CN114381062B - 一种基于cns复合导电剂的智能压力感知弹性体发泡材料 - Google Patents

一种基于cns复合导电剂的智能压力感知弹性体发泡材料 Download PDF

Info

Publication number
CN114381062B
CN114381062B CN202210018950.1A CN202210018950A CN114381062B CN 114381062 B CN114381062 B CN 114381062B CN 202210018950 A CN202210018950 A CN 202210018950A CN 114381062 B CN114381062 B CN 114381062B
Authority
CN
China
Prior art keywords
cns
pressure
foaming
elastomer
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210018950.1A
Other languages
English (en)
Other versions
CN114381062A (zh
Inventor
蒋璠晖
张珊珊
何若虚
宋新意
史亚杰
熊业志
曾佳
刘缓缓
高浩瑞
朱民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Hi Tec Environmental Material Co ltd
Original Assignee
Wuxi Hi Tec Environmental Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Hi Tec Environmental Material Co ltd filed Critical Wuxi Hi Tec Environmental Material Co ltd
Priority to CN202210018950.1A priority Critical patent/CN114381062B/zh
Publication of CN114381062A publication Critical patent/CN114381062A/zh
Application granted granted Critical
Publication of CN114381062B publication Critical patent/CN114381062B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种基于CNS复合导电剂的智能压力感知弹性体发泡材料,含有以下组份:1~30质量份聚烯烃树脂、70~99质量份热塑性弹性体、0.01~3质量份分散剂、0.01~2质量份成核剂以及质量含量不超过其导电阈值的多分枝纳米碳束复合导电剂(CNS复合导电剂),所述CNS复合导电剂为原位聚合CNS/导电高分子材料复合导电剂,所述原位聚合CNS/导电高分子材料复合导电剂是将CNS与导电高分子材料的单体溶液分散均匀后通过原位聚合反应制得的。由该智能压力感知弹性体发泡材料制得的制品可以在不同外力作用下,释放出不同的电信号,可以被用来制备传感器、探测器等高端电子器件,运用在智能机械臂、抓取臂、机器人、智能穿戴设备等智能感知设备上。

