WO2021227878A1 - 轨道巡检机器人用底盘及轨道巡检机器人 - Google Patents

轨道巡检机器人用底盘及轨道巡检机器人 Download PDF

Info

Publication number
WO2021227878A1
WO2021227878A1 PCT/CN2021/090652 CN2021090652W WO2021227878A1 WO 2021227878 A1 WO2021227878 A1 WO 2021227878A1 CN 2021090652 W CN2021090652 W CN 2021090652W WO 2021227878 A1 WO2021227878 A1 WO 2021227878A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
inspection robot
wheel
active
chassis
Prior art date
Application number
PCT/CN2021/090652
Other languages
English (en)
French (fr)
Inventor
王辉
姚秀军
桂晨光
Original Assignee
京东数科海益信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东数科海益信息科技有限公司 filed Critical 京东数科海益信息科技有限公司
Publication of WO2021227878A1 publication Critical patent/WO2021227878A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way

Definitions

  • the present disclosure generally relates to the technical field of track inspection, and more specifically to a chassis for a track inspection robot and a track inspection robot.
  • Track inspection is an important part of ensuring the safe operation of rail transit. Due to the high operating density of rail locomotives, short time intervals and high passenger density, the track wear is more serious, especially when the gauge changes, which are prone to various hidden dangers in long-term operation. Therefore, the detection of subway and urban rail tracks has also become the top priority of the rail transportation safety link.
  • the current method of detecting gauge is: after the end of the night operation, the inspector will manually check the track with the gauge ruler along the extension direction of the track to obtain the gauge of the track along the road. When the gauge value changes, it will be judged. This point is a point to be improved, but due to the manual detection method, the degree of automation is poor, the detection efficiency is low, and manpower and material resources are wasted.
  • the present disclosure relates to a chassis for a track inspection robot, which includes:
  • At least one cross beam there is at least one cross beam, at least one of the cross beams is vertically arranged between two rails and both ends are in contact with the rails;
  • the two active limiting mechanisms are arranged in a direction perpendicular to the inner wall surface of the track and oppositely arranged on the same side of the beam, wherein the active limiting mechanism includes: The driving part for measuring the displacement and the track measuring wheel connected with the driving part, the driving part drives the track measuring wheel to move toward or away from the inner wall surface of the track.
  • both ends of at least one of the cross beams in contact with the track are provided with drive wheel assemblies.
  • the driving wheel assembly includes: an active driving wheel in contact with the upper surface of the track, an auxiliary limiting wheel is vertically arranged below the active driving wheel, and the auxiliary limiting wheel is connected to the inner side of the track.
  • the wall surfaces are in contact with each other, and a reducer and a servo motor are sequentially arranged on the outer side of the active driving wheel.
  • the driving part is configured as an electric push rod with a mileage sensor, and the executive end of the electric push rod is connected with the track measuring wheel.
  • the execution ends of the two electric push rods are oppositely arranged and both are perpendicular to the inner wall surface of the track.
  • the two active limit mechanisms are arranged on a bisecting line between the two beams.
  • connection between the beam and the longitudinal beam is also rotatably connected by a rotating mechanism.
  • the rotating mechanism includes a rotating shaft and a bearing, the rotating shaft is vertically arranged on the longitudinal beam, and the cross beam is movably mounted on the rotating shaft of the longitudinal beam through the bearing.
  • a control box and a gyroscope electrically connected to the control box are installed in the installation cavity of the beam.
  • the present disclosure relates to an orbital inspection robot, which includes any of the chassis for an orbital inspection robot described herein.
  • the chassis for a track inspection robot related to the present disclosure includes: a cross beam, which is arranged as at least one, at least one of the cross beams is vertically arranged between two rails and both ends are in contact with the rail; and There are two limiting mechanisms, and the two active limiting mechanisms are arranged on the same side of the crossbeam in a direction perpendicular to the inner wall surface of the track, and the active limiting mechanisms include: A driving part for measuring displacement, and a track measuring wheel connected with the driving part, the driving part drives the track measuring wheel to move closer to or away from the inner wall surface of the track.
  • the present disclosure relates to a track inspection robot.
  • the track inspection robot When the track gauge needs to be detected, the track inspection robot is in a static state.
  • the specific detection process is as follows: in the initial state, one of the active limit mechanisms is set to The inner wall surface of the track is in contact with each other, and the other is set to have a certain distance between the inner wall surface of the corresponding track.
  • the track measuring wheel is driven to move closer to the inner wall surface of the track through the driving part until the track measuring wheel and the track
