WO2021227247A1 - 一种太阳能电池充电控制电路 - Google Patents

一种太阳能电池充电控制电路 Download PDF

Info

Publication number
WO2021227247A1
WO2021227247A1 PCT/CN2020/102949 CN2020102949W WO2021227247A1 WO 2021227247 A1 WO2021227247 A1 WO 2021227247A1 CN 2020102949 W CN2020102949 W CN 2020102949W WO 2021227247 A1 WO2021227247 A1 WO 2021227247A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switch
input terminal
output
inverter
Prior art date
Application number
PCT/CN2020/102949
Other languages
English (en)
French (fr)
Inventor
李萍
徐锋
汪菊琴
蔡建军
刘德强
Original Assignee
无锡职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡职业技术学院 filed Critical 无锡职业技术学院
Publication of WO2021227247A1 publication Critical patent/WO2021227247A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to the technical field of circuits, in particular to a solar battery charging control circuit.
  • a solar battery charging control circuit includes a solar battery panel, a switch control circuit, a switch circuit, and a charging control device.
  • the solar battery panel is connected to the charging control device through the switch circuit, and the solar battery panel is also connected to the charging control device.
  • the switch control circuit, the switch control circuit is connected to the control terminal of the switch circuit;
  • the solar panel includes a first battery panel and a second battery panel,
  • the switch circuit includes a first control switch and a second control switch, The positive electrode of the first battery plate is connected to the positive input terminal of the charging control device through the first control switch, and the positive electrode of the second battery plate is connected to the positive input terminal of the charging control device through the second control switch.
  • the negative poles of the first battery plate and the second battery plate are connected and connected to the negative input terminal of the charging control device; the input terminal of the switch control circuit obtains the first output voltage of the first battery plate and For the second output voltage of the second battery board, the two output terminals of the switch control circuit are respectively connected to the control terminals of the first control switch and the second control switch, and the switch control circuit is based on the first control switch.
  • the relationship between the voltage difference between an output voltage and the second output voltage and a preset threshold closes at least one of the control switches.
  • a further technical solution is that when the voltage difference between the first battery plate and the second battery plate is less than or equal to the preset threshold, the switch control circuit controls the first control switch and the The second control switches are all closed, and the first battery board and the second battery board supply power to the charging control device at the same time; when the voltage difference between the first battery board and the second battery board is greater than When the preset threshold is set, the switch control circuit controls the first control switch and the second control switch to be turned on alternately, and the first battery board and the second battery board alternately serve as the charging control device powered by.
  • the switch control circuit includes a square wave generating circuit, a booster circuit, and a drive circuit, and the input end of the square wave generating circuit is used as the input end of the switch control circuit to connect two solar panels.
  • the positive terminal obtains the first output voltage and the second output voltage; the output terminal of the square wave generating circuit is connected to the input terminal of the driving circuit, and the two output terminals of the driving circuit are used as the switching control circuit.
  • Two output terminals are respectively connected to the control terminals of the first control switch and the second control switch; the output terminal of the boost circuit is connected to the power supply terminal of the drive circuit to supply power to the drive circuit; the square wave According to the relationship between the voltage difference between the first output voltage and the second output voltage and the preset threshold, the generating circuit generates two driving square waves and outputs them to the driving circuit, and the driving circuit drives the two The square wave is converted into two square wave voltage signals and output.
  • the solar battery charging control circuit further includes a first capacitor, a second capacitor, a third capacitor, a fourth capacitor, and an inductor, and the first capacitor is located at the positive and negative poles of the first battery panel.
  • the second capacitor is located between the positive and negative electrodes of the second battery plate, one end of the third capacitor is connected to the common end of the first control switch and the second control switch, and the other end is connected
  • the negative poles of the two solar panels, the common terminal of the first control switch and the second control switch is connected to the positive input terminal of the charging control device through the inductor, and the fourth capacitor is located on the charging control device. Between the positive input terminal and the negative poles of the two solar panels.
  • the square wave generating circuit includes a comparison circuit, an oscillating circuit, and a logic circuit, and the logic circuit is connected to the comparison circuit and the oscillating circuit respectively; and the input terminal of the comparison circuit serves as the The input terminal of the square wave generating circuit obtains the first output voltage and the second output voltage, the output terminal of the comparison circuit is connected to the first input terminal of the logic circuit, and the output terminal of the oscillation circuit is connected to the The second input terminal of the logic circuit, the two output terminals of the logic circuit are used as the two output terminals of the square wave generating circuit for connecting to the driving circuit; the comparison circuit is used for comparing the first output voltage The voltage between the second output voltage and the second output voltage generates a corresponding comparison signal.
  • the oscillating circuit is used to generate an oscillating square wave signal, and the logic circuit generates two drives according to the comparison signal and the oscillating square wave signal.
  • the square wave is output to the driving circuit.
  • a further technical solution is that the frequency of the oscillating circuit is 50 kHz.
  • the logic circuit includes a first NAND gate, a second NAND gate, a third NAND gate and a first inverter; the two input terminals of the first NAND gate are respectively used as Two input terminals of the first input terminal of the logic circuit, the output terminal of the first NAND gate is respectively connected to one input terminal of the second NAND gate and one input terminal of the third NAND gate, The other input terminal of the second NAND gate is used as the second input terminal of the logic circuit, and the second input terminal of the logic circuit is also connected to the input terminal of the first inverter.
  • the input terminal of the phaser is connected to the other input terminal of the third NAND gate, and the output terminal of the second NAND gate and the output terminal of the second NAND gate are respectively used as the two outputs of the logic circuit end.
