WO2018210119A1 - 一种空调的控制方法及装置 - Google Patents

一种空调的控制方法及装置 Download PDF

Info

Publication number
WO2018210119A1
WO2018210119A1 PCT/CN2018/085040 CN2018085040W WO2018210119A1 WO 2018210119 A1 WO2018210119 A1 WO 2018210119A1 CN 2018085040 W CN2018085040 W CN 2018085040W WO 2018210119 A1 WO2018210119 A1 WO 2018210119A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air conditioner
heat exchanger
temperature
compressor
Prior art date
Application number
PCT/CN2018/085040
Other languages
English (en)
French (fr)
Inventor
李海军
张强
杨青
王芳
赵峰
王彩平
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Priority to EP18801309.8A priority Critical patent/EP3620724A4/en
Priority to RU2019115926A priority patent/RU2722319C1/ru
Publication of WO2018210119A1 publication Critical patent/WO2018210119A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to a method and a device for controlling an air conditioner.
  • the indoor unit and the outdoor unit of the air conditioner often have freezing problems under different working conditions.
  • the air conditioner when the air conditioner is running in the cooling mode in summer, when the set cooling temperature and the actual ambient temperature outside the room are too low, and the internal fan speed is small, the inner coil temperature is too low, so that the indoor unit is indoors.
  • the heat exchanger may freeze freezing frost; or, when the air conditioner is running in the heating mode in winter, the temperature of the outer coil itself is lower when the set heating temperature and the actual ambient temperature outside the room are low. It will also be too low, causing the outdoor heat exchanger of the outdoor unit to freeze and freeze.
  • the freezing problem of the outdoor heat exchanger and the indoor heat exchanger will affect the normal heat exchange work of the heat exchanger and shorten the service life of the heat exchanger.
  • a freeze protection function is added to the air conditioner product, and the protection principle of the existing freeze protection function is mostly that the indoor heat exchanger or the indoor heat exchanger of the air conditioner freezes. Stop the operation of the compressor and restart the compressor after the freezing phenomenon disappears.
  • this method will cause frequent start and stop of the compressor, which not only consumes a lot of energy but also affects the service life of the press.
  • the invention provides a method and a device for controlling an air conditioner, aiming at solving the freezing problem of the air conditioner heat exchanger.
  • a method for controlling an air conditioner includes: determining a frosting condition of an indoor unit when an air conditioner is operating in a cooling mode; and controlling a blocking flow to the indoor when frosting of an indoor unit in a cooling mode The refrigerant circuit of the machine.
  • controlling the blocking of the refrigerant pipeline flowing to the indoor unit comprises: controlling to close the first solenoid valve on the refrigerant pipeline connected between the indoor heat exchanger connected to the indoor unit and the throttle valve.
  • control method further includes: acquiring a first refrigerant pressure of the first electromagnetic valve adjacent to the throttle valve; and controlling to open the first electromagnetic valve when the first refrigerant pressure is greater than or equal to the preset first refrigerant pressure threshold .
  • control method further includes: acquiring a first duration of the refrigerant pipeline block; controlling the conduction of the refrigerant pipeline when the first duration is greater than or equal to the preset first set duration, wherein the first set duration It is determined according to the frequency of the compressor of the air conditioner.
  • the first set duration is determined according to the frequency of the compressor of the air conditioner, including: acquiring a current frequency of the compressor of the air conditioner; determining a current frequency according to a correspondence between a preset frequency of the compressor and a first set duration Corresponding first set duration.
  • a method for controlling an air conditioner comprising: determining a frost condition of an outdoor unit when the air conditioner is in a heating mode; and controlling the resistance when the outdoor unit is frosting in the heating mode Shut off the refrigerant line to the outdoor unit.
  • controlling the blocking of the refrigerant circuit flowing to the outdoor unit comprises: controlling to close the second electromagnetic valve on the refrigerant line connected between the outdoor heat exchanger connected to the outdoor unit and the throttle valve.
  • control method further includes: acquiring a second refrigerant pressure of the second electromagnetic valve adjacent to the throttle valve side; and controlling to open the second electromagnetic valve when the refrigerant pressure is greater than or equal to the preset second refrigerant pressure threshold.
  • control method further includes: acquiring a second duration of the refrigerant pipeline blocking; and controlling the conduction of the refrigerant pipeline when the second duration is greater than or equal to the preset second set duration, wherein the second set duration It is determined according to the frequency of the compressor of the air conditioner.
  • the set duration is determined according to the frequency of the compressor of the air conditioner, comprising: acquiring a current frequency of the compressor of the air conditioner; determining, according to a correspondence between the preset frequency of the compressor and the second set duration, determining the current frequency The second set time.
  • a control apparatus for an air conditioner comprising: a determining unit configured to determine a frosting condition of the indoor unit when the air conditioner operates the cooling mode; and a control unit configured to be in the cooling mode When the lower indoor unit is frosted, the control blocks the refrigerant line flowing to the indoor unit.
  • a control device for an air conditioner comprising: a determining unit configured to determine a frosting condition of the outdoor unit when the air conditioner operates in a heating mode; and a control unit configured to When the outdoor unit is frosted in the hot mode, the control blocks the refrigerant line flowing to the outdoor unit.
  • the control method of the air conditioner of the present invention can stop the continuous input of the low-temperature refrigerant to the frosted heat exchanger by controlling the refrigerant line that blocks the flow to the frosted heat exchanger, thereby further avoiding the problem of frosting further, and
  • the heat exchanger can be naturally defrosted by the temperature of the environment in which the heat exchanger is located, so as to achieve the freezing protection of the heat exchanger of the air conditioner.
  • FIG. 1 is a first schematic structural view of an air conditioner of the present invention, according to an exemplary embodiment.
  • FIG. 2 is a second schematic structural view of an air conditioner of the present invention, according to an exemplary embodiment.
  • FIG. 3 is a flow chart 1 of a method of controlling an air conditioner of the present invention, according to an exemplary embodiment
  • FIG. 4 is a flow chart 2 of a method of controlling an air conditioner of the present invention, according to an exemplary embodiment.
  • relational terms such as first and second are used merely to distinguish one entity or operation from another entity or operation, and do not require or imply any actual relationship between the entities or operations or order.
  • the terms “comprises” or “comprising” or “comprising” or any other variations are intended to encompass a non-exclusive inclusion, such that a process, method, or device that includes a plurality of elements includes not only those elements but also other items not specifically listed. Elements, or elements that are inherent to such a process, method, or device. An element defined by the phrase “comprising a " does not exclude the presence of additional equivalent elements in the process, method or device including the element.
  • 1 and 2 respectively disclose schematic diagrams of air conditioning structures in different embodiments.
  • the air conditioner generally includes an indoor unit and an outdoor unit, and is specifically provided with functional components such as a compressor 3, a four-way valve, a throttle valve 4, an indoor heat exchanger 1, and an outdoor heat exchanger 2, and the compressor 3
  • the four-way valve, the throttle valve 4, the outdoor heat exchanger 2 and the indoor heat exchanger 1 are connected by a refrigerant pipe to form a refrigerant circulation circuit; the refrigerant flows through the flow path set by the refrigerant circulation circuit along different operation modes to realize the system.
  • Features such as heat and cooling.
  • the operation mode of the air conditioner includes a cooling mode and a heating mode, wherein the refrigerant flow set in the cooling mode operation flows to the high temperature refrigerant discharged from the compressor 3 and flows through the outdoor heat exchanger 2 to exchange heat with the outdoor environment.
  • the refrigerant flowing through the outdoor heat exchanger 2 releases heat to the outdoor environment, flowing through
  • the refrigerant of the indoor heat exchanger 1 absorbs heat from the indoor environment, and the circulating heat of the refrigerant in the refrigerant circulation circuit can continuously discharge the heat in the room to the outdoor environment, thereby achieving the purpose of cooling the indoor temperature.
  • the circulating flow in the refrigerant circulation loop can continuously release the outdoor heat to the indoor environment, thereby achieving the purpose of heating the indoor environment.
  • the present invention provides a control method for anti-freezing in a summer cooling condition.
  • FIG. 3 is a flow chart showing the control of the air conditioner of the present invention in a summer cooling condition in an embodiment.
  • the anti-freezing control method of the invention under the summer heating condition includes:
  • the frosting of the indoor unit occurs in the summer working condition, and the air conditioner is mostly operated in a cooling mode that reduces the indoor ambient temperature.
  • the indoor heat exchanger is filled with a large amount of low-temperature refrigerant, in the user.
  • the set cooling temperature is low and the actual ambient temperature outside the room is also low, the heat exchange between the refrigerant and the indoor environment is small, and the outer surface of the indoor heat exchanger and the inner coil temperature are also lower.
  • the temperature level therefore, the water vapor easily condenses into a frost layer on the surface of the indoor heat exchanger and on the inner coil. In this way, it is possible to determine whether or not the anti-freeze protection control is required by detecting the frost condition of the indoor unit.
  • the frosting state of the indoor unit can be determined by detecting the thickness of the frost layer condensed on the outer surface of the indoor unit or the inner coil, and the thickness of the frost layer condensed on the outer surface of the indoor unit or the inner coil is set. When the thickness is satisfied, the conditions for defrosting are satisfied.
  • the thickness of the frost layer set by the air conditioner is 10 mm
  • the sensor detects the thickness of the frost layer of the preset detection point on the inner coil. If the thickness of the frost layer at the detection point is greater than or equal to 10 mm, it can be determined that the inner coil of the indoor unit has been To achieve the conditions required for defrosting, the thickness of the ice layer has already affected the normal use of the air conditioner, so it is necessary to defros the indoor unit; if the thickness of the frost layer at the detection point is less than 10 mm, it can be determined that the inner coil of the indoor unit has not yet reached The conditions for defrosting, the thickness of the frost layer have little effect on the normal use of the air conditioner, and there is no need to defros the indoor unit.
  • the actual temperature of the outer surface of the indoor unit or the inner coil can be detected by a temperature sensor. And compared with the preset frosting temperature, if the actual detected outdoor surface of the indoor unit or the actual temperature of the inner coil is not greater than the preset frosting temperature, it may be determined that the chassis of the outdoor unit may be condensed by the frost layer. problem.
  • the frosting temperature of the indoor unit preset by the air conditioner is 0 ° C
  • the temperature sensor detects the current coil temperature of the indoor unit coil. If the current coil temperature is less than or equal to 0 ° C, it can be determined that the coil of the indoor unit has reached
  • the condensed frost layer may affect the normal use of the air conditioner, so the indoor unit needs to be defrosted; if the current coil temperature is greater than 0 ° C, it can be determined that the indoor environment water vapor has not reached the inner disc
  • the condition of frosting on the tube, the amount of frost that is not condensed or condensed on the inner coil of the indoor unit is small, and there is no need to defros the indoor unit.
  • the indoor unit When the indoor unit is frosted, it can be determined that the defrosting condition is satisfied, and the indoor unit is subjected to the freeze protection control of the defrosting, and the refrigerant line that flows to the indoor unit is controlled to stop the low-temperature refrigerant from being continuously input into the indoor unit. In this way, it is possible to prevent the temperature of the newly input low-temperature refrigerant from continuing to affect the outer surface of the indoor unit and the inner coil temperature, and to maintain the temperature of the indoor unit at a frosting temperature or even lower, thereby preventing the freezing problem from further aggravating.
  • the refrigerant pipeline of the lost indoor unit blocked in the embodiment is the refrigerant pipeline connected to the inlet end of the indoor heat exchanger, so that the input of the low-temperature refrigerant to the indoor heat exchanger can be directly stopped; Part of the low-temperature refrigerant that has been input into the indoor heat exchanger before blocking the refrigerant pipeline can flow out from the outlet end and continue to flow back into the compressor along the refrigerant circulation loop, thereby gradually reducing the low-temperature refrigerant that causes freezing problems in the indoor heat exchanger. At the same time, part of the low-temperature refrigerant that is temporarily stored in the indoor heat exchanger can continue to exchange heat with the indoor environment.
  • the indoor ambient temperature is always higher than the temperature of the refrigerant in the indoor heat exchanger, during the heat exchange process, The low temperature refrigerant absorbs the external environment heat and the temperature rises.
  • the outer surface of the indoor heat exchanger and the inner coil temperature also rise together.
  • the frost layer condensed on the outer surface and the inner coil will gradually melt into water, so that the anti-freeze protection of the indoor unit can be achieved.
