置为蒸发器后半部分管路中的一条指定管路内的位置。
如上所述的控制方法,所述控制所述第一位置和所述第二位置之间的制冷剂旁路导通,具体为:
控制所述第一位置和所述第二位置之间的制冷剂旁路中的电磁阀开启,实现对所述制冷剂旁路的导通。
本发明还提供了一种空调器防冻结保护控制装置及设置有该控制装置的空调器,所述装置包括:
第一压力获取及比较单元,用于获取蒸发器制冷剂管路内部第一位置处的制冷剂的第一压力,并与防冻结压力作比较;
第二压力获取及比较单元,用于获取蒸发器制冷剂管路内部第二位置处的制冷剂的第二压力,并与防冻结压力作比较;
第三压力获取及比较单元,用于获取蒸发器出口处的制冷剂的第三压力,并与防冻结压力作比较;
制冷剂旁路处理单元,至少用于在满足所述第一压力和所述第二压力中的较小值小于第一防冻结压力的条件时,执行防冻结保护,控制所述第一位置和所述第二位置之间的制冷剂旁路导通,使得制冷剂经所述制冷剂旁路从高压侧流向低压侧;
辅助电加热装置处理单元,至少用于在满足所述第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启。
有益效果
与现有技术相比,本发明的优点和积极效果是:本发明提供的空调器防冻结保护控制方法和控制装置,在蒸发器不同位置的管路之间增设制冷剂旁路,检测不同位置处的制冷剂的压力,在压力小于设定的防冻结压力时,控制制冷剂旁路导通,使得制冷剂从高压侧流向低压侧,均衡蒸发器不同管路处的压力,减少低压管路结霜的可能性。由于采用管路内部的制冷剂压力作为判断参数,与采集管路外表面温度相比,压力更为直接地反映了制冷剂的状态,且不受外界环境因素的影响,因此,判断实时性更强,准确性更高,进而提高了防冻结保护控制的可靠性;并且,制冷剂旁路导通的控制过程简单、快速,可以快速地响应防冻结保护,缩短了防冻结保护处理时间,便于提高制冷舒适性。同时,还获取蒸发器出口处的制冷剂压力,该压力反映了蒸发器的总压力,在其低于设定的防冻结压力时,开启辅助电加热装置,利用辅助电加热装置加热空气,不仅能够快速除去蒸发器的结霜,进一步缩短了防冻结保护处理时间,进一步提高制冷舒适性,且压力更为直接地反映了制冷剂的状态,且不受外界环境因素的影响,判断实时性更强,准确性更高,防冻结保护控制可靠性更高。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是基于本发明空调器防冻结保护控制方法一个实施例的流程图;
图2是基于本发明空调器防冻结保护控制装置一个实施例的结构框图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
需要说明的是,在本发明的描述中,术语“第一”、“第二”、“第三”、“第四”、“第五”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
请参见图1,该图所示为基于本发明空调器防冻结保护控制方法一个实施例的流程图。该实施例中,采用下述过程实现空调器防冻结保护控制。
步骤11:空调器制冷运行时,获取蒸发器制冷剂管路内部第一位置处的制冷剂的第一压力、第二位置处的制冷剂的第二压力以及蒸发器出口处的制冷剂的第三压力,分别与防冻结压力作比较。
第一位置和第二位置是蒸发器不同制冷剂管路中的位置,且是预设好的位置,一般的,根据空调器类型、蒸发器大小等的不同,结合实验和经验,在空调器出厂前,由研发人员确定第一位置和第二位置。并且,优选第一位置和第二位置在沿制冷剂流向方向上相隔一定距离,以较为典型地反映制冷剂在蒸发器管路内具有较大的压力差的位置为宜。更优选的,第一位置和第二位置确定为:第一位置为蒸发器前半部分管路中的一条指定管路内的位置,第二位置为蒸发器后半部分管路中的一条指定管路内的位置。譬如,蒸发器包括有自上而下或自左而右依次排列的第1管路至第8管路,第1管路至第4管路为前半部分管路,第5管路至第8管路为后半部分管路;选取前半部分管路中的一条管路内的位置确定为第一位置,例如,选取第2管路中的位置为第一位置;选取后半部分管路中的一条管路内的位置确定为第二位置,例如,选取第6管路中的位置为第二位置。