  • the driving circuit includes a second inverter, a third inverter, a fourth inverter, and a fifth inverter; the input terminal of the second inverter and the first inverter
  • the input terminals of the four inverters are respectively used as the two input terminals of the driving circuit, the output terminal of the second inverter is connected to the input terminal of the third inverter, and the output of the fourth inverter is Terminal is connected to the input terminal of the fifth inverter, the output terminal of the third inverter and the output terminal of the fifth inverter are respectively used as the two output terminals of the driving circuit;
  • the second The power supply terminals of the inverter, the third inverter, the fourth inverter and the fifth inverter are all connected to the power supply terminal of the driving circuit.
  • the first control switch includes a first NMOS tube and a second NMOS tube
  • the second control switch includes a third NMOS tube and a fourth NMOS tube
  • the drain of the first NMOS tube Connected to the drain of the second NMOS tube
  • the source of the first NMOS tube is connected to the anode of the first battery plate
  • the source of the second NMOS tube is connected to the source of the fourth NMOS tube
  • the gate of the first NMOS tube and the gate of the second NMOS tube are both connected to an output terminal of the switch control circuit
  • the third The NMOS tube is connected to the drain of the fourth NMOS tube
  • the source of the third NMOS tube is connected to the anode of the second battery plate
  • the gate of the third NMOS tube is connected to the fourth NMOS tube.
  • the gates are all connected to the other output terminal of the switch control circuit.
  • a switch is connected in series between the battery panel and the charging control device, so that when the output voltage of the two solar panels differs greatly, the control switch is turned on alternately to provide power to the charging control device, and it is blocked without affecting the power transmission.
  • Direct parallel connection between solar panels Reduce the requirement for solar panel consistency when multiple solar panels are connected in parallel, thereby reducing production costs; it can allow the output voltage difference between different solar panels in long-term use, reducing maintenance costs; for installing solar panels
  • the environment and angle requirements of the board are not high, which can reduce the difficulty of installation and expand the use environment at the same time.
  • Fig. 1 is a schematic diagram of the circuit of the present invention.
  • FIG. 2 is a schematic diagram of the solar cell panel control circuit of the present invention.
  • Fig. 3 is a schematic diagram of the switch control circuit of the present invention.
  • Fig. 4 is a waveform diagram of two output square wave voltage signals of the present invention.
  • a solar battery charging control circuit as shown in Figures 1 and 2 the circuit includes: a solar battery panel, a switch control circuit 215, a switch circuit, and a charging control device 111.
  • the solar battery panel is connected to the charging control device through the switch circuit, and the solar battery
  • the battery panel is also connected to the switch control circuit, the switch control circuit is connected to the control end of the switch circuit;
  • the solar panel includes a first battery panel 103 and a second battery panel 104, the first control switch K1 is connected to the first battery panel 103, and the second control switch K2 is connected to the second battery board 104.
  • the anode of the first battery plate 103 is connected to one end of the first control switch K1
  • the anode of the second battery plate 104 is connected to one end of the second control switch K2
  • the other end of the first control switch K1 is connected to the other end of the second control switch K2.
  • the solar battery charging control circuit also includes four capacitors C1 , C2, C3, C4 and inductor L1, where the first capacitor C1 is located between the positive and negative electrodes of the first battery plate 103, the second capacitor C2 is located between the positive and negative electrodes of the second battery plate 104, and the third capacitor C3 One end is connected to the common end of the first control switch K1 and the second control switch K2, the other end is connected to the negative poles of the two battery panels, the common end of the first control switch K1 and the second control switch K2 is connected to the charging control device through the inductor L1
  • the fourth capacitor C4 is located between the positive input terminal of the charging control device and the negative electrode of the solar panel.
  • the switch circuit includes a first control switch K1 and a second control switch K2.
  • the first control switch K1 includes a first NMOS tube M1 and a second NMOS tube M2, and the second control switch K2 includes a third NMOS tube M3 and a fourth NMOS tube M4. ; Wherein the drain of the first NMOS tube M1 is connected to the drain of the second NMOS tube M2, the source of the first NMOS tube is connected to the anode of the first battery plate 103, and the source of the second NMOS tube M2 is connected to the fourth The source of the NMOS tube is connected to the positive input terminal of the charging control device.
  • the gate of the first NMOS tube M1 and the gate of the second NMOS tube M2 are both connected to the first output terminal of the switch control circuit; the third NMOS tube
  • the drain of M3 is connected to the drain of the fourth NMOS tube M4, the source of the third NMOS tube M3 is connected to the anode of the second battery plate 104, and the gate of the third NMOS tube M3 and the gate of the fourth NMOS tube M4 are connected. Both are connected to the second output terminal of the switch control circuit.
  • the positive pole of the first battery panel 103 outputs the first output voltage V1
  • the positive pole of the second battery panel 104 outputs the second output voltage V2
  • the negative voltages of the two solar panels are both marked as V-
  • the source of the fourth NMOS tube M4 The voltage at point A between the source of the second NMOS tube M2 and the source of the second NMOS tube M2 is denoted as VA
  • the voltage at point B which is the common point between the inductor L1 and the positive input terminal of the charging control device 111, is denoted as VB.
  • the inductance element L1 is used to separate point A and B If there is a large voltage difference between the voltage VB and the voltage V1 at the point B or between the voltage VB and the voltage V2 at the point B, a large current will appear at the moment of switching.
  • the switch control circuit includes a square wave generating circuit 301, a booster circuit 302, a driving circuit 303, a diode D1, and a diode D2.
  • the anode of the diode D1 is connected to the anode of the first battery plate 103, and the cathode of the diode D1 is connected To the input terminal of the boost circuit 302;
  • the anode of the diode D2 is connected to the anode of the second battery plate 104, and the cathode of the diode D2 is connected to the input of the boost circuit 302, so the voltage at the input of the boost circuit is equal to V1 and V2.
  • the voltage of a branch is subtracted from the voltage drop of the diode, and the voltage at the input terminal of the booster circuit is recorded as the working voltage VDD, and the working voltage VDD is also the square wave generating circuit 301 at the same time.