  • the inlet end of the indoor heat exchanger is in turn connected to the throttle valve and the outdoor heat exchanger through the refrigerant line, and therefore, when the throttle valve is closed, between the indoor heat exchanger and the outdoor heat exchanger
  • a first electromagnetic valve 51 is separately disposed between the refrigerant inlet end of the indoor heat exchanger 1 and the throttle valve 4, and can be used to control the indoor heat exchanger 1 and the throttling.
  • the refrigerant pipeline between the indoor heat exchanger and the throttle valve is in an on state, and the refrigerant can flow into the indoor heat exchanger along the refrigerant pipeline; and the first solenoid valve When it is in the closed state, the refrigerant pipeline between the indoor heat exchanger and the throttle valve is in an open state, and the refrigerant cannot continue to flow into the indoor heat exchanger along the refrigerant pipeline.
  • another implementation manner of controlling the blocking of the refrigerant pipeline flowing to the indoor unit in step S302 is to control the closing of the first electromagnetic valve, and also to cut off the conveying path of the refrigerant to the indoor heat exchanger, thereby realizing the heat exchange to the room. The purpose of the anti-freeze protection.
  • the compressor is in an open state, and the refrigerant still moves along the refrigerant circulation loop under the driving force of the compressor, because the refrigerant circulation loop is in the cooling mode.
  • the single-stage feed is carried out. Therefore, after the refrigerant line flowing to the indoor unit is blocked in step S302, the refrigerant gradually accumulates on the refrigerant input side of the refrigerant line blocking position, causing the refrigerant pressure at the side position to gradually increase, for example, in the figure.
  • the side of the adjacent valve of the solenoid valve is the refrigerant input side, and the refrigerant discharged from the compressor outlet is blocked by the four-way valve and the outdoor heat exchanger.
  • the input side of the valve causes the pressure of the side refrigerant to increase.
  • the refrigerant pipe may be broken and the solenoid valve may be damaged. Therefore, the time for blocking the refrigerant pipe in step S302 cannot be too long, and Re-press the refrigerant pipeline for pressure relief operation in time to avoid excessive local hydraulic pressure.
  • the control re-conducting the refrigerant pipeline is determined according to the refrigerant pressure on the refrigerant input side of the refrigerant pipeline blocking position.
  • the pressure relief control process for the air-conditioning structure shown in FIG. 1 includes: acquiring the solenoid valve a first refrigerant pressure adjacent to one side of the throttle valve; controlling to open the first electromagnetic valve when the first refrigerant pressure is greater than or equal to a preset first refrigerant pressure threshold.
  • the first refrigerant pressure threshold is a safety critical pressure value of the refrigerant pipeline.
  • the refrigerant pipeline When the refrigerant pressure in the refrigerant pipeline is higher than the first refrigerant pressure threshold, the refrigerant pipeline may be broken and the electromagnetic valve may be damaged by the high hydraulic pressure of the refrigerant.
  • the refrigerant pressure in the refrigerant pipeline is lower than the second refrigerant pressure threshold, the refrigerant pipeline is broken and the electromagnetic valve is less likely to be damaged by the high hydraulic pressure of the refrigerant. Therefore, the control method of the present invention is to place the pressure position on the refrigerant input side of the solenoid valve below the first refrigerant pressure threshold to ensure the safety and stability of the air conditioner during the anti-freeze protection process.
  • the obtained first refrigerant pressure is the refrigerant pressure of the throttle valve adjacent to the outdoor heat exchanger side, and the side pressure is the refrigerant input.
  • the refrigerant pressure on the side therefore, when the refrigerant pressure on the side of the throttle valve adjacent to the outdoor heat exchanger is greater than or equal to the preset first refrigerant pressure threshold, the throttle valve can be controlled to open the pressure relief to ensure the throttle valve Not damaged by high hydraulic pressure of the refrigerant.
  • another control method of the present invention is: obtaining the refrigerant.
  • the compressor is operated at a set frequency, and the refrigerant discharged into the refrigerant circulation line per unit time is also quantitative, so that the amount of refrigerant accumulated on the refrigerant input side of the first solenoid valve or the throttle valve and the refrigerant
  • the blocking time of the pipeline is a linear relationship proportionally. That is, the longer the blocking time, the more the amount of refrigerant accumulated on the input side of the refrigerant, and the greater the pressure of the refrigerant. Therefore, the time during which the refrigerant accumulated on the refrigerant input side of the solenoid valve or the throttle valve reaches the safe critical pressure value is also constant.
  • the duration of blocking the refrigerant line does not exceed the set value
  • the refrigerant pressure on the refrigerant input side is Below the safe critical pressure value
  • the pressure damage to the first solenoid valve or the throttle valve and the refrigerant line is less affected
  • the duration of blocking the refrigerant line exceeds the set value
  • the refrigerant on the refrigerant input side The pressure is above the safety critical pressure, which has a great influence on the pressure damage of the first solenoid valve or the throttle valve and the refrigerant line. Therefore, the duration of the single-blocking of the refrigerant pipeline by the control method of the present invention cannot exceed the preset first set duration, wherein the first set duration is the aforementioned fixed time.
  • the higher the frequency of the compressor the more the amount of refrigerant discharged per unit time, and the shorter the time when the refrigerant pressure on the refrigerant input side of the first solenoid valve or the throttle valve reaches the safe critical pressure value. Therefore, the first set duration is determined according to the frequency of the compressor of the air conditioner, and the two are inversely proportional to each other, that is, the higher the frequency of the compressor, the shorter the first set duration, specifically, the present invention is based on The process of determining the frequency of the compressor of the air conditioner for the first set duration includes: obtaining the current frequency of the compressor of the air conditioner; determining the corresponding number of the current frequency according to the correspondence between the preset frequency of the compressor and the first set duration A set time.
  • the correspondence between the frequency of the preset compressor and the first set duration is determined by the data collected by the experiment before the air conditioner leaves the factory, for example, for the air conditioner of a certain model, the safety refrigerant of the first solenoid valve
  • the pressure threshold is 600kpa
  • the operating frequency range of the air conditioner compressor is 50hz-100hz.
  • the operating frequency of the compressor can be divided into five gears, including the first frequency gear (50hz-60hz) and the second frequency gear (60hz).
  • the compressor at each frequency range mentioned above
  • the total time period from the start of blocking the refrigerant line to the critical value of the safe refrigerant pressure, and the measured total length is the first corresponding to each frequency position.
  • the set duration is as long as the first set duration corresponding to the first frequency gear is 5 min, the first set duration corresponding to the second frequency gear is 4 min, and the like. In this way, by obtaining the current compressor frequency of the air conditioner operation and matching with the preset correspondence, the first set duration corresponding to the current compressor frequency can be determined.
  • control method of the present invention further comprises: detecting an indoor heat exchanger outer surface temperature or an inner coil temperature of the indoor unit within a first set time period, and comparing with a preset freezing critical temperature; When the temperature of the outer surface of the indoor heat exchanger or the temperature of the inner coil detected in the first set time period is greater than or equal to the freezing critical temperature, the refrigerant pipeline flowing into the indoor heat exchanger can be controlled to be turned on.
  • the freezing critical temperature is the temperature of the outer surface of the indoor heat exchanger or the inner coil temperature when the indoor unit is frosted and frozen, that is, when the temperature of the outer surface of the indoor heat exchanger or the temperature of the inner coil is equal to or less than the freezing critical temperature.
  • the temperature of the outer surface of the indoor heat exchanger or the temperature of the inner coil gradually increases, if During the first set time period, the temperature is raised to above the freezing critical temperature, and the refrigerant pipeline flowing into the indoor heat exchanger can be turned on in advance, so that the process time of the anti-freeze control can be shortened to restore the normal operation of the air conditioner.
  • the freezing critical temperature is a critical frosting temperature under current operating conditions.
  • the refrigerant piping needs to be turned on for pressure relief, and after setting the interval length, again according to the foregoing embodiment.
  • the method blocks the refrigerant pipe flowing into the indoor heat exchanger to continue the anti-freeze protection control of the indoor unit.
  • the embodiment In order to prevent malfunction of the temperature sensor detecting the temperature of the outer surface of the indoor heat exchanger of the indoor unit or the temperature of the inner coil, in the embodiment, if the temperature of the outer surface of the indoor heat exchanger detected in several consecutive control processes If the temperature of the inner coil still does not reach the freezing critical temperature, the control will issue a sensor failure alarm, and the temperature sensor needs to be repaired.
  • FIG. 4 is a flow chart showing the control of the air conditioner of the present invention under heating conditions in winter in an embodiment.
  • the invention also provides a control method for anti-freezing in winter heating conditions, comprising:
  • the frosting of the outdoor unit occurs in winter conditions, and the air conditioner is mostly operated in a heating mode that increases the outdoor ambient temperature.
  • the outdoor heat exchanger is filled with a large amount of low-temperature refrigerant.
  • the heating temperature set by the user is low, and the actual ambient temperature outside the room is also low, the heat exchange between the refrigerant and the outdoor environment is small, and the outer surface of the outdoor heat exchanger and the temperature of the outer coil are also at The lower the temperature level, therefore, the water vapor easily condenses into a frost layer on the surface of the outdoor heat exchanger and on the outer coil. In this way, it is possible to determine whether or not the anti-freeze protection control is required by detecting the frost condition of the outdoor unit.
  • the frosting state of the outdoor unit can be determined by detecting the thickness of the frost layer condensed on the outer surface of the outdoor unit or the outer coil, and the thickness of the frost layer condensed on the outer surface of the outdoor unit or the outer coil is set. When the thickness is satisfied, the conditions for defrosting are satisfied.
  • the thickness of the frost layer set by the air conditioner is 10 mm
  • the sensor detects the thickness of the frost layer of the preset detection point on the outer coil. If the thickness of the frost layer at the detection point is greater than or equal to 10 mm, it can be determined that the outer coil of the outdoor unit has been To achieve the conditions required for defrosting, the thickness of the ice layer has already affected the normal use of the air conditioner, so it is necessary to defros the outdoor unit; if the thickness of the frost layer at the detection point is less than 10 mm, it can be determined that the outer coil of the outdoor unit has not yet reached The conditions for defrosting, the thickness of the frost layer have little effect on the normal use of the air conditioner, and there is no need to defros the outdoor unit.
  • the frosting state of the chassis of the outdoor unit can be determined by detecting the outer surface of the outdoor unit or the temperature of the outer coil. Specifically, the actual temperature of the outer surface of the outdoor unit or the outer coil can be detected by a temperature sensor. And compared with the preset frosting temperature, if the actual detected outdoor surface of the outdoor unit or the actual temperature of the outer coil is not greater than the preset frosting temperature, it may be determined that the chassis of the outdoor unit may be condensed by the frost layer. problem.
  • the outdoor unit of the air conditioner presets a frosting temperature of 0 ° C, and the temperature sensor detects the current coil temperature of the outdoor unit coil. If the current coil temperature is less than or equal to 0 ° C, it can be determined that the coil of the outdoor unit has reached The conditions required for defrosting, the condensed frost layer may affect the normal use of the air conditioner, so the outdoor unit needs to be defrosted; if the current coil temperature is greater than 0 ° C, it can be determined that the outdoor environment has not reached the outer coil Under the condition of frosting, the amount of frost that is not condensed or condensed on the outer coil of the outdoor unit is small, and there is no need to defros the outdoor unit.
  • the outdoor unit When the outdoor unit is frosted, it can be determined that the defrosting condition is satisfied, and the outdoor unit is subjected to defrosting protection control, and the refrigerant line that flows to the outdoor unit is controlled to stop the low-temperature refrigerant from being continuously input into the outdoor unit. In this way, it is possible to prevent the temperature of the newly input low-temperature refrigerant from continuing to affect the outer surface of the outdoor unit and the outer coil temperature, and to maintain the temperature of the outdoor unit at a frosting temperature or even lower, thereby preventing the freezing problem from further aggravating.
  • the refrigerant pipeline of the outdoor unit that is blocked in the embodiment is the refrigerant pipeline connected to the inlet end of the outdoor heat exchanger, so that the input of the low-temperature refrigerant to the outdoor heat exchanger can be directly stopped; Part of the low-temperature refrigerant that has been input to the outdoor heat exchanger before blocking the refrigerant pipe can flow out from the outlet end and continue to flow back into the compressor along the refrigerant circulation circuit, thereby gradually reducing the low-temperature refrigerant that causes freezing problems to the outdoor heat exchanger. At the same time, some of the low-temperature refrigerants that remain in the outdoor heat exchanger can continue to exchange heat with the outdoor environment.