  • the driving part detects the movement displacement value of the track measuring wheel during the process, and sums it with the vertical distance value of the two active limit mechanisms in the initial state, and the gauge at this position can be quickly obtained, thereby improving the detection Efficiency, automation is realized, and manpower and material resources are saved.
  • Figure 1 shows a schematic structural diagram of an embodiment of the present disclosure
  • Figure 2 shows a schematic structural diagram of a drive wheel assembly in an embodiment of the present disclosure
  • Figure 3 shows a schematic structural diagram of an active limit mechanism in an embodiment of the present disclosure
  • Fig. 4 shows a schematic structural diagram of a rotating mechanism in an embodiment of the present disclosure.
  • a chassis for a track inspection robot which includes:
  • the cross beam 1 is arranged as at least one, at least one cross beam 1 is vertically arranged between two rails and both ends are in contact with the rails;
  • the two active limit mechanisms 14 are arranged along the direction perpendicular to the inner wall surface of the track, and are oppositely arranged on the same side of the beam 1, that is, the executive ends of the two active limit mechanisms 14 Both face the inner wall surface of the track; in some embodiments, the centers of the two active limit mechanisms 14 fall on the same straight line; and the active limit mechanism 14 includes: a driving part 2 for measuring displacement, and The track measuring wheel 3 is connected to the driving part 2, and the driving part 2 drives the track measuring wheel 3 to move closer to or away from the inner wall surface of the track.
  • the track inspection robot When the track gauge needs to be detected, the track inspection robot is in a static state.
  • the specific detection process is as follows: In the initial state, one of the active limit mechanisms 14 is set to be in contact with the inner wall of the track, and the other is set to be in contact with the inner wall of the track. There is a certain distance between the inner wall surfaces of the corresponding track.
  • the driving part 2 drives the track measuring wheel 3 to move towards the inner wall of the track until the track measuring wheel 3 contacts the inner wall of the track.
  • the driving part 2 detects Measure the displacement value of the wheel 3 and add it to the value of the vertical distance of the two active limit mechanisms 14 in the initial state.
  • the value of the vertical distance of the two active limit mechanisms 14 in the initial state refers to: The vertical distance from the movable end of part 2 to the movable end of another driving part 2; the gauge of the position can be quickly obtained, thereby improving the detection efficiency, realizing automation, and saving manpower and material resources.
  • the driving part 2 is configured as an electric push rod with a mileage sensor, and the executive end of the electric push rod is connected to the track measuring wheel 3.
  • two The executive ends of the electric push rods are arranged oppositely and are perpendicular to the inner wall of the track; in some embodiments, under the action of the electric push rod, the executive end drives the track measuring wheel 3 to move closer to or away from the inner wall of the track, And record the movement distance of the track measuring wheel 3 through the mileage sensor.
  • the actuator end of one of the electric push rods is driven to extend, thereby pushing the track measuring wheel 3 connected to it to move in the direction close to the inner wall of the track.
  • the vertical distance value of the two electric push rods in the initial state refers to the value of the execution end of one electric push rod to the other The vertical distance of the actuator end of the electric actuator.
  • the specific structure of the wheel assembly 13 is not specifically limited, as long as the structure that can drive the beam 1 to move along the length of the track is suitable for this solution and belongs to the protection scope of this solution.
  • the two electric push rods will drive the track measuring wheel 3 to move away from the inner wall of the track through the execution end, until the track measuring wheel 3 turns To the initial state (that is, the state of the execution end retracted);
  • the posture of the robot can be adjusted by an electric push rod.
  • the actuator end of the electric push rod that needs to be fitted to the track is extended to push the other side of the track.
  • the connected track measuring wheel 3 moves in a direction close to the inner wall of the track, so that the attitude of the robot chassis is changed to the track direction, and at the same time, the electric push rod on the other side will drive the track measuring wheel 3 in a retracted state.
  • the driving wheel assembly 13 includes: a driving wheel 4 in contact with the upper surface of the track.
  • the driving wheel 4 is configured as a sheave wheel, The shape of the sheave wheel is adapted to the shape of the track; in order to further limit the horizontal movement of the orbital robot, an auxiliary limit wheel 5 is vertically arranged below the active driving wheel 4.
  • the auxiliary limit wheel 5 is connected to the track In order to ensure that the robot moves smoothly on the track, in some embodiments, there is a certain distance between the auxiliary limit wheel 5 and the inner wall surface of the track.