  • the driving circuit 303 is respectively connected with the square wave generating circuit 301 and the boosting circuit 302, and the boosting circuit 302 supplies power to the driving circuit 303.
  • the square wave generating circuit 301 includes a comparison circuit, an oscillation circuit OSC and a logic circuit, and the logic circuit is respectively connected to the comparison circuit and the oscillation circuit OSC.
  • the comparison circuit is used to compare the voltage difference between the first battery board 103 and the second battery board 104.
  • the oscillation circuit OSC is used to generate a square wave signal with a frequency of about 50kHz.
  • the frequency of the oscillation circuit OSC is related to the inductance L1.
  • the oscillation circuit OSC The higher the frequency, the smaller the inductance value, the lower the OSC frequency of the oscillation circuit, and the larger the inductance value. Choose a frequency of 50kHz, and the inductance value can be 1uH ⁇ 2uH, so the switching loss will not be too large, which is beneficial to improve efficiency.
  • the comparison circuit includes a first comparator CMP1 and a second comparator CMP2.
  • the preset threshold is set to 0.02V
  • V0 Take 0.02V as an example, the comparison signal VP1 of the first comparator CMP1 and the comparison signal VP2 of the second comparator CMP2 are both input to the logic circuit.
  • the logic circuit includes a first NAND gate N1, a second NAND gate N2, a third NAND gate N3 and a first inverter I1.
  • the two input terminals of the first NAND gate N1 are respectively used to connect the first comparator
  • the output terminal of CMP1 and the output terminal of the second comparator CMP2 and the output terminal of the first NAND gate N1 is connected to an input terminal of the second NAND gate N2 and an input terminal of the third NAND gate N3.
  • the output terminal of the oscillation circuit OSC is connected to the other input terminal of the second NAND gate N2, and the output terminal of the oscillation circuit OSC is also connected to the other input terminal of the third NAND gate N3 through the first inverter I1.
  • the device I1 converts the output signal VOS of the oscillator circuit OSC into the opposite signal VOSN, that is, when VOS is high, VOSN is low, and when VOS is low, VOSN is high.
  • the output terminal of the second NAND gate N2 and the output terminal of the third NAND gate N3 are respectively connected to the input terminal of the driving circuit 303 as the output terminal of the square wave generating circuit 301.
  • the boost circuit 302 raises the working voltage VDD to (VA+5V), which is recorded as VPUMP.
  • the driving circuit 303 includes a second inverter I2, a third inverter I3, a fourth inverter I4, and a fifth inverter I5.
  • the output terminal of the second inverter I2 is connected to the third inverter I3.
  • Input terminal, the output terminal of the third inverter I3 is connected to the control terminal of the first control switch K1 as the first output terminal of the switch control circuit, and the output terminal of the fourth inverter I4 is connected to the input terminal of the fifth inverter I5
  • the output terminal of the fifth inverter I5 serves as the second output terminal of the switch control circuit and is connected to the control terminal of the second control switch K2.
  • the input terminal of the second inverter I2 and the input terminal of the fourth inverter I4 are respectively used as the input terminal of the driving circuit 303 and connected to the output terminal of the square wave generating circuit 301, that is, the input terminal of the second inverter I2 is connected to the second inverter I2.
  • the output terminal of the second NAND gate N2 and the input terminal of the fourth inverter I4 are connected to the output terminal of the third NAND gate N3.
  • the driving circuit 303 converts the driving square wave into a first square wave voltage signal CLK1 and a second square wave voltage signal CLK2.
  • the first square wave voltage signal CLK1 and the second square wave voltage signal CLK2 control the conduction of the switch circuit.
  • the first square wave voltage signal CLK1 is lower than the voltage VA at point A, even if there is a large voltage difference between V1 and VA, the first NMOS tube M1 and the second NMOS tube M2 will not be turned on;
  • the voltage signal CLK2 is lower than the voltage VA at point A, even if there is a large voltage difference between V2 and VA, the third NMOS transistor M3 and the fourth NMOS transistor M4 will not be turned on.
  • the working conditions of the present invention can be divided into three types, and the preset threshold is set to 0.02V:
  • the comparison signal of the comparator CMP1 VP1 is a high potential
  • the comparison signal VP2 of the comparator CMP2 is also a high potential
  • the output potential VN1 of the NAND gate N1 is a low potential.
  • the oscillating square wave signal VOS of the oscillation circuit OSC will be shielded.
  • the square wave CL1 and CL2 are driven at high potential at the same time.
  • the square wave voltage signals CLK1 and CLK2 converted by the drive circuit of CL1 and CL2 are also at high potential at the same time.
  • the first NMOS tube M1 and the second NMOS tube M2 are fully turned on, and the third The NMOS tube M3 and the fourth NMOS tube M4 are also turned on at the same time, that is, the first control switch K1 and the second control switch K2 are both turned on, and the first battery board and the second battery board provide power to the charging control device at the same time.
  • the comparison signal VP1 of the first comparator CMP1 is at a high potential
  • the second The comparison signal VP2 of the comparator CMP2 is at a low level
  • the output voltage VN1 of the first NAND gate N1 is at a high level.
  • the driving square wave CL1 of the second NAND gate N2 is opposite to the oscillation square wave signal VOS of the oscillation circuit OSC
  • the driving square wave CL2 of the NOT gate N3 is the same as the oscillating square wave signal VOS of the oscillation circuit OSC, so CL1 and CL2 are opposite signals.
  • the square wave voltage signals CLK1 and CLK2 converted by the drive circuit of CL1 and CL2 are turned on alternately, and the first battery board 103 and the second battery board 104 alternately supply power to the charging control device.
  • the comparison signal VP1 of the first comparator CMP1 is at a low level, and the second comparison The comparison signal VP2 of the device CMP2 is high, the output voltage VN1 of the first NAND gate N1 is high, the driving square wave CL1 of the second NAND gate N2 is opposite to the oscillating square wave signal VOS of the oscillation circuit OSC, and the third The driving square wave CL2 of the NAND gate N3 is the same as the oscillating square wave signal VOS of the oscillation circuit OSC, so CL1 and CL2 are opposite signals.
  • CLK2 is also the opposite signal, the first control switch K1 and the second control switch K2 are turned on alternately, and the first battery board 103 and the second battery board 104 alternately supply power to the charging control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种太阳能电池充电控制电路,该电路包括:太阳能电池板、开关电路、开关控制电路、充电控制装置;太阳能电池板包括两块电池板,开关电路包括两个控制开关,通过在两块电池板和充电控制装置之间串联控制开关,使得当两块电池板输出电压相差较大时,两个控制开关交替导通为充电控制装置提供电能,在不影响电能传输的情况下阻断太阳能电池板之间的直接并联。减弱了多块太阳能电池板并联时对太阳能电池板一致性的要求,从而降低了生产的成本和安装难度,同时能够扩大太阳能电池板的使用环境。