  • the outdoor ambient temperature is higher than the temperature of the refrigerant in the outdoor heat exchanger, during the heat exchange, the low temperature
  • the refrigerant absorbs the external environment heat and the temperature rises.
  • the outer surface of the outdoor heat exchanger and the temperature of the outer coil also rise together.
  • the frost layer condensed on the surface and the outer coil will gradually melt into water, so that the anti-freeze protection of the outdoor unit can be achieved.
  • the inlet end of the outdoor heat exchanger is sequentially connected to the throttle valve and the indoor heat exchanger through the refrigerant line, and therefore, when the throttle valve is closed, between the outdoor heat exchanger and the indoor heat exchanger
  • a second electromagnetic valve 52 is separately provided between the refrigerant inlet end of the outdoor heat exchanger 2 and the throttle valve 4, which can be used to control the outdoor heat exchanger 2 and the throttling.
  • the second electromagnetic valve when the second electromagnetic valve is in an open state, the refrigerant pipeline between the outdoor heat exchanger and the throttle valve is in an on state, the refrigerant can flow into the outdoor heat exchanger along the refrigerant pipeline; and the second solenoid valve When it is in the closed state, the refrigerant pipeline between the outdoor heat exchanger and the throttle valve is in an open state, and the refrigerant cannot continue to flow into the outdoor heat exchanger along the refrigerant pipeline.
  • another way of controlling the blocking of the refrigerant pipeline flowing to the outdoor unit in step S402 is to control the closing of the second solenoid valve, which can also cut off the conveying path of the refrigerant to the outdoor heat exchanger, thereby achieving outdoor heat exchange.
  • the purpose of the anti-freeze protection is to control the closing of the second solenoid valve, which can also cut off the conveying path of the refrigerant to the outdoor heat exchanger, thereby achieving outdoor heat exchange.
  • the compressor In the control method of the refrigerant pipeline in the process of the on-off control of the refrigerant pipeline, the compressor is in an open state, and the refrigerant will still move along the refrigerant circulation loop under the driving force of the compressor, because the refrigerant circulation loop is in the heating mode
  • the refrigerant gradually accumulates on the refrigerant input side of the refrigerant line blocking position, causing the refrigerant pressure at the side position to gradually increase, for example, In the embodiment of Fig.
  • the side of the solenoid valve adjacent to the throttle valve is the aforementioned refrigerant input side, and the refrigerant discharged from the compressor exhaust port is blocked by the four-way valve and the indoor heat exchanger.
  • the input side of the solenoid valve causes the pressure of the side refrigerant to increase.
  • the refrigerant line may be broken and the solenoid valve may be damaged. Therefore, the time for blocking the refrigerant line in step S402 cannot be too long. Re-press the refrigerant pipeline for pressure relief operation in time to avoid excessive local hydraulic pressure.
  • the control re-conducting the refrigerant pipeline is determined according to the refrigerant pressure on the refrigerant input side of the refrigerant pipeline blocking position.
  • the pressure relief control process for the air-conditioning structure shown in FIG. 2 includes: acquiring the second electromagnetic The second refrigerant pressure on the side of the valve adjacent to the throttle valve; controlling to open the second solenoid valve when the second refrigerant pressure is greater than or equal to the preset second refrigerant pressure threshold.
  • the second refrigerant pressure threshold is a safety critical pressure value of the refrigerant pipeline.
  • the refrigerant pressure in the refrigerant pipeline is higher than the second refrigerant pressure threshold, there may be a problem that the refrigerant pipeline bursts and the solenoid valve is damaged by the high hydraulic pressure of the refrigerant.
  • the refrigerant pressure in the refrigerant pipeline is lower than the second refrigerant pressure threshold, the refrigerant pipeline is broken and the electromagnetic valve is less likely to be damaged by the high hydraulic pressure of the refrigerant. Therefore, the control method of the present invention is to place the pressure position on the refrigerant input side of the solenoid valve below the second refrigerant pressure threshold to ensure the safety and stability of the air conditioner during the anti-freeze protection process.
  • the second refrigerant pressure obtained is the refrigerant pressure of the throttle valve adjacent to the indoor heat exchanger side, and the side pressure is the refrigerant input.
  • the refrigerant pressure on the side therefore, when the refrigerant pressure on the side of the indoor heat exchanger adjacent to the throttle valve is greater than or equal to the preset second refrigerant pressure threshold, the throttle valve can be controlled to open the pressure relief to ensure the throttle valve Not damaged by high hydraulic pressure of the refrigerant.
  • another control method of the present invention is: obtaining the refrigerant.
  • the compressor is operated at a set frequency, and the refrigerant discharged into the refrigerant circulation line per unit time is also quantitative, so that the amount of refrigerant accumulated on the refrigerant input side of the second solenoid valve or the throttle valve and the refrigerant
  • the blocking time of the pipeline is a linear relationship proportionally. That is, the longer the blocking time, the more the amount of refrigerant accumulated on the input side of the refrigerant, and the greater the pressure of the refrigerant. Therefore, the time during which the refrigerant accumulated on the refrigerant input side of the solenoid valve or the throttle valve reaches the safe critical pressure value is also constant.
  • the duration of blocking the refrigerant line does not exceed the set value
  • the refrigerant pressure on the refrigerant input side is Below the safe critical pressure value
  • the pressure damage to the second solenoid valve or the throttle valve and the refrigerant line is less affected
  • the duration of blocking the refrigerant line exceeds the set value
  • the refrigerant on the refrigerant input side The pressure is above the safety critical pressure, which has a great influence on the pressure damage of the second solenoid valve or the throttle valve and the refrigerant line. Therefore, the duration of the single-blocking of the refrigerant pipeline by the control method of the present invention cannot exceed the preset second set duration, wherein the second set duration is the aforementioned fixed time.
  • the higher the frequency of the compressor the more the amount of refrigerant discharged per unit time, and the shorter the time when the refrigerant pressure on the refrigerant input side of the second solenoid valve or the throttle valve reaches the safe critical pressure value. Therefore, the second set duration is determined according to the frequency of the compressor of the air conditioner, and the two are inversely proportional to each other, that is, the higher the frequency of the compressor, the shorter the second set duration.
  • the present invention is based on The process of determining the frequency of the compressor of the air conditioner for determining the second set duration includes: obtaining the current frequency of the compressor of the air conditioner; determining the corresponding number of the current frequency according to the correspondence between the preset frequency of the compressor and the second set duration Second, set the length of time.
  • the correspondence between the frequency of the preset compressor and the second set duration is determined by the data collected by the experiment before the air conditioner leaves the factory, for example, for the air conditioner of a certain model, the safety refrigerant of the second solenoid valve
  • the pressure threshold is 600kpa
  • the operating frequency range of the air conditioner compressor is 50hz-100hz.
  • the operating frequency of the compressor can be divided into five gears, including the first frequency gear (50hz-60hz) and the second frequency gear (60hz).
  • control method of the present invention further comprises: detecting an outdoor heat exchanger outer surface temperature or an outer coil temperature of the outdoor unit for a second set time period, and comparing with a preset freezing critical temperature; When the outdoor heat exchanger outer surface temperature or the outer coil temperature detected in the second set time period is greater than or equal to the freezing critical temperature, the refrigerant pipeline flowing into the outdoor heat exchanger can be controlled to be turned on.
  • the freezing critical temperature is the outer surface temperature or the outer coil temperature of the outdoor heat exchanger when the outdoor unit is frosted and frozen, that is, when the outer surface temperature of the outdoor heat exchanger or the outer coil temperature is equal to or less than the freezing critical temperature,
  • the temperature of the outer surface of the outdoor heat exchanger or the temperature of the outer coil gradually increases, if During the second set time period, the temperature is raised to above the freezing critical temperature, and the refrigerant pipeline flowing into the outdoor heat exchanger can be turned on in advance, so that the process time of the anti-freeze control can be shortened to restore the normal operation of the air conditioner.
  • the freezing critical temperature is a critical frosting temperature under current operating conditions.
  • the refrigerant piping needs to be turned on for pressure relief, and after setting the interval length, again according to the foregoing embodiment.
  • the method blocks the refrigerant line flowing into the outdoor heat exchanger to continue the anti-freeze protection control of the outdoor unit.
  • the embodiment In order to prevent malfunction of the temperature sensor detecting the outdoor heat exchanger outer surface temperature or the outer coil temperature of the outdoor unit, in the embodiment, if the outdoor heat exchanger outer surface temperature detected in several consecutive control processes If the temperature of the outer coil still does not reach the freezing critical temperature, it is necessary to control the sensor failure alarm to enable the user to timely repair the temperature sensor.
  • the invention also provides a control device for an air conditioner, which can be used for protection control of anti-freezing of an indoor unit in summer working conditions.
  • the control device comprises: a determining unit for determining an indoor unit when the air-conditioning operating cooling mode is Frosting condition; a control unit for controlling the blocking of the refrigerant line flowing to the indoor unit when the indoor unit is frosted in the cooling mode.
  • control unit controls the flow of blocking the refrigerant line flowing to the indoor unit, including: controlling to close the refrigerant line between the indoor heat exchanger connected to the indoor unit and the throttle valve.
  • the first solenoid valve The first solenoid valve.
  • the controller further includes an acquisition unit, configured to acquire a first refrigerant pressure of the first solenoid valve adjacent to the throttle side; and correspondingly, the control unit is configured to use the first refrigerant pressure to be greater than or equal to When the first refrigerant pressure threshold is set, the control opens the first solenoid valve.
  • the controller further includes an acquiring unit, configured to acquire a first duration of the refrigerant pipeline blocking; and correspondingly, the control unit is configured to use the first duration to be greater than or equal to the preset first setting During the duration, the control conducts the refrigerant line, wherein the first set time period is determined according to the frequency of the compressor of the air conditioner.
  • the determining unit is configured to determine a first set duration according to a frequency of the compressor of the air conditioner. Specifically, the acquiring unit acquires a current frequency of the compressor of the air conditioner; and the determining unit is configured according to the preset frequency of the compressor and the first The correspondence between the durations is set, and the first set duration corresponding to the current frequency is determined.
  • the invention also provides a control device for an air conditioner, which can be used for protection control of anti-freezing of an outdoor unit in winter working conditions.
  • the control device comprises: a determining unit for determining an outdoor unit when the air conditioner operates in a heating mode The frosting condition; the control unit is configured to control the blocking of the refrigerant circuit flowing to the outdoor unit when the outdoor unit is frosted in the heating mode.
  • control unit controls the flow of blocking the refrigerant line flowing to the outdoor unit, including: controlling to close the refrigerant line between the outdoor heat exchanger connected to the outdoor unit and the throttle valve The second solenoid valve.
  • the controller further includes an acquisition unit, configured to acquire a second refrigerant pressure of the second solenoid valve adjacent to the throttle side; and correspondingly, the control unit is configured to use the second refrigerant pressure to be greater than or equal to When the second refrigerant pressure threshold is set, the control opens the second solenoid valve.
  • the controller further includes an acquiring unit, configured to acquire a second duration of the refrigerant pipeline blocking; correspondingly, the control unit is configured to use the second duration to be greater than or equal to the preset second setting During the duration, the control conducts the refrigerant line, wherein the second set duration is determined according to the frequency of the compressor of the air conditioner.
  • the determining unit is configured to determine a second set duration according to a frequency of the compressor of the air conditioner. Specifically, the acquiring unit acquires a current frequency of the compressor of the air conditioner; and the determining unit is configured according to the preset frequency of the compressor and the second The correspondence between the durations is set, and the second set duration corresponding to the current frequency is determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调的控制方法,包括:确定空调运行制冷模式时的室内机的结霜状况(S301);在制冷模式下的室内机结霜时,控制阻断流向室内机的冷媒管路(S302)。该控制方法通过控制阻断流向出现结霜问题的换热器的冷媒管路,可以停止向已结霜的换热器继续输入低温冷媒,进而可以避免结霜问题的进一步加重,并可以利用换热器所处环境的温度对换热器进行自然化霜融冰,以实现对空调器的换热器的冻结保护作用。还公开了一种空调的控制装置。