  • the exemplary design is 3mm; the outer side of the active drive wheel 4 is also provided with a reducer 6 and a servo motor 7 in sequence; in some embodiments, the active drive wheel 4 and the auxiliary limit The right angle formed by the wheel 5 is adapted to the shape of the track; and when in use, under the drive of the servo motor 7, the active driving wheel 4 will rotate at a high speed along the upper wall of the track.
  • the auxiliary limit wheel 5 will Under the action of the active driving wheel 4, it rotates synchronously along the inner wall of the track at high speed.
  • the active driving wheel 4 and the auxiliary limit wheel 5 work together to ensure that the active driving wheel 4 runs smoothly along the length of the track. While rotating, the horizontal movement of the robot is restricted under the action of the auxiliary limit wheel 5, thereby preventing the active driving wheel 4 from being separated from the track.
  • the upper wall of the beam 1 is provided with a mounting cavity, and a control box 12 is installed in the mounting cavity, and devices such as a battery for providing electric power to the control box 12 are installed.
  • a high-precision gyroscope is electrically connected to the control box 12.
  • the change of the orbital inclination angle can be measured by measuring the posture of the beam 1.
  • the specific high-precision gyroscope measurement process is the prior art, so I won’t repeat it here.
  • the crossbeam 1 is set in two, and the two crossbeams 1 are connected by the longitudinal beam 8 and are parallel to each other.
  • the control box controls the four-wheel drive differently, so that the chassis can run more smoothly on the curved track.
  • two active limit mechanisms 14 are arranged in an equal division between the two beams 1. on-line.
  • the actuator end of one of the electric push rods When in use, in the initial state, drive the actuator end of one of the electric push rods to extend, thereby pushing the track measuring wheel 3 connected to it to move closer to the inner wall surface of the track until the track measuring wheel 3 comes into contact with the inner wall surface of the track.
  • the rod is called the second electric push rod;
  • the second electric push rod and the two auxiliary limit wheels 5 form an isosceles triangle, and the high line of the isosceles triangle is the gauge (the distance between the inner wall surfaces of the two rails).
  • the distance between the push rod and the two auxiliary limit wheels 5 is known, so the value of the initial high line is also known. It is only necessary to calculate the distance between the second electric push rod and the inner wall of the track, and this value is The sum of the initial high line values is the gauge; and during detection, it is only necessary to drive the execution end of the second electric push rod to extend, thereby pushing the track measuring wheel 3 connected to it to move in the direction close to the inner wall of the track.
  • the mileage sensor arranged on the second electric push rod will detect the movement displacement value of the track measuring wheel 3 during this process, that is, the movement displacement value is the second electric push rod to the inner wall surface of the track At this time, add the displacement value and the initial high line value to get the gauge value.
  • the difference from the first embodiment is that, as shown in Figs. 1 and 4, when the track flatness is poor, in order to ensure that the ends of the two beams 1 are in contact with the track and reduce the vibration during the movement of the robot,
  • the connection between the beam 1 and the longitudinal beam 8 is also rotatably connected by a rotating mechanism 9.
  • the specific structure of the rotating mechanism 9 is not specifically limited, as long as the beam 1 can be driven to adjust along the longitudinal beam 8 is applicable. In this plan, and belong to the scope of protection of this plan.
  • the rotating mechanism 9 includes: a rotating shaft 10 and a bearing 11.
  • the rotating shaft 10 is arranged vertically on the longitudinal beam 8, wherein, specifically, whether it is perpendicular to the upper wall surface or the side wall surface of the longitudinal beam 8 can be preset according to needs. It is set that the beam 1 is movably mounted on the rotating shaft 10 of the longitudinal beam 8 through the bearing 11. When in use, when the end of one of the beams 1 leaves the upper wall of the track, the beam 1 only needs to be manually driven around the longitudinal beam. The rotating shaft 10 of 8 rotates until the two ends are attached to the upper wall surface of the rail.
  • a track inspection robot is disclosed, which includes: any track inspection robot chassis as described herein.
  • the terms “installation”, “communication”, and “connection” should be understood in a broad sense, for example, they can be fixed or detachable. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, they can be fixed or detachable. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in the present disclosure can be understood in specific situations.
  • “plurality” means two or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种轨道巡检机器人用底盘及轨道巡检机器人,轨道巡检机器人用底盘包括:横梁(1),至少一个横梁(1)垂直设置于两个轨道之间且两端均与轨道相接触;以及主动限位机构(14),两个主动限位机构(14)沿着垂直于轨道内壁面的方向上,反向设置于横梁(1)的同一侧,其中主动限位机构(14)包括:用于测量位移的驱动部(2),以及与驱动部(2)连接的轨道测量轮(3),驱动部(2)驱动轨道测量轮(3)向靠近或远离轨道内壁面的方向运动。