Description

一种基于CNS复合导电剂的智能压力感知弹性体发泡材料
技术领域
本发明涉及智能压力感知弹性体发泡材料,属于智能材料领域,具体涉及一种在不同外力作用下,表现出不同电信号的弹性体发泡材料。
背景技术
随着科技的进步,各种不同类型的智能高分子材料正在源源不断地涌现。智能高分子材料可以在不同的外界信号刺激作用下,产生独特的反馈:比如在光、电场、磁场、外力等不同因素的刺激下,材料产生一定程度的形变或色变;在外界刺激停止后,材料又恢复到最初的状态。我们熟知的智能感应材料就是运用的上述原理。智能材料由于具有对光、电、磁、力等外界因素的反馈能力,可以被用来制备传感器、探测器等高端电子器件,运用在智能机械臂、抓取臂和机器人等智能感知设备上。
发泡高分子材料的最大特点是轻量化、弹性、缓冲、隔音性能优异,但目前对结合了智能特性的发泡高分子材料的研究和应用却几乎没有。传统的刚性结构机械手(包括机械夹器和机械钳具)具有更换成本高、控制算法复杂等问题。特别是在抓取易破、易碎的异形件物体时,由于缺乏有效、灵敏的力反馈,容易夹破和损坏被抓取物体。在此场景中,如果可以使用具备对外力有感知能力的发泡材料来制备柔性机械手,就可以解决这一问题。智能发泡材料会根据机械手对被抓取物品产生的压力大小,产生不同的电信号并同时反馈给中央控制器;中央控制器再根据电信号进行计算,并输出适合的抓力,在提高机械手对被抓物体贴附力精度的同时,减少因为抓力过大而损坏被抓取物体的风险。又例如,为创造出更好的成绩,田径、篮球、足球运动员对运动鞋性能的要求越来越高。用此类智能感知弹性体发泡材料制作的鞋垫,可以测量出不同运动员在跑、跳过程中,脚底不同部位产生的不同压力,并以电信号的形式输出给数据处理器。数据处理器根据接收到的信号,可建模并分析脚底不同部位(前脚左\右区掌、脚中掌、脚后跟等)需要提供的适合的缓冲及回弹力,从而为运动鞋设计师设计个性化、差异化且性能优异的运动鞋提供数据基础。
因此,开发智能压力感知发泡材料十分重要。
发明内容
本发明提供一种基于CNS复合导电剂的智能压力感知弹性体发泡材料及其应用。该发泡材料可以在不同外加压力作用下,释放出不同的电信号。当外加压力增大时,电信号增强;反之,当外加压力减少或消失时,电信号也随之减弱或消失。该智能压力感知发泡材料可以被当作压力传感器来使用。
为实现上述目的,本发明提供如下技术方案:一种基于CNS复合导电剂的智能压力感知弹性体发泡材料,含有以下组份:1~30质量份聚烯烃树脂、70~99质量份热塑性弹性体、0.01~3质量份分散剂、0.01~2质量份成核剂以及质量含量不超过其导电阈值的多分枝分枝纳米碳束复合导电剂(CNS复合导电剂),所述CNS复合导电剂为原位聚合CNS/导电高分子材料复合导电剂,所述原位聚合CNS/导电高分子材料复合导电剂是将CNS与导电高分子材料的单体溶液分散均匀后通过原位聚合反应制得的。
由于需要保证材料在外界不同压力下产生不同的导电性,所以添加的CNS复合导电剂的量应略少于或等于材料的导电阈值(即,在不施加外力的情况下,材料导电时,导电剂的最少添加量)。例如,当没有外界压力时,发泡材料没有发生形变,导电剂之间没有(或极少量)相互接触,不(或极少量)形成“导电通路”,没有(或较弱)导电性;当压力开始作用于发泡材料时,材料开始发生形变,更多的导电剂相互接触,发泡材料具备一定的导电能力并产生相对应的电信号;当外界压力继续增加时,发泡材料的形变进一步增大,相互接触的导电剂数量进一步增加,材料的导电能力进一步增强并能输出强电信号;最后当外界压力撤除时,由于发泡材料本身具有较好的回弹性能,材料的形变消失,导电剂又回到最初非(或极少量)接触的状态,材料又显现出绝缘(或较弱导电)性能。此外,导电剂的添加量不能过多,否则会导致材料在没有受到外界压力的情况下,依然具备较好的导电性能。当外力增大,材料随之所产生的形变增大时,材料的导电性无法进一步增加,无法输出差异化的电信号,使得材料不具备“感知”外力大小的能力。