Description

一种空调的控制方法及装置
本申请基于申请号为201710348657.0、申请日为2017.05.17的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调技术领域,特别是涉及一种空调的控制方法及装置。
背景技术
现有的空调产品在运行过程中,空调的室内机和室外机在不同工况条件下往往会出现冻结问题。例如,空调在夏季运行制冷模式时,在设定的制冷温度及室内外的实际环境温度过低,并且内风机转速较小的情况下,会导致内盘管温度过低,使得室内机的室内换热器会出现结冰结霜的冻结现象;或者,空调在冬季运行制热模式时,在设定的制热温度及室内外的实际环境温度较低的情况下,外盘管自身的温度也会过低,导致室外机的室外换热器也出现结冰结霜的冻结现象。室外换热器和室内换热器的冻结问题会影响换热器的正常热交换工作,且会缩短换热器的使用寿命。
因此,现有技术中为了减少冻结问题的出现,在空调产品中增加了冻结保护功能,现有的冻结保护功能的保护原理大多是在空调的室内换热器或室内换热器出现冻结现象是停止压缩机的运行,待冻结现象消失后再重新启动压缩机,但是这种方式会造成压缩机的频繁启停,不仅耗能严重而且影响压机使用寿命。
发明内容
本发明提供了一种空调的控制方法及装置,旨在解决空调换热器的冻结问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明的第一个方面,提供了一种空调的控制方法,包括:确定空调运行制冷模式时的室内机的结霜状况;在制冷模式下的室内机结霜时,控制阻断流向室内机的冷媒管路。
进一步的,控制阻断流向室内机的冷媒管路包括:控制关闭连接于室内机的室内换热器与节流阀之间的冷媒管路上的第一电磁阀。
进一步的,控制方法还包括:获取第一电磁阀的邻近节流阀一侧的第一冷媒压力;在第一冷媒压力大于或等于预置的第一冷媒压力阈值时,控制开启第一电磁阀。
进一步的,控制方法还包括:获取冷媒管路阻断的第一时长;在第一时长大于或等于预置的第一设定时长时,控制导通冷媒管路,其中,第一设定时长根据空调的压缩机的频率确定。
进一步的,第一设定时长根据空调的压缩机的频率确定,包括:获取空调的压缩机的当前频率;根据预置的压缩机的频率与第一设定时长的对应关系,确定当前频率所对应的第一设定时长。
根据本发明的第二个方面,还提供了一种空调的控制方法,包括:确定空调运行制热模式时的室外机的结霜状况;在制热模式下的室外机结霜时,控制阻断流向室外机的冷媒管路。
进一步的,控制阻断流向室外机的冷媒管路包括:控制关闭连接于室外机的室外换热器与节流阀之间的冷媒管路上的第二电磁阀。
进一步的,控制方法还包括:获取第二电磁阀的邻近节流阀一侧的第二冷媒压力;在冷媒压力大于或等于预置的第二冷媒压力阈值时,控制开启第二电磁阀。
进一步的,控制方法还包括:获取冷媒管路阻断的第二时长;在第二时长大于或等于预置的第二设定时长时,控制导通冷媒管路,其中,第二设定时长根据所述空调的压缩机的频率确定。
进一步的,设定时长根据空调的压缩机的频率确定,包括:获取空调的压缩机的当前频率;根据预置的压缩机的频率与第二设定时长的对应关系,确定当前频率所对应的第二设定时长。
根据本发明的第三个方面,还提供了一种空调的控制装置,控制装置包括:确定单元,用于确定空调运行制冷模式时的室内机的结霜状况;控制单元,用于在制冷模式下的室内机结霜时,控制阻断流向室内机的冷媒管路。
根据本发明的第四个方面,还提供了一种空调的控制装置,控制装置包括:确定单元,用于确定空调运行制热模式时的室外机的结霜状况;控制单元,用于在制热模式下的室外机结霜时,控制阻断流向室外机的冷媒管路。
本发明空调的控制方法通过控制阻断流向出现结霜问题的换热器的冷媒管路,可 以停止向已结霜的换热器继续输入低温冷媒,进而可以避免结霜问题的进一步加重,并可以利用换热器所处环境的温度对换热器进行自然化霜融冰,以实现对空调器的换热器的冻结保护作用。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例所示出的本发明空调的结构示意图一。
图2是根据一示例性实施例所示出的本发明空调的结构示意图二。
图3是根据一示例性实施例所示出的本发明空调的控制方法的流程图一;
图4是根据一示例性实施例所示出的本发明空调的控制方法的流程图二。
其中,1、室内换热器;2、室外换热器;3、压缩机;4、节流阀;51、第一电磁阀;52、第二电磁阀。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。其他实施方案可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法或者设备所固有的要素。在没有更多限制的情况下,由语句“包括 一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的方法、产品等而言,由于其与实施例公开的方法部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
图1和图2分别公开了不同实施例中的空调结构示意图。
在实施例中,空调一般包括包括室内机和室外机,且具体设置有压缩机3、四通阀、节流阀4、室内换热器1和室外换热器2等功能部件,压缩机3、四通阀、节流阀4、室外换热器2和室内换热器1通过冷媒管路连接构成冷媒循环回路;冷媒通过冷媒循环回路沿不同运行模式所设定的流向流动,实现其制热和制冷等功能。
在实施例中,空调的运行模式包括制冷模式和制热模式,其中,制冷模式运行时所设定的冷媒流向指压缩机3排出的高温冷媒先流经室外换热器2与室外环境换热,之后在流入室内换热器1与室内环境进行换热,最后冷媒回流至压缩机3重新进行压缩操作;这一过程中,流经室外换热器2的冷媒向室外环境放出热量,流经室内换热器1的冷媒从室内环境中吸收热量,通过冷媒在冷媒循环回路中的循环流动,可以持续的将室内的热量排出到室外环境中,从而可以达到降低室内环境温度的制冷目的。
而在制热模式运行时所设定的冷媒流向指压缩机3排出的高温冷媒先流经室内换热器1与室外环境换热,之后在流入室外换热器2与室内环境进行换热,最后冷媒回流至压缩机3重新进行压缩操作;这一过程中,流经室内换热器1的冷媒向室内环境放出热量,流经室外换热器2的冷媒从室外环境中吸收热量,通过冷媒在冷媒循环回路中的循环流动,可以持续的将室外的热量释放到室内环境中,从而可以达到提高室内环境温度的制热目的。
因此,在空调以制冷模式时,输入室内换热器1的冷媒温度较低,室内换热器1的外表面及内盘管受低温冷媒的温度影响,室内换热器1外表面和内盘管的温度也较低,在这种情况下,室内环境中的水汽会在室内换热器1外表面和内盘管上凝结成霜或凝结成冰层,不仅会阻隔室内换热器1内流动的冷媒与外部环境之间的换热,且容易造成内盘管冻坏损伤。为了防止空调在运行制冷模式时室内机出现冻结损伤的问题,本发明提供了一种在夏季制冷工况下的防冻结的控制方法。
图3是一实施例中本发明空调在夏季制冷工况下的控制流程图。
本发明在夏季制热工况下的防冻结的控制方法,包括:
S301、确定空调运行制冷模式时的室内机的结霜状况。
在实施例中,一般的,室内机的结霜是在夏季工况发生,空调多是以降低室内环境温度的制冷模式运行,此时,室内换热器内充填有大量的低温冷媒,在用户设定的制冷温度较低,且室内外的实际环境温度也较低的情况下,冷媒与室内环境的换热量较少,室内换热器的外表面及内盘管温度也会处于较低的温度水平,因此,水汽容易在室内换热器的表面和内盘管上凝结成冰霜层。这样,可以通过检测室内机的结霜状况判断是否需要进行防冻结保护控制。
在实施例中,室内机的结霜状态可以通过传感器检测室内机外表面或内盘管上所凝结的冰霜层厚度确定,在室内机外表面或内盘管上凝结的冰霜层厚度达到设定的厚度时,则满足需要进行化霜的条件。
例如,空调设定的冰霜层厚度为10mm,传感器检测内盘管上预设的检测点的冰霜层厚度,若检测点的冰霜层厚度大于或等于10mm,则可以确定室内机的内盘管已经达到需要化霜的条件,冰霜层厚度已经会影响到空调的正常使用,因此需要对室内机进行化霜;若检测点的冰霜层厚度小于10mm,则可以确定室内机的内盘管还未达到需要化霜的条件,冰霜层厚度对空调的正常使用影响较小,还无需对室内机进行化霜。
在另一实施例中,还可以通过检测室内机外表面或者内盘管温度判断室内机的底盘的结霜状态,具体的,可以通过温度传感器检测室内机外表面或者内盘管的实际温度,并与预置的结霜温度进行比较,若当前检测到的室内机外表面或者内盘管的实际温度不大于预置的结霜温度时,则可判定室外机的底盘可能出现冰霜层凝结的问题。
例如,空调预置的室内机的结霜温度为0℃,温度传感器检测室内机盘管的当前盘管温度,若当前盘管温度小于或等于0℃,则可以确定室内机的盘管已经达到需要化霜的条件,凝结的冰霜层可能会影响到空调的正常使用,因此需要对室内机进行化霜;若当前盘管温度大于0℃,则可以确定室内环境的水汽还未达到在内盘管上凝霜的条件,室内机的内盘管上未凝结冰霜或者凝结的冰霜量较少,还无需对室内机进行化霜。
S302、在制冷模式下的室内机结霜时,控制阻断流向室内机的冷媒管路。
在室内机结霜时,则可判定满足进行化霜的条件,需要对室内机进行化霜的冻结保护控制,控制阻断流向室内机的冷媒管路,以停止低温冷媒继续输入室内机中,这样,可以避免新输入的低温冷媒的温度继续影响室内机的外表面和内盘管温度、将室内机的温度维持在结霜温度甚至更低的温度,防止冻结问题进一步加重。
在实施例中所阻断的流失室内机的冷媒管路为室内换热器的入口端所连接一侧的冷媒管路,这样,可以直接停止低温冷媒向室内换热器的输入;同时,在阻断冷媒管路之前的已输入室内换热器的部分低温冷媒可以从出口端流出并继续沿冷媒循环回路流回至压缩机内,从而可以逐渐减少对室内换热器造成冻结问题的低温冷媒量,同时,暂留在室内换热器部分低温冷媒可以继续与室内环境进行热交换,由于室内环境温度始终是高于室内换热器内的冷媒温度,因此,在热交换内的过程中,低温冷媒吸收外界环境热量而温度升高,室内换热器的外表面和内盘管温度也一并升高,在室内换热器的外表面温度和内盘管温度高于结霜温度时,外表面和内盘管上所凝结的冰霜层会逐渐融化成水,这样,就可以实现对室内机的防冻结保护。