然后,在第一位置和第二位置处分别设置压力检测单元,例如,设置压力传感器,分别检测所在位置处的制冷剂的压力,定义第一位置处的压力和第二位置处的压力分别为第一压力和第二压力。
同时,在蒸发器出口处也设置有压力检测单元,例如,设置压力传感器,用来检测蒸发器出口处的第三压力。蒸发器出口是指蒸发器中制冷剂的总出口,第三压力反映了蒸发器流出的制冷剂的总压力。
空调器制冷运行时,实时或者定时获取上述的第一压力、第二压力及第三压力,并分别与防冻结压力作比较。其中,防冻结压力为预设的压力阈值,一般为多个。
步骤12:在满足第一压力和第二压力中的较小值小于第一防冻结压力的条件时,执行防冻结保护,控制第一位置和第二位置之间的制冷剂旁路导通,使得制冷剂经所述制冷剂旁路从高压侧流向低压侧;
在满足第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启。
在该实施例中,第一压力和第二压力作为防冻结保护中对制冷剂旁路进行控制所用的参数,第三压力作为防冻结保护中对辅助电加热装置进行控制所用的参数。并且,结合空调器运行的实际情况,设置有第一防冻结压力和第二防冻结压力两个阈值,分别作为制冷剂旁路控制用的阈值和辅助电加热装置控制用的阈值。第一防冻结压力和第二防冻结压力的具体数值是预设好的,根据空调器类型、蒸发器大小等的不同,结合实验和经验,在空调器出厂前,由研发人员确定。
而且,在该实施例的防冻结保护控制中,包括有对制冷剂旁路控制和对辅助电加热装置控制的两个控制过程,两个控制过程采用不同的参数和条件判断是否执行。也即,两个控制过程基本并行运行,各自独立进行判断和控制。
此外,在该实施例中,为了实现基于压力均衡执行快速防冻结保护的目的,在蒸发器的第一位置和第二位置之间预设有制冷剂旁路,该制冷剂旁路为可控导通和关闭的可控型旁路。可控型制冷剂旁路可以采用多种方式来实现,作为优选实施方式,在旁路中设置电磁阀,控制电磁阀实现制冷剂旁路的导通或关闭。
在步骤11获取到第一压力和第二压力后,与第一防冻结压力作比较。其中,第一防冻结压力是反映蒸发器是否易结霜的压力阈值。如果管路制冷剂的压力小于该第一防冻结压力,管路为易结霜状态;反之,如果不小于该第一防冻结压力,管路不易结霜。因此,在满足第一压力和第二压力中的较小值小于第一防冻结压力的条件时,执行防冻结保护,控制第一位置和第二位置之间的制冷剂旁路导通,使得制冷剂经制冷剂旁路从高压侧流向低压侧。
一般地,蒸发器管路内部不同位置处的制冷剂压力不同,也即,第一位置处的压力和第二位置处的压力一般是不同的。在第一压力和第二压力中的较小值小于第一防冻结压力时,较小压力所在的管路存在结霜风险,因此,控制制冷剂旁路导通,制冷剂会从高压侧流向低压侧,也即从第一压力和第二压力中的较大值所处的管路流向较小值所处的管路,从而能够升高存在结霜风险的低压管路中的压力,降低该管路因压力低而易结霜的风险,实现了防冻结保护。由于采用管路内部的制冷剂压力作为判断参数,与采集管路外表面温度相比,压力更为直接地反映了制冷剂的状态,且不受外界环境因素的影响,因此,判断实时性更强,准确性更高,进而提高了防冻结保护控制的可靠性。并且,制冷剂旁路导通的控制过程简单、快速,可以快速地响应防冻结保护,缩短了防冻结保护处理时间,便于提高制冷舒适性。
在步骤11获取到第三压力后,与第二防冻结压力作比较,如果第三压力小于第二防冻结压力的条件,执行防冻结保护,控制室内机中的辅助电加热装置开启。其中,第二防冻结压力是反映蒸发器是否结霜的压力阈值,如果第三压力小于该第二防冻结压力,表明蒸发器已经结霜。此时,控制室内机中的辅助电加热装置开启,利用辅助电加热装置加热空气,快速除去蒸发器的结霜,缩短防冻结保护处理时间,提高制冷舒适性。而且,压力更为直接地反映了制冷剂的状态,且不受外界环境因素的影响,判断实时性更强,准确性更高,防冻结保护控制可靠性更高。
而且,采用该实施例的防冻结保护控制方法,基于不同的压力和防冻结压力的关系对防冻结保护进行两个方面的控制:一个是基于蒸发器不同管路位置处的压力的不同进行蒸发器内部制冷剂压力的自平衡,达到快速降低蒸发器结霜的可能性的防冻结控制;另一个是基于蒸发器出口的总压力和防冻结压力的关系控制辅助电加热装置,利用辅助电加热装置加快蒸发器除霜,提高除霜速度,解决长时间除霜导致制冷不舒适的问题。从而,从不同角度执行防冻结保护,进一步提高了防冻结保护控制的可靠性。