Description

一种太阳能电池充电控制电路 技术领域
本发明涉及电路技术领域,尤其是一种太阳能电池充电控制电路。
背景技术
太阳能作为可再生能源,资源丰富、对环境无污染,这些特点使得太阳能的应用越来越广泛。目前市场上较为常用的单块太阳能电池输出电压为12V,输出功率为60W。为了得到更大功率,需要将多块太阳能电池板并联使用。但是阳光强度随着时间有着较大的变化,同时环境因素也会影响光照的强度,所以太阳能电池板输出电压不会恒定为12V,功率也不会恒定为60W。为了能够得到稳定的电压和功率,以及提高太阳能的利用率,还需要使用蓄电池将太阳能输出的电能存储起来。太阳能电池板输出电压与蓄电池电压不一致,而且蓄电池的充电电流也有规格限制,因此在太阳能电池与蓄电池之间串联一充电控制装置,以控制蓄电池的充电电压和充电电流。
但当多块太阳能电池板并联使用时,对太阳能电池板的一致性有着很高的要求,而且不同太阳能电池板对太阳光的一致性要求也很高。否则,多块太阳能电池板的输出电压将不同,输出功率也无法达到最优化。
技术问题
当多块太阳能电池板并联使用时,对太阳能电池板的一致性有着很高的要求,而且不同太阳能电池板对太阳光的一致性要求也很高。否则,多块太阳能电池板的输出电压将不同,输出功率也无法达到最优化。
技术解决方案
一种太阳能电池充电控制电路,包括太阳能电池板、开关控制电路、开关电路和充电控制装置,所述太阳能电池板通过所述开关电路连接所述充电控制装置,且所述太阳能电池板还连接所述开关控制电路,所述开关控制电路连接所述开关电路的控制端;所述太阳能电池板包括第一电池板和第二电池板,所述开关电路包括第一控制开关和第二控制开关,所述第一电池板的正极通过所述第一控制开关连接所述充电控制装置的正输入端,所述第二电池板的正极通过所述第二控制开关连接所述充电控制装置的正输入端,所述第一电池板和第二电池板的负极相连并连接至所述充电控制装置的负输入端;所述开关控制电路的输入端获取所述第一电池板的第一输出电压以及所述第二电池板的第二输出电压,所述开关控制电路的两个输出端分别连接所述第一控制开关和所述第二控制开关的控制端,所述开关控制电路根据所述第一输出电压和所述第二输出电压之间的电压差与预设阈值之间的关系闭合其中至少一个控制开关。
其进一步的技术方案为,当所述第一电池板和所述第二电池板之间的电压差小于或等于所述预设阈值时,所述开关控制电路控制所述第一控制开关和所述第二控制开关都闭合,所述第一电池板和所述第二电池板同时为所述充电控制装置供电;当所述第一电池板和所述第二电池板之间的电压差大于所述预设阈值时,所述开关控制电路控制所述第一控制开关和所述第二控制开关交替导通,所述第一电池板和所述第二电池板交替为所述充电控制装置供电。
其进一步的技术方案为,所述开关控制电路包括方波产生电路、升压电路和驱动电路,所述方波产生电路的输入端作为所述开关控制电路的输入端连接两个太阳能电池板的正极获取所述第一输出电压和所述第二输出电压;所述方波产生电路的输出端连接所述驱动电路的输入端,所述驱动电路的两个输出端作为所述开关控制电路的两个输出端分别连接所述第一控制开关和所述第二控制开关的控制端;所述升压电路的输出端连接所述驱动电路的供电端为所述驱动电路供电;所述方波产生电路根据所述第一输出电压和所述第二输出电压之间的电压差与预设阈值之间的关系产生两个驱动方波输出给所述驱动电路,所述驱动电路将两个驱动方波转换为两个方波电压信号并输出。
其进一步的技术方案为,所述太阳能电池充电控制电路还包括第一电容、第二电容、第三电容、第四电容和电感,所述第一电容位于所述第一电池板的正负极之间,所述第二电容位于所述第二电池板的正负极之间,所述第三电容的一端连接所述第一控制开关和所述第二控制开关的公共端、另一端连接两个太阳能电池板的负极,所述第一控制开关和所述第二控制开关的公共端通过所述电感连接到充电控制装置的正输入端,所述第四电容位于所述充电控制装置的正输入端和两个太阳能电池板的负极之间。
其进一步的技术方案为,所述方波产生电路包括比较电路、振荡电路和逻辑电路,所述逻辑电路分别与所述比较电路和所述振荡电路连接;所述比较电路的输入端作为所述方波产生电路的输入端获取所述第一输出电压和所述第二输出电压,所述比较电路的输出端连接所述逻辑电路的第一输入端,所述振荡电路的输出端连接所述逻辑电路的第二输入端,所述逻辑电路的两个输出端作为所述方波产生电路的两个输出端用于连接所述驱动电路;所述比较电路用于比较所述第一输出电压和所述第二输出电压之间的电压并产生相应的比较信号,所述振荡电路用于产生振荡方波信号,所述逻辑电路根据所述比较信号和所述振荡方波信号产生两个驱动方波输出给所述驱动电路。
其进一步的技术方案为,所述振荡电路的频率为50kHz。
其进一步的技术方案为,所述比较电路包括第一比较器和第二比较器,所述第一比较器的两个输入端分别输入所述第一输出电压和第一参考电压,所述第一参考电压Vref1=V2-V0,所述第二比较器的两个输入端分别输入所述第二输出电压和第二参考电压,所述第二参考电压Vref2=V1-V0,其中,V1表示所述第一输出电压,V2表示所述第二输出电压,V0表示所述预设阈值;所述第一比较器的输出端和所述第二比较器的输出端作为所述比较电路的输出端连接所述逻辑电路的第一输入端的两个输入端子。
其进一步的技术方案为,所述逻辑电路包括第一与非门、第二与非门、第三与非门和第一反相器;所述第一与非门的两个输入端分别作为所述逻辑电路的第一输入端的两个输入端子,所述第一与非门的输出端分别连接所述第二与非门的一个输入端以及所述第三与非门的一个输入端,所述第二与非门的另一个输入端作为所述逻辑电路的第二输入端,所述逻辑电路的第二输入端还连接所述第一反相器的输入端,所述第一反相器的输入端连接所述第三与非门的另一个输入端,所述第二与非门的输出端和所述第二与非门的输出端分别作为所述逻辑电路的两个输出端。