在实施例中,室内换热器的入口端是通过冷媒管路依次与节流阀和室外换热器连通,因此,在节流阀关闭时,室内换热器与室外换热器之间的冷媒流路是处于阻断状态,室外换热器不能继续按照制冷模式所限定的冷媒流向向室内换热器输入冷媒。因此,步骤S302中控制阻断流向室内机的冷媒管路的其中一种实现方式就是关闭节流阀,以切断冷媒向室内换热器的输送路径,进而实现对室内换热器的防冻结保护。
而在图1实施例所示的空调结构中,室内换热器1的冷媒入口端与节流阀4之间还单独设置有第一电磁阀51,可用于控制室内换热器1与节流阀4之间的冷媒管路的导通或阻断。具体的,在第一电磁阀处于开启状态时,室内换热器与节流阀之间的冷媒管路处于导通状态,冷媒可以沿冷媒管路流入室内换热器;而在第一电磁阀处于关闭状态时,室内换热器与节流阀之间的冷媒管路处于开启状态,冷媒不能继续沿冷媒管路流入室内换热器。这样,步骤S302中控制阻断流向室内机的冷媒管路的另外一种实现方式就是控制关闭第一电磁阀,同样可以起到切断冷媒向室内换热器的输送路径,进而实现对室内换热器的防冻结保护的目的。
本发明控制方法在冷媒管路的通断控制过程中,压缩机是处于开启状态,冷媒在压缩机的驱动作用力下仍会沿冷媒循环回路移动,由于冷媒循环回路在制冷模式时是以一单一流向输送,因此在步骤S302阻断流向室内机的冷媒管路后,冷媒会逐渐积聚在冷媒管路阻断位置的冷媒输入侧,造成该侧位置的冷媒压力逐渐增大,例如,在图1的实施例中,在电磁阀关闭后,电磁阀的邻近节流阀一侧为前述的冷媒输入侧,压缩机排气口排出的冷媒经由四通阀和室外换热器后被阻隔在电磁阀的输入侧,使得该侧冷媒压力增大。在电磁阀的输入侧积聚的冷媒过多、冷媒液压过大时,可能会造成冷媒管路胀破、电磁阀损坏的问题,因此,步骤S302中阻断冷媒管路的时间不能 过长,需要适时的重新导通冷媒管路进行泄压操作,以避免局部冷媒液压过大。
实施例中,控制重新导通冷媒管路是根据冷媒管路阻断位置的冷媒输入侧的冷媒压力确定,具体的,对于图1所示的空调结构的泄压控制过程包括:获取电磁阀的邻近节流阀一侧的第一冷媒压力;在第一冷媒压力大于或等于预置的第一冷媒压力阈值时,控制开启第一电磁阀。
第一冷媒压力阈值为冷媒管路的安全临界压力值,在冷媒管路中的冷媒压力高于第一冷媒压力阈值时,可能会出现冷媒管路胀破、电磁阀因冷媒高液压损坏的问题;而在冷媒管路中的冷媒压力低于第二冷媒压力阈值时,则出现冷媒管路胀破、电磁阀因冷媒高液压损坏的可能性较小。因此,本发明控制方法即是将电磁阀的冷媒输入侧的压力位置在第一冷媒压力阈值之下,以保证空调在防冻结保护流程过程中的安全性和稳定性。
对于前述的直接通过节流阀实现冷媒管路的通断控制的空调,所获取的第一冷媒压力则为节流阀的邻近室外换热器一侧的冷媒压力,该侧压力即为冷媒输入侧的冷媒压力,因此,在节流阀的邻近室外换热器一侧的冷媒压力大于或等于预置的第一冷媒压力阈值时,可控制开启节流阀进行泄压,以保证节流阀不被冷媒高液压损坏。
在本发明的另一实施例中,除采用前述实施例中根据冷媒输入侧的实时冷媒压力判断是否导通冷媒管路进行泄压的方式外,本发明的另一种控制方法为:获取冷媒管路阻断的第一时长;在第一时长大于或等于预置的第一设定时长时,控制导通冷媒管路,其中,第一设定时长根据空调的压缩机的频率确定。
压缩机是以设定的频率运行,其在单位时间内向冷媒循环管路中排入的冷媒也是定量的,这样,在第一电磁阀或节流阀的冷媒输入侧所积聚的冷媒量与冷媒管路的阻断时间是呈正比的线性关系,即,阻断的时间越长,冷媒输入侧积聚的冷媒量越多,冷媒压力也越大。因此,电磁阀或节流阀的冷媒输入侧所积聚的冷媒达到安全临界压力值的时间也是定值,在阻断冷媒管路的时长不超过该定值时间时,冷媒输入侧的冷媒压力是处于安全临界压力值之下,对第一电磁阀或节流阀、以及冷媒管路的压力损坏影响较小;而在阻断冷媒管路的时长超过该定值时间时,冷媒输入侧的冷媒压力是在安全临界压力之上,对第一电磁阀或节流阀、以及冷媒管路的压力损坏影响较大。因此,本发明控制方法单次阻断冷媒管路的时长不能超过预置的第一设定时长,其中,第一设定时长即为前述的定值时间。
在实施例中,压缩机的频率越高,则单位时间内排出的冷媒量也越多,则第一电 磁阀或节流阀的冷媒输入侧的冷媒压力达到安全临界压力值的时间也越短,因此,第一设定时长根据空调的压缩机的频率确定,且两者呈反比的线性关系,即压缩机的频率越高,则第一设定时长就越短,具体的,本发明根据空调的压缩机的频率确定第一设定时长的流程包括:获取空调的压缩机的当前频率;根据预置的压缩机的频率与第一设定时长的对应关系,确定当前频率所对应的第一设定时长。
在实施例中,预置的压缩机的频率与第一设定时长的对应关系为空调出厂前根据实验所采集数据确定,例如,对于某一机型的空调产品,第一电磁阀的安全冷媒压力临界值为600kpa,空调压缩机的运行频率范围为50hz-100hz,可将,压缩机的运行频率划分为五档,包括第一频率档位(50hz-60hz)、第二频率档位(60hz-70hz)、第三频率档位(70hz-80hz)、第四频率档位(80hz-90hz)、第五频率档位(90hz-100hz),并分别检测压缩机在以前述的每一频率档位的最大频率运行时,第一电磁阀从开始阻断冷媒管路至达到安全冷媒压力临界值的总时长,并将所测得的总时长作为与每一频率档位成对应关系的第一设定时长,如第一频率档位所对应的第一设定时长为5min,第二频率档位所对应的第一设定时长为4min,等等。这样,通过获取空调运行的当前压缩机频率,再与预置的对应关系相匹配,即可确定与当前压缩机频率相对应的第一设定时长。
在实施例中,本发明的控制方法还包括:在第一设定时长内检测室内机的室内换热器外表面温度或内盘管温度,并与预置的冻结临界温度进行比较;如果在第一设定时长内所检测到的室内换热器外表面温度或内盘管温度大于或等于冻结临界温度,则可以控制导通流入室内换热器的冷媒管路。
冻结临界温度为室内机出现凝霜结冰时的室内换热器外表面温度或内盘管温度,即在室内换热器外表面温度或内盘管温度等于或小于冻结临界温度的情况下,室内机会出现冻结现象;而当在室内换热器外表面温度或内盘管温度大于冻结临界温度的情况下,室内机的冻结现象会逐渐消除。因此,在本发明空调在出现结霜的冻结现象时,室内换热器外表面温度或内盘管温度是小于或等于冻结临界温度,这样,本发明控制方法在阻断流入室内换热器的冷媒管路之后的第一设定时长内,由于受室内环境的温度影响且没有新的低温冷媒补充入室内换热器,室内换热器外表面温度或内盘管温度逐渐升高,如果在第一设定时长内提前回温至冻结临界温度之上,则可以提前导通流入室内换热器的冷媒管路,从而可以缩短防冻结控制的流程时间,以恢复空调的正常运行。
可选的,冻结临界温度为当前工况条件下的结霜临界温度。
另外,如果在单次阻断冷媒管路并持续第一设定时长后仍未达到冻结临界温度,则需要导通冷媒管路进行泄压,并在设定间隔时长后,再次按照前述实施例的方法阻断流入室内换热器的冷媒管路,以继续对室内机进行防冻结保护控制。
为防止检测室内机的室内换热器外表面温度或内盘管温度的温度传感器故障而造成误动作,在实施例中,如果连续几次控制流程中所检测到的室内换热器外表面温度或内盘管温度仍未达到冻结临界温度之上,则控制发出传感器故障报警,需要对温度传感器进行检修。
图4是一实施例中本发明空调在冬季制热工况下的控制流程图。
本发明还提供了一种在冬季制热工况下的防冻结的控制方法,包括:
S401、确定空调运行制热模式时的室外机的结霜状况。
在实施例中,一般的,室外机的结霜是在冬季工况发生,空调多是以提高室外环境温度的制热模式运行,此时,室外换热器内充填有大量的低温冷媒,在用户设定的制热温度较低,且室内外的实际环境温度也较低的情况下,冷媒与室外环境的换热量较少,室外换热器的外表面及外盘管温度也会处于较低的温度水平,因此,水汽容易在室外换热器的表面和外盘管上凝结成冰霜层。这样,可以通过检测室外机的结霜状况判断是否需要进行防冻结保护控制。
在实施例中,室外机的结霜状态可以通过传感器检测室外机外表面或外盘管上所凝结的冰霜层厚度确定,在室外机外表面或外盘管上凝结的冰霜层厚度达到设定的厚度时,则满足需要进行化霜的条件。
例如,空调设定的冰霜层厚度为10mm,传感器检测外盘管上预设的检测点的冰霜层厚度,若检测点的冰霜层厚度大于或等于10mm,则可以确定室外机的外盘管已经达到需要化霜的条件,冰霜层厚度已经会影响到空调的正常使用,因此需要对室外机进行化霜;若检测点的冰霜层厚度小于10mm,则可以确定室外机的外盘管还未达到需要化霜的条件,冰霜层厚度对空调的正常使用影响较小,还无需对室外机进行化霜。
在另一实施例中,还可以通过检测室外机外表面或者外盘管温度判断室外机的底盘的结霜状态,具体的,可以通过温度传感器检测室外机外表面或者外盘管的实际温度,并与预置的结霜温度进行比较,若当前检测到的室外机外表面或者外盘管的实际温度不大于预置的结霜温度时,则可判定室外机的底盘可能出现冰霜层凝结的问题。
例如,空调预置的室外机的结霜温度为0℃,温度传感器检测室外机盘管的当前 盘管温度,若当前盘管温度小于或等于0℃,则可以确定室外机的盘管已经达到需要化霜的条件,凝结的冰霜层可能会影响到空调的正常使用,因此需要对室外机进行化霜;若当前盘管温度大于0℃,则可以确定室外环境的水汽还未达到在外盘管上凝霜的条件,室外机的外盘管上未凝结冰霜或者凝结的冰霜量较少,还无需对室外机进行化霜。
S402、在制热模式下的室外机结霜时,控制阻断流向室外机的冷媒管路。
在室外机结霜时,则可判定满足进行化霜的条件,需要对室外机进行化霜的冻结保护控制,控制阻断流向室外机的冷媒管路,以停止低温冷媒继续输入室外机中,这样,可以避免新输入的低温冷媒的温度继续影响室外机的外表面和外盘管温度、将室外机的温度维持在结霜温度甚至更低的温度,防止冻结问题进一步加重。
