WO2021227121A1 - 显示面板及其制造方法 - Google Patents

显示面板及其制造方法 Download PDF

Info

Publication number
WO2021227121A1
WO2021227121A1 PCT/CN2020/091575 CN2020091575W WO2021227121A1 WO 2021227121 A1 WO2021227121 A1 WO 2021227121A1 CN 2020091575 W CN2020091575 W CN 2020091575W WO 2021227121 A1 WO2021227121 A1 WO 2021227121A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
quantum dot
display panel
oil phase
blue
Prior art date
Application number
PCT/CN2020/091575
Other languages
English (en)
French (fr)
Inventor
彭文祥
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/981,729 priority Critical patent/US11522148B2/en
Publication of WO2021227121A1 publication Critical patent/WO2021227121A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • This application relates to the field of display technology, and in particular to a display panel and a manufacturing method thereof.
  • Quantum Dot Light Emitting Diode (QD-LED) structure display consists of quantum dot color filter film (Quantum Dot Color Filter (QDCF) and a diode as a blue backlight light source are composed of two parts. It not only has the characteristics of autonomous light emission, thinness and flexibility of light-emitting diode devices, but also has the advantages of high color gamut of quantum dots.
  • the structural device utilizes quantum dots in the color filter film of quantum dots (Quantum Dot, QD) photoluminescence characteristics, the blue light of the backlight is converted into red light and green light, so as to achieve the purpose of full-color display.
  • Common red light quantum dot inks and green light quantum dot inks will add some scattering particles (such as TiO 2 ) to increase the optical path of the excitation light in the film layer and improve the brightness conversion rate of the quantum dots in the ink.
  • some scattering particles such as TiO 2
  • TiO 2 has a good scattering effect, but it cannot be well dispersed in the traditional acrylic system ink. It will slowly agglomerate and block the nozzles of the inkjet printer, thereby adversely affecting the subsequent printing process.
  • the purpose of the present application is to provide a display panel and a manufacturing method thereof, so as to solve the problem that the light scattering particles cannot be stably dispersed in the traditional ink during the manufacturing process of the display panel.
  • the present application provides a manufacturing method of a display panel, the manufacturing method includes the following steps:
  • the quantum dot ink is formed on a first substrate and cured to obtain a first substrate with a quantum dot light conversion layer.
  • the quantum dot ink includes a dispersion medium and a quantum dot light scattering particle composite dispersed in the dispersion medium
  • the quantum dot light-scattering particle composite includes light-scattering particles and oil phase quantum dots attached to the surface of the light-scattering particles, and the quantum dot light conversion layer is used to receive blue light and be excited to emit at least red and green light. Light;
  • the surface of the second substrate provided with the blue light emitting layer is opposed to the surface of the first substrate provided with the quantum dot light conversion layer to obtain the display panel.
  • the method for preparing the quantum dot light scattering particle composite includes the following steps:
  • the preparation material of the light-scattering particles is selected from titanium dioxide And at least one of silica.
  • the method for preparing the oil phase quantum dots includes the following steps:
  • the oil phase quantum dot stock solution is dispersed in the lipophilic solvent to obtain an oil phase quantum dot stock solution.
  • the oil phase quantum dot stock solution includes original oil phase quantum dots, and the original oil phase quantum dots include quantum dots and are attached to The organic ligand on the surface of the quantum dot;
  • a precipitation agent is added to the oil phase quantum dot stock solution to wash away part of the organic ligands in the original oil phase quantum dots, and the oil phase quantum dots are obtained by centrifugation and separation.
  • the lipophilic solvent is cyclohexane
  • the precipitation agent is an alcohol solvent
  • the precipitating agent is ethanol.
  • the organic ligand is at least one selected from the group consisting of oleic acid, trioctylphosphine, oleylamine, and dodecanethiol.
  • the mass percentage of the quantum dot light scattering particle composite and the dispersion medium is (1%-5%): (95%-99%), and the dispersion medium includes a monomer , Photoinitiators and organic solvents.
  • the particle size of the light scattering particles is greater than 10 nanometers and less than or equal to 50 nanometers.
  • the blue light emitting layer includes at least one of a blue organic light emitting diode, a blue micro light emitting diode, and a blue submillimeter light emitting diode.
  • a display panel comprising a first substrate, a quantum dot light conversion layer, a second substrate and a blue light emitting layer,
  • the first substrate and the second substrate are arranged opposite to each other;
  • the quantum dot light conversion layer is disposed on the opposite surface of the first substrate and the second substrate, the quantum dot light conversion layer includes a quantum dot light scattering particle composite, and the quantum dot light scattering particle composite Comprising light-scattering particles and oil phase quantum dots attached to the surface of the light-scattering particles, the quantum dot light conversion layer is used for receiving blue light and then being excited to emit at least red light and green light;
  • the blue light emitting layer is disposed on the opposite surface of the second substrate and the first substrate, and the blue light emitting layer is used to emit blue light.
  • the quantum dot light conversion layer includes a red light quantum dot light conversion unit, a green light quantum dot light conversion unit, and a blue light diffusion unit,
  • the red light quantum dot light conversion unit includes the light scattering particles and the oil phase red light quantum dots attached to the surface of the light scattering particles;
  • the green light quantum dot light conversion unit includes the light scattering particles and the oil phase green light quantum dots attached to the surface of the light scattering particles;
  • the blue light diffusion unit includes organic silicon scattering particles
  • the preparation material of the light scattering particles is selected from at least one of titanium dioxide and silicon dioxide.
  • the particle size of the light scattering particles is greater than 10 nanometers and less than or equal to 50 nanometers.
  • the display panel further includes a color film layer, and the color film layer is disposed between the first substrate and the quantum dot light conversion layer.
  • the display panel further includes a medium layer, and the medium layer is located between the color film layer and the quantum dot light conversion layer.
  • the dielectric layer includes a silicon dioxide layer.
  • the blue light emitting layer includes at least one of blue organic light emitting diodes, blue micro light emitting diodes, and blue submillimeter light emitting diodes.
  • the present application provides a display panel and a manufacturing method thereof.
  • a quantum dot light-scattering particle composite is dispersed in a dispersion medium to prepare a quantum dot ink.
  • the quantum dot light-scattering particle composite includes light-scattering particles and attached to light-scattering particles.
  • the oil phase quantum dots on the surface use the oil solubility of the oil phase quantum dots to improve the dispersion stability of the light scattering particles in the dispersion medium to meet the process requirements of inkjet printing.
  • the quantum dot light conversion layer includes light scattering particles, the quantum dot light conversion layer has the function of refracting and scattering the blue light emitted by the blue light emitting layer, thereby increasing the optical path of the blue light in the quantum dot light conversion layer, and ultimately improving the quantum The brightness conversion rate of the spot light conversion layer.
  • FIG. 1 is a schematic diagram of the structure of a display panel according to an embodiment of the application
  • FIG. 2 is a flowchart of a manufacturing method of a display panel according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a substrate having red sub-pixel grooves, green sub-pixel grooves, and blue sub-pixel grooves.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the application.
  • the display panel 100 includes a first substrate 10, a quantum dot light conversion layer 12, a second substrate 11, a blue light emitting layer 13, a pixel definition layer 14, a dielectric layer 15, a color film layer 16, a black matrix layer 17, and a thin film transistor array layer 18. .
  • the first substrate 10 and the second substrate 11 are arranged opposite to each other. Both the first substrate 10 and the second substrate 11 are glass substrates.
  • the quantum dot light conversion layer 12 is used for receiving blue light and then being excited to emit at least red light and green light.
  • the quantum dot light conversion layer 12 is disposed on the opposite surface of the first substrate 10 and the second substrate 11.
  • the quantum dot light conversion layer 12 includes a quantum dot light scattering particle composite, and the quantum dot light scattering particle composite includes light scattering particles and attachments. Oil phase quantum dots on the surface of light-scattering particles.
  • the light scattering particles are hydrophilic scattering particles, and the preparation material of the light scattering particles is selected from at least one of titanium dioxide and silicon dioxide. It is understandable that the light scattering particles may also be organic silicon scattering particles. Specifically, the light diffusion particles are titanium dioxide scattering particles, and the particle size of the light diffusion particles is greater than 10 nanometers and less than or equal to 50 nanometers.
  • Oil phase quantum dots include quantum dots and organic ligands attached to the surface of the quantum dots.
  • the particle size of the quantum dots is greater than or equal to 1 nanometer and less than or equal to 10 nanometers.
  • the organic ligands are long-chain organic ligands, such as oleic acid, trioctylphosphine, oleylamine, dodecanethiol and the like.
  • the quantum dot light conversion layer 12 includes a red light quantum dot light conversion unit 121, a green light quantum dot light conversion unit 122 and a blue light diffusion unit 123.
  • the red light quantum dot light conversion unit 121, the green light quantum dot light conversion unit 122, and the blue light diffusion unit 123 are repeatedly arranged in sequence.
  • the red light quantum dot light conversion unit 121 includes light scattering particles 124 and oil phase red light quantum dots 1211 attached to the surface of the light scattering particles 124.
  • the red light quantum dot light conversion unit 121 is used to receive the blue light emitted by the blue light emitting layer 13, and the blue light is incident on the oil. Compared with the red light quantum dots 1211, the red light quantum dots are excited after receiving blue light and emit red light. Because the blue light is refracted and scattered on the surface of the light scattering particles, the optical path of the blue light in the red light quantum dot light conversion unit 121 increases, thereby making the red light The brightness conversion rate in the light quantum dot light conversion unit 121 is improved.
  • the red light quantum dots can be CdSe-CdS-ZnS, where CdSe is the core, the particle size of CdSe is 5 nanometers, and both CdS and ZnS are shells.
  • the green light quantum dot light conversion unit 122 includes light scattering particles 124 and oil phase green light quantum dots 1221 attached to the surface of the light scattering particles 124.
  • the green light quantum dot conversion unit 122 is used to receive blue light emitted by the blue light emitting layer 13, and the blue light is incident on the oil phase. Green light quantum dots 1221. After receiving blue light, the green light quantum dots are excited and emit green light. Because blue light is refracted and scattered on the surface of the light scattering particles, the optical path of blue light in the green light quantum dot light conversion unit 122 increases, so that the green light quantum dots The brightness conversion rate in the spot light conversion unit 122 is improved.
  • the green light quantum dots can be CdSe-CdS-ZnS, where CdSe is the core, the particle size of CdSe is 3 nanometers, and both CdS and ZnS are shells.
  • the blue light diffusion layer 123 includes organic silicon scattering particles 125. After the blue light emitted by the blue light emitting layer 123 is incident on the blue diffusion layer, the organic silicon scattering particles 125 scatter the blue light to increase the viewing angle of the blue sub-pixels.
  • the blue light emitting layer 13 is used to emit blue light.
  • the blue light emitting layer 13 is disposed on the opposite surface of the second substrate 11 and the first substrate 10.
  • the blue light emitting layer 13 includes blue organic light emitting diodes (Blue OLED), blue micro light emitting diodes (Blue Micro-LED), and blue submillimeter light emitting diodes (Blue OLED). Mini-LED) at least one of them.
  • the thin film transistor array layer 18 includes a plurality of thin film transistors arranged in an array, and the thin film transistors are used to control the working state of the blue light emitting layer 13.
  • the thin film transistor array substrate 18 is disposed between the blue light emitting layer 13 and the second substrate 11.
  • the color film layer 16 is disposed between the first substrate 10 and the quantum dot light conversion layer 12.
  • the color film layer 16 includes a plurality of filter units, and the plurality of filter units include a red filter unit R, a blue filter unit B, and a green filter unit G.
  • the black matrix layer 17 includes a plurality of black matrices, and a black matrix is arranged between two adjacent filter units.
  • the red filter unit R, the green filter unit G, and the blue filter unit B are repeatedly arranged in sequence.
  • the red filter unit R is arranged corresponding to the red light quantum dot light conversion unit 121
  • the green filter unit G is arranged corresponding to the green light quantum dot light conversion unit 122
  • the blue filter unit B is arranged corresponding to the blue light diffusion layer 123.
  • the color film layer 16 is not only used to filter the blue light not completely absorbed by the red light quantum dot light conversion unit 121 and the green light quantum dot light conversion unit 122, but also used to block external light to reduce natural light excitation of the quantum dots.
  • the main function of the black matrix layer is to prevent optical crosstalk.
  • the dielectric layer 15 is formed on the surface of the color film layer 16 away from the first substrate 10, and the dielectric layer 15 is located between the color film layer 16 and the quantum dot light conversion layer 12.
  • the dielectric layer 15 is used to improve the contact effect with the film layers (121, 122, and 123), and prevent the quantum dot film from peeling off due to the difference in film quality.
  • the dielectric layer 15 includes a silicon dioxide (SiO 2 ) layer.
  • the pixel definition layer 14 is used to define sub-pixel areas.
  • the sub-pixel area includes a red sub-pixel area 10a, a blue sub-pixel area 10c, and a green sub-pixel area 10b.
  • the red sub-pixel area 10a, the green sub-pixel area 10b, and the blue sub-pixel area 10c are arranged in sequence.
  • the pixel defining layer 14 is disposed on the surface of the dielectric layer 15 away from the color film layer 16.
  • a plurality of openings 14a are provided on the pixel defining layer 14, and the quantum dot light conversion layer 12 is formed in the openings 14a.
  • the pixel definition layer 14 is a black organic layer.
  • the red light quantum dot light conversion unit 121 is obtained by printing a red light quantum dot ink into the opening 14a corresponding to the red sub-pixel area and curing it.
  • the red light quantum dot ink includes a dispersion medium and red light quantum dots dispersed in the dispersion medium. Scattering particle composite.
  • the red light quantum dot light scattering particle composite includes light scattering particles and oil phase red light quantum dots attached to the surface of the light scattering particles.
  • the red light quantum dot ink may also include oil phase red light quantum dots dispersed in a dispersion medium.
  • the green light quantum dot light conversion unit is obtained by printing green light quantum dot ink into the opening 14a corresponding to the green sub-pixel area and curing it.
  • the green light quantum dot ink includes a dispersion medium and green light quantum dot light scattering dispersed in the dispersion medium.
  • the particle composite, the green light quantum dot light scattering particle composite includes light scattering particles and oil phase green light quantum dots attached to the surface of the light scattering particles.
  • the green light quantum dot ink may also include oil phase green light quantum dots dispersed in a dispersion medium.
  • the blue light diffusion unit is obtained by printing a mixture of organic silicon scattering particles and dispersion medium into the opening 14a corresponding to the blue sub-pixel, and is obtained after curing.
  • the organic silicon is an organic substance, it has good dispersibility and stability in the dispersion medium
  • the particle size of the organic silicon scattering particles is greater than 10 nanometers and less than 50 nanometers, for example, the particle size of the organic silicon scattering particles is 30 nanometers.
  • the dispersion medium includes monomer, photoinitiator and organic solvent.
  • the mass ratio of monomer, photoinitiator and organic solvent is (79%-99%): 1%: (0-20%), single
  • the body is acrylate and its derivatives
  • the photoinitiator is benzil and its derivatives, benzophenones, dialkoxy acetophenones, ⁇ -hydroxyalkyl phenones, and ⁇ -aminoalkyl aromatics.
  • At least one of the base ketones, and the organic solvent is ethyl acetate or the like.
  • the photoinitiator decomposes under the action of ultraviolet light to generate active free radicals, and the active free radicals initiate the polymerization reaction of monomers and solidify.
  • the display panel of the present application makes the quantum dot light-scattering particle composite include light-scattering particles and oil-phase quantum dots attached to the surface of the light-scattering particles, and utilizes the oil solubility of the oil-phase quantum dots to improve the light-scattering particles during the manufacturing process of the display panel.
  • the dispersion stability in the dispersion medium can meet the process requirements of inkjet printing.
  • the oil phase quantum dots are attached to the surface of the light-scattering quantum dots to further improve the utilization rate of the blue light refracted by the light-scattering particles and scattered by the quantum dots.
  • FIG. 2 is a flowchart of a manufacturing method of a display panel according to an embodiment of the present application.
  • the manufacturing method of the display panel includes the following steps:
  • S101 forming a quantum dot ink on a first substrate, and curing it to obtain a first substrate with a quantum dot light conversion layer.
  • a pixel definition layer is provided on the first substrate, and a plurality of openings are provided on the pixel definition layer, each opening corresponds to a sub-pixel groove, and the plurality of openings includes a red photo sub-pixel groove, a green photo sub-pixel groove, and a blue sub-pixel groove,
  • the red photo sub-pixel slot, the green photo sub-pixel slot and the blue sub-pixel slot are repeatedly arranged in sequence.
  • the inkjet printing technology is used to print the red light quantum dot ink in the red photon pixel slot, and the red light quantum dot light conversion unit is obtained by ultraviolet curing.
  • the red light quantum dot ink includes a dispersion medium and red light quantum dot light scattering particles dispersed in the dispersion medium Composite, red light quantum dots.
  • the light scattering particle composite includes light scattering particles and oil phase red light quantum dots attached to the surface of the light scattering particles.
  • the red light quantum dot ink may also include oil phase red light quantum dots dispersed in a dispersion medium.
  • the green light quantum dot ink is printed by inkjet printing technology in the green sub-pixel slot, and the green light quantum dot light conversion unit is obtained after ultraviolet curing.
  • the green light quantum dot ink includes a dispersion medium and the green light quantum dot light scattering dispersed in the dispersion medium
  • the particle composite, the green light quantum dot light scattering particle composite includes light scattering particles and oil phase green light quantum dots attached to the surface of the light scattering particles.
  • the green light quantum dot ink may also include oil phase green light quantum dots dispersed in a dispersion medium.
  • inkjet printing technology is used to print a mixture of organic silicon scattering particles and a dispersion medium, and a blue light diffusion unit is obtained after curing.
  • the red light quantum dot light conversion unit, the green light quantum dot light conversion unit and the blue light diffusion unit form a quantum dot light conversion layer.
  • the pixel definition layer is a black organic layer.
  • S102 Oppose the surface of the second substrate provided with the blue light emitting layer and the surface of the first substrate provided with the quantum dot light conversion layer to obtain a display panel.
  • the surface of the second substrate provided with the blue light emitting layer is opposed to the surface of the first substrate provided with the quantum dot light conversion layer.
  • the blue light of the conversion unit excites the red light quantum dots to emit red light, and because the red light quantum dot light conversion unit has light scattering particles, the optical path of the blue light in the red light quantum dot light conversion unit increases, and the blue light excites the red light quantum dot to produce red light. Conversion rate.
  • the blue light incident on the green light quantum dot light conversion unit excites the green light quantum dot to emit green light, and because the green light quantum dot light conversion unit has light scattering particles, the blue light is in the green
  • the light path in the light quantum dot light conversion unit is increased, and the conversion rate of blue light excites the green light quantum dot to produce green light is increased.
  • the viewing angle of the blue sub-pixel is increased.
  • the method for preparing the quantum dot light scattering particle composite includes the following steps:
  • the light scattering particles are added to the oil phase quantum dot solution, mixed and left to stand to remove the lipophilic solvent to obtain a quantum dot light scattering particle composite.
  • the preparation material of the light scattering particles is selected from at least one of titanium dioxide and silicon dioxide kind.
  • the van der Waals force between the quantum dots and the light scattering particles in the oil phase quantum dots is used to make the oil phase quantum dots adhere to the surface of the light scattering particles, thereby obtaining a quantum dot light scattering particle composite.
  • the particle size of the light scattering particles is greater than 10 nanometers and less than or equal to 50 nanometers. Specifically, the particle size of the light scattering particles is 25 nanometers.
  • the preparation method of oil phase quantum dots includes the following steps:
  • the oil phase quantum dot stock solution includes the original oil phase quantum dots, and the original oil phase quantum dots include quantum dots and organic compounds attached to the surface of the quantum dots. body;
  • a precipitating agent is added to the oil phase quantum stock solution to wash away part of the organic ligands in the original oil phase quantum dots, and the oil phase quantum dots are obtained by centrifugation and separation.
  • the precipitating agent is used to wash away part of the organic ligands on the surface of the original oil phase quantum dots, so that the organic ligands attached to the surface of the oil phase quantum dots are relative to the original oil phase quantum dots.
  • the organic ligands attached to the surface of the oil phase quantum dots are relative to the original oil phase quantum dots.
  • the resistance of the organic ligands to the oil phase quantum dots on the surface of the light scattering particles is reduced.
  • the remaining organic ligands ensure that the oil phase quantum dots can be better. Dispersed in traditional ink.
  • the lipophilic solvent is cyclohexane
  • the precipitation agent is an alcohol solvent
  • the alcohol solvent includes ethanol, propanol, and ethylene glycol.
  • the alcohol solvent is ethanol.
  • the percentage of the quantum dot light scattering particle composite and the dispersion medium is (1%-5%): (95%-99%), and the dispersion medium includes monomers, photoinitiators, and organic solvents.
  • This embodiment provides a red light quantum dot ink, which includes the following steps:
  • oil phase red light quantum dot stock solution includes original oil phase red light quantum dots, and the original oil phase red light quantum dots include red light quantum dots and organic ligands attached to the surface of the red light quantum dots;
  • the red light quantum dot light scattering particle composite and ink (80wt% acrylate, 1wt% benzophenone and 19wt% ethyl acetate) are mixed in a mass ratio of 3%:97% to obtain a red light quantum dot ink.
  • This embodiment provides a green light quantum dot ink, which includes the following steps:
  • the original liquid of phase green light quantum dots includes original oil phase green light quantum dots, and the original oil phase green light quantum dots include green light quantum dots and organic ligands attached to the surface of the green light quantum dots;
  • the green light quantum dot light scattering particle composite and ink (80wt% acrylate, 1wt% benzophenone and 19wt% ethyl acetate) are mixed in a mass ratio of 5%:95% to obtain a green light quantum dot ink.
  • This embodiment provides a display panel, and the manufacturing method of the display panel includes the following steps:
  • a substrate having a red sub-pixel groove 141, a green sub-pixel groove 142, and a blue sub-pixel groove 143 is provided;
  • the red light quantum ink prepared in Example 1 is printed into the red sub-pixel groove 141 of the substrate, and cured after being irradiated with ultraviolet light to obtain a red light quantum dot light conversion unit;
  • the green light quantum dot ink prepared in Example 2 is printed into the green light sub-pixel groove 142 of the substrate, and cured after being irradiated with ultraviolet light to obtain a green light quantum dot light conversion unit;
  • the substrate on which the red light quantum dot light conversion unit, the green light quantum dot light conversion unit and the blue light diffusion unit are formed is opposed to the substrate with the blue organic light emitting diode layer to obtain a display panel.
  • the substrate shown in FIG. 3 is the same as the first substrate provided with a color film layer, a black matrix, a dielectric layer, and a pixel definition layer shown in FIG. 1, and will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

本申请提供一种显示面板及其制造方法,通过使量子点光散射粒子复合物分散于分散介质中以制得量子点墨水,量子点光散射粒子复合物包括光散射粒子以及附着于光散射粒子表面的油相量子点,利用油相量子点的油溶性,以提高光散射粒子在分散介质中的分散稳定性,以满足喷墨打印的制程需求。

Description

显示面板及其制造方法 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及其制造方法。
背景技术
量子点发光二极管(Quantum Dot Light Emitting Diode,QD-LED)结构显示器由量子点彩色滤光膜(Quantum Dot Color Filter,QDCF)和以二极管作为蓝光背光光源两部分组成,其不仅具有发光二极管器件的自主发光、薄型化和柔性的特点,还具有量子点高色域的优点。该结构器件利用量子点彩色滤光膜中量子点(Quantum Dot,QD)的光致发光特性,把背光的蓝光转换成红光和绿光,从而实现全彩化显示的目的。
常见的红光量子点墨水和绿光量子点墨水内都会添加一些散射粒子(如TiO 2)来增加激发光在膜层中的光程从而提升墨水内量子点的亮度转换率。其中,TiO 2具有很好的散射效果,但是其不能够在传统的丙烯酸体系墨水中很好的分散,其会慢慢发生团聚并堵塞喷墨打印机的喷嘴,从而对后续打印制程产生不良影响。
技术问题
本申请的目的在于提供一种显示面板及其制造方法,以解决显示面板制造过程中光散射粒子在传统油墨中不能稳定分散的问题。
技术解决方案
为实现上述目的,本申请提供一种显示面板的制造方法,所述制造方法包括如下步骤:
将量子点墨水形成在第一基板上,经固化,得具有量子点光转换层的第一基板,所述量子点墨水包括分散介质以及分散于所述分散介质中的量子点光散射粒子复合物,所述量子点光散射粒子复合物包括光散射粒子以及附着于所述光散射粒子表面的油相量子点,所述量子点光转换层用于接收蓝光后受激发以至少发出红光和绿光;
将设置有蓝光发光层的第二基板的表面与设置有所述量子点光转换层的第一基板的表面对置,得所述显示面板。
在上述显示面板的制造方法中,所述量子点光散射粒子复合物的制备方法包括如下步骤:
将所述油相量子点分散于亲油性溶剂中,得油相量子点溶液;
将光散射粒子加入至所述油相量子点溶液中,经混合后静置,去除所述亲油性溶剂,得所述量子点光散射粒子复合物,所述光散射粒子的制备材料选自二氧化钛以及二氧化硅中的至少一种。
在上述显示面板的制造方法中,所述油相量子点的制备方法包括如下步骤:
将油相量子点原液分散于所述亲油性溶剂中,得油相量子点原液溶液,所述油相量子点原液包括原始油相量子点,所述原始油相量子点包括量子点以及附着于所述量子点表面的有机配体;
向所述油相量子点原液溶液中加入沉淀剂,洗去所述原始油相量子点中的部分所述有机配体,经离心及分离,得所述油相量子点。
在上述显示面板的制造方法中,所述亲油性溶剂为环己烷,所述沉淀剂为醇溶剂。
在上述显示面板的制造方法中,所述沉淀剂为乙醇。
在上述显示面板的制造方法中,所述有机配体选自油酸、三辛基膦、油胺以及十二硫醇中的至少一种。
在上述显示面板的制造方法中,所述量子点光散射粒子复合物以及所述分散介质的质量百分比为(1%-5%):(95%-99%),所述分散介质包括单体、光引发剂以及有机溶剂。
在上述显示面板的制造方法中,所述光散射粒子的粒径大于10纳米且小于或等于50纳米。
在上述显示面板的制造方法中,所述蓝光发光层包括蓝光有机发光二极管、蓝光微型发光二极管以及蓝光亚毫米发光二极管中的至少一种。
一种显示面板,所述显示面板包括第一基板、量子点光转换层、第二基板以及蓝光发光层,
所述第一基板与所述第二基板相对设置;
所述量子点光转换层设置于所述第一基板与所述第二基板相对的表面上,所述量子点光转换层包括量子点光散射粒子复合物,所述量子点光散射粒子复合物包括光散射粒子以及附着于所述光散射粒子表面的油相量子点,所述量子点光转换层用于接收蓝光后受激发以至少发出红光和绿光;
所述蓝光发光层设置于所述第二基板与所述第一基板相对的表面上,所述蓝光发光层用于发出蓝光。
在上述显示面板中,所述量子点光转换层包括红光量子点光转换单元、绿光量子点光转换单元以及蓝光扩散单元,
所述红光量子点光转换单元包括所述光散射粒子以及附着于所述光散射粒子表面的油相红光量子点;
所述绿光量子点光转换单元包括所述光散射粒子以及附着于所述光散射粒子表面的油相绿光量子点;
所述蓝光扩散单元包括有机硅散射粒子;
所述光散射粒子的制备材料选自二氧化钛以及二氧化硅中的至少一种。
在上述显示面板中,所述光散射粒子的粒径大于10纳米且小于或等于50纳米。
在上述显示面板中,所述显示面板还包括彩色膜层,所述彩色膜层设置于所述第一基板和所述量子点光转换层之间。
在上述的显示面板中,所述显示面板还包括介质层,所述介质层位于所述彩色膜层和所述量子点光转换层之间。
在上述的显示面板中,所述介质层包括二氧化硅层。
在上述的显示面板中,所述蓝光发光层包括蓝光有机发光二极管、蓝光微型发光二极管以及蓝光亚毫米发光二极管中的至少一种。
有益效果
本申请提供一种显示面板及其制造方法,通过使量子点光散射粒子复合物分散于分散介质中以制得量子点墨水,量子点光散射粒子复合物包括光散射粒子以及附着于光散射粒子表面的油相量子点,利用油相量子点的油溶性,以提高光散射粒子在分散介质中的分散稳定性,以满足喷墨打印的制程需求。另外,由于量子点光转换层中包括光散射粒子,量子点光转换层对蓝光发光层发出的蓝光具有折射和散射的作用,从而提高蓝光在量子点光转换层中的光程,最终提升量子点光转换层的亮度转换率。
附图说明
图1为本申请实施例显示面板的结构示意图;
图2为本申请实施例显示面板的制造方法的流程图;
图3为具有红色子像素槽、绿色子像素槽以及蓝色子像素槽的基板的示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,其为本申请实施例显示面板的结构示意图。显示面板100包括第一基板10、量子点光转换层12、第二基板11、蓝光发光层13、像素定义层14、介质层15、彩色膜层16、黑色矩阵层17以及薄膜晶体管阵列层18。
第一基板10与第二基板11相对设置。第一基板10和第二基板11均为玻璃基板。
量子点光转换层12用于接收蓝光后受激发以至少发出红光和绿光。量子点光转换层12设置于第一基板10与第二基板11相对的表面上,量子点光转换层12包括量子点光散射粒子复合物,量子点光散射粒子复合物包括光散射粒子以及附着于光散射粒子表面的油相量子点。
光散射粒子为亲水性散射粒子,光散射粒子的制备材料选自二氧化钛以及二氧化硅中的至少一种。可以理解的是,光散射粒子也可以是有机硅散射粒子。具体地,光扩散粒子为二氧化钛散射粒子,光扩散粒子的粒径大于10纳米且小于或等于50纳米。
油相量子点包括量子点以及附着于量子点表面的有机配体。量子点的粒径为大于或等于1纳米且小于或等于10纳米。有机配体为长链有机配体,例如油酸、三辛基膦、油胺、十二硫醇等。
具体地,量子点光转换层12包括红光量子点光转换单元121、绿光量子点光转换单元122以及蓝光扩散单元123。红光量子点光转换单元121、绿光量子点光转换单元122以及蓝光扩散单元123依次重复设置。
红光量子点光转换单元121包括光散射粒子124以及附着于光散射粒子124表面的油相红光量子点1211,红光量子点光转换单元121用于接收蓝光发光层13发出的蓝光,蓝光入射至油相红光量子点1211,红光量子点接收蓝光后受激发且发出红光,由于蓝光在光散射粒子的表面出现折射以及散射,蓝光在红光量子点光转换单元121中的光程增加,从而使得红光量子点光转换单元121中的亮度转换率提高。红光量子点可以为CdSe-CdS-ZnS,其中,CdSe为核,CdSe的粒径为5纳米,CdS以及ZnS均为壳。
绿光量子点光转换单元122包括光散射粒子124以及附着于光散射粒子124表面的油相绿光量子点1221,绿光量子点转换单元122用于接收蓝光发光层13发出的蓝光,蓝光入射至油相绿光量子点1221,绿光量子点接收蓝光后受激发且发出绿光,由于蓝光在光散射粒子的表面出现折射以及散射,蓝光在绿光量子点光转换单元122中的光程增加,从而使得绿光量子点光转换单元122中的亮度转换率提高。绿光量子点可以为CdSe-CdS-ZnS,其中,CdSe为核,CdSe的粒径为3纳米,CdS以及ZnS均为壳。
蓝光扩散层123包括有机硅散射粒子125。蓝光发光层123发出的蓝光入射至蓝光扩散层后,有机硅散射粒子125对蓝光进行散射,以提高蓝色子像素的视角。
蓝光发光层13用于发出蓝光。蓝光发光层13设置于第二基板11与第一基板10相对的表面上。蓝光发光层13包括蓝光有机发光二极管(Blue OLED)、蓝光微型发光二极管(Blue Micro-LED)以及蓝光亚毫米发光二极管(Blue Mini-LED)中的至少一种。
薄膜晶体管阵列层18包括多个阵列排布的薄膜晶体管,薄膜晶体管用于控制蓝光发光层13的工作状态。薄膜晶体管阵列基板18设置于蓝光发光层13与第二基板11之间。
彩色膜层16设置于第一基板10和量子点光转换层12之间。彩色膜层16包括多个滤光单元,多个滤光单元包括红色滤光单元R、蓝色滤光单元B以及绿色滤光单元G。黑色矩阵层17包括多个黑色矩阵,相邻两个滤光单元之间设置有黑色矩阵。红色滤光单元R、绿色滤光单元G以及蓝色滤光单元B依次重复布设。红色滤光单元R对应红光量子点光转换单元121设置,绿色滤光单元G对应绿光量子点光转换单元122设置,蓝色滤光单元B对应蓝光扩散层123设置。彩色膜层16除了用于过滤未被红光量子点光转换单元121以及绿光量子点光转换单元122完全吸收的蓝光,还用于阻挡外界光以减少自然光激发量子点。黑色矩阵层主要作用是防止光串扰。
介质层15形成于彩色膜层16远离第一基板10的表面上,介质层15位于彩色膜层16和量子点光转换层12之间。介质层15用于提升与膜层(121、122和123)的接触效果,防止因为膜质的不同发生的量子点膜层剥落情况。介质层15包括二氧化硅(SiO 2)层。
像素定义层14用于定义子像素区。子像素区包括红色子像素区10a、蓝色子像素区10c以及绿色子像素区10b,红色子像素区10a、绿色子像素区10b以及蓝色子像素区10c依次排布设置。像素定义层14设置于介质层15远离彩色膜层16的表面。像素定义层14上设置有多个开口14a,量子点光转换层12形成于开口14a中。像素定义层14为黑色有机层。红光量子点光转换单元121是通过向对应红色子像素区的开口14a中打印红光量子点墨水,经固化后得到,其中,红光量子点墨水包括分散介质以及分散于分散介质中的红光量子点光散射粒子复合物,红光量子点光散射粒子复合物包括光散射粒子以及附着于光散射粒子表面的油相红光量子点,红光量子点墨水还可以包括分散于分散介质中的油相红光量子点。绿光量子点光转换单元是通过向对应绿色子像素区的开口14a中打印绿光量子点墨水,经固化后得到,其中,绿光量子点墨水包括分散介质以及分散于分散介质中的绿光量子点光散射粒子复合物,绿光量子点光散射粒子复合物包括光散射粒子以及附着于光散射粒子表面的油相绿光量子点,绿光量子点墨水还可以包括分散于分散介质中的油相绿光量子点。蓝光扩散单元是通过将有机硅散射粒子以及分散介质的混合物打印至蓝色子像素对应的开口14a中,经固化后得到,由于有机硅为有机物,其在分散介质中具有良好的分散性以及稳定性,有机硅散射粒子的粒径为大于10纳米且小于50纳米,例如有机硅散射粒子的粒径为30纳米。
分散介质包括单体、光引发剂以及有机溶剂,按质量百分比计,单体、光引发剂以及有机溶剂的质量比为(79%-99%):1%:(0-20%),单体为丙烯酸酯及其衍生物,光引发剂为苯偶酰及其衍生物、二苯甲酮、二烷氧基苯乙酮类、α-羟烷基苯酮类以及α-胺烷基芳基酮中的至少一种,有机溶剂为乙酸乙酯等。光引发剂在紫外光的作用下分解产生活性自由基,活性自由基引发单体发生聚合反应而固化。
本申请显示面板通过使量子点光散射粒子复合物包括光散射粒子以及附着于光散射粒子表面的油相量子点,利用油相量子点的油溶性,以提高显示面板制造过程中光散射粒子在分散介质中的分散稳定性,以满足喷墨打印的制程需求。另外,油相量子点附着于光散射量子点的表面进一步地提高量子点对光散射粒子折射以及散射的蓝光的利用率。
请参阅图2,其为本申请实施例显示面板的制造方法的流程图。显示面板的制造方法包括如下步骤:
S101:将量子点墨水形成在第一基板上,经固化,得具有量子点光转换层的第一基板。
具体地,第一基板上具有像素定义层,像素定义层上设置有多个开口,每个开口对应一个子像素槽,多个开口包括红光子像素槽、绿光子像素槽以及蓝光子像素槽,红光子像素槽、绿光子像素槽以及蓝光子像素槽依次重复设置。于红光子像素槽中采用喷墨打印技术打印红光量子点墨水,经紫外固化得红光量子点光转换单元,其中,红光量子点墨水包括分散介质以及分散于分散介质中的红光量子点光散射粒子复合物,红光量子点光散射粒子复合物包括光散射粒子以及附着于光散射粒子表面的油相红光量子点,红光量子点墨水还可以包括分散于分散介质中的油相红光量子点。于绿光子像素槽中采用喷墨打印技术打印绿光量子点墨水,经紫外固化后得到绿光量子点光转换单元,其中,绿光量子点墨水包括分散介质以及分散于分散介质中的绿光量子点光散射粒子复合物,绿光量子点光散射粒子复合物包括光散射粒子以及附着于光散射粒子表面的油相绿光量子点,绿光量子点墨水还可以包括分散于分散介质中的油相绿光量子点。于蓝光子像素槽中采用喷墨打印技术打印有机硅散射粒子以及分散介质的混合物,经固化后得蓝光扩散单元。红光量子点光转换单元、绿光量子点光转换单元以及蓝光扩散单元组成量子点光转换层。像素定义层为黑色有机层。
S102:将设置有蓝光发光层的第二基板的表面与设置有量子点光转换层第一基板的表面对置,得显示面板。
具体地,第二基板设置有蓝光发光层的表面与第一基板设置有量子点光转换层的表面对置,蓝光发光层发出的蓝光入射至量子点光转换层后,入射至红光量子点光转换单元的蓝光激发红光量子点发出红光,且由于红光量子点光转换单元中具有光散射粒子,使得蓝光在红光量子点光转换单元中的光程增加,增加蓝光激发红光量子点产生红光的转换率。蓝光发光层发出的蓝光入射至量子点光转换层后,入射至绿光量子点光转换单元的蓝光激发绿光量子点发出绿光,且由于绿光量子点光转换单元具有光散射粒子,使得蓝光在绿光量子点光转换单元中的光程增加,增加蓝光激发绿光量子点产生绿光的转换率。蓝光发光层发出的蓝光经过有机硅散射粒子散射后,增大了蓝光子像素的视角。
在本实施例中,量子点光散射粒子复合物地制备方法包括如下步骤:
将油相量子点分散于亲油性溶剂中,得油相量子点溶液。
将光散射粒子加入至油相量子点溶液中,经混合后静置,去除亲油性溶剂,得量子点光散射粒子复合物,光散射粒子的制备材料选自二氧化钛以及二氧化硅中的至少一种。
利用油相量子点中量子点与光散射粒子之间的范德华力,以使得油相量子点附着于光散射粒子的表面,从而得到量子点光散射粒子复合物。
在本实施例中,光散射粒子的粒径大于10纳米且小于或等于50纳米。具体地,光散射粒子的粒径为25纳米。
在本实施例中,油相量子点得制备方法包括如下步骤:
将油相量子点原液分散于亲油性溶剂中,得油相量子点原液溶液,油相量子点原液包括原始油相量子点,原始油相量子点包括量子点以及附着于量子点表面的有机配体;
向油相量子原液溶液中加入沉淀剂,洗去原始油相量子点中的部分有机配体,经离心以及分离,得油相量子点。
通过将油相量子点原液分散于亲油性溶剂中后,采用沉淀剂洗去原始油相量子点表面的部分有机配体,使得油相量子点表面附着的有机配体相对于原始油相量子点表面附着的有机配体更少,一方面,使得有机配体对油相量子点附着于光散射粒子表面时的阻力减少,另一方面,剩余的有机配体保证油相量子点能较好地分散于传统油墨中。
在本实施例中,亲油性溶剂为环己烷,沉淀剂为醇溶剂,醇溶剂包括乙醇,丙醇以及乙二醇等。具体地,醇溶剂为乙醇。
在本实施例中,量子点光散射粒子复合物以及分散介质的百分比为(1%-5%):(95%-99%),分散介质包括单体、光引发剂以及有机溶剂。
以下结合具体实施例对上述方案进行详述。
实施例1
本实施例提供一种红光量子点墨水,包括如下步骤:
将市购的5mL油相红光量子点原液(购自苏州星烁纳米科技,牌号:CdSe-625-25)加入至15mL环己烷中,搅拌,得油相红光量子点原液溶液,其中,油相红光量子点原液中包括原始油相红光量子点,原始油相红光量子点包括红光量子点以及附着于红光量子点表面的有机配体;
向油相红光量子点原液溶液中加入60mL乙醇,洗去原始油相红光量子点表面的部分有机配体,以转速3000r/min 离心4min,经分离后,取最下层的沉淀物,得油相红光量子点;
将油相红光量子点加入至15mL环己烷中,搅拌,加入P25(TiO 2,粒径25 nm),经混合后静止,去除环己烷,得红光量子点光散射粒子复合物;
将红光量子点光散射粒子复合物以及油墨(80wt%丙烯酸酯,1wt%二苯甲酮以及19wt%乙酸乙酯)以质量比为3%:97%进行混合,得红光量子点墨水。
实施例2
本实施例提供一种绿光量子点墨水,包括如下步骤:
将市购的4mL油相绿光量子点原液(购自苏州星烁纳米科技,牌号:CdSe-525-25)加入至12mL环己烷中,搅拌,得油相绿光量子点原液溶液,其中,油相绿光量子点原液中包括原始油相绿光量子点,原始油相绿光量子点包括绿光量子点以及附着于绿光量子点表面的有机配体;
向油相绿光量子点原液溶液中加入50mL乙醇,洗去原始油相绿光量子点表面的部分有机配体,以转速5000r/min 离心5min,经分离后,取最下层的沉淀物,得油相绿光量子点;
将油相绿光量子点加入至15mL环己烷中,搅拌,加入P25(TiO 2,粒径25 nm),经混合后静止,去除环己烷,得绿光量子点光散射粒子复合物;
将绿光量子点光散射粒子复合物以及油墨(80wt%丙烯酸酯,1wt%二苯甲酮以及19wt%乙酸乙酯)以质量比为5%:95%进行混合,得绿光量子点墨水。
实施例3
本实施例提供一种显示面板,显示面板的制造方法包括如下步骤:
如图3所示,提供一具有红色子像素槽141、绿色子像素槽142以及蓝色子像素槽143的基板;
采用喷墨打印将实施例1制备得到的红光量子墨水打印至基板的红色子像素槽141中,紫外光照射后固化,得红光量子点光转换单元;
采用喷墨打印将实施例2制备得到的绿光量子点墨水打印至基板的绿光子像素槽142中,紫外光照射后固化,得绿光量子点光转换单元;
采用喷墨打印将3g有机硅散射粒子(粒径30纳米)与97g油墨(80wt%丙烯酸酯,1wt%二苯甲酮以及19wt%乙酸乙酯)的混合物打印至基板的蓝光子像素槽143中,紫外光照射后固化,得蓝光扩散单元;
将形成有红光量子点光转换单元、绿光量子点光转换单元以及蓝光扩散单元的基板与具有蓝光有机发光二极管层的基板对置,得显示面板。
需要说明的是,图3所示基板与图1所示设置有彩色膜层、黑色矩阵、介质层以及像素定义层的第一基板相同,此处不作详述。
以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (16)

  1. 一种显示面板的制造方法,其中,所述制造方法包括如下步骤:
    将量子点墨水形成在第一基板上,经固化,得具有量子点光转换层的第一基板,所述量子点墨水包括分散介质以及分散于所述分散介质中的量子点光散射粒子复合物,所述量子点光散射粒子复合物包括光散射粒子以及附着于所述光散射粒子表面的油相量子点,所述量子点光转换层用于接收蓝光后受激发以至少发出红光和绿光;
    将设置有蓝光发光层的第二基板的表面与设置有所述量子点光转换层的第一基板的表面对置,得所述显示面板。
  2. 根据权利要求1所述显示面板的制造方法,其中,所述量子点光散射粒子复合物的制备方法包括如下步骤:
    将所述油相量子点分散于亲油性溶剂中,得油相量子点溶液;
    将光散射粒子加入至所述油相量子点溶液中,经混合后静置,去除所述亲油性溶剂,得所述量子点光散射粒子复合物,所述光散射粒子的制备材料选自二氧化钛以及二氧化硅中的至少一种。
  3. 根据权利要求2所述显示面板的制造方法,其中,所述油相量子点的制备方法包括如下步骤:
    将油相量子点原液分散于所述亲油性溶剂中,得油相量子点原液溶液,所述油相量子点原液包括原始油相量子点,所述原始油相量子点包括量子点以及附着于所述量子点表面的有机配体;
    向所述油相量子点原液溶液中加入沉淀剂,洗去所述原始油相量子点中的部分所述有机配体,经离心及分离,得所述油相量子点。
  4. 根据权利要求3所述显示面板的制造方法,其中,所述亲油性溶剂为环己烷,所述沉淀剂为醇溶剂。
  5. 根据权利要求4所述显示面板的制造方法,其中,所述沉淀剂为乙醇。
  6. 根据权利要求3所述显示面板的制造方法,其中,所述有机配体选自油酸、三辛基膦、油胺以及十二硫醇中的至少一种。
  7. 根据权利要求1所述显示面板的制造方法,其中,所述量子点光散射粒子复合物以及所述分散介质的质量百分比为(1%-5%):(95%-99%),所述分散介质包括单体、光引发剂以及有机溶剂。
  8. 根据权利要求1所述显示面板的制造方法,其中,所述光散射粒子的粒径大于10纳米且小于或等于50纳米。
  9. 根据权利要求1所述显示面板的制造方法,其中,所述蓝光发光层包括蓝光有机发光二极管、蓝光微型发光二极管以及蓝光亚毫米发光二极管中的至少一种。
  10. 一种显示面板,其中,所述显示面板包括第一基板、量子点光转换层、第二基板以及蓝光发光层,
    所述第一基板与所述第二基板相对设置;
    所述量子点光转换层设置于所述第一基板与所述第二基板相对的表面上,所述量子点光转换层包括量子点光散射粒子复合物,所述量子点光散射粒子复合物包括光散射粒子以及附着于所述光散射粒子表面的油相量子点,所述量子点光转换层用于接收蓝光后受激发以至少发出红光和绿光;
    所述蓝光发光层设置于所述第二基板与所述第一基板相对的表面上,所述蓝光发光层用于发出蓝光。
  11. 根据权利要求10所述的显示面板,其中,所述量子点光转换层包括红光量子点光转换单元、绿光量子点光转换单元以及蓝光扩散单元,
    所述红光量子点光转换单元包括所述光散射粒子以及附着于所述光散射粒子表面的油相红光量子点;
    所述绿光量子点光转换单元包括所述光散射粒子以及附着于所述光散射粒子表面的油相绿光量子点;
    所述蓝光扩散单元包括有机硅散射粒子;
    所述光散射粒子的制备材料选自二氧化钛以及二氧化硅中的至少一种。
  12. 根据权利要求10所述的显示面板,其中,所述光散射粒子的粒径大于10纳米且小于或等于50纳米。
  13. 根据权利要求10所述的显示面板,其中,所述显示面板还包括彩色膜层,所述彩色膜层设置于所述第一基板和所述量子点光转换层之间。
  14. 根据权利要求13所述的显示面板,其中,所述显示面板还包括介质层,所述介质层位于所述彩色膜层和所述量子点光转换层之间。
  15. 根据权利要求14所述的显示面板,其中,所述介质层包括二氧化硅层。
  16. 根据权利要求10所述的显示面板,其中,所述蓝光发光层包括蓝光有机发光二极管、蓝光微型发光二极管以及蓝光亚毫米发光二极管中的至少一种。
PCT/CN2020/091575 2020-05-11 2020-05-21 显示面板及其制造方法 WO2021227121A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/981,729 US11522148B2 (en) 2020-05-11 2020-05-21 Display panel having quantum dot light scattering particle composite and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010392054.2 2020-05-11
CN202010392054.2A CN111584722B (zh) 2020-05-11 2020-05-11 显示面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2021227121A1 true WO2021227121A1 (zh) 2021-11-18

Family

ID=72110825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091575 WO2021227121A1 (zh) 2020-05-11 2020-05-21 显示面板及其制造方法

Country Status (2)

Country Link
CN (1) CN111584722B (zh)
WO (1) WO2021227121A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420879A (zh) * 2021-11-30 2022-04-29 长沙惠科光电有限公司 显示面板的制备方法及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917000A (zh) * 2013-01-07 2014-07-09 群康科技(深圳)有限公司 图案化色转换膜及应用其的显示装置
US20180102449A1 (en) * 2016-10-12 2018-04-12 Kateeva, Inc. Display Devices Utilizing Quantum Dots and Inkjet Printing Techniques Thereof
CN109535836A (zh) * 2018-10-16 2019-03-29 苏州星烁纳米科技有限公司 量子点墨水及量子点彩膜
CN110275351A (zh) * 2019-05-31 2019-09-24 苏州星烁纳米科技有限公司 量子点膜的制备方法及量子点膜
CN110335933A (zh) * 2019-07-11 2019-10-15 京东方科技集团股份有限公司 一种显示面板及其制作方法和显示设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106833649A (zh) * 2017-02-15 2017-06-13 纳晶科技股份有限公司 光致发光材料、光转换膜片的制备方法、光转换膜片及显示设备
CN107238973A (zh) * 2017-07-19 2017-10-10 苏州星烁纳米科技有限公司 量子点膜及其制备方法
CN110643349B (zh) * 2019-10-17 2022-01-04 武汉珈源同创科技有限公司 一种量子点光扩散剂及其制备方法
CN110989296A (zh) * 2019-12-19 2020-04-10 京东方科技集团股份有限公司 量子点光刻胶及其制备方法、显示基板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103917000A (zh) * 2013-01-07 2014-07-09 群康科技(深圳)有限公司 图案化色转换膜及应用其的显示装置
US20180102449A1 (en) * 2016-10-12 2018-04-12 Kateeva, Inc. Display Devices Utilizing Quantum Dots and Inkjet Printing Techniques Thereof
CN109535836A (zh) * 2018-10-16 2019-03-29 苏州星烁纳米科技有限公司 量子点墨水及量子点彩膜
CN110275351A (zh) * 2019-05-31 2019-09-24 苏州星烁纳米科技有限公司 量子点膜的制备方法及量子点膜
CN110335933A (zh) * 2019-07-11 2019-10-15 京东方科技集团股份有限公司 一种显示面板及其制作方法和显示设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420879A (zh) * 2021-11-30 2022-04-29 长沙惠科光电有限公司 显示面板的制备方法及显示面板
CN114420879B (zh) * 2021-11-30 2023-02-07 长沙惠科光电有限公司 显示面板的制备方法及显示面板

Also Published As

Publication number Publication date
CN111584722B (zh) 2021-11-02
CN111584722A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US10120232B2 (en) Methods of fabricating quantum dot color film substrates
US20190390076A1 (en) Dispersion and inkjet ink composition, light conversion layer, and liquid crystal display element using the dispersion
JP6973500B2 (ja) インク組成物及びその製造方法、並びに光変換層及びカラーフィルタ
US9804489B2 (en) Method for manufacturing quantum dot color filter
WO2017084149A1 (zh) 彩色滤光基板的制作方法
CN110709736A (zh) 含量子点固化性组合物、含量子点固化物、光学构件的制造方法及显示设备的制造方法
CN110869452A (zh) 油墨组合物及其制造方法、光转换层以及滤色器
TW202112830A (zh) 發光元件的顏色轉換層
WO2017059627A1 (zh) 量子点层图形化的方法及量子点彩膜的制备方法
US20210351369A1 (en) Display panel and manufacturing method thereof
CN111704827A (zh) 量子点墨水、全彩膜片的制备方法以及显示面板
WO2021227121A1 (zh) 显示面板及其制造方法
JP2010128310A (ja) カラーフィルタおよび白色発光ダイオード光源液晶表示装置
CN116184762A (zh) 一种吸蓝光光刻胶、吸蓝光材料层的制备方法和显示结构
JP7024336B2 (ja) インク組成物、光変換層及びカラーフィルタ
WO2019017423A1 (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
JP6972656B2 (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
CN110989296A (zh) 量子点光刻胶及其制备方法、显示基板和显示装置
JP2021165837A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
JP2006189729A (ja) 電気泳動表示装置の製造方法
WO2023090065A1 (ja) 量子ドットのパターニング方法、光学素子の製造方法、バックライトユニットの製造方法及び画像表示装置の製造方法
JP6981083B2 (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
US20230335693A1 (en) Micro-led structures and photoluminescent materials having uv light filters
CN114621649B (zh) 多元组合物、分层式结构膜层及其制备方法和应用
JP7020014B2 (ja) インク組成物、光変換層及びカラーフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935913

Country of ref document: EP

Kind code of ref document: A1