CNS复合导电剂富含大量“树杈状”碳纳米管多分枝结构。导电炭黑、直管状碳纳米管、导电高分子材料、金属纳米材料等普通导电剂,需要添加相对较多的量才能保证它们之间相互接触,在高分子基材中形成闭合的“导电路通”,使电子可以在“导电通路”中自由移动;CNS复合导电剂由于本身特殊的“树主干-树分枝”结构,在少量添加时,可通过“枝干-枝干”、“枝干-主干”、“主干-主干”的相互连接,增加接触点机率,来形成完整的“电通路”,使材料具备导电性能。同时,大量导电高分子材料像“树叶”一样分布在“树杈状”的碳纳米管多分枝结构中,通过协同效应,进一步提高了材料的导电性能。并且,通过原位聚合反应制得的导电高分子材料均匀包覆在CNS的“树杈状”多分枝结构表面,使得CNS与导电高分子材料的复合材料更稳定,不容易产生团聚,与基体树脂的相容性更好,在基体树脂中分散更均匀,有利于提高材料“感知”外力大小的能力。
进一步的,所述CNS与导电高分子材料的复合材料的制备方法包括如下步骤:
步骤a:将CNS加入酸溶液中分散,分散均匀后用蒸馏水洗涤溶液至中性并过滤,干燥后得到CNS固体;所述酸溶液可以为硝酸和硫酸的混合溶液,体积比为1:3;
步骤b:将FeCl3·6H2O加入蒸馏水中搅拌均匀,制成浓度为0.8~1mol/L的FeCl3溶液;
步骤c:将正丁醇与正己烷混合,配制成均匀的溶液,将十二烷基苯磺酸钠溶解到正丁醇与正己烷的混合溶液中,搅拌均匀;
步骤d:在步骤c的含有十二烷基苯磺酸钠的正丁醇与正己烷的混合溶液中加入导电高分子材料的单体,导电高分子材料的单体:正丁醇:正己烷的体积比约为1:10:60,搅拌1小时,随后加入步骤a得到的CNS固体,并持续地缓慢搅拌;
步骤e:在步骤d中缓慢加入步骤b得到的FeCl3溶液,室温反应15~30小时;
步骤f:用蒸馏水清洗步骤e的混合溶液,过滤并干燥,得到CNS与导电高分子材料的复合材料;
进一步的,所述导电高分子材料为聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚亚苯甲基中的一种或几种混合。
进一步的,所述聚烯烃树脂为均聚聚丙烯、聚乙烯、乙丙共聚物、丙烯-丁烯共聚物中的一种或几种共混。为保证发泡后材料具有必要的力学强度和优异的弹性,优选聚乙烯或乙丙共聚物,弹性模量≤700MPa,缺口冲击强度≥3.5kJ/m2(23℃),熔点与维卡软化点之差不超过60℃。
进一步的,所述热塑性弹性体为乙烯-醋酸乙烯共聚物弹性体、聚酰胺类弹性体(包括C6和C12聚酰胺类弹性体)、聚酯基弹性体、聚苯乙烯基弹性体、乙烯-丙烯无规或嵌段共聚物弹性体、乙烯-辛烯无规或嵌段共聚物弹性体中的一种或几种共混。优选为乙烯-辛烯无规或嵌段共聚物弹性体。相对于其他弹性体材料,乙烯-辛烯无规或嵌段共聚物弹性体与聚乙烯类基材由于都含有乙烯链段的重复单元,两者有较好的相容性;更重要的是,乙烯-辛烯无规或嵌段共聚物弹性体具有较好的弹性形变和回复性,在外力反复施加的过程中,产生的不可回复的永久压缩形变较少,使用周期更长。
进一步的,所述分散剂为马来酸酐接枝聚合物。马来酸酐接枝聚合物一端亲和CNS复合导电剂,另一端亲和有机高分子机体。这可以提高CNS复合导电剂在高分子基材中的分散性,减少团聚,提高在少量添加导电剂时的导电性能。
进一步的,所述成核剂为碳酸钙、蒙脱土、氯化钠、氯化钾、硼酸锌、玻璃纤维等中的一种或几种混合。成核剂可以在材料发泡过程中,作为泡核,起异相成核的作用。在有效降低发泡压力的同时,使得泡孔的尺寸更加均匀。