在实施例中所阻断的流失室外机的冷媒管路为室外换热器的入口端所连接一侧的冷媒管路,这样,可以直接停止低温冷媒向室外换热器的输入;同时,在阻断冷媒管路之前的已输入室外换热器的部分低温冷媒可以从出口端流出并继续沿冷媒循环回路流回至压缩机内,从而可以逐渐减少对室外换热器造成冻结问题的低温冷媒量,同时,暂留在室外换热器部分低温冷媒可以继续与室外环境进行热交换,由于室外环境温度是高于室外换热器内的冷媒温度,因此,在热交换内的过程中,低温冷媒吸收外界环境热量而温度升高,室外换热器的外表面和外盘管温度也一并升高,在室外换热器的外表面温度和外盘管温度高于结霜温度时,外表面和外盘管上所凝结的冰霜层会逐渐融化成水,这样,就可以实现对室外机的防冻结保护。
在实施例中,室外换热器的入口端是通过冷媒管路依次与节流阀和室内换热器连通,因此,在节流阀关闭时,室外换热器与室内换热器之间的冷媒流路是处于阻断状态,室内换热器不能继续按照制热模式所限定的冷媒流向向室外换热器输入冷媒。因此,步骤S402中控制阻断流向室外机的冷媒管路的其中一种实现方式就是关闭节流阀,以切断冷媒向室外换热器的输送路径,进而实现对室外换热器的防冻结保护。
而在图2实施例所示的空调结构中,室外换热器2的冷媒入口端与节流阀4之间还单独设置有第二电磁阀52,可用于控制室外换热器2与节流阀4之间的冷媒管路的导通或阻断。具体的,在第二电磁阀处于开启状态时,室外换热器与节流阀之间的冷媒管路处于导通状态,冷媒可以沿冷媒管路流入室外换热器;而在第二电磁阀处于关闭状态时,室外换热器与节流阀之间的冷媒管路处于开启状态,冷媒不能继续沿冷媒管路流入室外换热器。这样,步骤S402中控制阻断流向室外机的冷媒管路的另外一 种实现方式就是控制关闭第二电磁阀,同样可以起到切断冷媒向室外换热器的输送路径,进而实现对室外换热器的防冻结保护的目的。
本发明控制方法在冷媒管路的通断控制过程中,压缩机是处于开启状态,冷媒在压缩机的驱动作用力下仍会沿冷媒循环回路移动,由于冷媒循环回路在制热模式时是以一单一流向输送,因此在步骤S402阻断流向室外机的冷媒管路后,冷媒会逐渐积聚在冷媒管路阻断位置的冷媒输入侧,造成该侧位置的冷媒压力逐渐增大,例如,在图2的实施例中,在电磁阀关闭后,电磁阀的邻近节流阀一侧为前述的冷媒输入侧,压缩机排气口排出的冷媒经由四通阀和室内换热器后被阻隔在电磁阀的输入侧,使得该侧冷媒压力增大。在电磁阀的输入侧积聚的冷媒过多、冷媒液压过大时,可能会造成冷媒管路胀破、电磁阀损坏的问题,因此,步骤S402中阻断冷媒管路的时间不能过长,需要适时的重新导通冷媒管路进行泄压操作,以避免局部冷媒液压过大。
实施例中,控制重新导通冷媒管路是根据冷媒管路阻断位置的冷媒输入侧的冷媒压力确定,具体的,对于图2所示的空调结构的泄压控制过程包括:获取第二电磁阀的邻近节流阀一侧的第二冷媒压力;在第二冷媒压力大于或等于预置的第二冷媒压力阈值时,控制开启第二电磁阀。
第二冷媒压力阈值为冷媒管路的安全临界压力值,在冷媒管路中的冷媒压力高于第二冷媒压力阈值时,可能会出现冷媒管路胀破、电磁阀因冷媒高液压损坏的问题;而在冷媒管路中的冷媒压力低于第二冷媒压力阈值时,则出现冷媒管路胀破、电磁阀因冷媒高液压损坏的可能性较小。因此,本发明控制方法即是将电磁阀的冷媒输入侧的压力位置在第二冷媒压力阈值之下,以保证空调在防冻结保护流程过程中的安全性和稳定性。
对于前述的直接通过节流阀实现冷媒管路的通断控制的空调,所获取的第二冷媒压力则为节流阀的邻近室内换热器一侧的冷媒压力,该侧压力即为冷媒输入侧的冷媒压力,因此,在节流阀的邻近室内换热器一侧的冷媒压力大于或等于预置的第二冷媒压力阈值时,可控制开启节流阀进行泄压,以保证节流阀不被冷媒高液压损坏。
在本发明的另一实施例中,除采用前述实施例中根据冷媒输入侧的实时冷媒压力判断是否导通冷媒管路进行泄压的方式外,本发明的另一种控制方法为:获取冷媒管路阻断的第二时长;在第二时长大于或等于预置的第二设定时长时,控制导通冷媒管路,其中,第二设定时长根据空调的压缩机的频率确定。
压缩机是以设定的频率运行,其在单位时间内向冷媒循环管路中排入的冷媒也是 定量的,这样,在第二电磁阀或节流阀的冷媒输入侧所积聚的冷媒量与冷媒管路的阻断时间是呈正比的线性关系,即,阻断的时间越长,冷媒输入侧积聚的冷媒量越多,冷媒压力也越大。因此,电磁阀或节流阀的冷媒输入侧所积聚的冷媒达到安全临界压力值的时间也是定值,在阻断冷媒管路的时长不超过该定值时间时,冷媒输入侧的冷媒压力是处于安全临界压力值之下,对第二电磁阀或节流阀、以及冷媒管路的压力损坏影响较小;而在阻断冷媒管路的时长超过该定值时间时,冷媒输入侧的冷媒压力是在安全临界压力之上,对第二电磁阀或节流阀、以及冷媒管路的压力损坏影响较大。因此,本发明控制方法单次阻断冷媒管路的时长不能超过预置的第二设定时长,其中,第二设定时长即为前述的定值时间。
在实施例中,压缩机的频率越高,则单位时间内排出的冷媒量也越多,则第二电磁阀或节流阀的冷媒输入侧的冷媒压力达到安全临界压力值的时间也越短,因此,第二设定时长根据空调的压缩机的频率确定,且两者呈反比的线性关系,即压缩机的频率越高,则第二设定时长就越短,具体的,本发明根据空调的压缩机的频率确定第二设定时长的流程包括:获取空调的压缩机的当前频率;根据预置的压缩机的频率与第二设定时长的对应关系,确定当前频率所对应的第二设定时长。
在实施例中,预置的压缩机的频率与第二设定时长的对应关系为空调出厂前根据实验所采集数据确定,例如,对于某一机型的空调产品,第二电磁阀的安全冷媒压力临界值为600kpa,空调压缩机的运行频率范围为50hz-100hz,可将,压缩机的运行频率划分为五档,包括第一频率档位(50hz-60hz)、第二频率档位(60hz-70hz)、第三频率档位(70hz-80hz)、第四频率档位(80hz-90hz)、第五频率档位(90hz-100hz),并分别检测压缩机在以前述的每一频率档位的最大频率运行时,第二电磁阀从开始阻断冷媒管路至达到安全冷媒压力临界值的总时长,并将所测得的总时长作为与每一频率档位成对应关系的第二设定时长,如第一频率档位所对应的第二设定时长为5min,第二频率档位所对应的第二设定时长为4min,等等。这样,通过获取空调运行的当前压缩机频率,再与预置的对应关系相匹配,即可确定与当前压缩机频率相对应的第二设定时长。
在实施例中,本发明的控制方法还包括:在第二设定时长内检测室外机的室外换热器外表面温度或外盘管温度,并与预置的冻结临界温度进行比较;如果在第二设定时长内所检测到的室外换热器外表面温度或外盘管温度大于或等于冻结临界温度,则可以控制导通流入室外换热器的冷媒管路。
冻结临界温度为室外机出现凝霜结冰时的室外换热器外表面温度或外盘管温度,即在室外换热器外表面温度或外盘管温度等于或小于冻结临界温度的情况下,室外机会出现冻结现象;而当在室外换热器外表面温度或外盘管温度大于冻结临界温度的情况下,室外机的冻结现象会逐渐消除。因此,在本发明空调在出现结霜的冻结现象时,室外换热器外表面温度或外盘管温度是小于或等于冻结临界温度,这样,本发明控制方法在阻断流入室外换热器的冷媒管路之后的第二设定时长内,由于受室内环境的温度影响且没有新的低温冷媒补充入室外换热器,室外换热器外表面温度或外盘管温度逐渐升高,如果在第二设定时长内提前回温至冻结临界温度之上,则可以提前导通流入室外换热器的冷媒管路,从而可以缩短防冻结控制的流程时间,以恢复空调的正常运行。
可选的,冻结临界温度为当前工况条件下的结霜临界温度。
另外,如果在单次阻断冷媒管路并持续第二设定时长后仍未达到冻结临界温度,则需要导通冷媒管路进行泄压,并在设定间隔时长后,再次按照前述实施例的方法阻断流入室外换热器的冷媒管路,以继续对室外机进行防冻结保护控制。
为防止检测室外机的室外换热器外表面温度或外盘管温度的温度传感器故障而造成误动作,在实施例中,如果连续几次控制流程中所检测到的室外换热器外表面温度或外盘管温度仍未达到冻结临界温度之上,则需要控制发出传感器故障报警,以使用户及时对温度传感器进行检修处理。
本发明还提供了一种空调的控制装置,可用于在夏季工况对室内机进行防冻结的保护控制,具体的,控制装置包括:确定单元,用于确定空调运行制冷模式时的室内机的结霜状况;控制单元,用于在制冷模式下的室内机结霜时,控制阻断流向室内机的冷媒管路。
对于图1所示的实施例中的空调结构,控制单元控制阻断流向室内机的冷媒管路的流程包括:控制关闭连接于室内机的室内换热器与节流阀之间的冷媒管路上的第一电磁阀。
在实施例中,控制器还包括获取单元,获取单元用于获取第一电磁阀的邻近节流阀一侧的第一冷媒压力;相应的,控制单元用于在第一冷媒压力大于或等于预置的第一冷媒压力阈值时,控制开启第一电磁阀。
在另一实施例中,控制器还包括获取单元,获取单元用于获取冷媒管路阻断的第一时长;相应的,控制单元用于在第一时长大于或等于预置的第一设定时长时,控制 导通冷媒管路,其中,第一设定时长根据空调的压缩机的频率确定。
在实施例中,确定单元用于根据空调的压缩机的频率确定第一设定时长,具体的,获取单元获取空调的压缩机的当前频率;确定单元根据预置的压缩机的频率与第一设定时长的对应关系,确定当前频率所对应的第一设定时长。
本发明还提供了一种空调的控制装置,可用于在冬季工况对室外机进行防冻结的保护控制,具体的,控制装置包括:确定单元,用于确定空调运行制热模式时的室外机的结霜状况;控制单元,用于在制热模式下的室外机结霜时,控制阻断流向室外机的冷媒管路。
对于图2所示的实施例中的空调结构,控制单元控制阻断流向室外机的冷媒管路的流程包括:控制关闭连接于室外机的室外换热器与节流阀之间的冷媒管路上的第二电磁阀。
在实施例中,控制器还包括获取单元,获取单元用于获取第二电磁阀的邻近节流阀一侧的第二冷媒压力;相应的,控制单元用于在第二冷媒压力大于或等于预置的第二冷媒压力阈值时,控制开启第二电磁阀。
在另一实施例中,控制器还包括获取单元,获取单元用于获取冷媒管路阻断的第二时长;相应的,控制单元用于在第二时长大于或等于预置的第二设定时长时,控制导通冷媒管路,其中,第二设定时长根据空调的压缩机的频率确定。
在实施例中,确定单元用于根据空调的压缩机的频率确定第二设定时长,具体的,获取单元获取空调的压缩机的当前频率;确定单元根据预置的压缩机的频率与第二设定时长的对应关系,确定当前频率所对应的第二设定时长。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (12)

