WO2021227613A1 - 一种超轻热塑性弹性体发泡材料的制备工艺 - Google Patents
一种超轻热塑性弹性体发泡材料的制备工艺 Download PDFInfo
- Publication number
- WO2021227613A1 WO2021227613A1 PCT/CN2021/079190 CN2021079190W WO2021227613A1 WO 2021227613 A1 WO2021227613 A1 WO 2021227613A1 CN 2021079190 W CN2021079190 W CN 2021079190W WO 2021227613 A1 WO2021227613 A1 WO 2021227613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- saturation
- foaming
- pressure
- density
- temperature
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/08—Supercritical fluid
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/044—Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
Definitions
- the present invention relates to the field of thermoplastic elastomer foaming, in particular to a preparation process of an ultra-light thermoplastic elastomer foam material.
- the ultra-light weight refers to a foam product with a density below 0.1 g/cm 3.
- Chinese patent document CN103642200A and Chinese patent document CN108239385A use TPU as the main raw material, and improve the shrinkage problem of TPU after foaming by adding different polymers and compatibilizers.
- thermoplastic polyurethane foamed particles and a preparation method thereof.
- the thermoplastic polyurethane elastomer is used as the main raw material, and a certain component of the thermoplastic resin polymer is blended with a compatibilizer to obtain a blended gold. Particles. After that, it is foamed with carbon dioxide to make the size of the TPU foamed particles more stable, the surface is bright and full, and the resilience performance is improved.
- the main purpose of the present invention is to provide a preparation process of ultra-light thermoplastic elastomer foam material, which can be molded to obtain ultra-light foam material with stable performance, and the density of the foam material formed is 0.05-0.10.1 g/cm 3 .
- the solution of the present invention is:
- a preparation process of ultra-light thermoplastic elastomer foam material which includes the following steps:
- thermoplastic polyurethane elastomer into the first reaction kettle, and pass carbon dioxide into it for the first supercritical foaming. After the pressure is released, the foaming intermediate product is obtained;
- thermoplastic polyurethane elastomer is a sheet formed by extrusion, molding or injection molding of TPU, TPEE, PEBAX, TPU/PEBAX blend, TPU/TPEE blend, or TPEE/PEBAX blend.
- saturation pressure, saturation temperature, and saturation time in the first supercritical foaming are all less than the saturation pressure, saturation temperature, and saturation time of the second supercritical foaming.
- the saturation temperature of the first supercritical foaming is 100°C ⁇ 160°C, the saturation pressure is 7-10Mpa, and the saturation time is 0.5-4h; the saturation temperature of the second supercritical foaming is 120°C ⁇ 170°C, The saturation pressure is 10-30Mpa, and the saturation time is 2-10h.
- the saturation temperature of carbon dioxide of TPEE material is 110-130°C
- the saturation temperature of TPU carbon dioxide is 140-160°C
- the saturation temperature of PEBAX carbon dioxide is 100-130°C
- the temperature range of the mixture is two The temperature range of the mixture.
- the saturation temperature of TPEE nitrogen is 120-150°C
- the saturation temperature of TPU nitrogen is 140-170°C
- the saturation temperature of PEBAX nitrogen is 120-150°C
- the temperature range of the mixture is two The temperature range of the mixture.
- the density of the foamed intermediate product is 0.3 to 0.5 g/cm 3 .
- the present invention relates to a preparation process of an ultra-light thermoplastic elastomer foam material, which is a smart crystallization obtained after comprehensive analysis of carbon dioxide supercritical foaming and nitrogen supercritical foaming.
- the product foamed with carbon dioxide gas normally has low density but large shrinkage rate; the product foamed with nitrogen gas has high density but is stable and does not shrink.
- the low density of CO 2 is because of its high solubility in the polymer, and the large shrinkage is because the diffusion coefficient of CO 2 is too different from air; the solubility of N 2 in the polymer is less than that of CO 2 , so foaming
- the density of the product is relatively large, and the diffusion coefficient of N 2 is similar to that of air, so the size of the foamed product is stable and not easy to shrink.
- the present invention adopts a two-step method. Firstly, the higher solubility of CO 2 is used to form a large number of gas nuclei in the elastomeric polymer. The temperature and pressure of the reactor are controlled to ensure that the polymer is micro-foamed, and then N 2 , N 2 occupies the gas core of the previous CO 2 and quickly releases the pressure after saturation, and the bubble core grows to obtain an ultra-low-density elastomer material.