进一步的,所述发泡材料还含有0.01~3质量份润滑剂,所述润滑剂为小分子聚乙烯蜡、白油、芥酸酰胺、油酸酰胺、滑石粉等中的一种或几种混合。润滑剂可以提高物料的挤出加工流动性能。还可以根据实际需要添加着色剂、阻燃剂等助剂。
一种智能压力感知弹性体发泡材料的制备方法,包括如下步骤:
步骤一:将配方量的聚烯烃树脂、热塑性弹性体、分散剂、成核剂以及CNS复合导电剂充分混合均匀后,投入到挤出机中进行造粒;
步骤二:将步骤一制得的微粒分散到去离子水中,加入到一个密闭的、带有搅拌功能的高压发泡釜中;
步骤三:加热高压发泡釜,同时,缓慢向高压发泡釜内通入二氧化碳气体,并持续搅拌物料,使物料与二氧化碳充分接触;
步骤四:待温度和压力上升到设定值后,等温等压一定时间,使微粒与二氧化碳形成均相状态,随后,瞬间将高压发泡釜内的微粒排出至常温、常压环境中进行发泡,由于瞬间的巨大压差,二氧化碳与微粒产生相分离,微粒内部产生泡孔并生长,与此同时,微粒逐渐受冷固化,泡孔生长到一定大小后被冷却定形,从而获得发泡珠粒;
步骤五:将上述发泡珠粒在常温常压环境中充分静置,达到发泡珠粒内、外压平衡后,将其加入到蒸汽模压成型机中,通入适量的热蒸汽进行成型,此时,得到发泡珠粒表面相互熔融粘接,但内部依然保持完整泡孔结构的发泡制件,随后通入冷水对发泡制件进行冷却并开模脱模,获得智能压力感知弹性体发泡材料。
进一步的,所述制备方法还可包括步骤六:将步骤五获得的智能压力感知弹性体发泡材料放在温度为60~80℃的烘房中6~12小时,稳定发泡制品的外形尺寸,减少因为收缩带来的尺寸偏差。
进一步的,步骤一的挤出温度为160~260℃,螺杆转速为300~1000r/min,挤出微粒的长度为2.0~4.0mm,单重为1.0~3.0mg。
进一步的,步骤四中根据所需的发泡倍率和密度,温度设定值为120-170℃,压力设定值为2-5MPa,达到发泡设定温度和压力后,等温等压维持3~30min。
进一步的,根据蒸汽成型机中使用的模具大小和形状复杂程度不同,步骤五中成型时,使用的蒸汽压力为0.2~4kg,蒸汽作用于发泡珠粒的时间为2~20s,水冷时间为60~200s。
本发明的有益效果为:
通过本发明制备的智能压力感应弹性体发泡材料及制品具有对外界压力产生不同电信号反馈的能力:当没有外界压力时,智能弹性体发泡材料没有导电性(或导电性能较差),不产生(或产生较弱)电信号;当不同的压力大小作用于智能弹性体发泡材料时,材料具有不同的导电性并输出不同强度的电信号;当外界压力撤除时,智能弹性发泡材料又可以恢复到绝缘(弱导电性)的状态。同时,也可以通过对材料在不同状态下导电性能的调整,使其产生对不同拉伸力的不同电信号反馈。
当这种智能弹性体发泡材料与数据处理器的结合后,可以被制备成智能检测控制设备。此类设备具有对不同外界环境,产生不同反馈应对措施的能力:比如智能柔性机械抓取手臂、仿生感应反馈智能装备、自适应调控器械等,这些都将在未来的智能制造、高端装备等领域发挥重要的作用。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明智能压力感知弹性体发泡材料在受到外力时产生电信号的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
在双螺杆挤出机中加入混合均匀的30质量份聚乙烯(PE)、70质量份热塑性弹性体(POE)、2质量份CNS与导电高分子材料的复合导电剂、2质量份马来酸酐接枝聚乙烯(MAH-g-PE)、0.5质量份聚乙烯蜡、0.01质量份碳酸钙。在180~220℃下进行挤出造粒,得到长度为2.0~4.0mm,单重为1.0~3.0mg的弹性体微粒。