  1. 一种空调的控制方法,其特征在于,包括:
    确定所述空调运行制冷模式时的室内机的结霜状况;
    在制冷模式下的所述室内机结霜时,控制阻断流向所述室内机的冷媒管路。
  2. 根据权利要求1所述的控制方法,所述控制阻断流向所述室内机的冷媒管路包括:
    控制关闭连接于所述室内机的室内换热器与节流阀之间的冷媒管路上的第一电磁阀。
  3. 根据权利要求2所述的控制方法,其特征在于,所述控制方法还包括:
    获取所述第一电磁阀的邻近所述节流阀一侧的第一冷媒压力;
    在所述第一冷媒压力大于或等于预置的第一冷媒压力阈值时,控制开启所述第一电磁阀。
  4. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    获取所述冷媒管路阻断的第一时长;
    在所述第一时长大于或等于预置的第一设定时长时,控制导通所述冷媒管路,其中,所述第一设定时长根据所述空调的压缩机的频率确定。
  5. 根据权利要求4所述的控制方法,其特征在于,所述第一设定时长根据所述空调的压缩机的频率确定,包括:
    获取所述空调的压缩机的当前频率;
    根据预置的压缩机的频率与第一设定时长的对应关系,确定所述当前频率所对应的第一设定时长。
  6. 一种空调的控制方法,其特征在于,包括:
    确定所述空调运行制热模式时的室外机的结霜状况;
    在制热模式下的所述室外机结霜时,控制阻断流向所述室外机的冷媒管路。
  7. 根据权利要求6所述的控制方法,所述控制阻断流向所述室外机的冷媒管路包括:
    控制关闭连接于所述室外机的室外换热器与节流阀之间的冷媒管路上的第二电磁阀。
  8. 根据权利要求7所述的控制方法,其特征在于,所述控制方法还包括:
    获取所述第二电磁阀的邻近所述节流阀一侧的第二冷媒压力;
    在所述冷媒压力大于或等于预置的第二冷媒压力阈值时,控制开启所述第二电磁阀。
  9. 根据权利要求6所述的控制方法,其特征在于,所述控制方法还包括:
    获取所述冷媒管路阻断的第二时长;
    在所述第二时长大于或等于预置的第二设定时长时,控制导通所述冷媒管路,其中,所述第二设定时长根据所述空调的压缩机的频率确定。
  10. 根据权利要求9所述的控制方法,其特征在于,所述第二设定时长根据所述空调的压缩机的频率确定,包括:
    获取所述空调的压缩机的当前频率;
    根据预置的压缩机的频率与第二设定时长的对应关系,确定所述当前频率所对应的第二设定时长。
  11. 一种空调的控制装置,其特征在于,所述控制装置包括:
    确定单元,用于确定所述空调运行制冷模式时的室内机的结霜状况;
    控制单元,用于在制冷模式下的所述室内机结霜时,控制阻断流向所述室内机的冷媒管路。
  12. 一种空调的控制装置,其特征在于,所述控制装置包括:
    确定单元,用于确定所述空调运行制热模式时的室外机的结霜状况;
    控制单元,用于在制热模式下的所述室外机结霜时,控制阻断流向所述室外机的冷媒管路。
PCT/CN2018/085040 2017-05-17 2018-04-28 一种空调的控制方法及装置 WO2018210119A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18801309.8A EP3620724A4 (en) 2017-05-17 2018-04-28 AIR CONDITIONER CONTROL PROCESS AND DEVICE
RU2019115926A RU2722319C1 (ru) 2017-05-17 2018-04-28 Способ и устройство управления кондиционером