在其他一些优选实施例中,对于步骤12中控制第一位置和第二位置之间的制冷剂旁路导通时,还根据压力的不同控制制冷剂旁路的导通速度,实现更加精确和可靠的防冻结保护控制。具体来说,获取第一压力和第二压力中的较小值,根据已知的第一防冻结压力范围确定较小值所属的当前第一防冻结压力范围;然后,根据已知的第一防冻结压力范围与旁路导通速度的对应关系确定与当前第一防冻结压力范围对应的当前旁路导通速度,控制制冷剂旁路以当前旁路导通速度导通。更优选的,第一防冻结压力范围与旁路导通速度的对应关系满足:第一防冻结压力范围中的防冻结压力值越大,旁路导通速度越小。如此设计的目的在于,第一防冻结压力范围中的防冻结压力值越大,如果所获取的第一压力和第二压力中的较小值处于防冻结压力值越大的第一防冻结压力范围,表明两个压力中的较小值也越大,结霜的可能性越小,也即越不易结霜,为尽量保证蒸发器管路内部正常的制冷剂压力分布,控制旁路慢速导通,一方面能够实现低压管路压力的上升,避免结霜,另一方面可以尽可能降低对蒸发器管路内部正常的制冷剂压力分布的影响。
作为一种更优选实施方式,综合考虑防冻结控制准确性和快速性,设置第一防冻结压力、第三防冻结压力、第四防冻结压力共3个压力阈值,形成三个第一防冻结压力范围,每个第一防冻结压力范围对应一个旁路导通速度。并且,第三防冻结压力小于第一防冻结压力,第四防冻结压力小于第三防冻结压力,从而,三个第一防冻结压力范围分别为:大于第三防冻结压力、且小于第一防冻结压力;大于第四防冻结压力、且不大于第三防冻结压力;不大于第四防冻结压力。这三个第一防冻结压力范围分别对应着第一旁路导通速度、第二旁路导通速度和第三旁路导通速度。并且满足:第一设定导通速度小于第二设定导通速度,第二设定导通速度小于第三设定导通速度。各个防冻结压力及旁路导通速度,均为预设值。对于设置该三个第一防冻结压力范围的实施方式,制冷剂旁路的具体控制包括:
在满足第一压力和第二压力中的较小值大于第三防冻结压力的条件时,控制制冷剂旁路以第一设定导通速度导通;
在满足第一压力和所述第二压力中的较小值不大于第三防冻结压力、但大于第四防冻结压力的条件时,控制制冷剂旁路以第二设定导通速度导通;
在满足第一压力和第二压力中的较小值不大于第四防冻结压力的条件时,控制制冷剂旁路以第三设定导通速度导通。
在其他一些实施例中,对于步骤12中控制室内机中的辅助电加热装置开启,还根据第三压力的不同控制辅助电加热装置的开启时间和/或停止时间,实现更加精确、可靠、节能的防冻结保护控制。具体来说,在空调器上电运行后首次满足第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启,并持续运行第一设定时间;
在辅助电加热装置的持续运行时间达到所述第一设定时间后,重新获取第三压力,根据已知的第二防冻结压力范围确定重新获取的第三压力所属的当前第二防冻结压力范围,根据已知的第二防冻结压力范围与辅助电加热装置的启停时间的对应关系确定与当前第二防冻结压力范围对应的当前启停时间,控制辅助电加热装置以当前启停时间运行。其中,第一设定时间也是已知的预设时间。第二防冻结压力范围的设置参考上述第一防冻结压力范围的设置方法,可以包含有第一防冻结压力范围,当然,也可以采用与第一防冻结压力范围非交叉的压力范围。
而且,与第二防冻结压力范围对应的启停时间包括有开启时间和/或停止时间。并且,作为更优选的一种实施方式,第二防冻结压力范围与辅助电加热装置的启停时间的对应关系满足:第二防冻结压力范围中的防冻结压力值越大,启停时间中的开启时间越短和/或停止时间越长。也即,在多个第二防冻结压力范围中,防冻结压力值越大的第二防冻结压力范围,其所对应的启停时间中,可以仅是开启时间变化,且开启时间越短;可以仅是停止时间变化,且停止时间越长;还可以是开启时间和停止时间同时变化,且是开启时间越短、停止时间越长。如此设计的目的在于,第二防冻结压力范围中的防冻结压力值越大,如果第三压力处于防冻结压力值越大的第二防冻结压力范围,表明蒸发器压力越大,结霜程度越轻,综合考虑除霜速度和节约能耗,辅助电加热装置的工作时间可以变短。而辅助电加热装置的工作时间变短,一方面可以通过降低其开启时间来实现,另一方面也可以通过延长其关闭时间来实现。