取100质量份上述弹性体微粒,300质量份去离子水,0.5质量份高岭土和0.3质量份黄油,加入到高压发泡釜中并升温升压搅拌。当温度和压力升高到120-170℃和2-5MPa时,等温等压10mins后迅速泄压,制得弹性发泡珠粒材料。
将上述制得的弹性体发泡珠粒材料在蒸汽模压成型设备中成型,得到具有电反馈效应的智能弹性体发泡材料。
实施例1(E1)以及对比例1-7(C1-7)中的主要成分和检测结果如表1所示。其中,E1、C1-C4采用不同的导电剂,E1采用原位聚合CNS/聚吡咯复合导电剂(原位聚合CNS/PPy),C1采用CNS与聚吡咯的共混复合导电剂(共混CNS/PPy),C2采用CNS与圆球状导电炭黑颗粒的共混复合导电剂(共混CNS/CB,其中CNS与CB质量比为8:2,CB粒径为0.1~10微米),C3采用CNS与纳米金属银线的共混复合导电剂(共混CNS/Ag-NW,其中CNS与Ag-NW质量比为8:2,Ag-NW长度为300~500纳米),C4采用CNS与纳米金属银粒子的共混复合导电剂(共混CNS/Ag-NP,其中CNS与Ag-NP质量比为8:2,Ag-NP粒径为50~100纳米);C5、C6的原位聚合CNS/PPy导电剂含量与E1不同,C7为含有原位聚合CNS/PPy导电剂但不含热塑性弹性体的发泡材料。
表1
通过特定的发泡温度和压力,可以制备得到轻量化的发泡材料。以实施例1为例,在未受到外界压力时,添加了原位聚合CNS/PPy导电剂的发泡制件的表面电阻为106~7Ω/m2;当外界给予材料一定的压力,使其产生20%的形变时(厚度方向压缩20%),单位体积内CNS/PPy导电剂的浓度升高,接触点增多,导电通路增加,表面电阻减少为104~5Ω/m2;当进一步增大压力使得制件的压缩形变为40%时,表面电阻进一步减少为103~4Ω/m2;撤除外力后,发泡制件又恢复到最初的形态,单位体积内的CNS/PPy导电剂浓度又减少到原先较少量的状态,导电通路减少,制件的表面电阻又增加到106~7Ω/m2。这使得发泡材料具备感应不同外力并输出相对应的电信号的能力。
实施例1和对比例C1-C4中,通过添加不同的导电剂,来研究导电剂对材料导电性能的影响。相比于普通共混CNS/PPy、共混CNS/CB、共混CNS/Ag-NW或共混CNS/Ag-NP,原位聚合CNS/PPy添加在发泡弹体中具有更高的导电性能。原因是PPy能更好的分散在“树杈状”CNS的表面,不易形成团聚,导电协同作用更明显。
为了使得发泡弹性体材料具有灵敏的外力感知能力,添加的PPy/CNS复合导电剂要适量(实施例1),如果添加太少(对比例5),即使较大的外力使材料产生较大的弹性形变,材料的表面电阻也都无穷大,没有电信号输出;如果添加太多(对比例6),材料内部的“导电通路”太过完善,在不同外力下产生不同的弹性形变时,材料都表现出同一表面电阻值,这也就丧失了识别不同外力的能力,材料达不到智能的效果。
实施例1中由于添加了热塑性弹性体,发泡材料具有更好的回弹性能,这保证材料在反复压缩后依然具有较好的形状回复能力,灵敏度不会严重衰减,适用于智能机械手臂、传感器等领域。对比例7中未添加热塑性弹性体,材料在压缩后未恢复到最初的状态,表面电阻与最初状态存在较大差异。可以预见的是,未添加弹性体的发泡材料在经过多次、反复压缩后,材料在对不同外力时,输出的电信号差异度减弱,灵敏度降低。