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710348657.0A CN107166643A (zh) 2017-05-17 2017-05-17 一种空调的控制方法及装置
CN201710348657.0 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018210119A1 true WO2018210119A1 (zh) 2018-11-22

Family

ID=59816480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085040 WO2018210119A1 (zh) 2017-05-17 2018-04-28 一种空调的控制方法及装置

Country Status (4)

Country Link
EP (1) EP3620724A4 (zh)
CN (1) CN107166643A (zh)
RU (1) RU2722319C1 (zh)
WO (1) WO2018210119A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932399A (zh) * 2020-07-13 2022-01-14 广东美的暖通设备有限公司 防冻控制方法、装置、冷热水机及计算机存储介质
CN114811826A (zh) * 2022-04-02 2022-07-29 珠海格力电器股份有限公司 一种空调系统的控制方法、装置、空调系统和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107166643A (zh) * 2017-05-17 2017-09-15 青岛海尔空调器有限总公司 一种空调的控制方法及装置
CN109611964A (zh) * 2018-11-12 2019-04-12 江苏中科睿赛污染控制工程有限公司 除霜防冻新风净化机
CN110260467B (zh) * 2019-05-28 2021-09-21 青岛海尔空调电子有限公司 空调器及其防冻结保护控制方法和控制装置
CN112524748B (zh) * 2020-12-09 2022-03-15 珠海格力电器股份有限公司 空调器运行控制方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096915A1 (en) * 2008-01-30 2009-08-06 Carrier Corporation Refrigerant system with reheat refrigerant circuit
CN101523131A (zh) * 2006-11-13 2009-09-02 大金工业株式会社 热交换系统
WO2011010506A1 (ja) * 2009-07-22 2011-01-27 シャープ株式会社 空気調和機
CN104596032A (zh) * 2014-12-31 2015-05-06 广东美的制冷设备有限公司 空调器及其除霜控制方法
CN107166643A (zh) * 2017-05-17 2017-09-15 青岛海尔空调器有限总公司 一种空调的控制方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532705B (zh) * 2009-04-21 2011-03-16 海信(山东)空调有限公司 一种冷暖型变频空调器的除霜方法
US10520233B2 (en) * 2015-01-13 2019-12-31 Mitsubishi Electric Corporation Air-conditioning apparatus for a plurality of parallel outdoor units
CN105570988B (zh) * 2015-12-31 2018-12-11 珠海格力电器股份有限公司 空调器及其控制方法
CN106152413B (zh) * 2016-07-27 2019-02-05 青岛海尔空调器有限总公司 空调内外机清洗方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523131A (zh) * 2006-11-13 2009-09-02 大金工业株式会社 热交换系统
WO2009096915A1 (en) * 2008-01-30 2009-08-06 Carrier Corporation Refrigerant system with reheat refrigerant circuit
WO2011010506A1 (ja) * 2009-07-22 2011-01-27 シャープ株式会社 空気調和機
CN104596032A (zh) * 2014-12-31 2015-05-06 广东美的制冷设备有限公司 空调器及其除霜控制方法
CN107166643A (zh) * 2017-05-17 2017-09-15 青岛海尔空调器有限总公司 一种空调的控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3620724A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932399A (zh) * 2020-07-13 2022-01-14 广东美的暖通设备有限公司 防冻控制方法、装置、冷热水机及计算机存储介质
CN113932399B (zh) * 2020-07-13 2023-07-07 广东美的暖通设备有限公司 防冻控制方法、装置、冷热水机及计算机存储介质
CN114811826A (zh) * 2022-04-02 2022-07-29 珠海格力电器股份有限公司 一种空调系统的控制方法、装置、空调系统和存储介质

Also Published As

Publication number Publication date
EP3620724A4 (en) 2020-12-02
RU2722319C1 (ru) 2020-05-29
EP3620724A1 (en) 2020-03-11
CN107166643A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
WO2018210119A1 (zh) 一种空调的控制方法及装置
CN105627524B (zh) 空调器防冻结控制方法及空调器
RU2672995C1 (ru) Система и способ автономного и бесперебойного размораживания
CN111351248B (zh) 一种空调系统及控制方法
EP3734177B1 (en) Control method for air conditioner
CN102141334B (zh) 制冷设备翅片结霜检测装置及其应用的自动化霜装置
CN109869954B (zh) 空气源热泵热水器及其除霜方法
CN104633836A (zh) 空调器除霜控制方法
CN103363600A (zh) 热泵式空气调节装置
JP2012207803A (ja) 空気調和機の制御方法
CN110207278B (zh) 空调器和空调器的控制方法
CN104729163A (zh) 空调系统及其化霜控制方法
JP2008224135A5 (zh)
CN111189178B (zh) 一种空调及其防冻结的控制方法
CN202511516U (zh) 热泵式空气调节装置
CN102331121A (zh) 一种空调器及其控制方法
CN110260467B (zh) 空调器及其防冻结保护控制方法和控制装置
CN103123173B (zh) 热泵热水器的控制方法
CN202511517U (zh) 热泵式空气调节装置
CN111189193B (zh) 一种空调及其防冻结的控制方法
CN111189179B (zh) 一种空调及其防冻结的控制方法
CN111664556A (zh) 热泵空调器的油温加热带控制方法、装置和热泵空调器
CN110470038A (zh) 一种单元式空调器开机异常的判断及保护方法
CN113864925B (zh) 空调器
CN111189180B (zh) 一种空调及其防冻结的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018801309

Country of ref document: EP

Effective date: 20190624