图2所示为基于本发明空调器防冻结保护控制装置一个实施例的结构框图。该实施例的控制装置包括的结构单元、单元之间的连接关系及单元实现的功能,具体如下:
第一压力获取及比较单元21,用于获取蒸发器制冷剂管路内部第一位置处的制冷剂的第一压力,并与防冻结压力作比较;
第二压力获取及比较单元22,用于获取蒸发器制冷剂管路内部第二位置处的制冷剂的第二压力,并与防冻结压力作比较;
第三压力获取及比较单元23,用于获取蒸发器出口处的制冷剂的第三压力,并与防冻结压力作比较;
制冷剂旁路处理单元24,至少用于在满足第一压力和第二压力中的较小值小于第一防冻结压力的条件时,执行防冻结保护,控制第一位置和第二位置之间的制冷剂旁路导通,使得制冷剂经制冷剂旁路从高压侧流向低压侧;
辅助电加热装置处理单元25,至少用于在满足第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启。
上述各结构单元运行相应的软件,按照图1实施例及其他优选实施方式的过程实现空调器防冻结保护控制,所产生的技术效果参见方法实施例的描述。
图2实施例的防冻结保护控制装置设置于空调器中,实现空调器防冻结保护控制,提高空调器防冻结保护控制的可靠性,缩短防冻结保护处理时间,提高制冷舒适性。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种空调器防冻结保护控制方法,其特征在于,所述方法包括:
    空调器制冷运行时,获取蒸发器制冷剂管路内部第一位置处的制冷剂的第一压力、第二位置处的制冷剂的第二压力以及蒸发器出口处的制冷剂的第三压力,分别与防冻结压力作比较;
    在满足所述第一压力和所述第二压力中的较小值小于第一防冻结压力的条件时,执行防冻结保护,控制所述第一位置和所述第二位置之间的制冷剂旁路导通,使得制冷剂经所述制冷剂旁路从高压侧流向低压侧;
    在满足所述第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启。
  2. 根据权利要求1所述的空调器防冻结保护控制方法,其特征在于,所述控制所述第一位置和所述第二位置之间的制冷剂旁路导通,具体包括:
    获取所述第一压力和所述第二压力中的较小值,根据已知的第一防冻结压力范围确定所述较小值所属的当前第一防冻结压力范围,根据已知的第一防冻结压力范围与旁路导通速度的对应关系确定与所述当前第一防冻结压力范围对应的当前旁路导通速度,控制所述制冷剂旁路以所述当前旁路导通速度导通。
  3. 根据权利要求2所述的空调器防冻结保护控制方法,其特征在于,所述第一防冻结压力范围与旁路导通速度的对应关系满足:所述第一防冻结压力范围中的防冻结压力值越大,所述旁路导通速度越小。
  4. 根据权利要求3所述的空调器防冻结保护控制方法,其特征在于,所述获取所述第一压力和所述第二压力中的较小值,根据已知的第一防冻结压力范围确定所述较小值所属的当前第一防冻结压力范围,根据已知的第一防冻结压力范围与旁路导通速度的对应关系确定与所述当前第一防冻结压力范围对应的当前旁路导通速度,控制所述制冷剂旁路以所述当前旁路导通速度导通,具体包括:
    在满足所述第一压力和所述第二压力中的较小值大于第三防冻结压力的条件时,控制所述制冷剂旁路以第一设定导通速度导通;
    在满足所述第一压力和所述第二压力中的较小值不大于所述第三防冻结压力、但大于第四防冻结压力的条件时,控制所述制冷剂旁路以第二设定导通速度导通;
    在满足所述第一压力和所述第二压力中的较小值不大于所述第四防冻结压力的条件时,控制所述制冷剂旁路以第三设定导通速度导通;
    所述第三防冻结压力小于所述第一防冻结压力,所述第四防冻结压力小于所述第三防冻结压力,所述第三设定导通速度大于所述第二设定导通速度,所述第二设定导通速度大于所述第一设定导通速度。