- the main principle of the present invention is that the diffusion rate of nitrogen and air is almost the same, which is more suitable for elastomer foaming.
- the solubility of nitrogen in the polymer is low, the plasticizing effect on the polymer is poor, and the nucleation rate is low, which leads to a large foaming density and large cells.
- the cell size of TPU in Comparative Example 1 is 120um and the density is 0.183.
- Carbon dioxide has a strong plasticizing effect on the elastomer. After foaming, a lower initial density can be obtained.
- the density is 0.108 g/cm 3 , but it shrinks quickly, and there are shrinkage wrinkles on the surface, as shown in Figure 3. After 6 hours of storage, the density becomes 0.256 g/cm 3 , as shown in Figure 4.
- the present invention adopts a two-step method, in which carbon dioxide is used for nucleation in the first step, and nitrogen is used for foaming in the second step, and a foamed material with extremely low density, small shrinkage, good elasticity and stable performance can be obtained.
- Figure 1 is a scanning electron micrograph of the foamed elastomer obtained in Comparative Example 1;
- Fig. 2 is the change curve of the density of the foamed elastomer obtained in Comparative Example 1 with the storage time;
- Figure 3 is a photograph of the foamed elastomer obtained in Comparative Example 2 after shrinking
- Figure 4 is a curve of the density of the foamed elastomer obtained in Comparative Example 2 as a function of storage time
- Figure 5 is a scanning electron micrograph of the primary foaming intermediate product of Example 1;
- Figure 6 is a scanning electron micrograph of the final foamed product of Example 1.
- Figure 7 is a scanning electron micrograph of the final foamed product of Example 2.
- the temperature in the kettle is 155°C
- the pressure is 22Mpa
- the pressure is saturated for 4h.
- a foamed elastomer sample is obtained with a density of 0.183g/cm 3 and a rebound of 65%.
- the scanning electron micrograph is shown in Figure 1.
- the average cell size is 120um
- the cell density is 4.18 ⁇ 104cells/cm 3 .
- Fig. 2 shows the curve of density of N 2 foaming material with time.
- the temperature in the kettle is 155°C
- the pressure is 18Mpa
- the pressure is saturated for 2h.
- a foamed elastomer sample is obtained.
- the density of the product is 0.108g/cm 3
- the density is after 3h. It is 0.254g/cm 3 , there are many wrinkles on the surface of the sheet after shrinkage, and it loses its original elasticity and low density properties.
- the photo after shrinkage is shown in Figure 3, and the change curve of CO 2 foam material density with storage time is shown in Figure 4.
- the saturation pressure is 10MPa, the saturation temperature is 140°C, and the saturation is 2 hours. After that, the pressure is released quickly to obtain a foamed intermediate product with a density of 0.461g/cm 3.
- the foamed intermediate product is put into the supercritical reactor, and nitrogen is introduced for saturation.
- the saturation pressure is 22MPa, the saturation temperature is 160°C, and the saturation is 4 hours.
- the final density of the foamed product is 0.092g/cm 3 after being placed for 6 hours, the rebound is 75%, the cell size is 97um, and the cell density is 2.82 ⁇ 107cells/cm 3 .
- the saturation pressure is 10MPa, the saturation temperature is 130°C, and the saturation is 2 hours. Then the pressure is released quickly to obtain a foamed intermediate product with a density of 0.362g/cm 3.
- the foaming intermediate product is put into the supercritical reactor, and nitrogen is introduced for saturation.
- the saturation pressure is 22MPa, the saturation temperature is 150°C, and the saturation is 4 hours. After the saturation is completed, the pressure is released quickly to obtain a hair with a density of 0.068g/cm 3 The final density of the foam product is 0.071g/cm 3 after being placed for 6 hours, and the rebound is 83%.
- the saturation pressure is 10MPa, the saturation temperature is 125°C, and the saturation is 2 hours. After that, the pressure is released quickly to obtain a foaming middle with a density of 0.358g/cm 3
- the saturation pressure is 22MPa, the saturation temperature is 145°C, and the saturation is 6 hours. After the saturation is completed, the pressure is released quickly, and the density is 0.060g/cm.