Description

轨道巡检机器人用底盘及轨道巡检机器人
相关申请的引用
本公开要求于2020年5月9日向中华人民共和国国家知识产权局提交的申请号为202020758882.9、名称为“一种轨道巡检机器人用底盘及轨道巡检机器人”的实用新型专利申请的全部权益,并通过引用的方式将其全部内容并入本文。
领域
本公开大体上涉及轨道检测的技术领域,更具体地涉及轨道巡检机器人用底盘及轨道巡检机器人。
背景
轨道检测是保障轨道交通安全运行的重要组成部分,由于轨道机车的运行密度大时间间隔短乘客密度大的特点所以轨道的磨损比较严重,尤其是轨距发生变化,长时间运行容易出现各种隐患,所以地铁和城铁轨道的检测也成为轨道交通运输安全环节的重中之重。
目前检测轨距方式为:夜间结束运营后,由检测人员沿着轨道延伸方向,手动利用轨距尺对轨道进行检测,以得出沿路轨道的轨距,当轨距值发生改变时,即判断该点为待改善点,但是由于采用人工检测的方式,自动化程度差、检测效率低,浪费人力物力。
概述
一方面,本公开涉及轨道巡检机器人用底盘,其包括:
横梁,设置为至少一个,至少一个所述横梁垂直设置于两个轨道之间且两端均与轨道相接触;以及
主动限位机构,设置为两个,两个所述主动限位机构沿着垂直于轨道内壁面的方向上,反向设置于所述横梁的同一侧,其中 所述主动限位机构包括:用于测量位移的驱动部,以及与所述驱动部连接的轨道测量轮,所述驱动部驱动轨道测量轮向靠近或远离轨道内壁面的方向运动。
在某些实施方案中,至少一个所述横梁与轨道接触的两端均设有驱动轮组件。
在某些实施方案中,所述驱动轮组件包括:与轨道上表面相接触的主动驱动轮,所述主动驱动轮的下方垂直设置有辅助限位轮,所述辅助限位轮与轨道的内侧壁面相接触,所述主动驱动轮的外侧还依次设有减速器和伺服电机。
在某些实施方案中,所述驱动部设置为带有里程传感器的电动推杆,所述电动推杆的执行端与所述轨道测量轮相连接。
在某些实施方案中,两个所述电动推杆的执行端相反设置且均垂直于轨道的内壁面。
在某些实施方案中,所述横梁设置为两个,两个所述横梁之间通过纵梁相连接且相互平行。
在某些实施方案中,两个所述主动限位机构设置于两个所述横梁之间的等分线上。
在某些实施方案中,所述横梁与纵梁的连接处还通过旋转机构转动连接。
在某些实施方案中,所述旋转机构包括:旋转轴以及轴承,所述旋转轴垂直设置于所述纵梁上,所述横梁通过轴承活动安装于所述纵梁的旋转轴上。
在某些实施方案中,所述横梁的安装腔内安装有控制箱,以及与控制箱电性连接的陀螺仪。
另一方面,本公开涉及轨道巡检机器人,其包括:本文中所述的任一轨道巡检机器人用底盘。
在某些实施方案中,本公开涉及的轨道巡检机器人用底盘包括:横梁,设置为至少一个,至少一个所述横梁垂直设置于两个轨道之间且两端均与轨道相接触;以及主动限位机构,设置为两个,两个所述主动限位机构沿着垂直于轨道内壁面的方向上,反 向设置于所述横梁的同一侧,其中所述主动限位机构包括:用于测量位移的驱动部,以及与所述驱动部连接的轨道测量轮,所述驱动部驱动轨道测量轮向靠近或远离轨道内壁面的方向运动。
在某些实施方案中,本公开涉及轨道巡检机器人,当需要对轨距进行检测时,轨道巡检机器人处于静止状态,具体检测过程如下:初始状态时,其中一个主动限位机构设置为与轨道内壁面是相接触的,另一个则设置为与其对应的轨道内壁面之间存在一定间距,检测时,通过驱动部驱动轨道测量轮向靠近轨道内壁面的方向运动,直至轨道测量轮与轨道内壁面相接触,该过程中驱动部检测出轨道测量轮运动位移数值,并与初始状态下两个主动限位机构的垂直距离数值加和,即可快速得到该位置的轨距,从而提高了检测效率,实现了自动化,节省了人力物力。
附图的简要说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图,其中:
图1示出了本公开一实施例的结构示意图;
图2示出了本公开一实施例中驱动轮组件的结构示意图;
图3示出了本公开一实施例中主动限位机构的结构示意图;
图4示出了本公开一实施例中旋转机构的结构示意图。
图中:1、横梁;2、驱动部;3、轨道测量轮;4、主动驱动轮;5、辅助限位轮;6、减速器;7、伺服电机;8、纵梁;9、旋转机构;10、旋转轴;11、轴承;12、控制箱;13、驱动轮组件;14、主动限位机构。
详述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面结合附图和具体实施方式对本公开作进一步详细说明:
实施例一
如图1、图2、图3和图4所示,公开了轨道巡检机器人用底盘,其包括:
横梁1,设置为至少一个,至少一个横梁1垂直设置于两个轨道之间且两端均与轨道相接触;以及
主动限位机构14,设置为两个,两个主动限位机构14沿着垂直于轨道内壁面的方向上,反向设置于横梁1的同一侧,即两个主动限位机构14的执行端均朝向轨道的内壁面;在某些实施方案中,两个主动限位机构14的中心均落在同一条直线上;并且主动限位机构14包括:用于测量位移的驱动部2,以及与驱动部2连接的轨道测量轮3,驱动部2驱动轨道测量轮3向靠近或远离轨道内壁面的方向运动。
当需要对轨距进行检测时,轨道巡检机器人处于静止状态,具体检测过程如下:初始状态时,其中一个主动限位机构14设置为与轨道内壁面是相接触的,另一个则设置为与其对应的轨道内壁面之间存在一定间距,检测时,通过驱动部2驱动轨道测量轮3向靠近轨道内壁面的方向运动,直至轨道测量轮3与轨道内壁面相接触,该过程中驱动部2检测出轨道测量轮3运动位移数值,并与初始状态下两个主动限位机构14的垂直距离数值加和,其中,初始状态下两个主动限位机构14的垂直距离数值是指:其中一个驱动部2的活动端到另一个驱动部2的活动端的垂直距离;即可快速得到该位置的轨距,从而提高了检测效率,实现了自动化,节省了人力物力。
在某些实施方案中,参照图3所示,驱动部2设置为带有里程传感器的电动推杆,电动推杆的执行端与轨道测量轮3相连接,在某些实施方案中,两个电动推杆的执行端相反设置且均垂直于轨道的内壁面;在某些实施方案中,在电动推杆的作用下,执行端带动轨道测量轮3向靠近或远离轨道内壁面的方向运动,并通过里程传感器记录轨道测量轮3的运动距离,使用时,初始状态时,驱动其中一个电动推杆的执行端伸出,从而推动与其相连接的轨道测量轮3向靠近轨道内壁面的方向运动,直至轨道测量轮3与轨道内壁面相接触,另一个则与其对应的轨道内壁面之间存在一定间距,检测时,通过驱动另一个电动推杆的执行端伸出,从而推动与其相连接的轨道测量轮3向靠近轨道内壁面的方向运动,直至轨道测量轮3与轨道内壁面相接触,该过程中设置于电动推杆的里程传感器将检测出轨道测量轮3运动位移数值,并与初始状态下两个电动推杆的垂直距离数值加和,即可快速得到该位置的轨距,其中,初始状态下两个电动推杆的垂直距离数值是指,其中一个电动推杆的执行端到另一个电动推杆的执行端的垂直距离。
在某些实施方案中,为了保证轨道巡检机器人用底盘的移动性能,参照图1所示,至少一个横梁1与轨道接触的两端均设有驱动轮组件13,在本实施例中,驱动轮组件13的具体结构不做具体限定,只要可以驱动横梁1沿着轨道的长度方向进行运动的结构均适用于本方案,并属于本方案的保护范围。
为了避免伸出的轨道测量轮3对机器人运动造成阻碍,所以当检测结束后,两个电动推杆将通过执行端驱动轨道测量轮3向远离轨道内壁面的方向运动,直至轨道测量轮3回到初始状态(即执行端缩回的状态);