  5. 根据权利要求1所述的空调器防冻结保护控制方法,其特征在于,所述在满足所述第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启,具体包括:
    在空调器上电运行后首次满足所述第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启,并持续运行第一设定时间;
    在所述辅助电加热装置的持续运行时间达到所述第一设定时间后,重新获取所述第三压力,根据已知的第二防冻结压力范围确定重新获取的所述第三压力所属的当前第二防冻结压力范围,根据已知的第二防冻结压力范围与辅助电加热装置的启停时间的对应关系确定与所述当前第二防冻结压力范围对应的当前启停时间,控制所述辅助电加热装置以所述当前启停时间运行。
  6. 根据权利要求5所述的空调器防冻结保护控制方法,其特征在于,所述第二防冻结压力范围与辅助电加热装置的启停时间的对应关系满足:所述第二防冻结压力范围中的防冻结压力值越大,启停时间中的开启时间越短和/或停止时间越长。
  7. 根据权利要求1至6中任一项所述的空调器防冻结保护控制方法,其特征在于,所述第一位置为蒸发器前半部分管路中的一条指定管路内的位置,所述第二位置为蒸发器后半部分管路中的一条指定管路内的位置。
  8. 根据权利要求1至6中任一项所述的空调器防冻结保护控制方法,其特征在于,所述控制所述第一位置和所述第二位置之间的制冷剂旁路导通,具体为:
    控制所述第一位置和所述第二位置之间的制冷剂旁路中的电磁阀开启,实现对所述制冷剂旁路的导通。
  9. 一种空调器防冻结保护控制装置,其特征在于,所述装置包括:
    第一压力获取及比较单元,用于获取蒸发器制冷剂管路内部第一位置处的制冷剂的第一压力,并与防冻结压力作比较;
    第二压力获取及比较单元,用于获取蒸发器制冷剂管路内部第二位置处的制冷剂的第二压力,并与防冻结压力作比较;
    第三压力获取及比较单元,用于获取蒸发器出口处的制冷剂的第三压力,并与防冻结压力作比较;
    制冷剂旁路处理单元,至少用于在满足所述第一压力和所述第二压力中的较小值小于第一防冻结压力的条件时,执行防冻结保护,控制所述第一位置和所述第二位置之间的制冷剂旁路导通,使得制冷剂经所述制冷剂旁路从高压侧流向低压侧;
    辅助电加热装置处理单元,至少用于在满足所述第三压力小于第二防冻结压力的条件时,执行防冻结保护,控制室内机中的辅助电加热装置开启。
  10. 一种空调器,其特征在于,所述空调器中设置有上述权利要求9所述的空调器防冻结保护控制装置。
PCT/CN2020/078492 2019-05-28 2020-03-10 空调器及其防冻结保护控制方法和控制装置 WO2020238318A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910452333.0A CN110260467B (zh) 2019-05-28 2019-05-28 空调器及其防冻结保护控制方法和控制装置
CN201910452333.0 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020238318A1 true WO2020238318A1 (zh) 2020-12-03

Family

ID=67915732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078492 WO2020238318A1 (zh) 2019-05-28 2020-03-10 空调器及其防冻结保护控制方法和控制装置

Country Status (2)

Country Link
CN (1) CN110260467B (zh)
WO (1) WO2020238318A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260467B (zh) * 2019-05-28 2021-09-21 青岛海尔空调电子有限公司 空调器及其防冻结保护控制方法和控制装置