- the foamed product of 3 has a final density of 0.063g/cm 3 and a rebound of 85% after being placed for 6 hours.
- TPU/TPEE blended shoe midsole board (TPU accounted for 80%, TPEE accounted for 20%) into the supercritical reaction kettle, and saturated with carbon dioxide, the saturation pressure is 12MPa, the saturation temperature is 138°C, and the saturation After 3 hours, the pressure was quickly released to obtain a foamed intermediate product with a density of 0.403g/cm 3.
- the foamed intermediate product was placed in a supercritical reactor and saturated with nitrogen.
- the saturation pressure was 24 MPa and the saturation temperature was 150. °C, saturated six hours, after saturation pressure is rapidly released, a density of 0.086g / cm 3 of the foamed product, the final density after placement 6h 0.089g / cm 3, 77% rebound.
- TPU/PEBAX blended board (TPU accounted for 75%, PEBAX accounted for 25%) into a supercritical reactor, filled with carbon dioxide for saturation, saturation pressure 11MPa, saturation temperature 132°C, saturation for 2 hours, Then the pressure was released quickly to obtain a foamed intermediate product with a density of 0.384g/cm 3.
- the foamed intermediate product was put into a supercritical reactor and saturated with nitrogen.
- the saturation pressure was 25 MPa, and the saturation temperature was 148°C. 6 hours after the saturation pressure is rapidly released, a density of 0.081g / cm 3 of the foamed product, the final density after placement 6h 0.084g / cm 3, 79% rebound.
- TPEE/TPU blended sheet (where TPEE accounts for 60% and TPU accounts for 40%) into a supercritical reactor, and then introduce carbon dioxide for saturation.
- the saturation pressure is 11MPa
- the saturation temperature is 130°C
- the saturation is 2 hours.
- the pressure was released quickly to obtain a foamed intermediate product with a density of 0.426g/cm 3.
- the foamed intermediate product was put into a supercritical reactor and saturated with nitrogen.
- the saturation pressure was 25 MPa, and the saturation temperature was 148°C.
- the pressure was quickly released after saturation, and a foamed product with a density of 0.075g/cm 3 was obtained.
- the final density was 0.078g/cm 3 and the rebound was 80%.