为了保证机器人贴合某一侧轨道平稳运行,可以通过电动推杆来调整机器人的姿态,在某些实施方案中,与需要贴合轨道相配合的电动推杆执行端伸出,从而推动与其相连接的轨道测量轮3向靠近轨道内壁面的方向运动,至此将机器人底盘的姿态向该轨 道方向改变,与此同时,另一侧的电动推杆将带动轨道测量轮3处于缩回状态。
在某些实施方案中,参照图1和图2所示,驱动轮组件13包括:与轨道上表面相接触的主动驱动轮4,在某些实施方案中,主动驱动轮4设置为槽轮,槽轮的形状与轨道的形状相适配;为了进一步限制轨道机器人水平方向运动,主动驱动轮4的下方垂直设置有辅助限位轮5,在某些实施方案中,辅助限位轮5与轨道的内侧壁面相接触,但是随着使用,轨距会发生变化,为了保证机器人在轨道上平稳运动,在某些实施方案中,辅助限位轮5与轨道的内侧壁面之间存在一定间距,间距的具体数值可以根据要求进行预先设计,示例性的设计为3mm;主动驱动轮4的外侧还依次设有减速器6和伺服电机7;在某些实施方案中,主动驱动轮4与辅助限位轮5形成的直角与轨道的形状相适配;并且使用时,在伺服电机7的驱动下,主动驱动轮4将沿着轨道上壁面进行高速转动,与此同时,辅助限位轮5将在主动驱动轮4的作用下,沿着轨道的内壁面同步进行高速转动,本实施例通过主动驱动轮4以及辅助限位轮5共同作用,从而保证主动驱动轮4沿着轨道的长度方向进行顺利转动的同时,在辅助限位轮5的作用下限制机器人水平方向的运动,进而避免主动驱动轮4从轨道上脱离。
在某些实施方案中,参照图1所示,横梁1的上壁面开设有安装腔,安装腔内安装有控制箱12,以及为控制箱12提供电能的电池等器件。
在某些实施方案中,参照图1所示,为了测量轨道倾角变化,与控制箱12电性连接有高精度陀螺仪,使用时,通过测量横梁1的姿态,即可测量出轨道倾角的变化,具体的高精度陀螺仪测量过程为现有技术,故不在此做过多赘述。
实施例二
与实施例一不同之处在于,参照图1所示,横梁1设置为两个,两个横梁1之间通过纵梁8相连接且相互平行,该设计将底盘设计成四驱结构,通过电控箱对四驱进行不同控制,从而实现 底盘在弯道轨道上运行更加顺畅。
在某些实施方案中,参照图1所示,为了为主动限位机构14提供测量基准线,保证测量数据的准确性,两个主动限位机构14设置于两个横梁1之间的等分线上。
使用时,初始状态时,驱动其中一个电动推杆的执行端伸出,从而推动与其相连接的轨道测量轮3向靠近轨道内壁面的方向运动,直至轨道测量轮3与轨道内壁面相接触,另一个则与其对应的轨道内壁面之间存在一定间距,为了描述方便将初始状态下与轨道内壁面相接触的电动推杆称为第一电动推杆,与轨道内壁面之间存在一定间距的电动推杆称为第二电动推杆;
此时,第二电动推杆与两个辅助限位轮5形成一个等腰三角形,而该等腰三角形的高线即为轨距(两个轨道内壁面之间的距离),由于第二电动推杆与两个辅助限位轮5的距离是已知的,所以初始高线的数值亦为已知的,只需计算出第二电动推杆到轨道内壁面的距离数值,将该数值与初始高线数值的加和即为轨距;并且检测时,只需通过驱动第二电动推杆的执行端伸出,从而推动与其相连接的轨道测量轮3向靠近轨道内壁面的方向运动,直至轨道测量轮3与轨道内壁面相接触,该过程中设置于第二电动推杆的里程传感器将检测出轨道测量轮3运动位移数值,即运动位移数值即为第二电动推杆到轨道内壁面的距离数值,此时将该位移数值与初始高线数值加和,即可得出轨距值。
实施例三
与实施例一不同之处在于,参照图1和图4所示,当轨道平面度较差时,为了保证两个横梁1的端部均与轨道相贴合,降低机器人运动过程中的震动,横梁1与纵梁8的连接处还通过旋转机构9转动连接,在本实施例中,旋转机构9的具体结构不做具体限定,只要可以驱动横梁1沿着纵梁8进行调节的结构均适用于本方案,并属于本方案的保护范围。