CN111219818B (zh) * 2020-01-17 2021-09-03 珠海格力电器股份有限公司 空调系统、空调器和空调器的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800736A (zh) * 2005-11-25 2006-07-12 珠海格力电器股份有限公司 一种空调智能化霜的控制方法
CN204141789U (zh) * 2013-11-29 2015-02-04 长城汽车股份有限公司 一种汽车空调控制系统
CN104729033A (zh) * 2015-04-03 2015-06-24 深圳麦克维尔空调有限公司 空调机组的冷水机组的防冻方法和装置
CN104748306A (zh) * 2015-03-24 2015-07-01 广东美的暖通设备有限公司 空调系统中单元机组防冻方法及装置
US20180180317A1 (en) * 2014-11-12 2018-06-28 Lg Electronics Inc. Air conditioner and method of controlling the same
CN110260467A (zh) * 2019-05-28 2019-09-20 青岛海尔空调电子有限公司 空调器及其防冻结保护控制方法和控制装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1188466A1 (ru) * 1981-12-23 1985-10-30 Государственный Проектный Институт "Сантехпроект" Отопительно-вентил ционна установка
JP2680687B2 (ja) * 1989-06-19 1997-11-19 三洋電機株式会社 オープンショーケースの霜取制御方法
US5622057A (en) * 1995-08-30 1997-04-22 Carrier Corporation High latent refrigerant control circuit for air conditioning system
KR100544709B1 (ko) * 2003-12-16 2006-01-24 삼성전자주식회사 공기조화기 및 그 동결방지방법
JP2007040658A (ja) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd 空気調和装置
CN101526288B (zh) * 2009-04-20 2012-05-30 广东志高空调有限公司 一种空调器除霜装置
CN202613831U (zh) * 2012-04-09 2012-12-19 珠海格力电器股份有限公司 热泵式空气调节装置
JP2015117847A (ja) * 2013-12-17 2015-06-25 日立アプライアンス株式会社 空気調和装置
CN205783492U (zh) * 2016-06-29 2016-12-07 山东格瑞德集团有限公司 一种具有蒸发温度调整装置的水冷冷风机组
CN106403205A (zh) * 2016-11-29 2017-02-15 广东美的制冷设备有限公司 一种空调化霜系统及化霜控制方法
SE540735C2 (sv) * 2017-03-31 2018-10-23 Flaektgroup Sweden Ab Metod för att motverka uppbyggnad av frost på en värmeåtervinnare anordnad vid ett luftbehandlingsaggregat
CN107166643A (zh) * 2017-05-17 2017-09-15 青岛海尔空调器有限总公司 一种空调的控制方法及装置
CN108826584A (zh) * 2018-06-06 2018-11-16 青岛海尔空调器有限总公司 一种空调器的除霜控制方法、装置、存储介质