- TPEE/PEBAX blended sheet (where TPEE accounts for 50% and PEBAX accounts for 50%) into a supercritical reactor, and then enter carbon dioxide for saturation.
- the saturation pressure is 14MPa
- the saturation temperature is 125°C
- the saturation is 2 hours.
- the pressure was quickly released to obtain a foamed intermediate product with a density of 0.311g/cm 3.
- the foamed intermediate product was put into a supercritical reactor and saturated with nitrogen.
- the saturation pressure was 28MPa, the saturation temperature was 140°C, and the saturation temperature was 140°C.
- the pressure was quickly released after saturation, and a foamed product with a density of 0.058g/cm 3 was obtained.
- the final density was 0.061g/cm 3 and the rebound was 85%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
本发明公开一种超轻热塑性弹性体发泡材料的制备工艺,包括如下步骤:①将热塑性聚氨酯弹性体放入第一反应釜中,通入二氧化碳进行第一次超临界发泡,经释压后,得到发泡中间产品;②将发泡中间产品放入第二反应釜中,通入氮气进行第二次超临界发泡,经释压后得到密度为0.05-0.1g/cm3的发泡产品。与现有技术相比,本发明采用两步法,第一步采用二氧化碳成核,第二步用氮气发泡,能得到密度极低,收缩率小,弹性好、性能稳定的发泡材料。
Description
本发明涉及热塑性弹性体发泡领域,具体涉及的是一种超轻热塑性弹性体发泡材料的制备工艺,所述超轻是指密度在0.1g/cm3以下的发泡产品。
近年来,超临界发泡材料及其技术在市场上很火爆,尤其是弹性体的超临界发泡,因为其具有高回弹,低密度,成型加工性好等优点,在运动鞋、体育器材以及减震降噪领域具有非常广阔的应用前景。
目前有很多科研机构和公司在弹性体的超临界发泡方向做了很多工作。但是尽管有很多研究工作,对于超低密度的弹性体材料的制备还是一个难题,以CO2为发泡剂来进行超临界发泡可以得到初始密度较低的发泡材料,但是发泡后由于泡孔内二氧化碳与外界空气存在压力差,二氧化碳扩散的速度远远大于外界空气的补偿速度,导致弹性体发泡材料迅速收缩,所以最终发泡材料表面有大量收缩皱褶,最终密度较大,性能也会有损失,从而丧失应用价值。
为了解决收缩的问题,中国专利文献CN103642200A和中国专利文献CN108239385A以TPU为主要原料,通过增加不同的聚合物和相容剂等用来改善TPU发泡后的收缩问题。
另外,中国专利文献CN108239385A公开了一种热塑性聚氨酯发泡粒子及其制备方法,是以热塑性聚氨酯弹性体为主要原料,加入一定组分的热塑性树脂聚合物与相容剂进行共混得到共混合金颗粒。后将其用二氧化碳进行发泡,使TPU发泡粒子尺寸更加稳定,表面光亮饱满,提高回弹性能。
其它诸如中国专利文献CN110951258A、CN110791088A、CN108250734A则分别以EVA/TPU、PA/TPU和PEBAX/TPU为原料进行超临界发泡,其密度都在0.17g/cm3以上,目前弹性体材料想要做到0.1g/cm3以下密度的产品具有一定难度。但是,超低密度的产品在保温,减重、缓冲和包装等领域又具有很大的市场。
基于此,本申请人针对上述问题苦心研究,遂有本案产生。
本发明的主要目的在于提供一种超轻热塑性弹性体发泡材料的制备工艺,其可以成型得到性能稳定的超轻发泡材料,形成出来发泡材料的密度在0.05-0.10.1g/cm3。
为了达成上述目的,本发明的解决方案是:
一种超轻热塑性弹性体发泡材料的制备工艺,其中,包括如下步骤:
①将热塑性聚氨酯弹性体放入第一反应釜中,通入二氧化碳进行第一次超临界发泡,经释压后,得到发泡中间产品;
②将发泡中间产品放入第二反应釜中,通入氮气进行第二次超临界发泡,经释压后得到密度为0.05-0.1g/cm3的发泡产品。
进一步,所述热塑性聚氨酯弹性体为TPU、TPEE、PEBAX、TPU/PEBAX共混物、TPU/TPEE共混物或TPEE/PEBAX共混物挤出、模压或者注塑形成的片材。
进一步,第一次超临界发泡中的饱和压力、饱和温度和饱和时间均小于第二次超临界发泡的饱和压力、饱和温度和饱和时间。
进一步,第一次超临界发泡的饱和温度为100℃~160℃,饱和压力为7-10Mpa,饱和时间为0.5-4h;第二次超临界发泡的饱和温度为120℃~170℃,饱和压力为10-30Mpa,饱和时间为2-10h。
进一步,第一次超临界发泡时,TPEE材料二氧化碳的饱和温度为110-130℃,TPU二氧化碳的饱和温度为140-160℃,PEBAX二氧化碳饱和温度为100-130℃,混合物的温度范围在两者混合物的温度范围之间。
进一步,第二次超临界发泡时,TPEE氮气的饱和温度为120-150℃,TPU氮气的饱和温度为140-170℃,PEBAX氮气的饱和温度为120-150℃,混合物的温度范围在两者混合物的温度范围之间。
进一步,所述发泡中间产品的密度为0.3~0.5g/cm3。
采用上述结构后,本发明涉及一种超轻热塑性弹性体发泡材料的制备工艺,其是对二氧化碳超临界发泡以及氮气超临界发泡综合分析之后得到的智慧结晶。正常用二氧化碳气体发泡得到的产品,密度低但是收缩率大;用氮气发泡的产品密度大但是稳定不收缩。
首先,CO2能发的密度低是因为它在聚合物中的溶解度大,收缩率大是因为CO2的扩散系数和空气相差太大;N2在聚合物中溶解度小于CO2,因此发泡产品的密度相对较大,而N2的扩散系数的和空气差不多,因此发泡产品尺寸稳定不易收缩。
本发明采用两步法,先利用CO2较高的溶解度,在弹性体聚合物中形成大量的气核,通过控制反应釜的温度和压力确保聚合物微发泡,之后通入N2,N2占据了之前CO2的气核,饱和后快速泄压,气泡核长大,得到超低密度的弹性体材料。
本发明的主要原理在于:氮气与空气的扩散速率几乎相同,更适合于弹性体发泡。但是氮气在聚合物中的溶解度低,对聚合物的塑化作用较差,成核率低,导致发泡密度偏大,泡孔较大。如对比例1中TPU的泡孔尺寸为120um,密度0.183,二氧化碳对弹性体有很强的塑化作用,发泡后可以获得较低的初始密度,如TPU经二氧化碳发泡后,密度为0.108g/cm3,但是很快就出现收缩,表面有收缩皱纹见图3,放置6小时后,密度变为0.256g/cm3,如图4变化曲线。
与现有技术相比,本发明采用两步法,第一步采用二氧化碳成核,第二步用氮气发泡,能得到密度极低,收缩率小,弹性好、性能稳定的发泡材料。
图1为对比例1得到的发泡弹性体的扫描电镜图;
图2为对比例1得到的发泡弹性体密度随放置时间的变化曲线;
图3为对比例2得到的发泡弹性体收缩之后的照片;
图4为对比例2得到的发泡弹性体密度随放置时间的变化曲线;
图5为实施例1一次发泡中间产品的扫描电镜图;
图6为实施例1最终发泡产品的扫描电镜图;
图7为实施例2最终发泡产品的扫描电镜图。
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
对比例1:
将TPU板材放入氮气的超临界反应釜中,釜中温度155℃,压力22Mpa,饱和4h,泄压后得到发泡弹性体样品,密度为0.183g/cm3,回弹为65%,其扫描电镜图见图1,平均泡孔尺寸120um,泡孔密度4.18×104cells/cm3。
N2发泡材料密度随放置时间的变化曲线见图2。
对比例2:
将TPU板材放入二氧化碳超临界反应釜中,釜中温度155℃,压力18Mpa,饱和2h,泄压后得到发泡弹性体样品,刚发出来产品密度为0.108g/cm3,放置3h后密度为0.254g/cm3,收缩后板材表面有很多皱纹,丧失了原本的弹性和低密度等性能,收缩后照片见图3,CO2发泡材料密度随放置时间的变化曲线见图4。
实施例1:
将TPU板材放入超临界反应釜中,通入二氧化碳进行饱和,饱和压力10MPa,饱和温度140℃,饱和2小时,之后迅速释放压力,得到密度为0.461g/cm3的发泡中间产品,将发泡中间产品放入超临界反应釜内,通入氮气进行饱和,饱和压力为22MPa,饱和温度为160℃,饱和4小时,饱和完后迅速释放压力,得到密度为0.088g/cm3的发泡产品,放置6h后最终密度为0.092g/cm3,回弹为75%,泡孔尺寸97um,泡孔密度2.82×107cells/cm3。
实施例2
将TPEE板材放入超临界反应釜中,通入二氧化碳进行饱和,饱和压力10MPa,饱和温度130℃,饱和2小时,之后迅速释放压力,得到密度为0.362g/cm3的发泡中间产品,将发泡中间产品放入超临界反应釜内,通入氮气进行饱和,饱和压力为22MPa,饱和温度为150℃,饱和4小时,饱和完后迅速释放压力,得到密度为0.068g/cm3的发泡产品,放置6h后最终密度为0.071g/cm3,回弹为83%。
实施例3:
将PEBAX鞋中底板材放入超临界反应釜中,通入二氧化碳进行饱和,饱和压力10MPa,饱和温度125℃,饱和2小时,之后迅速释放压力,得到密度为0.358g/cm3的发泡中间产品,将发泡中间产品放入超临界反应釜内,通入氮气进行饱和,饱和压力为22MPa,饱和温度为145℃,饱和6小时,饱和完后迅速释放压力,得到密度为0.060g/cm3的发泡产品,放置6h后最终密度为0.063g/cm3,回弹为85%。
实施例4:
将TPU/TPEE共混后的鞋中底板材(其中TPU占比80%,TPEE占比20%)放入超临界反应釜中,通入二氧化碳进行饱和,饱和压力12MPa,饱和温度138℃,饱和3小时,之后迅速释放压力,得到密度为0.403g/cm3的发泡中间产品,将发泡中间产品放入超临界反应釜内,通入氮气进行饱和,饱和压力为24MPa,饱和温度为150℃,饱和6小时,饱和完后迅速释放压力,得到密度为0.086g/cm3的发泡产品,放置6h后最终密度为0.089g/cm3,回弹为77%。
实施例5:
将TPU/PEBAX共混后的板材(其中TPU占比75%,PEBAX占比25%)放入超临界反应釜中,通入二氧化碳进行饱和,饱和压力11MPa,饱和温度132℃,饱和2小时,之后迅速释放压力,得到密度为0.384g/cm3的发泡中间产品,将发泡中间产品放入超临界反应釜内,通入氮气进行饱和,饱和压力为25MPa,饱和温度为148℃,饱和6小时,饱和完后迅速释放压力,得到密度为0.081g/cm3的发泡产品,放置6h后最终密度为0.084g/cm3,回弹为79%。
实施例6:
将TPEE/TPU共混后的板材(其中TPEE占比60%,TPU占比40%)放入超临界反应釜中,通入二氧化碳进行饱和,饱和压力11MPa,饱和温度130℃,饱和2小时,之后迅速释放压力,得到密度为0.426g/cm3的发泡中间产品,将发泡中间产品放入超临界反应釜内,通入氮气进行饱和,饱和压力为25MPa,饱和温度为148℃,饱和6小时,饱和完后迅速释放压力,得到密度为0.075g/cm3的发泡产品,放置6h后最终密度为0.078g/cm3,回弹为80%。
实施例7:
将TPEE/PEBAX共混后的板材(其中TPEE占比50%,PEBAX占比50%)放入超临界反应釜中,通入二氧化碳进行饱和,饱和压力14MPa,饱和温度125℃,饱和2小时,之后迅速释放压力,得到密度为0.311g/cm3的发泡中间产品,将发泡中间产品放入超临界反应釜内,通入氮气进行饱和,饱和压力为28MPa,饱和温度为140℃,饱和6小时,饱和完后迅速释放压力,得到密度为0.058g/cm3的发泡产品,放置6h后最终密度为0.061g/cm3,回弹为85%。
上述实施例和图式并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。
Claims (7)
- 一种超轻热塑性弹性体发泡材料的制备工艺,其特征在于,包括如下步骤:①将热塑性聚氨酯弹性体放入第一反应釜中,通入二氧化碳进行第一次超临界发泡,经释压后,得到发泡中间产品;②将发泡中间产品放入第二反应釜中,通入氮气进行第二次超临界发泡,经释压后得到密度为0.05-0.1g/cm3的发泡产品。
- 如权利要求1所述的一种超轻热塑性弹性体发泡材料的制备工艺,其特征在于,所述热塑性聚氨酯弹性体为TPU、TPEE、PEBAX、TPU/PEBAX共混物、TPU/TPEE共混物或TPEE/PEBAX共混物挤出、模压或者注塑形成的片材。
- 如权利要求1所述的一种超轻热塑性弹性体发泡材料的制备工艺,其特征在于,第一次超临界发泡中的饱和压力、饱和温度和饱和时间均小于第二次超临界发泡的饱和压力、饱和温度和饱和时间。
- 如权利要求3所述的一种超轻热塑性弹性体发泡材料的制备工艺,其特征在于,第一次超临界发泡的饱和温度为100℃~160℃,饱和压力为7-10Mpa,饱和时间为0.5-4h;第二次超临界发泡的饱和温度为120℃~170℃,饱和压力为10-30Mpa,饱和时间为2-10h。
- 如权利要求4所述的一种超轻热塑性弹性体发泡材料的制备工艺,其特征在于,第一次超临界发泡时,TPEE材料二氧化碳的饱和温度为110-130℃,TPU二氧化碳的饱和温度为140-160℃,PEBAX二氧化碳饱和温度为100-130℃,混合物的温度范围在两者混合物的温度范围之间。
- 如权利要求4所述的一种超轻热塑性弹性体发泡材料的制备工艺,其特征在于,第二次超临界发泡时,TPEE氮气的饱和温度为120-150℃,TPU氮气的饱和温度为140-170℃,PEBAX氮气的饱和温度为120-150℃,混合物的温度范围在两者混合物的温度范围之间。
- 如权利要求1所述的一种超轻热塑性弹性体发泡材料的制备工艺,其特征在于,所述发泡中间产品的密度为0.3~0.5g/cm3。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010406242.6 | 2020-05-14 | ||
CN202010406242.6A CN111718514A (zh) | 2020-05-14 | 2020-05-14 | 一种超轻热塑性弹性体发泡材料的制备工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021227613A1 true WO2021227613A1 (zh) | 2021-11-18 |
Family
ID=72564436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/079190 WO2021227613A1 (zh) | 2020-05-14 | 2021-03-29 | 一种超轻热塑性弹性体发泡材料的制备工艺 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111718514A (zh) |
WO (1) | WO2021227613A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114196168A (zh) * | 2021-12-29 | 2022-03-18 | 安踏(中国)有限公司 | 一种tpee发泡鞋底的制备方法 |
CN114872399A (zh) * | 2022-05-06 | 2022-08-09 | 江苏中科聚合新材料产业技术研究院有限公司 | 一种超临界夹心聚芳醚酮发泡板材及其制备方法 |
CN115232350A (zh) * | 2022-04-01 | 2022-10-25 | 莆田市百合鞋业有限公司 | 一种制备低后收缩弹性体泡沫的方法 |
CN115850954A (zh) * | 2022-11-22 | 2023-03-28 | 东莞海瑞斯新材料科技有限公司 | 一种超临界发泡热塑性弹性体材料及其制备方法与应用 |
CN115926237A (zh) * | 2022-12-27 | 2023-04-07 | 福建创合新材料科技有限公司 | 一种发泡材料及其发泡工艺和应用 |
CN116769299A (zh) * | 2023-05-12 | 2023-09-19 | 泉州西米露新材料科技有限公司 | 一种超临界氮气物理发泡材料及其制备工艺和应用 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111718514A (zh) * | 2020-05-14 | 2020-09-29 | 福建兴迅新材料科技有限公司 | 一种超轻热塑性弹性体发泡材料的制备工艺 |
CN115216106B (zh) * | 2022-02-21 | 2023-09-22 | 道一高分子聚合物(宁波)有限公司 | 一种耐磨防滑新型超临界发泡材料的制备工艺 |
CN115260565A (zh) * | 2022-08-15 | 2022-11-01 | 青岛科技大学 | 一种tpee泡沫及其制备工艺 |
CN115975244A (zh) * | 2022-12-27 | 2023-04-18 | 福建创合新材料科技有限公司 | 一种超轻弹泡沫材料及其发泡工艺 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107108939A (zh) * | 2016-12-02 | 2017-08-29 | 东莞海锐思高分子材料科技有限公司 | 制备发泡结构体的方法 |
CN107177051A (zh) * | 2017-06-05 | 2017-09-19 | 杭州博适特新材料科技有限公司 | 制备热塑性弹性体发泡珠粒的方法 |
CN110524781A (zh) * | 2019-09-02 | 2019-12-03 | 厦门市锋特新材料科技有限公司 | 一种tpu片材发泡工艺 |
CN111718514A (zh) * | 2020-05-14 | 2020-09-29 | 福建兴迅新材料科技有限公司 | 一种超轻热塑性弹性体发泡材料的制备工艺 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9963566B2 (en) * | 2013-08-02 | 2018-05-08 | Nike, Inc. | Low density foamed articles and methods for making |
CN107099129B (zh) * | 2017-05-05 | 2019-10-18 | 宁波格林美孚新材料科技有限公司 | 一种复合热塑性聚氨酯弹性体发泡材料的成型工艺 |
CN107325317A (zh) * | 2017-07-17 | 2017-11-07 | 美瑞新材料股份有限公司 | 一种低密度发泡热塑性聚氨酯弹性体及其制备方法 |
CN108081652B (zh) * | 2018-01-08 | 2020-10-27 | 晋江兴迅新材料科技有限公司 | 一种超临界发泡鞋底的制备工艺 |
CN110305359B (zh) * | 2019-07-31 | 2024-06-11 | 苏州申赛新材料有限公司 | 一种使用超临界流体制备发泡粒子的装置 |
CN110776724B (zh) * | 2019-10-23 | 2022-02-25 | 青岛科技大学 | 一种功能性弹性发泡材料及其制备方法和应用 |
-
2020
- 2020-05-14 CN CN202010406242.6A patent/CN111718514A/zh active Pending
-
2021
- 2021-03-29 WO PCT/CN2021/079190 patent/WO2021227613A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107108939A (zh) * | 2016-12-02 | 2017-08-29 | 东莞海锐思高分子材料科技有限公司 | 制备发泡结构体的方法 |
CN107177051A (zh) * | 2017-06-05 | 2017-09-19 | 杭州博适特新材料科技有限公司 | 制备热塑性弹性体发泡珠粒的方法 |
CN110524781A (zh) * | 2019-09-02 | 2019-12-03 | 厦门市锋特新材料科技有限公司 | 一种tpu片材发泡工艺 |
CN111718514A (zh) * | 2020-05-14 | 2020-09-29 | 福建兴迅新材料科技有限公司 | 一种超轻热塑性弹性体发泡材料的制备工艺 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114196168A (zh) * | 2021-12-29 | 2022-03-18 | 安踏(中国)有限公司 | 一种tpee发泡鞋底的制备方法 |
CN114196168B (zh) * | 2021-12-29 | 2023-04-21 | 安踏(中国)有限公司 | 一种tpee发泡鞋底的制备方法 |
CN115232350A (zh) * | 2022-04-01 | 2022-10-25 | 莆田市百合鞋业有限公司 | 一种制备低后收缩弹性体泡沫的方法 |
CN114872399A (zh) * | 2022-05-06 | 2022-08-09 | 江苏中科聚合新材料产业技术研究院有限公司 | 一种超临界夹心聚芳醚酮发泡板材及其制备方法 |
CN115850954A (zh) * | 2022-11-22 | 2023-03-28 | 东莞海瑞斯新材料科技有限公司 | 一种超临界发泡热塑性弹性体材料及其制备方法与应用 |
CN115926237A (zh) * | 2022-12-27 | 2023-04-07 | 福建创合新材料科技有限公司 | 一种发泡材料及其发泡工艺和应用 |
CN116769299A (zh) * | 2023-05-12 | 2023-09-19 | 泉州西米露新材料科技有限公司 | 一种超临界氮气物理发泡材料及其制备工艺和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN111718514A (zh) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021227613A1 (zh) | 一种超轻热塑性弹性体发泡材料的制备工艺 | |
WO2012048503A1 (zh) | 聚烯烃微孔膜的形成方法及其应用 | |
CN108047544A (zh) | 一种超轻eva复合发泡材料及其制备方法 | |
CN111019183B (zh) | 一种微交联弹性体发泡材料、其制备方法和应用 | |
CN109734955B (zh) | 一种极性聚合物负泊松比泡沫材料及其制备方法 | |
US3950278A (en) | Process for producing a crosslinked foam of polyolefin resin having open cells | |
CN112851998A (zh) | 一种高倍率尼龙6发泡材料及其制备方法 | |
CN114196168A (zh) | 一种tpee发泡鞋底的制备方法 | |
CN112795080B (zh) | Eva/ldpe超临界固态发泡材料及其制备方法 | |
CN111704755A (zh) | 一种具有气泡内壁壳橡胶发泡材料的制备方法 | |
US3222304A (en) | Expandable polyethylene | |
CN111303548B (zh) | 一种ps/tpu超临界发泡复合材料及其制备方法 | |
CN115772294B (zh) | 一种抗冲击改性聚丙烯及其制备方法 | |
JPS6042432A (ja) | 発泡粒子 | |
WO2021039864A1 (ja) | 非水電解液電池用部材 | |
CN114539653A (zh) | 一种防静电珍珠棉包装材料 | |
JPS62240308A (ja) | 橋かけシラン−官能性塩化ビニリデン重合体及びそれからのフイルム又は発泡体 | |
CN116656035B (zh) | 一种射出高倍率改性聚酯tpee发泡材料 | |
CN114381062B (zh) | 一种基于cns复合导电剂的智能压力感知弹性体发泡材料 | |
JPH0222354A (ja) | 形状記憶性樹脂組成物 | |
CN115746440B (zh) | 一种eva耐磨鞋底及其制备方法 | |
CN114044974B (zh) | 一种免火焰处理高发泡倍率聚丙烯发泡材料及其制备方法 | |
CN115216046B (zh) | 一种可降解抗静电复合bopp消光膜 | |
CN118185251A (zh) | 一种高倍率pbat基发泡材料及其制备方法 | |
CN117774212A (zh) | 基于熔体强度促进剂的热塑性弹性体发泡方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21805251 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21805251 Country of ref document: EP Kind code of ref document: A1 |