在某些实施方案中,旋转机构9包括:旋转轴10以及轴承11,旋转轴10垂直设置于纵梁8上,其中,具体是垂直于纵梁8的上 壁面还是侧壁面可以根据需要进行预先设定,横梁1通过轴承11活动安装于纵梁8的旋转轴10上,使用时,当其中一个横梁1的端部脱离轨道上壁面时,只需手动驱动该横梁1绕着设置于纵梁8的旋转轴10进行转动,直至两个端部与轨道上壁面均贴合。
实施例四
公开了轨道巡检机器人,其包括:如本文中所述的任一轨道巡检机器人用底盘。
本文中的各个实施例均采用递进的方式描述,若干个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
在本公开的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示重要性;词语“底面”和“顶面”、“内”和“外”分别指的是朝向或远离特定部件几何方向。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接连通,也可以通过中间媒介间接连通,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
以上仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 轨道巡检机器人用底盘,其包括:
    横梁,设置为至少一个,至少一个所述横梁垂直设置于两个轨道之间且两端均与轨道相接触;以及
    主动限位机构,设置为两个,两个所述主动限位机构沿着垂直于轨道内壁面的方向上,反向设置于所述横梁的同一侧,其中所述主动限位机构包括:用于测量位移的驱动部,以及与所述驱动部连接的轨道测量轮,所述驱动部驱动轨道测量轮向靠近或远离轨道内壁面的方向运动。
  2. 如权利要求1所述的轨道巡检机器人用底盘,其中,至少一个所述横梁与轨道接触的两端均设有驱动轮组件。
  3. 如权利要求2所述的轨道巡检机器人用底盘,其中,所述驱动轮组件包括:与轨道上表面相接触的主动驱动轮,所述主动驱动轮的下方垂直设置有辅助限位轮,所述辅助限位轮与轨道的内侧壁面相接触,所述主动驱动轮的外侧还依次设有减速器和伺服电机。
  4. 如权利要求1至3中任一权利要求所述的轨道巡检机器人用底盘,其中,所述驱动部设置为带有里程传感器的电动推杆,所述电动推杆的执行端与所述轨道测量轮相连接。
  5. 如权利要求4所述的轨道巡检机器人用底盘,其中,两个所述电动推杆的执行端相反设置且均垂直于轨道的内壁面。
  6. 如权利要求2或3所述的轨道巡检机器人用底盘,其中,所述横梁设置为两个,两个所述横梁之间通过纵梁相连接且相互平行。
  7. 如权利要求6所述的轨道巡检机器人用底盘,其中,两个所述主动限位机构设置于两个所述横梁之间的等分线上。
  8. 如权利要求7所述的轨道巡检机器人用底盘,其中,所述横梁与纵梁的连接处还通过旋转机构转动连接。
  9. 如权利要求8所述的轨道巡检机器人用底盘,其中,所述旋转机构包括:旋转轴以及轴承,所述旋转轴垂直设置于所述纵梁上,所述横梁通过轴承活动安装于所述纵梁的旋转轴上。
  10. 如权利要求1至8中任一权利要求所述的轨道巡检机器人用底盘,其中,所述横梁的安装腔内安装有控制箱,以及与控制箱电性连接的陀螺仪。
  11. 轨道巡检机器人,其包括:如权利要求1至10中任一权利要求所述的轨道巡检机器人用底盘。
PCT/CN2021/090652 2020-05-09 2021-04-28 轨道巡检机器人用底盘及轨道巡检机器人 WO2021227878A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020758882.9U CN212654361U (zh) 2020-05-09 2020-05-09 一种轨道巡检机器人用底盘及轨道巡检机器人
CN202020758882.9 2020-05-09

Publications (1)

Publication Number Publication Date
WO2021227878A1 true WO2021227878A1 (zh) 2021-11-18

Family

ID=74746691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090652 WO2021227878A1 (zh) 2020-05-09 2021-04-28 轨道巡检机器人用底盘及轨道巡检机器人

Country Status (2)

Country Link
CN (1) CN212654361U (zh)
WO (1) WO2021227878A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346991A (zh) * 2021-12-09 2022-04-15 浙江高信技术股份有限公司 一种基于轨道巡检机器人的轨道清洁系统
CN114852126A (zh) * 2022-05-31 2022-08-05 南京派光高速载运智慧感知研究院有限公司 一种轨道探伤车
CN114852125A (zh) * 2022-05-31 2022-08-05 南京派光高速载运智慧感知研究院有限公司 一种轨道探伤调整系统
CN114852125B (zh) * 2022-05-31 2024-06-07 南京派光高速载运智慧感知研究院有限公司 一种轨道探伤调整系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212654361U (zh) * 2020-05-09 2021-03-05 北京海益同展信息科技有限公司 一种轨道巡检机器人用底盘及轨道巡检机器人
CN113894824B (zh) * 2021-12-09 2022-03-08 浙江高信技术股份有限公司 一种轨道巡检机器人
CN115183095A (zh) * 2022-07-08 2022-10-14 深圳市能智工业信息技术有限公司 一种适用于轨道交通的监控装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237576A (ja) * 2002-02-12 2003-08-27 Hitachi Electronics Eng Co Ltd 牽引型軌道検測車
CN102390405A (zh) * 2011-09-16 2012-03-28 成都四方瑞邦测控科技有限责任公司 用于轨道参数约束测量的检测方法及轨道检查仪
CN202329599U (zh) * 2011-11-08 2012-07-11 中铁第一勘察设计院集团有限公司 一种铁路轨道检测仪轨距测量装置
CN104652194A (zh) * 2015-02-13 2015-05-27 中铁第一勘察设计院集团有限公司 直尺悬挂结构的高速铁路轨道空间位置测量仪
CN204509904U (zh) * 2015-02-13 2015-07-29 中铁第一勘察设计院集团有限公司 一种轨距及轨向矢距测量的轨道测量仪横梁结构
WO2016175438A1 (ko) * 2015-04-30 2016-11-03 한국철도기술연구원 현방식의 트롤리형 궤도틀림 검측 장비
CN212654361U (zh) * 2020-05-09 2021-03-05 北京海益同展信息科技有限公司 一种轨道巡检机器人用底盘及轨道巡检机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237576A (ja) * 2002-02-12 2003-08-27 Hitachi Electronics Eng Co Ltd 牽引型軌道検測車
CN102390405A (zh) * 2011-09-16 2012-03-28 成都四方瑞邦测控科技有限责任公司 用于轨道参数约束测量的检测方法及轨道检查仪
CN202329599U (zh) * 2011-11-08 2012-07-11 中铁第一勘察设计院集团有限公司 一种铁路轨道检测仪轨距测量装置
CN104652194A (zh) * 2015-02-13 2015-05-27 中铁第一勘察设计院集团有限公司 直尺悬挂结构的高速铁路轨道空间位置测量仪
CN204509904U (zh) * 2015-02-13 2015-07-29 中铁第一勘察设计院集团有限公司 一种轨距及轨向矢距测量的轨道测量仪横梁结构
WO2016175438A1 (ko) * 2015-04-30 2016-11-03 한국철도기술연구원 현방식의 트롤리형 궤도틀림 검측 장비
CN212654361U (zh) * 2020-05-09 2021-03-05 北京海益同展信息科技有限公司 一种轨道巡检机器人用底盘及轨道巡检机器人

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346991A (zh) * 2021-12-09 2022-04-15 浙江高信技术股份有限公司 一种基于轨道巡检机器人的轨道清洁系统
CN114346991B (zh) * 2021-12-09 2023-10-27 浙江高信技术股份有限公司 一种基于轨道巡检机器人的轨道清洁系统
CN114852126A (zh) * 2022-05-31 2022-08-05 南京派光高速载运智慧感知研究院有限公司 一种轨道探伤车
CN114852125A (zh) * 2022-05-31 2022-08-05 南京派光高速载运智慧感知研究院有限公司 一种轨道探伤调整系统
CN114852125B (zh) * 2022-05-31 2024-06-07 南京派光高速载运智慧感知研究院有限公司 一种轨道探伤调整系统
CN114852126B (zh) * 2022-05-31 2024-06-07 南京派光高速载运智慧感知研究院有限公司 一种轨道探伤车

Also Published As

Publication number Publication date
CN212654361U (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
WO2021227878A1 (zh) 轨道巡检机器人用底盘及轨道巡检机器人
WO2020238310A1 (zh) 轨道巡检机器人
CN108827192B (zh) 一种采用激光传感器测量同轴度的测量装置和方法
CN104965129A (zh) 单探头近场天线测试系统
CN205589249U (zh) 轨道检测小车
CN110528345B (zh) 一种城市轨道交通铁轨交付前检测用自走型检测车
CN105277129A (zh) 一种动态非接触轨道轨距测量系统及其方法
CN100371198C (zh) 递推式铁路轨道检测车及检测方法
CN207215086U (zh) 一种便携非接触式轨道交通隧道限界检测系统
CN103267499B (zh) 一种曲板y型接头结构参数自动测量装置
CN103353368B (zh) 一种扭矩测试平台
CN114993601B (zh) 一种2米4风洞槽壁试验段
CN213933145U (zh) 一种高铁检修用辅助工装
CN107976149A (zh) 一种锂电池激光测厚设备
CN103234506A (zh) 一种车架总成在线检测机
CN111272075B (zh) 一种用于轨道系统的局部偏差检测系统及方法
CN217455972U (zh) 一种钢轨短波不平顺检测装置
CN103344445B (zh) 一种中低速磁浮走行单元检测平台
CN113044733B (zh) 一种发动机安装车及发动机安装方法
CN204694782U (zh) 单探头近场天线测试系统
CN213455364U (zh) 型材三维外观检测装置
CN208621013U (zh) 一种多功能橡胶板检测台
CN114459369A (zh) 列车轮对输送与车轮直径测量一体化设备及检测方法
CN203511689U (zh) 一种轨道几何尺寸检测装置
CN112362741A (zh) 一种探伤装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804804

Country of ref document: EP

Kind code of ref document: A1