CN108775624B (zh) * 2018-06-28 2023-09-12 珠海格力电器股份有限公司 空调系统
CN109210698B (zh) * 2018-09-10 2020-11-03 青岛海尔空调器有限总公司 一种空调冻结保护的控制方法
CN109458701A (zh) * 2018-11-29 2019-03-12 合肥天鹅制冷科技有限公司 一种具有融霜功能的空调

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800736A (zh) * 2005-11-25 2006-07-12 珠海格力电器股份有限公司 一种空调智能化霜的控制方法
CN204141789U (zh) * 2013-11-29 2015-02-04 长城汽车股份有限公司 一种汽车空调控制系统
US20180180317A1 (en) * 2014-11-12 2018-06-28 Lg Electronics Inc. Air conditioner and method of controlling the same
CN104748306A (zh) * 2015-03-24 2015-07-01 广东美的暖通设备有限公司 空调系统中单元机组防冻方法及装置
CN104729033A (zh) * 2015-04-03 2015-06-24 深圳麦克维尔空调有限公司 空调机组的冷水机组的防冻方法和装置
CN110260467A (zh) * 2019-05-28 2019-09-20 青岛海尔空调电子有限公司 空调器及其防冻结保护控制方法和控制装置

Also Published As

Publication number Publication date
CN110260467B (zh) 2021-09-21
CN110260467A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN107131611B (zh) 空调器除霜控制方法
CN105627524B (zh) 空调器防冻结控制方法及空调器
CN107289599B (zh) 一种检测空调冷媒泄露量的装置和方法
CN107421177B (zh) 三过热度调节电子膨胀阀的空调及其控制方法
CN203454504U (zh) 智能除霜空调机组
CN106091235B (zh) 空调系统的控制方法及空调控制系统
CN103292432B (zh) 精确调控电子膨胀阀的方法、装置及精确控温空调
CN203533802U (zh) 空调系统
WO2018210119A1 (zh) 一种空调的控制方法及装置
CN104633836A (zh) 空调器除霜控制方法
CN104634009A (zh) 空调循环装置的控制方法
WO2020238318A1 (zh) 空调器及其防冻结保护控制方法和控制装置
CN105318491B (zh) 空调器的控制方法及装置
CN104729163A (zh) 空调系统及其化霜控制方法
WO2019158048A1 (zh) 空调器除霜控制方法
CN103940163A (zh) 除霜控制方法和除霜控制装置
CN111238071A (zh) 一种空调器及其低温制热方法
WO2018233457A1 (zh) 空调及其室外机除霜方法
WO2020019849A1 (zh) 空调器及其室外机除霜控制方法
CN108105942A (zh) 空调器及其除霜方法
WO2020233116A1 (zh) 用于空调器的除霜控制方法
CN103398520A (zh) 空调系统及其气液分离器的液位检测方法
CN104883005A (zh) 电机散热结构、空调器和电机散热方法
CN104633871A (zh) 空调系统的控制方法
CN110173821A (zh) 一种能够改善除霜效果的多联机系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814480

Country of ref document: EP

Kind code of ref document: A1