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于CNS复合导电剂的智能压力感知弹性体发泡材料,其特征在于,含有以下组份:30质量份聚烯烃树脂、70质量份热塑性弹性体、0.01~3质量份分散剂、0.01~2质量份成核剂以及2质量份多分枝纳米碳束复合导电剂,即CNS复合导电剂,所述CNS复合导电剂为原位聚合CNS/导电高分子材料复合导电剂,所述导电高分子材料为聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚亚苯甲基中的一种或几种混合,所述原位聚合CNS/导电高分子材料复合导电剂是将CNS与导电高分子材料的单体溶液分散均匀后通过原位聚合反应制得的;所述发泡材料在未受到外界压力时,表面电阻为106~7 Ω/m2;当外界压力使所述发泡材料产生厚度方向压缩20%的形变时,其表面电阻为104~5 Ω/m2;当外界压力使所述发泡材料产生厚度方向压缩40%的形变时,其表面电阻为103~4 Ω/m2
2.根据权利要求1所述的基于CNS复合导电剂的智能压力感知弹性体发泡材料,其特征在于,所述聚烯烃树脂为均聚聚丙烯、聚乙烯、乙丙共聚物、丙烯-丁烯共聚物中的一种或几种共混。
3.根据权利要求1所述的基于CNS复合导电剂的智能压力感知弹性体发泡材料,其特征在于,所述热塑性弹性体为乙烯-醋酸乙烯共聚物弹性体、聚酰胺类弹性体、聚酯基弹性体、聚苯乙烯基弹性体、乙烯-丙烯无规或嵌段共聚物弹性体、乙烯-辛烯无规或嵌段共聚物弹性体中的一种或几种共混。
4.根据权利要求1所述的基于CNS复合导电剂的智能压力感知弹性体发泡材料,其特征在于,所述分散剂为马来酸酐接枝聚合物。
5.根据权利要求1所述的基于CNS复合导电剂的智能压力感知弹性体发泡材料,其特征在于,所述成核剂为碳酸钙、蒙脱土、氯化钠、氯化钾、硼酸锌、玻璃纤维中的一种或几种混合。
6.根据权利要求1所述的基于CNS复合导电剂的智能压力感知弹性体发泡材料,其特征在于,所述发泡材料还含有0.01~3质量份润滑剂,所述润滑剂为小分子聚乙烯蜡、白油、芥酸酰胺、油酸酰胺、滑石粉中的一种或几种混合。
7.根据权利要求1所述的基于CNS复合导电剂的智能压力感知弹性体发泡材料的制备方法,其特征在于,包括如下步骤:
步骤一:将配方量的聚烯烃树脂、热塑性弹性体、分散剂、成核剂以及CNS复合导电剂充分混合均匀后,投入到挤出机中进行造粒;
步骤二:将步骤一制得的微粒分散到去离子水中,加入到一个密闭的、带有搅拌功能的高压发泡釜中;
步骤三:加热高压发泡釜,同时,缓慢向高压发泡釜内通入二氧化碳气体,并持续搅拌物料,使物料与二氧化碳充分接触;
步骤四:待温度和压力上升到设定值后,等温等压一定时间,使微粒与二氧化碳形成均相状态,随后,瞬间将高压发泡釜内的微粒排出至常温、常压环境中进行发泡,获得发泡珠粒;
步骤五:将上述发泡珠粒在常温常压环境中充分静置,达到发泡珠粒内、外压平衡后,将其加入到蒸汽模压成型机中,进行成型,随后冷却、脱模,获得智能压力感知弹性体发泡材料。
8.根据权利要求1-6任一项所述的基于CNS复合导电剂的智能压力感知弹性体发泡材料用于制备压力传感器、柔性机械手、智能机器人、智能穿戴设备的用途。
CN202210018950.1A 2022-01-06 2022-01-06 一种基于cns复合导电剂的智能压力感知弹性体发泡材料 Active CN114381062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210018950.1A CN114381062B (zh) 2022-01-06 2022-01-06 一种基于cns复合导电剂的智能压力感知弹性体发泡材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210018950.1A CN114381062B (zh) 2022-01-06 2022-01-06 一种基于cns复合导电剂的智能压力感知弹性体发泡材料