其进一步的技术方案为,所述驱动电路包括第二反相器、第三反相器、第四反相器和第五反相器;所述第二反相器的输入端和所述第四反相器的输入端分别作为所述驱动电路的两个输入端,所述第二反相器的输出端连接所述第三反相器的输入端,所述第四反相器的输出端连接所述第五反相器的输入端,所述第三反相器的输出端以及所述第五反相器的输出端分别作为所述驱动电路的两个输出端;所述第二反相器、第三反相器、第四反相器和第五反相器的电源端均连接至所述驱动电路的供电端。
其进一步的技术方案为,所述第一控制开关包括第一NMOS管和第二NMOS管,所述第二控制开关包括第三NMOS管和第四NMOS管;所述第一NMOS管的漏极和所述第二NMOS管的漏极相连,所述第一NMOS管的源极连接到所述第一电池板的正极,所述第二NMOS管的源极连接所述第四NMOS管的源极并连接至所述充电控制装置的正输入端,所述第一NMOS管的栅极和所述第二NMOS管的栅极都连接到所述开关控制电路的一个输出端;所述第三NMOS管和所述第四NMOS管的漏极相连,所述第三NMOS管的源极连接到所述第二电池板的正极,所述第三NMOS管的栅极和所述第四NMOS管的栅极都连接到所述开关控制电路的另一个输出端。
有益效果
在电池板和充电控制装置之间串联一个开关,使得当两块太阳能电池板输出电压相差较大时,通过控制开关交替导通为充电控制装置提供电能,在不影响电能传输的情况下阻断太阳能电池板之间的直接并联。减弱了多块太阳能电池板并联时对太阳能电池板一致性的要求,从而降低了生产的成本;能够在长期使用中允许不同太阳能电池板之间输出电压的差异,减少维修成本;对于安装太阳能电池板的环境和角度要求不高,能够降低安装难度,同时扩大了使用环境。
附图说明
图1是本发明的电路示意图。
图2是本发明的太阳能电池板控制电路示意图。
图3是本发明的开关控制电路示意图。
图4是本发明的两个输出方波电压信号的波形图。
本发明的实施方式
如图1、图2所示一种太阳能电池充电控制电路,该电路包括:太阳能电池板、开关控制电路215、开关电路和充电控制装置111,太阳能电池板通过开关电路连接充电控制装置,且太阳能电池板还连接开关控制电路,开关控制电路连接开关电路的控制端;太阳能电池板包括第一电池板103和第二电池板104,第一控制开关K1连接第一电池板103,第二控制开关K2连接第二电池板104。
第一电池板103的正极连接第一控制开关K1的一端,第二电池板104的正极连接第二控制开关K2的一端,第一控制开关K1的另一端和第二控制开关K2的另一端相连并连接到充电控制装置的正输入端,第一电池板103的负极和第二电池板104的负极相连并连接到充电控制装置的负输入端,该太阳能电池充电控制电路还包括四个电容C1、C2、C3、C4和电感L1,其中,第一电容C1位于第一电池板103的正极和负极之间,第二电容C2位于第二电池板104的正极和负极之间,第三电容C3的一端连接第一控制开关K1和第二控制开关K2的公共端、另一端连接两个电池板的负极,第一控制开关K1和第二控制开关K2的公共端通过电感L1连接到充电控制装置的正输入端,第四电容C4位于充电控制装置的正输入端和太阳能电池板负极之间。
开关电路包括第一控制开关K1和第二控制开关K2,第一控制开关K1包括第一NMOS管M1和第二NMOS管M2,第二控制开关K2包括第三NMOS管M3和第四NMOS管M4;其中第一NMOS管M1的漏极和第二NMOS管M2的漏极相连,第一NMOS管的源极连接到第一电池板103的正极,第二NMOS管M2的源极连接到第四NMOS管的源极并用于连接至充电控制装置的正输入端,第一NMOS管M1的栅极和第二NMOS管M2的栅极都连接到开关控制电路的第一输出端;第三NMOS管M3的漏极和第四NMOS管M4的漏极相连,第三NMOS管M3的源极连接到第二电池板104的正极,第三NMOS管M3的栅极和第四NMOS管M4的栅极都连接到开关控制电路的第二输出端。
第一电池板103的正极输出第一输出电压V1,第二电池板104的正极输出第二输出电压V2,两个太阳能电池板的负极电压均记为V-,第四NMOS管M4的源极与第二NMOS管M2的源极之间的A点电压记为VA,电感L1与充电控制装置111的正输入端的公共点B点电压记为VB,其中电感元件L1用来隔断A点和B点,以免B点的电压VB与电压V1之间或者B点的电压VB与电压V2之间有较大电压差时,在开关切换的瞬间出现大电流。
如图3所示,开关控制电路包括方波产生电路301、升压电路302、驱动电路303、二极管D1、二极管D2,二极管D1的正极与第一电池板103的正极连接,二极管D1的负极连接到升压电路302的输入端;二极管D2的正极连接到第二电池板104的正极,二极管D2的负极连接到升压电路302的输入端,因此升压电路输入端的电压等于V1和V2较高一条支路的电压减去二极管的压降,将升压电路输入端的电压记为工作电压VDD,工作电压VDD同时还为方波产生电路301。驱动电路303分别与方波产生电路301和升压电路302连接,升压电路302给驱动电路303供电。
其中,方波产生电路301包括比较电路、振荡电路OSC和逻辑电路,逻辑电路分别与比较电路和振荡电路OSC连接。比较电路用于比较第一电池板103和第二电池板104之间的电压差,振荡电路OSC用来产生频率约为50kHz的方波信号,振荡电路OSC的频率与电感L1相关,振荡电路OSC频率越高,电感值越小,振荡电路OSC频率越低,电感值越大,选择50kHz的频率,电感值可选用1uH~2uH,由此开关损耗不会太大,有利于提高效率。
比较电路包括第一比较器CMP1和第二比较器CMP2,如图3所示,第一比较器CMP1用于比较V1和第一参考电压Vref1的值,Vref1=V2-V0,第二比较器CMP2用于比较V2和第二参考电压Verf2的值,Vref2=V1-V0,其中,V0为预设阈值,预设阈值一般较小,例如,设定预设阈值为0.02V,图3以V0=0.02V为例,第一比较器CMP1的比较信号VP1和第二比较器CMP2的比较信号VP2均输入到逻辑电路。逻辑电路包括第一与非门N1、第二与非门N2、第三与非门N3和第一反相器I1,第一与非门N1的两个输入端分别用于连接第一比较器CMP1的输出端和第二比较器CMP2的输出端,第一与非门N1的输出端连接第二与非门N2的一个输入端和第三与非门N3的一个输入端。振荡电路OSC的输出端连接第二与非门N2的另一个输入端,振荡电路OSC的输出端还通过第一反相器I1连接第三与非门N3的另一个输入端,第一反相器I1将振荡电路OSC的输出信号VOS转换为相反信号VOSN,即当VOS为高电位时,VOSN为低电位,当VOS为低电位时,VOSN为高电位。第二与非门N2的输出端和第三与非门N3的输出端分别作为方波产生电路301的输出端连接到驱动电路303的输入端。
升压电路302将工作电压VDD升高到(VA+5V),记为VPUMP,VPUMP可随A点的电压VA的变化而变化,与VA的差值基本不变,即VPUMP-VA=5V,VPUMP为驱动电路303供电。
驱动电路303包含第二反相器I2、第三反相器I3、第四反相器I4和第五反相器I5,其中第二反相器I2的输出端连接第三反相器I3的输入端,第三反相器I3的输出端作为开关控制电路的第一输出端连接第一控制开关K1的控制端,第四反相器I4的输出端连接第五反相器I5的输入端,第五反相器I5的输出端作为开关控制电路的第二输出端连接第二控制开关K2的控制端。第二反相器I2的输入端以及第四反相器I4的输入端分别作为驱动电路303的输入端连接方波产生电路301的输出端,也即第二反相器I2的输入端连接第二与非门N2的输出端、第四反相器I4的输入端连接第三与非门N3的输出端。
驱动电路303将驱动方波转换为第一方波电压信号CLK1和第二方波电压信号CLK2,第一方波电压信号CLK1和第二方波电压信号CLK2控制开关电路的导通。当第一方波电压信号CLK1低于A点电压VA时,即使V1和VA之间有很大电压差,第一NMOS管M1和第二NMOS管M2也不会导通;当第二方波电压信号CLK2低于A点电压VA时,即使V2和VA之间有很大电压差,第三NMOS管M3和第四NMOS管M4也不会导通。
当第三反相器I3输出第一方波电压信号CLK1为高电位时,即CLK1-VA=5V, 第一NMOS管M1和第二NMOS管M2完全导通,V1与VA之间的阻抗比较小;当CLK1为低电位时,CLK1=0V, 第一NMOS管M1和第二NMOS管M2关断,VA与V1不导通;当第五反相器I5输出第二方波电压信号CLK2为高电位时,CLK2-VA=5V, 第三NMOS管M3和第四NMOS管M4完全导通,V2与VA之间的阻抗比较小;当CLK2为低电位时,CLK2=0V, 第三NMOS管M3和第四NMOS管M4关断,VA与V2不导通。
根据两电池板之间的电压差,可以将本发明的工作情况分为三种,设定预设阈值为0.02V:
当第一电池板103的输出电压V1和第二电池板104的输出电压V2的电压差在0.02V之内时,即-0.02V≤(V1-V2)≤0.02V,比较器CMP1的比较信号VP1为高电位,比较器CMP2的比较信号VP2也为高电位,则与非门N1的输出电位VN1为低电位,振荡电路OSC的振荡方波信号VOS将被屏蔽,与非门N2和N3的驱动方波CL1和CL2同时为高电位,CL1和CL2通过驱动电路转换后的方波电压信号CLK1和CLK2也同时为高电位,第一NMOS管M1和第二NMOS管M2完全导通,第三NMOS管M3和第四NMOS管M4也同时导通,即第一控制开关K1和第二控制开关K2都导通,第一电池板和第二电池板同时为充电控制装置供电。
当第一电池板103的输出电压V1比第二电池板104的输出电压V2高0.02V时,即(V1-V2)≥0.02V,第一比较器CMP1的比较信号VP1为高电位,第二比较器CMP2的比较信号VP2为低电位,则第一与非门N1的输出电压VN1为高电位,第二与非门N2的驱动方波CL1与振荡电路OSC的振荡方波信号VOS相反,与非门N3的驱动方波CL2与振荡电路OSC的振荡方波信号VOS相同,因此CL1和CL2 为相反信号,如图4所示,CL1和CL2通过驱动电路转换后的方波电压信号CLK1和CLK2也为相反信号,第一控制开关K1和第二控制开关K2交替导通, 第一电池板103和第二电池板104交替为充电控制装置供电。
当第一电池板103的输出电压V1比第二电池板104的输出电压V2低时,即(V1-V2)≤-0.02V,第一比较器CMP1的比较信号VP1为低电位,第二比较器CMP2的比较信号VP2为高电位,则第一与非门N1的输出电压VN1为高电位,第二与非门N2的驱动方波CL1与振荡电路OSC的振荡方波信号VOS相反,第三与非门N3的驱动方波CL2与振荡电路OSC的振荡方波信号VOS相同,因此CL1和CL2 为相反信号,如图4所示,CL1和CL2通过驱动电路转换后的方波电压信号CLK1和CLK2也为相反信号,第一控制开关K1和第二控制开关K2交替导通,第一电池板103和第二电池板104交替为充电控制装置供电。
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (10)

  1. 一种太阳能电池充电控制电路,其特征在于,包括太阳能电池板、开关控制电路、开关电路和充电控制装置,所述太阳能电池板通过所述开关电路连接所述充电控制装置,且所述太阳能电池板还连接所述开关控制电路,所述开关控制电路连接所述开关电路的控制端;所述太阳能电池板包括第一电池板和第二电池板,所述开关电路包括第一控制开关和第二控制开关,所述第一电池板的正极通过所述第一控制开关连接所述充电控制装置的正输入端,所述第二电池板的正极通过所述第二控制开关连接所述充电控制装置的正输入端,所述第一电池板和第二电池板的负极相连并连接至所述充电控制装置的负输入端;所述开关控制电路的输入端获取所述第一电池板的第一输出电压以及所述第二电池板的第二输出电压,所述开关控制电路的两个输出端分别连接所述第一控制开关和所述第二控制开关的控制端,所述开关控制电路根据所述第一输出电压和所述第二输出电压之间的电压差与预设阈值之间的关系闭合其中至少一个控制开关。
  2. 根据权利要求1所述的一种太阳能电池充电控制电路,其特征在于,当所述第一电池板和所述第二电池板之间的电压差小于或等于所述预设阈值时,所述开关控制电路控制所述第一控制开关和所述第二控制开关都闭合,所述第一电池板和所述第二电池板同时为所述充电控制装置供电;当所述第一电池板和所述第二电池板之间的电压差大于所述预设阈值时,所述开关控制电路控制所述第一控制开关和所述第二控制开关交替导通,所述第一电池板和所述第二电池板交替为所述充电控制装置供电。
  3. 根据权利要求1所述的一种太阳能电池充电控制电路,其特征在于,所述开关控制电路包括方波产生电路、升压电路和驱动电路,所述方波产生电路的输入端作为所述开关控制电路的输入端连接两个太阳能电池板的正极获取所述第一输出电压和所述第二输出电压;所述方波产生电路的输出端连接所述驱动电路的输入端,所述驱动电路的两个输出端作为所述开关控制电路的两个输出端分别连接所述第一控制开关和所述第二控制开关的控制端;所述升压电路的输出端连接所述驱动电路的供电端为所述驱动电路供电;所述方波产生电路根据所述第一输出电压和所述第二输出电压之间的电压差与预设阈值之间的关系产生两个驱动方波输出给所述驱动电路,所述驱动电路将两个驱动方波转换为两个方波电压信号并输出。
  4. 根据权利要求1所述的一种太阳能电池充电控制电路,其特征在于,所述太阳能电池充电控制电路还包括第一电容、第二电容、第三电容、第四电容和电感,所述第一电容位于所述第一电池板的正负极之间,所述第二电容位于所述第二电池板的正负极之间,所述第三电容的一端连接所述第一控制开关和所述第二控制开关的公共端、另一端连接两个太阳能电池板的负极,所述第一控制开关和所述第二控制开关的公共端通过所述电感连接到充电控制装置的正输入端,所述第四电容位于所述充电控制装置的正输入端和两个太阳能电池板的负极之间。
  5. 根据权利要求3所述的一种太阳能电池充电控制电路,其特征在于,所述方波产生电路包括比较电路、振荡电路和逻辑电路,所述逻辑电路分别与所述比较电路和所述振荡电路连接;所述比较电路的输入端作为所述方波产生电路的输入端获取所述第一输出电压和所述第二输出电压,所述比较电路的输出端连接所述逻辑电路的第一输入端,所述振荡电路的输出端连接所述逻辑电路的第二输入端,所述逻辑电路的两个输出端作为所述方波产生电路的两个输出端用于连接所述驱动电路;所述比较电路用于比较所述第一输出电压和所述第二输出电压之间的电压并产生相应的比较信号,所述振荡电路用于产生振荡方波信号,所述逻辑电路根据所述比较信号和所述振荡方波信号产生两个驱动方波输出给所述驱动电路。
  6. 根据权利要求5所述的一种太阳能电池充电控制电路,其特征在于,所述振荡电路的频率为50kHz。
  7. 根据权利要求5所述的一种太阳能电池充电控制电路,其特征在于,所述比较电路包括第一比较器和第二比较器,所述第一比较器的两个输入端分别输入所述第一输出电压和第一参考电压,所述第一参考电压Vref1=V2-V0,所述第二比较器的两个输入端分别输入所述第二输出电压和第二参考电压,所述第二参考电压Vref2=V1-V0,其中,V1表示所述第一输出电压,V2表示所述第二输出电压,V0表示所述预设阈值;所述第一比较器的输出端和所述第二比较器的输出端作为所述比较电路的输出端连接所述逻辑电路的第一输入端的两个输入端子。
  8. 根据权利要求5所述的一种太阳能电池充电控制电路,其特征在于,所述逻辑电路包括第一与非门、第二与非门、第三与非门和第一反相器;所述第一与非门的两个输入端分别作为所述逻辑电路的第一输入端的两个输入端子,所述第一与非门的输出端分别连接所述第二与非门的一个输入端以及所述第三与非门的一个输入端,所述第二与非门的另一个输入端作为所述逻辑电路的第二输入端,所述逻辑电路的第二输入端还连接所述第一反相器的输入端,所述第一反相器的输入端连接所述第三与非门的另一个输入端,所述第二与非门的输出端和所述第二与非门的输出端分别作为所述逻辑电路的两个输出端。
  9. 根据权利要求3所述的一种太阳能电池充电控制电路,其特征在于,所述驱动电路包括第二反相器、第三反相器、第四反相器和第五反相器;所述第二反相器的输入端和所述第四反相器的输入端分别作为所述驱动电路的两个输入端,所述第二反相器的输出端连接所述第三反相器的输入端,所述第四反相器的输出端连接所述第五反相器的输入端,所述第三反相器的输出端以及所述第五反相器的输出端分别作为所述驱动电路的两个输出端;所述第二反相器、第三反相器、第四反相器和第五反相器的电源端均连接至所述驱动电路的供电端。
  10. 根据权利要求1-9任一所述的一种太阳能电池充电控制电路,其特征在于,所述第一控制开关包括第一NMOS管和第二NMOS管,所述第二控制开关包括第三NMOS管和第四NMOS管;所述第一NMOS管的漏极和所述第二NMOS管的漏极相连,所述第一NMOS管的源极连接到所述第一电池板的正极,所述第二NMOS管的源极连接所述第四NMOS管的源极并连接至所述充电控制装置的正输入端,所述第一NMOS管的栅极和所述第二NMOS管的栅极都连接到所述开关控制电路的一个输出端;所述第三NMOS管和所述第四NMOS管的漏极相连,所述第三NMOS管的源极连接到所述第二电池板的正极,所述第三NMOS管的栅极和所述第四NMOS管的栅极都连接到所述开关控制电路的另一个输出端。
PCT/CN2020/102949 2020-05-15 2020-07-20 一种太阳能电池充电控制电路 WO2021227247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010414100.4 2020-05-15
CN202010414100.4A CN111463883B (zh) 2020-05-15 2020-05-15 一种太阳能电池充电控制电路

Publications (1)

Publication Number Publication Date
WO2021227247A1 true WO2021227247A1 (zh) 2021-11-18

Family

ID=71678273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102949 WO2021227247A1 (zh) 2020-05-15 2020-07-20 一种太阳能电池充电控制电路

Country Status (2)

Country Link
CN (1) CN111463883B (zh)
WO (1) WO2021227247A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611149A (zh) * 2011-12-16 2012-07-25 山东电力集团公司菏泽供电公司 一种野外在线监测装置的充电电路
CN202712900U (zh) * 2012-07-06 2013-01-30 赵振涛 一种对多组锂电池放电系统
US20130106355A1 (en) * 2011-10-27 2013-05-02 Bong-Young KIM Battery pack and method of controlling the same
CN105490317A (zh) * 2014-09-16 2016-04-13 重庆瑞升康博电气有限公司 太阳能电池智能充电控制装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956105B1 (ko) * 2009-09-30 2010-05-07 대동산전주식회사 다수의 태양전지판을 이용한 태양광 인버터의 충전시스템
KR101256077B1 (ko) * 2011-04-18 2013-04-18 삼성에스디아이 주식회사 전력 제어 시스템 및 전력 제어 방법
WO2014153034A1 (en) * 2013-03-14 2014-09-25 Milwaukee Electric Tool Corporation Power tool having multiple battery packs
JP6601125B2 (ja) * 2015-10-07 2019-11-06 住友電気工業株式会社 電力変換装置及びその制御方法
TWI580155B (zh) * 2016-01-15 2017-04-21 電池預熱系統
CN106505602A (zh) * 2016-11-01 2017-03-15 北京科诺伟业科技股份有限公司 一种储能系统的控制方法
JP6551433B2 (ja) * 2017-02-10 2019-07-31 トヨタ自動車株式会社 太陽光発電制御装置
CN107733233A (zh) * 2017-08-31 2018-02-23 青岛大学 一种大容量太阳能电热水器用交错式光伏电源变换器及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130106355A1 (en) * 2011-10-27 2013-05-02 Bong-Young KIM Battery pack and method of controlling the same
CN102611149A (zh) * 2011-12-16 2012-07-25 山东电力集团公司菏泽供电公司 一种野外在线监测装置的充电电路
CN202712900U (zh) * 2012-07-06 2013-01-30 赵振涛 一种对多组锂电池放电系统
CN105490317A (zh) * 2014-09-16 2016-04-13 重庆瑞升康博电气有限公司 太阳能电池智能充电控制装置

Also Published As

Publication number Publication date
CN111463883B (zh) 2020-10-16
CN111463883A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
JP2012065508A (ja) 充電回路およびそれを利用した電子機器
CN106921284B (zh) 一种mosfet浮动驱动电路
CN104682678A (zh) 一种igbt驱动用的隔离电源
CN110149045B (zh) 一种高能效开关电容电源转换器
CN103647213B (zh) 高效快速激光泵浦驱动电源和快速启动的激光器
CN201230281Y (zh) 太阳能电池板模拟器
WO2020108662A1 (zh) 电池防反灌开关的控制装置及太阳能mppt控制系统
CN202513892U (zh) 一种大功率mos管驱动电路
CN109617544A (zh) 一种新型上电时序控制设备、系统及方法
CN106160460A (zh) 快速充电的电荷泵电路
TWI715328B (zh) 升壓轉換器
WO2021227247A1 (zh) 一种太阳能电池充电控制电路
CN106353953A (zh) 闪光灯模组与闪光灯电源模组
CN203590028U (zh) 一种电荷泵装置及使用该装置的电源管理电路
CN113783429B (zh) 一种混合dc-dc升压变换器
CN107769600B (zh) 一种非对称多电平功率变换电路
CN209072364U (zh) 一种同步整流控制芯片及电路
CN207720085U (zh) 一种光伏旁路二极管
CN105245120A (zh) 一种ac-dc单级控制芯片及其控制系统
CN211859974U (zh) 一种半桥逆变电路和电子设备
CN204697030U (zh) 驱动级电源选择电路
CN104917379A (zh) 一种共源极结构的太阳能控制器的mos自举驱动电路
CN104967946B (zh) 一种多通道音频处理器
CN103532377A (zh) 一种电荷泵装置及使用该装置的电源管理电路
CN204559109U (zh) 一种模块化逆变器电池防反接电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935299

Country of ref document: EP

Kind code of ref document: A1