Publications (2)

Publication Number Publication Date
CN114381062A CN114381062A (zh) 2022-04-22
CN114381062B true CN114381062B (zh) 2023-09-12

Family

ID=81200692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210018950.1A Active CN114381062B (zh) 2022-01-06 2022-01-06 一种基于cns复合导电剂的智能压力感知弹性体发泡材料

Country Status (1)

Country Link
CN (1) CN114381062B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032322A (ja) * 2009-07-30 2011-02-17 Kitagawa Ind Co Ltd 感圧導電性材料
JP2013213103A (ja) * 2012-03-30 2013-10-17 Sekisui Chem Co Ltd 発泡体、及び発泡体の製造方法
CN107118538A (zh) * 2017-05-05 2017-09-01 宁波格林美孚新材料科技有限公司 一种热塑性弹性体/导电纤维复合发泡材料的制备方法
CN107629443A (zh) * 2017-08-04 2018-01-26 浙江新恒泰新材料有限公司 具有压敏特性的微孔发泡导电热塑性弹性体材料及其生产方法
TW202146560A (zh) * 2020-04-20 2021-12-16 美商畢揚羅特斯公司 具有碳奈米結構填料之彈性體組合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032322A (ja) * 2009-07-30 2011-02-17 Kitagawa Ind Co Ltd 感圧導電性材料
JP2013213103A (ja) * 2012-03-30 2013-10-17 Sekisui Chem Co Ltd 発泡体、及び発泡体の製造方法
CN107118538A (zh) * 2017-05-05 2017-09-01 宁波格林美孚新材料科技有限公司 一种热塑性弹性体/导电纤维复合发泡材料的制备方法
CN107629443A (zh) * 2017-08-04 2018-01-26 浙江新恒泰新材料有限公司 具有压敏特性的微孔发泡导电热塑性弹性体材料及其生产方法
TW202146560A (zh) * 2020-04-20 2021-12-16 美商畢揚羅特斯公司 具有碳奈米結構填料之彈性體組合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
碳纳米管/导电聚合物纳米复合物的合成与表征;哈恩华 等;《材料工程》(第10期);第122-125页 *

Also Published As

Publication number Publication date
CN114381062A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Jing et al. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry
Chen et al. Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor
Liu et al. Tough, antifreezing, and conductive double network zwitterionic-based hydrogel for flexible sensors
Sun et al. Fast self-healing zwitterion nanocomposite hydrogel for underwater sensing
Zhao et al. Nonvolatile, stretchable and adhesive ionogel fiber sensor designed for extreme environments
WO2016180306A1 (zh) 一种发泡鞋底及其制备方法和鞋子
Qin et al. Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors
CN112739780A (zh) 树脂组合物及其成型体
Zhang et al. Ultrasensitive and wide-range reduced graphene oxide/natural rubber foam sensors for multifunctional self-powered wireless wearable applications
Wang et al. Tough and extremely temperature-tolerance nanocomposite organohydrogels as ultrasensitive wearable sensors for wireless human motion monitoring
CN114381062B (zh) 一种基于cns复合导电剂的智能压力感知弹性体发泡材料
Tanusorn et al. Influence of carrageenan molecular structures on electromechanical behaviours of poly (3-hexylthiophene)/carrageenan conductive hydrogels
Liu et al. Highly Stretchable, Strain‐Sensitive, and Antifreezing Macromolecular Microsphere Composite Starch‐Based Hydrogel
Wu et al. One-step coaxial spinning of core-sheath hydrogel fibers for stretchable ionic strain sensors
Wang et al. Multifunctional acetylated distarch phosphate based conducting hydrogel with high stretchability, ultralow hysteresis and fast response for wearable strain sensors
Liu et al. Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors
Zhao et al. Radiation synthesis of rapidly self-healing, durable, and flexible poly (ionic liquid)/MXene gels with anti-freezing property for multi-functional strain sensors
Liu et al. A stretchable, environmentally stable, and mechanically robust nanocomposite polyurethane organohydrogel with anti-freezing, anti-dehydration, and electromagnetic shielding properties for strain sensors and magnetic actuators
CN105482320B (zh) 一种聚氯乙烯增韧增强母粒及其制备方法和应用
CN111269510A (zh) 一种相容型乙烯-四氟乙烯共聚物纳米复合材料及其制备方法
CN106832356A (zh) 一种热可逆交联杜仲胶双重形状记忆弹性体及其制备方法
Li et al. High-strength, anti-freeze, transparent and recyclable composite organohydrogel for flexible strain sensor
Li et al. Ultrafast fabrication of deep eutectic solvent flexible ionic gel with high-transmittance, freeze-resistant and conductivity by frontal polymerization
Zhang et al. Triboelectric nanogenerators based on hydrated lithium ions incorporated double-network hydrogels for biomechanical sensing and energy harvesting at low temperature
CN114350055A (zh) 一种智能压力感知弹性体发泡材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant