WO2021225142A1 - 配線シート - Google Patents

配線シート Download PDF

Info

Publication number
WO2021225142A1
WO2021225142A1 PCT/JP2021/017395 JP2021017395W WO2021225142A1 WO 2021225142 A1 WO2021225142 A1 WO 2021225142A1 JP 2021017395 W JP2021017395 W JP 2021017395W WO 2021225142 A1 WO2021225142 A1 WO 2021225142A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear body
wiring sheet
cured product
sheet
product layer
Prior art date
Application number
PCT/JP2021/017395
Other languages
English (en)
French (fr)
Inventor
拓也 大嶋
孝至 森岡
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN202180034014.3A priority Critical patent/CN115517013A/zh
Priority to JP2022519967A priority patent/JPWO2021225142A1/ja
Priority to EP21800559.3A priority patent/EP4149205A1/en
Priority to US17/923,486 priority patent/US20230078492A1/en
Publication of WO2021225142A1 publication Critical patent/WO2021225142A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/286Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an organic material, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/267Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an organic material, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54

Definitions

  • the present invention relates to a wiring sheet.
  • a sheet-shaped conductive member having a pseudo-sheet structure in which a plurality of conductive linear bodies are arranged at intervals (hereinafter, also referred to as "conductive sheet") is used for a heating element of a heating device, a material for a textile that generates heat, and a display. It may be used as a member of various articles such as a protective film (crush prevention film).
  • a sheet used for the use of a heating element for example, Patent Document 1 describes a conductive sheet having a pseudo-sheet structure in which a plurality of linear bodies extending in one direction are arranged at intervals. Then, by providing a pair of electrodes at both ends of the plurality of linear bodies, a wiring sheet that can be used as a heating element can be obtained.
  • An object of the present invention is to provide a wiring sheet in which an increase in resistance value is unlikely to occur.
  • the wiring sheet according to one aspect of the present invention includes a pseudo-sheet structure in which a plurality of conductive linear bodies are arranged at intervals, a cured product layer that supports the pseudo-sheet structure, and the conductive linear body. and a pair of electrodes in direct contact, the cured product layer is a cured product of a curable adhesive, a storage modulus at 23 ° C. of the cured product layer is, 5.0 ⁇ 10 6 Pa or more It is characterized in that it is 1.0 ⁇ 10 10 Pa or less.
  • the conductive linear body preferably contains a metal wire.
  • the metal wire is made of a single metal type.
  • the electrode is preferably a metal wire or a metal foil having a thickness of 40 ⁇ m or less.
  • the thickness of the cured product layer is preferably smaller than the diameter of the conductive linear body.
  • the cured product layer does not contain a filler.
  • the wiring sheet it is preferable to have a base material on the side of the cured product layer opposite to the side where the electrodes are located.
  • the wiring sheet 100 includes a first base material 1, a pseudo-sheet structure 2, a cured product layer 3, a pair of electrodes 4, and a second base material. It has 5 and.
  • the cured product layer 3 is laminated on the first base material 1, and the pseudo-sheet structure 2 is supported by the cured product layer 3.
  • the wiring sheet 100 according to the present embodiment includes the first base material 1, the cured product layer 3, the pseudo-sheet structure 2, the pair of electrodes 4, and the second base material 5 in this order.
  • one of the electrodes 4 is in direct contact with the conductive linear body 21 in the pseudo-sheet structure 2.
  • the second base material 5 is laminated on the side of the cured product layer 3 where the electrode 4 is located.
  • the first base material 1 examples include synthetic resin films, papers, metal foils, glass films, and the like.
  • the first base material 1 is provided on the side of the cured product layer 3 opposite to the side where the electrode 4 is located.
  • the pseudo sheet structure 2 can be protected by the first base material 1. Further, by providing such a first base material, deformation in the thickness direction inside the wiring sheet 100 is further suppressed at the contact portion between the conductive linear body 21 and the electrode 4, so that the conductivity is conductive. It becomes easy to stabilize the contact between the linear body 21 and the electrode 4.
  • the first base material 1 is preferably a synthetic resin film, a metal foil, and a glass film having high rigidity, and more preferably a synthetic resin film from the viewpoint of ease of handling.
  • the first base material 1 can transmit energy rays.
  • energy rays can be irradiated from the side of the first base material 1 to cure the energy ray-curable adhesive.
  • the synthetic resin film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, and polybutylene terephthalate film.
  • Polyurethane film ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyether ether Examples thereof include ketone films, polyphenylene sulfide films, polyvinylidene fluoride films, polytetrafluoroethylene films, silicone films, and polyimide films.
  • polymethylpentene film polyethylene naphthalate film, polyether ether ketone film, polyphenylene sulfide film, polyvinylidene fluoride film, polytetrafluoroethylene film, silicone film.
  • a polyimide film is preferable, and a polyethylene naphthalate film and a polyimide film are preferable, and a polyimide film is more preferable, from the viewpoint of availability or price, and generally easy to adhere an adhesive.
  • paper include high-quality paper, recycled paper, kraft paper, and the like.
  • the pseudo-sheet structure 2 is a structure in which a plurality of conductive linear bodies 21 which are linear by themselves are arranged at intervals from each other so as to form a surface shape as a whole.
  • the surface shape may be a flat surface or a curved surface.
  • the pseudo-seat structure 2 can take both flat and curved shapes by bending and stretching.
  • the conductive linear body 21 is linear in a plan view of the wiring sheet 100.
  • the pseudo-sheet structure 2 has a structure in which a plurality of conductive linear bodies 21 are arranged in a direction orthogonal to the axial direction of the conductive linear bodies 21.
  • the conductive linear body 21 may have a wavy shape in a plan view of the wiring sheet 100.
  • the conductive linear body 21 may have a wave shape such as a sine wave, a rectangular wave, a triangular wave, or a sawtooth wave. If the pseudo-sheet structure 2 has such a structure, it is easy to extend the wiring sheet 100 in the axial direction of the conductive linear body 21, and the conductive linear body 21 at the time of extension can be easily extended. It is possible to suppress disconnection.
  • the volume resistivity of the conductive linear body 21 is preferably 1.0 ⁇ 10 -9 ⁇ ⁇ m or more and 1.0 ⁇ 10 -3 ⁇ ⁇ m or less, preferably 1.0 ⁇ 10 -8 ⁇ ⁇ m. More preferably, it is 1.0 ⁇ 10 -4 ⁇ ⁇ m or less.
  • the measurement of the volume resistivity of the conductive linear body 21 is as follows. Silver paste is applied to both ends of the conductive linear body 21, and the resistance of a portion having a length of 40 mm between the ends is measured to obtain the resistance value of the conductive linear body 21.
  • the cross-sectional area (unit: m 2 ) of the conductive linear body 21 is multiplied by the above resistance value, and the obtained value is divided by the above measured length (0.04 m) to obtain the conductive linear body.
  • the volume resistivity of the body 21 is calculated. Further, if necessary, the conductive linear body 21 can be taken out from the wiring sheet 100 and the volume resistivity can be measured.
  • the shape of the cross section of the conductive linear body 21 is not particularly limited and may be polygonal, flat, elliptical, circular or the like, but from the viewpoint of compatibility with the adhesive or the like, elliptical or circular. Is preferable.
  • the thickness (diameter) D (see FIG. 2) of the conductive linear body 21 is preferably 5 ⁇ m or more and 75 ⁇ m or less.
  • the diameter D of the conductive linear body 21 shall be 8 ⁇ m or more and 60 ⁇ m or less from the viewpoint of suppressing an increase in sheet resistance and improving heat generation efficiency and dielectric breakdown resistance when the wiring sheet 100 is used as a heating element.
  • the major axis is in the same range as the diameter D described above.
  • the diameter D of the conductive linear body 21 is the diameter D of the conductive linear body 21 at five randomly selected locations by observing the conductive linear body 21 of the pseudo-sheet structure 2 using a digital microscope. Is measured and used as the average value.
  • the distance L (see FIG. 2) between the conductive linear bodies 21 is preferably 0.3 mm or more and 20 mm or less, more preferably 0.5 mm or more and 10 mm or less, and 0.8 mm or more and 7 mm or less. Is even more preferable.
  • the conductive linear bodies 21 are dense to some extent, so that the resistance of the pseudo-sheet structure is kept low and the wiring sheet 100 is used as a heating element. It is possible to improve the function of the wiring sheet 100, such as making the distribution of temperature rise uniform.
  • the distance between the two adjacent conductive linear bodies 21 is measured by observing the conductive linear body 21 of the pseudo-sheet structure 2 using a digital microscope.
  • the distance between the two adjacent conductive linear bodies 21 is the length along the direction in which the conductive linear bodies 21 are arranged, and the two conductive linear bodies 21 face each other.
  • the length between the parts is an average value of the intervals between all the adjacent conductive linear bodies 21 when the arrangement of the conductive linear bodies 21 is unequal.
  • the conductive linear body 21 is not particularly limited, but is preferably a linear body containing a metal wire (hereinafter, also referred to as a “metal wire linear body”). Since the metal wire has high electrical conductivity, high handleability, high thermal conductivity, and versatility, applying the metal wire wire as the conductive wire 21 reduces the resistance value of the pseudo-sheet structure 2. It is possible to do. Further, when the wiring sheet 100 (pseudo-sheet structure 2) is applied as a heating element, rapid heat generation is likely to be realized. Further, as described above, it is easy to obtain a linear body having a small diameter. Examples of the conductive linear body 21 include a linear body containing carbon nanotubes and a linear body having a conductive coating on the thread, in addition to the metal wire linear body.
  • the metal wire linear body may be a linear body composed of one metal wire, or may be a linear body obtained by twisting a plurality of metal wires.
  • the metal wire includes metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver and gold, or alloys containing two or more kinds of metals (for example, steel such as stainless steel and carbon steel, brass and phosphorus). Wires containing bronze, zirconium-copper alloys, beryllium copper, iron-nickel, nichrome, nickel-titanium, cantal, hasterloy, renium tungsten, etc.) can be mentioned.
  • the metal wire may be plated with tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder or the like, and the surface is coated with a carbon material or polymer described later. You may.
  • a wire containing tungsten, molybdenum, and one or more metals selected from alloys containing these is preferable from the viewpoint of forming the conductive linear body 21 having a low volume resistivity.
  • the metal wire include a metal wire coated with a carbon material. When the metal wire is coated with a carbon material, the metallic luster is reduced and the presence of the metal wire can be easily made inconspicuous. Further, when the metal wire is coated with a carbon material, metal corrosion is also suppressed.
  • Examples of the carbon material for coating the metal wire include amorphous carbon (for example, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, carbon fiber, etc.), graphite, fullerene, graphene, carbon nanotubes, and the like.
  • amorphous carbon for example, carbon black, activated carbon, hard carbon, soft carbon, mesoporous carbon, carbon fiber, etc.
  • graphite fullerene
  • graphene carbon nanotubes, and the like.
  • the metal wire is preferably made of a single metal type from the viewpoint that steps such as plating can be omitted.
  • the contact between the conductive linear body 21 and the electrode 4 can be stabilized, and the resistance value can be less likely to increase. Therefore, the contact resistance between the conductive linear body 21 and the electrode 4 is stabilized even when a metal wire made of a single metal type is used instead of a metal wire plated with a metal having excellent contact resistance.
  • a metal wire composed of a single metal species is not only such that a coating of a different metal species is not formed on the surface by plating or the like, but also includes a carbon material, a polymer, etc., other than the single metal species. It means that the surface is not covered with the material.
  • the carbon nanotube linear body is, for example, a carbon nanotube forest (a growth body in which a plurality of carbon nanotubes are grown on a substrate so as to be oriented in a direction perpendicular to the substrate, and is referred to as an “array”. It is obtained by pulling out carbon nanotubes in a sheet shape from the end portion of (there is also), bundling the pulled out carbon nanotube sheets, and then twisting the bundles of carbon nanotubes. In such a manufacturing method, when no twist is applied during twisting, a ribbon-shaped carbon nanotube linear body is obtained, and when twisted, a thread-like linear body is obtained.
  • the ribbon-shaped carbon nanotube linear body is a linear body in which the carbon nanotubes do not have a twisted structure.
  • a carbon nanotube linear body can also be obtained by spinning or the like from a dispersion liquid of carbon nanotubes.
  • the production of carbon nanotube linear bodies by spinning can be performed, for example, by the method disclosed in US Patent Application Publication No. 2013/0251619 (Japanese Patent Laid-Open No. 2012-126635).
  • From the viewpoint of obtaining uniform diameter of the carbon nanotube wire it is desirable to use the filamentous carbon nanotube wire, and from the viewpoint of obtaining a highly pure carbon nanotube wire, the carbon nanotube sheet is twisted. It is preferable to obtain a filamentous carbon nanotube linear body.
  • the carbon nanotube linear body may be a linear body in which two or more carbon nanotube linear bodies are woven together. Further, the carbon nanotube linear body may be a linear body in which carbon nanotubes and other conductive materials are composited (hereinafter, also referred to as “composite linear body”).
  • Examples of the composite linear body include (1) a carbon nanotube linear body in which carbon nanotubes are pulled out from the edge of a carbon nanotube forest into a sheet, the drawn carbon nanotube sheets are bundled, and then the bundle of carbon nanotubes is twisted.
  • a linear body of a single metal or a linear body of a metal alloy or a composite linear body, and a composite linear body obtained by twisting a bundle of carbon nanotubes (3) A linear body of a single metal or a metal alloy Examples thereof include a composite linear body obtained by knitting a linear body or a composite linear body and a carbon nanotube linear body or a composite linear body.
  • a metal when twisting the bundle of carbon nanotubes, a metal may be supported on the carbon nanotubes in the same manner as in the composite linear body of (1).
  • the composite linear body of (3) is a composite linear body when two linear bodies are knitted, but at least one linear body of a single metal or a linear body of a metal alloy or a composite.
  • a linear body three or more of a carbon nanotube linear body, a linear body of a single metal, a linear body of a metal alloy, or a composite linear body may be knitted.
  • the metal of the composite linear body include simple metals such as gold, silver, copper, iron, aluminum, nickel, chromium, tin, and zinc, and alloys containing at least one of these metal single bodies (copper-nickel-phosphorus). Alloys, copper-iron-phosphorus-zinc alloys, etc.) can be mentioned.
  • the conductive linear body 21 may be a linear body having a conductive coating on the yarn.
  • the yarn include yarn spun from a resin such as nylon and polyester.
  • the conductive coating include coatings of metals, conductive polymers, carbon materials and the like.
  • the conductive coating can be formed by plating, vapor deposition, or the like.
  • a linear body having a conductive coating on the yarn can improve the conductivity of the linear body while maintaining the flexibility of the yarn. That is, it becomes easy to reduce the resistance of the pseudo-seat structure 2.
  • the cured product layer 3 is a layer made of a cured product of a curable adhesive.
  • the cured product layer 3 is provided between the first base material 1 and the pseudo-sheet structure 2 as shown in FIGS. 1 and 2. Is preferable.
  • the cured product layer 3 can fix the pseudo-sheet structure 2 while maintaining the surface shape. That is, the pseudo-sheet structure 2 is supported by the cured product layer 3. Further, on the surface of the cured product layer 3, a region that is not in contact with the individual conductive linear bodies 21 included in the pseudo-sheet structure 2, and at least one of the electrode 4 and the second base material 5 are formed. These can be fixed by adhering.
  • the conductive linear body 21 moves due to the deformation in the thickness direction inside the wiring sheet 100.
  • the electrode 4 may be separated from the electrode 4, and the resistance value may increase. Therefore, in order to maintain the contact between the conductive linear body 21 and the electrode 4, it is necessary to apply a contact pressure to the conductive linear body 21 and the electrode 4.
  • the cured product layer 3 as in the present embodiment is used, the conductive linear body 21 can be fixed, the contact between the conductive linear body 21 and the electrode 4 is stabilized, and the resistance value increases. It can be difficult.
  • the storage elastic modulus of the cured product layer 3 at 23 ° C. needs to be 5.0 ⁇ 10 6 Pa or more and 1.0 ⁇ 10 10 Pa or less. If the storage modulus is less than 5.0 ⁇ 10 6 Pa, to pressure applied to the conductive wire-like body 21 is too low, in order to suppress the resistance increase is required to apply a contact pressure Become. On the other hand, when the storage elastic modulus exceeds 1.0 ⁇ 10 10 Pa, the cured product layer 3 is too hard, and when the wiring sheet 100 is deformed after production, the conductive linear body 21 and the conductive linear body 21 The connection portion with the electrode 4 may be broken, the resistance value may increase, or the power may not be supplied.
  • the storage elastic modulus of the cured product layer 3 at 23 ° C. is preferably 0.8 ⁇ 10 7 Pa or more and 8.0 ⁇ 10 9 Pa or less, and 1.0 ⁇ 10 7 Pa or more and 5. It is more preferably 0 ⁇ 10 9 Pa or less.
  • the thickness of the cured product layer 3 is preferably smaller than the diameter D of the conductive linear body 21.
  • the thickness of the cured product layer 3 is preferably 0.95 times or less of the diameter D of the conductive linear body 21, and more preferably 0.9 times or less of the diameter D of the conductive linear body 21. preferable.
  • the thickness of the cured product layer 3 is preferably 5 ⁇ m or more and less than 75 ⁇ m, more preferably 8 ⁇ m or more and less than 60 ⁇ m, and further preferably 12 ⁇ m or more and less than 40 ⁇ m.
  • curable adhesive examples include a thermosetting adhesive that cures by heat, an energy ray-curable adhesive, and the like.
  • examples of the energy ray include ultraviolet rays, visible energy rays, infrared rays, and electron beams.
  • the "energy ray curing” also includes thermosetting by heating using energy rays.
  • the thermosetting adhesive preferably contains a thermosetting resin.
  • the thermosetting resin is not particularly limited, and specifically, an epoxy resin, a phenol resin, a melamine resin, a urea resin, a polyester resin, a urethane resin, an acrylic resin, a benzoxazine resin, a phenoxy resin, an amine-based compound, and the like. Examples thereof include acid anhydride-based compounds. These can be used alone or in combination of two or more.
  • an epoxy resin from the viewpoint of being suitable for curing using an imidazole-based curing catalyst, it is preferable to use an epoxy resin, a phenol resin, a melamine resin, a urea resin, an amine-based compound, and an acid anhydride-based compound, and it is particularly excellent.
  • epoxy resin a ring-type epoxy resin such as an aromatic epoxy resin or an alicyclic epoxy resin is preferable from the viewpoint of increasing the storage elastic modulus of the cured product layer.
  • Epoxy resins with flexible segments such as oxyalkylene chains tend to reduce the storage modulus of the cured product layer.
  • the energy ray-curable adhesive preferably contains an energy ray-curable resin.
  • the energy ray-curable resin include compounds having at least one polymerizable double bond in the molecule, and acrylate-based compounds having a (meth) acryloyl group are preferable.
  • acrylate-based compound examples include a chain aliphatic skeleton-containing (meth) acrylate (dicyclopentadiene diacrylate, trimethylolpropanetri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, and pentaerythritol tri (meth) acrylate.
  • chain aliphatic skeleton-containing (meth) acrylate dicyclopentadiene diacrylate, trimethylolpropanetri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, and pentaerythritol tri (meth) acrylate.
  • the weight average molecular weight (Mw) of the energy ray-curable resin is preferably 100 or more and 30,000 or less, and more preferably 300 or more and 10,000 or less.
  • the energy ray-curable resin contained in the adhesive may be only one type or two or more types. When there are two or more types of energy ray-curable resins, their combinations and ratios can be arbitrarily selected.
  • thermopolymerization initiator When using an energy ray-curable resin or a thermosetting resin, it is preferable to use a photopolymerization initiator, a thermopolymerization initiator, or the like.
  • a photopolymerization initiator, a thermal polymerization initiator, or the like By using a photopolymerization initiator, a thermal polymerization initiator, or the like, the polymerization reaction of the curable resin can be easily started, and the curing reaction can be easily controlled.
  • Photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1 -Hydroxycyclohexylphenylketone, benzyldiphenylsulfide, tetramethylthium monosulfide, azobisisobutyronitrile, 2-chloranthraquinone, diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, and bis (2,4) Examples thereof include photoradical polymerization initiators such as 6-trimethylbenzoyl) -phenyl-phosphine oxide.
  • the photopolymerization initiator includes a photocationic polymerization initiator.
  • a photocationic polymerization initiator is a compound that generates a cationic species when irradiated with active energy rays to initiate a curing reaction of a cationically curable compound, and is a cation portion that absorbs active energy rays and a source of acid. It consists of an anion part.
  • Examples of the photocationic polymerization initiator include sulfonium salt compounds, iodonium salt compounds, phosphonium salt compounds, ammonium salt compounds, antimonate compounds, diazonium salt compounds, selenium salt compounds, and oxonium salt compounds. , Bromine salt-based compounds and the like. Among these, a sulfonium salt-based compound is preferable, and an aromatic sulfonium salt-based compound having an aromatic group is more preferable from the viewpoint of excellent compatibility with the component (A) and excellent storage stability of the obtained adhesive. ..
  • sulfonium salt-based compound examples include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, and 4,4'-bis [diphenylsulfonio] diphenylsulfide-bishexafluoro.
  • iodonium salt compounds include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and (tricumyl) iodonium tetrakis (pentafluoro). Phenyl) Borate and the like can be mentioned.
  • Examples of the phosphonium salt-based compound include tri-n-butyl (2,5-dihydroxyphenyl) phosphonium bromide, hexadecyltributylphosphonium chloride and the like.
  • ammonium salt compound examples include benzyltrimethylammonium chloride, phenyltributylammonium chloride, benzyltrimethylammonium bromide and the like.
  • antimony acid compounds examples include triphenylsulfonium hexafluoroantimonate, p- (phenylthio) phenyldiphenylsulfonium hexafluoroantimonate, 4-chlorophenyldiphenylsulfonium hexafluoroantimonate, and bis [4- (diphenylsulfonio). Phenyl] Examples thereof include sulfide bishexafluoroantimonate and diallyl iodonium hexafluoroantimonate.
  • a commercially available product can be used as the photocationic polymerization initiator.
  • Commercially available products include Cyracure UVI-6970, Cyracure UVI-6974, Cyracure UVI-6990, Cyracure UVI-950 (all manufactured by Union Carbide), Irgacure 250, Irgacure 261 and Irgacure 264 (above, Ciba Specialty Chemicals).
  • thermal polymerization initiator examples include hydrogen peroxide, peroxodisulfate (ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate, etc.), and azo compounds (2,2'-azobis (2-amidinopropane) di.
  • thermal polymerization initiator in addition to the above-mentioned thermal radical polymerization initiator, a thermal cationic polymerization initiator can be mentioned.
  • the thermal cationic polymerization initiator is a compound capable of generating a cationic species that initiates polymerization by heating.
  • examples of the thermal cationic polymerization initiator include sulfonium salts, quaternary ammonium salts, phosphonium salts, diazonium salts, iodonium salts and the like.
  • a sulfonium salt is preferable from the viewpoints of easy availability and easy acquisition of a sealing material having better adhesiveness and transparency.
  • sulfonium salt examples include triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluoroalcinate, tris (4-methoxyphenyl) sulfonium hexafluoroalcinate, and diphenyl (4-phenylthiophenyl) sulfonium. Hexafluoroalcinate and the like can be mentioned.
  • a commercially available product can also be used as the sulfonium salt.
  • Commercially available products include Adeka Opton SP-150, Adeka Opton SP-170, Adeka Opton CP-66, Adeka Opton CP-77 (above, manufactured by ADEKA), Sun Aid SI-60L, Sun Aid SI-80L, Sun Aid SI-100L, Sun Aid SI- B3, Sun Aid SI-B7 (above, manufactured by Sanshin Chemical Co., Ltd.), CYRACURE UVI-6974, CYRACURE UVI-6990 (above, manufactured by Union Carbide), UVI-508, UVI-509 (above, manufactured by General Electric). ), FC-508, FC-509 (above, manufactured by Minnesota Mining and Manufacturing), CD-1010, CD-1011 (above, manufactured by Surftmer), CI series products (manufactured by Nippon Soda), etc. Can be mentioned.
  • Examples of the quaternary ammonium salt include tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, tetrabutylammonium hydrogensulfate, tetraethylammonium tetrafluoroborate, tetraethylammonium p-toluenesulfonate, N, N-dimethyl-N-.
  • Benzylanilinium hexafluoroantimonate N, N-dimethyl-N-benzylanilinium tetrafluoroborate, N, N-dimethyl-N-benzylpyridinium hexafluoroantimonate, N, N-diethyl-N-benzyltrifluoromethanesulfonate , N, N-dimethyl-N- (4-methoxybenzyl) pyridinium hexafluoroantimonate, N, N-diethyl-N- (4-methoxybenzyl) toluidinium hexafluoroantimonate and the like can be specifically mentioned.
  • the phosphonium salt include ethyltriphenylphosphonium hexafluoroantimonate and tetrabutylphosphonium hexafluoroantimonate.
  • Examples of the diazonium salt include AMERICURE (manufactured by American Can) and ULTRASET (manufactured by ADEKA).
  • Examples of the iodonium salt include diphenyl iodonium hexafluoroalcinate, bis (4-chlorophenyl) iodonium hexafluoroalcinate, bis (4-bromophenyl) iodonium hexafluoroalcinate, and phenyl (4-methoxyphenyl) iodonium hexafluoroalcinate. Can be mentioned.
  • UV-9310C manufactured by Toshiba Silicone
  • Photoinitiator 2074 manufactured by Rhone-Poulenc
  • UVE series products manufactured by General Electric
  • FC series products Minnesota Mining and Manufacturing
  • polymerization initiators can be used alone or in combination of two or more.
  • the amount used shall be 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the energy ray-curable resin or the thermosetting resin. Is preferable, and it is more preferably 1 part by mass or more and 100 parts by mass or less, and particularly preferably 1 part by mass or more and 10 parts by mass or less.
  • thermosetting resin When a thermosetting resin is used, a curing catalyst such as an imidazole-based curing catalyst may be used.
  • the adhesive may contain a polymer component together with the energy ray-curable resin or the thermosetting resin in order to facilitate the maintenance of the sheet shape before curing.
  • the polymer used as the polymer component include phenoxy resin, polyolefin resin or a modified product thereof, polyamide-imide resin, polyimide resin, rubber resin, acrylic resin and the like.
  • These polymer components can be used alone or in combination of two or more.
  • the total amount of the energy ray-curable resin and the thermosetting resin contained in the adhesive is a polymer from the viewpoint of adjusting the storage elasticity of the cured product layer within the above-mentioned range. It is preferably 15 parts by mass or more and 300 parts by mass or less, and preferably 20 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the component. Further, when the adhesive contains an energy ray-curable resin or a thermosetting resin and does not contain a polymer component, the storage elastic modulus of the cured product layer tends to be too high.
  • the adhesive preferably does not contain a filler.
  • the adhesive does not contain a filler, it is possible to prevent the cured product layer 3 from having an excessively high storage elastic modulus at 23 ° C.
  • the adhesive may contain a filler within a range in which the storage elastic modulus of the cured product layer 3 at 23 ° C. can be adjusted within the above range.
  • Fillers include, for example, inorganic powders (eg, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride, etc.), spherical beads of inorganic powder, single crystal fibers, and Examples include glass fiber.
  • inorganic powders eg, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride, etc.
  • spherical beads of inorganic powder e.g., single crystal fibers
  • glass fiber e.g., glass fiber.
  • silica filler and alumina filler are preferable.
  • the filler may be used alone or in combination of two or more.
  • the adhesive may contain other components.
  • Other components include, for example, organic solvents, coupling agents, flame retardants, tackifiers, UV absorbers, antioxidants, preservatives, fungicides, plasticizers, defoamers, wettability modifiers and the like.
  • the electrode 4 is used to supply an electric current to the conductive linear body 21.
  • the electrode 4 comes into direct contact with the conductive linear body 21.
  • the electrodes 4 are electrically connected to and arranged at both ends of the conductive linear body 21.
  • the electrode 4 can be formed by using a known electrode material. Examples of the electrode material include a conductive paste (silver paste, etc.), a metal foil (copper foil, etc.), a metal wire, and the like.
  • the electrode 4 is preferably a metal wire or a metal foil, and is preferably a metal wire or a metal foil, from the viewpoint that the electrical connection with the conductive linear body 21 can be easily achieved by the contact pressure received from the cured product layer 3.
  • the metal foil has a thickness of 40 ⁇ m or less.
  • the electrode is a metal wire
  • the metal wire is connected to each other, so that the connection is easy.
  • a thin metal foil having a thickness of 40 ⁇ m or less is preferable from the viewpoint of being able to reduce the overall thickness of the wiring sheet 100 and reducing the step difference of the electrode forming portion. According to this embodiment, the contact between the conductive linear body 21 and the electrode 4 can be stabilized, and the resistance value can be less likely to increase.
  • the contact resistance between the conductive linear body 21 and the electrode 4 is increased. Can be stabilized.
  • the electrode material is a metal wire
  • the number of metal wires may be one, but it is preferably two or more.
  • the metal of the metal foil or metal wire examples include metals such as copper, aluminum, tungsten, iron, molybdenum, nickel, titanium, silver and gold, or alloys containing two or more kinds of metals (for example, stainless steel, carbon steel and the like). Steel, brass, phosphor bronze, zirconium copper alloy, beryllium copper, iron nickel, dichrome, nickel titanium, cantal, hasteroy, and renium tungsten, etc.). Further, the metal foil or metal wire may be plated with tin, zinc, silver, nickel, chromium, nickel-chromium alloy, solder or the like. In particular, those containing copper and silver and one or more metals selected from alloys containing them are preferable from the viewpoint of metals having low volume resistivity.
  • the width of the electrode 4 is preferably 3000 ⁇ m or less, more preferably 2000 ⁇ m or less, and further preferably 1500 ⁇ m or less in the plan view of the pseudo-sheet structure 2.
  • the width of the electrode 4 when two or more metal wires are used for the electrodes means the sum of the widths of the metal wires.
  • the plurality of metal wires may be in direct contact with each other or may be electrically connected via the conductive linear body 21. When the electrode 4 is a single metal wire, the width of the electrode 4 is the diameter of the metal wire.
  • the ratio of the resistance values of the electrode 4 and the pseudo sheet structure 2, which is obtained by the calculation formula of "resistance value of the electrode 4 / resistance value of the pseudo sheet structure 2" is 0.0001 or more and 0.3 or less. It is preferably 0.0005 or more and 0.1 or less, more preferably.
  • the pseudo-sheet structure 2 needs to have a certain degree of resistance in order to generate heat, while it is preferable that the electrode 4 allows current to flow as easily as possible. Therefore, a disparity occurs between the resistance value of the electrode 4 and the resistance value of the pseudo-sheet structure 2. For this reason, when the ratio of the resistance values of the electrode 4 and the pseudo-sheet structure 2 becomes large, temperature unevenness tends to occur easily.
  • the resistance values of the electrode 4 and the pseudo-sheet structure 2 can be measured using a tester. First, the resistance value of the electrode 4 is measured, and the resistance value of the pseudo-sheet structure 2 to which the electrode 4 is attached is measured. After that, the resistance values of the electrodes 4 and the pseudo-sheet structure 2 are calculated by subtracting the measured values of the electrodes 4 from the resistance values of the pseudo-sheet structure 2 to which the electrodes are attached. Further, if necessary, the electrode 4 can be taken out from the wiring sheet 100 and the resistance value can be measured.
  • Examples of the second base material 5 include those similar to those of the first base material 1.
  • the second base material 5 is provided on the side of the cured product layer 3 where the electrode 4 is located.
  • the pseudo sheet structure 2 can be protected by the second base material 5. Further, by sandwiching the pseudo sheet structure 2 and the electrode 4 between the first base material 1 and the second base material 5, the thickness inside the wiring sheet 100 at the contact portion between the conductive linear body 21 and the electrode 4. Since the deformation in the radial direction is further suppressed, the contact between the conductive linear body 21 and the electrode 4 can be further stabilized. Further, it is preferable that the second base material 5 can transmit energy rays. When such a second base material 5 is used, energy rays can be irradiated from the side of the second base material 5 to cure the energy ray-curable adhesive.
  • the method for manufacturing the wiring sheet 100 according to the present embodiment is not particularly limited.
  • the wiring sheet 100 can be manufactured, for example, by the following steps. First, as shown in FIG. 3A, a thermosetting adhesive for forming the cured product layer 3 is applied onto the first base material 1 to form a coating film. Next, the coating film is dried to prepare an adhesive layer 3'. Next, as shown in FIG. 3B, the conductive linear bodies 21 are arranged and arranged on the adhesive layer 3'to form the pseudo-sheet structure 2. For example, in a state where the adhesive layer 3'with the first base material 1 is arranged on the outer peripheral surface of the drum member, the conductive linear body 21 is spirally formed on the adhesive layer 3'while rotating the drum member.
  • the bundle of the conductive linear bodies 21 wound in a spiral shape is cut along the axial direction of the drum member.
  • the pseudo-sheet structure 2 is formed and arranged on the adhesive layer 3'.
  • a sheet-like member in which the pseudo-sheet structure 2 is formed on the adhesive layer 3'with the first base material 1 can be obtained.
  • the feeding portion of the conductive linear body 21 is moved along a direction parallel to the axis of the drum member, so that adjacent conductivity in the pseudo-sheet structure 2 is obtained. It is easy to adjust the interval L of the sex linear bodies 21.
  • the electrodes 4 are attached to both ends of the conductive linear body 21 in the pseudo-sheet structure 2 of the sheet-like member.
  • the second base material 5 is laminated, and the curable adhesive is cured by heat treatment to form the cured product layer 3, and the wiring sheet 100 can be produced.
  • the conductive linear body 21 can be fixed by the cured product layer 3, the deformation in the thickness direction inside the wiring sheet 100 is suppressed, and the conductive linear body 21 and the electrode 4 It is possible to stabilize the contact with and prevent the resistance value from increasing.
  • the wiring sheet 100 is deformed by setting the storage elastic modulus of the cured product layer 3 at 23 ° C. to 5.0 ⁇ 10 6 Pa or more and 1.0 ⁇ 10 10 Pa or less. When added, the conductive linear body 21 can be fixed while preventing the connection portion between the conductive linear body 21 and the electrode 4 from being destroyed.
  • the wiring sheet 100 includes, but is not limited to, the second base material 5.
  • the wiring sheet 100 does not have to include the second base material 5. That is, the wiring sheet 100 according to the present embodiment includes the first base material 1, the cured product layer 3, the pseudo-sheet structure 2, and the pair of electrodes 4 in this order.
  • the wiring sheet 100 of the present embodiment can be used by attaching the wiring sheet 100 to the adherend by the adhesive layer 3'and then curing the curable adhesive to form the cured product layer 3. ..
  • the adherend is made of a highly rigid material, it is easy to stabilize the contact between the conductive linear body 21 and the electrode 4.
  • the highly rigid material include metal, resin, glass and the like.
  • the wiring sheet 100 may have a second cured product layer between the electrode 4 and the second base material 5. That is, the wiring sheet 100 may have a form in which the pseudo-sheet structure 2 and the electrode 4 are sandwiched between the above-mentioned cured product layer 3 and the second cured product layer. That is, the wiring sheet 100 according to the present embodiment includes a first base material 1, a cured product layer 3, a pseudo-sheet structure 2, a pair of electrodes 4, a second cured product layer, and a second base material.
  • the pseudo-sheet structure 2 and the electrode 4 are more firmly fixed inside the wiring sheet 100 by the two cured product layers.
  • the material, thickness and other properties of the second cured product layer are the same as those of the above-mentioned cured product layer 3.
  • the wiring sheet 100 includes a first base material 1, a cured product layer 3, a pseudo-sheet structure 2, a pair of electrodes 4, and a second cured product layer in this order. Further, when the wiring sheet 100 has a second cured product layer, the wiring sheet 100 does not have the above-mentioned cured product layer 3, and only the second cured product layer is used as the cured product layer of the present invention. You may be doing it. That is, in the present embodiment, the wiring sheet 100 includes a first base material 1, a pseudo-sheet structure 2, a pair of electrodes 4, a second cured product layer, and a second base material 5. The wiring sheet 100 includes a first base material 1, a pseudo-sheet structure 2, a pair of electrodes 4, and a second cured product layer in this order.
  • the wiring sheet 100 When the wiring sheet 100 is used as a heating element (sheet-shaped heater), the use of the heating element includes, for example, a defogger (defrosting) for a window glass, a defroster (defrosting), and the like.
  • a defogger defrosting
  • defroster defrosting
  • heaters have been used to control the temperature of batteries in electric vehicles, and thin heaters are suitable for individual temperature control of laminated cells. It can also be used as a flat cable for wiring electrical signals.
  • Acid-modified polyolefin resin ( ⁇ -olefin polymer, manufactured by Mitsui Chemicals, Inc., trade name "Unistor H-200", mass average molecular weight (Mw): 52,000) in 100 parts by mass, hydrogenated bisphenol A diglycidyl ether (Manufactured by Mitsubishi Chemical Co., Ltd., product name "YX8034") 25 parts by mass, silane coupling agent (manufactured by Shinetsu Chemical Industry Co., Ltd., product name "KBM-4803”) 0.1 parts by mass, and imidazole-based curing catalyst (Shikoku Kasei) A curable adhesive was obtained by blending 1 part by mass of (Curesol 2E4MZ) manufactured by the same company, 2-ethyl-4-methylimidazole).
  • An isocyanate-based cross-linking agent is blended as a cross-linking agent with an acrylic copolymer having a constituent unit derived from a raw material monomer to which n-butyl acrylate is added as a main component to obtain a non-curable pressure-sensitive adhesive. Obtained.
  • Preparation Example 4 Prepare an organic-inorganic hybrid material (manufactured by JSR, product name "Opstar Z7530", containing 60 parts by mass of reactive silica, 40 parts by mass of dipentaerythritol hexaacrylate, and a photopolymerization initiator) as a curable adhesive. bottom.
  • Preparation Example 5 100 parts by mass of phenoxy resin (manufactured by Mitsubishi Chemical Co., Ltd., trade name "YX7200B35”), 70 parts by mass of an epoxy compound having an oxyalkylene chain (manufactured by Mitsubishi Chemical Co., Ltd., product name "YX7400”), and a photocationic polymerization initiator (manufactured by Mitsubishi Chemical Co., Ltd., product name "YX7400”)
  • a curable adhesive was obtained by blending 2 parts by mass (manufactured by Sun Appro, product name "CPI-100P").
  • Example 1 A solvent-diluted adhesive obtained in Preparation Example 1 was applied onto a polyimide film having a thickness of 50 ⁇ m (manufactured by Toray DuPont, trade name: Kapton 200H) and dried to form an adhesive layer having a thickness of 20 ⁇ m. Then, it was cut into a rectangle of 257 mm ⁇ 364 mm to prepare an adhesive sheet. As a conductive linear body, a tungsten wire (diameter 25 ⁇ m, manufacturer name: manufactured by Tokusai Co., Ltd., product name: TWG-CS, hereinafter also referred to as “wire”) was prepared.
  • a tungsten wire (diameter 25 ⁇ m, manufacturer name: manufactured by Tokusai Co., Ltd., product name: TWG-CS, hereinafter also referred to as “wire”) was prepared.
  • the adhesive sheet is wrapped around a drum member whose outer peripheral surface is made of rubber so that the surface of the adhesive layer faces outward and there is no wrinkle, and both ends of the adhesive sheet in the circumferential direction are drummed with double-sided tape. It was fixed to the member.
  • the wire wound around the bobbin to the surface of the adhesive layer of the adhesive sheet located near the end of the drum member, the wire is wound up by the drum member while being unwound, and the drum member is gradually parallel to the drum shaft.
  • the wires were wound around the drum member while drawing a spiral at equal intervals of 40 mm. As a result, a pseudo-sheet structure was formed with six wires arranged on the surface of the adhesive layer.
  • a gold-plated copper wire (diameter 150 ⁇ m, manufacturer name: manufactured by Tokusai Co., Ltd., product name: C1100-H AuP) was prepared as an electrode.
  • a pair of wire electrodes were placed so as to straddle each tungsten wire in a direction orthogonal to the extending direction of the tungsten wire so that the distance between the tungsten wires was 150 mm, and the electrodes were attached (see FIG. 3C).
  • a polyimide film having a thickness of 50 ⁇ m (manufactured by Toray DuPont, trade name: Kapton 200H) was attached to the surface of the adhesive layer on which the wire of the film with electrodes was arranged. Then, using a vacuum laminator (manufactured by Nikko Materials Co., Ltd., product name: V130), heat laminating was performed at 100 ° C., 0.5 MPa, and 1 hour to obtain a wiring sheet. Next, the wiring sheet was cut to a width of 40 mm so that one wire was taken out from the pseudo-sheet structure from the wiring sheet, and a wiring element for evaluation was produced.
  • the wiring sheets of this example and other experimental examples were prepared at intervals larger than the intervals between the wires suitable for the actual product in order to collect the wiring elements.
  • Example 2 In the preparation of the adhesive sheet, the adhesive obtained in Preparation Example 2 was used instead of the adhesive obtained in Preparation Example 1, and the heat laminating conditions were set to 110 ° C. for 50 minutes, but the same as in Example 1. To prepare a wiring sheet. A wiring element for evaluation was also manufactured.
  • Example 1 Comparative Example 1 and Comparative Example 3, the storage elastic modulus was measured by the following method. That is, from the same composition as the composition forming the layer to be measured, a plurality of sheets having an adhesive layer having a thickness of 20 ⁇ m formed on the release film are laminated to obtain a laminate having a thickness of 1 mm. rice field. This laminate was punched into a circle with a diameter of 8 mm to prepare a cylindrical test sample. The test sample was heated or irradiated with ultraviolet rays under the same conditions as in each experimental example, and the test sample was cured.
  • Example 1 was heated at atmospheric pressure without using a vacuum laminator, and the test sample of Comparative Example 1 was not subjected to such a treatment for curing.
  • a test sample using a viscoelasticity measuring device (manufactured by Antonio Par, device name "MCR300") under the conditions of a test start temperature of -20 ° C, a test end temperature of 150 ° C, a temperature rise rate of 3 ° C / min, and a frequency of 1 Hz.
  • the storage elastic modulus of the was measured.
  • the storage elastic modulus was measured by the following method.
  • a test sample having a thickness of 200 ⁇ m is prepared by laminating a plurality of sheets having an adhesive layer having a thickness of 20 ⁇ m formed on a release film from the same composition as the composition forming the layer to be measured. bottom.
  • the test sample was heated or irradiated with ultraviolet rays under the same conditions as in each experimental example, and the test sample was cured.
  • the test sample of Example 2 was heated at atmospheric pressure without using a vacuum laminator.
  • a viscoelasticity measuring device manufactured by TA Instruments, device name "DMAQ800"
  • the test start temperature is -20 ° C
  • the test end temperature is 150 ° C
  • the temperature rise rate is 3 ° C / min
  • the frequency is 1 Hz.
  • the storage elastic modulus of the test sample was measured.

Landscapes

  • Laminated Bodies (AREA)

Abstract

複数の導電性線状体(21)が間隔をもって配列された疑似シート構造体(2)と、疑似シート構造体(2)を支持する硬化物層(3)と、導電性線状体(21)に直接的に接触する一対の電極(4)とを備え、硬化物層(3)は、硬化性の接着剤の硬化物からなり、硬化物層(3)の23℃における貯蔵弾性率が、5.0×106Pa以上1.0×1010Pa以下である、配線シート(100)。

Description

配線シート
 本発明は、配線シートに関する。
 複数の導電性線状体が間隔をもって配列された疑似シート構造体を有するシート状導電部材(以下、「導電性シート」とも称する)は、発熱装置の発熱体、発熱するテキスタイルの材料、ディスプレイ用保護フィルム(粉砕防止フィルム)等、種々の物品の部材に利用できる可能性がある。
 発熱体の用途に用いるシートとして、例えば、特許文献1には、一方向に延びた複数の線状体が間隔をもって配列された疑似シート構造体を有する導電性シートが記載されている。そして、複数の線状体の両端に、一対の電極が設けられることで、発熱体として用いることができる配線シートが得られる。
国際公開第2017/086395号
 しかしながら、特許文献1に記載のような配線シートにおいては、配線の抵抗値が高くなってしまう場合があることが分かった。
 本発明の目的は、抵抗値上昇が発生しにくい配線シートを提供することである。
 本発明の一態様に係る配線シートは、複数の導電性線状体が間隔をもって配列された疑似シート構造体と、前記疑似シート構造体を支持する硬化物層と、前記導電性線状体に直接的に接触する一対の電極とを備え、前記硬化物層は、硬化性の接着剤の硬化物からなり、前記硬化物層の23℃における貯蔵弾性率が、5.0×10Pa以上1.0×1010Pa以下であることを特徴とする。
 本発明の一態様に係る配線シートにおいては、前記導電性線状体は、金属ワイヤーを含むことが好ましい。
 本発明の一態様に係る配線シートにおいては、前記金属ワイヤーは、単一の金属種からなることが好ましい。
 本発明の一態様に係る配線シートにおいては、前記電極は、金属ワイヤー又は厚さ40μm以下の金属箔であることが好ましい。
 本発明の一態様に係る配線シートにおいては、前記硬化物層の厚さは、前記導電性線状体の直径よりも小さいことが好ましい。
 本発明の一態様に係る配線シートにおいては、前記硬化物層は、充填材を含有しないことが好ましい。
 本発明の一態様に係る配線シートにおいては、前記硬化物層の前記電極がある側と反対の側に、基材を有することが好ましい。
 本発明によれば、抵抗値変化が発生しにくい配線シートを提供できる。
本発明の実施形態に係る配線シートを示す概略図である。 図1のII-II断面を示す断面図である。 本発明の実施形態に係る配線シートの製造方法を説明するための説明図である。 本発明の実施形態に係る配線シートの製造方法を説明するための説明図である。 本発明の実施形態に係る配線シートの製造方法を説明するための説明図である。 本発明の実施形態に係る配線シートの製造方法を説明するための説明図である。
 以下、本発明について実施形態を例に挙げて、図面に基づいて説明する。本発明は実施形態の内容に限定されない。なお、図面においては、説明を容易にするために拡大又は縮小をして図示した部分がある。
(配線シート)
 本実施形態に係る配線シート100は、図1及び図2に示すように、第一基材1と、疑似シート構造体2と、硬化物層3と、一対の電極4と、第二基材5とを備えている。具体的には、配線シート100は、第一基材1上に硬化物層3が積層され、硬化物層3により疑似シート構造体2が支持されている。すなわち、本実施形態に係る配線シート100は、第一基材1と、硬化物層3と、疑似シート構造体2と、一対の電極4と、第二基材5とをこの順に備える。そして、疑似シート構造体2における導電性線状体21には、一方の電極4が直接的に接触している。また、硬化物層3の電極4がある側に、第二基材5が積層されている。
(第一基材)
 第一基材1としては、例えば、合成樹脂フィルム、紙、金属箔及びガラスフィルム等が挙げられる。この第一基材1は、硬化物層3の電極4がある側と反対の側に設けられる。この第一基材1により、疑似シート構造体2を保護できる。また、このような第一基材を設けることで、導電性線状体21と電極4との接触部において、配線シート100の内部における厚さ方向の変形がより抑制されることから、導電性線状体21と電極4との接触を安定させやすくなる。このような観点から、第一基材1としては、剛性の高い合成樹脂フィルム、金属箔及びガラスフィルムが好ましく、取り扱いのしやすさの観点から、合成樹脂フィルムがより好ましい。
 また、第一基材1は、エネルギー線を透過できることが好ましい。このような第一基材1を用いる場合には、エネルギー線を第一基材1の側から照射して、エネルギー線硬化性の接着剤を硬化させることができる。
 合成樹脂フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、ポリフッ化ビニリデンフィルム、ポリテトラフルオロエチレンフィルム、シリコーンフィルム、及びポリイミドフィルム等が挙げられる。これらの中でも、発熱体として用いた場合の耐熱性の観点から、ポリメチルペンテンフィルム、ポリエチレンナフタレートフィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、ポリフッ化ビニリデンフィルム、ポリテトラフルオロエチレンフィルム、シリコーンフィルム、及びポリイミドフィルムが好ましく、入手のしやすさ又は価格、一般的に接着剤を接着させやすい観点から、ポリエチレンナフタレートフィルム、及びポリイミドフィルムが好ましく、ポリイミドフィルムがさらに好ましい。
 また、紙としては、例えば、上質紙、再生紙、及びクラフト紙等が挙げられる。
(疑似シート構造体)
 疑似シート構造体2は、単体では線形状である複数の導電性線状体21が、全体として面形状を成すように、互いに間隔をもって配列された構造体である。面形状は、平面であってもよいし、曲面であってもよい。配線シート100が可撓性を有する場合、疑似シート構造体2は、曲げ伸ばしにより、平面と曲面の両方の形状をとり得る。導電性線状体21は、配線シート100の平面視において、直線状である。そして、疑似シート構造体2は、導電性線状体21が、導電性線状体21の軸方向と直交する方向に、複数配列された構造としている。
 なお、導電性線状体21は、配線シート100の平面視において、波形状を成していてもよい。具体的には、導電性線状体21は、例えば、正弦波、矩形波、三角波、のこぎり波等の波形状を成してもよい。疑似シート構造体2が、このような構造であれば、導電性線状体21の軸方向に、配線シート100を伸張することが容易であり、また、伸張時の導電性線状体21の断線を抑制できる。
 導電性線状体21の体積抵抗率は、1.0×10-9Ω・m以上1.0×10-3Ω・m以下であることが好ましく、1.0×10-8Ω・m以上1.0×10-4Ω・m以下であることがより好ましい。導電性線状体21の体積抵抗率を上記範囲にすると、疑似シート構造体2のシート抵抗が低下しやすくなる。
 導電性線状体21の体積抵抗率の測定は、次の通りである。導電性線状体21の両端に銀ペーストを塗布し、端部間の長さ40mmの部分の抵抗を測定し、導電性線状体21の抵抗値を求める。そして、導電性線状体21の断面積(単位:m)を上記の抵抗値に乗じ、得られた値を上記の測定した長さ(0.04m)で除して、導電性線状体21の体積抵抗率を算出する。また、必要に応じて、配線シート100から導電性線状体21を取り出して、体積抵抗率を測定できる。
 導電性線状体21の断面の形状は、特に限定されず、多角形、扁平形状、楕円形状、又は円形状等を取り得るが、接着剤との馴染み等の観点から、楕円形状、円形状であることが好ましい。
 導電性線状体21の断面の形状が円形状である場合には、導電性線状体21の太さ(直径)D(図2参照)は、5μm以上75μm以下であることが好ましい。シート抵抗の上昇抑制と、配線シート100を発熱体として用いた場合の発熱効率及び耐絶縁破壊特性の向上との観点から、導電性線状体21の直径Dは、8μm以上60μm以下であることがより好ましく、12μm以上40μm以下であることがさらに好ましい。
 導電性線状体21の断面が楕円形状である場合には、長径が上記の直径Dと同様の範囲にあることが好ましい。
 導電性線状体21の直径Dは、デジタル顕微鏡を用いて、疑似シート構造体2の導電性線状体21を観察し、無作為に選んだ5箇所で、導電性線状体21の直径を測定し、その平均値とする。
 導電性線状体21の間隔L(図2参照)は、0.3mm以上20mm以下であることが好ましく、0.5mm以上10mm以下であることがより好ましく、0.8mm以上7mm以下であることがさらに好ましい。
 導電性線状体21同士の間隔が上記範囲であれば、導電性線状体がある程度密集しているため、疑似シート構造体の抵抗を低く維持し、配線シート100を発熱体として用いる場合の温度上昇の分布を均一にする等の、配線シート100の機能の向上を図ることができる。
 導電性線状体21の間隔Lは、デジタル顕微鏡を用いて、疑似シート構造体2の導電性線状体21を観察し、隣り合う2つの導電性線状体21の間隔を測定する。
 なお、隣り合う2つの導電性線状体21の間隔とは、導電性線状体21を配列させていった方向に沿った長さであって、2つの導電性線状体21の対向する部分間の長さである(図2参照)。間隔Lは、導電性線状体21の配列が不等間隔である場合には、全ての隣り合う導電性線状体21同士の間隔の平均値である。
 導電性線状体21は、特に制限はないが、金属ワイヤーを含む線状体(以下「金属ワイヤー線状体」とも称する)であることが好ましい。金属ワイヤーは高い電気伝導性、高いハンドリング性、高い熱伝導性、及び汎用性を有するため、導電性線状体21として金属ワイヤー線状体を適用すると、疑似シート構造体2の抵抗値を低減することが可能である。また、配線シート100(疑似シート構造体2)を発熱体として適用したとき、速やかな発熱が実現されやすくなる。さらに、上述したように直径が細い線状体を得られやすい。
 なお、導電性線状体21としては、金属ワイヤー線状体の他に、カーボンナノチューブを含む線状体、及び、糸に導電性被覆が施された線状体が挙げられる。
 金属ワイヤー線状体は、1本の金属ワイヤーからなる線状体であってもよいし、複数本の金属ワイヤーを撚った線状体であってもよい。
 金属ワイヤーとしては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)を含むワイヤーが挙げられる。また、金属ワイヤーは、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよく、後述する炭素材料又はポリマーにより表面が被覆されたものであってもよい。特に、タングステン及びモリブデン並びにこれらを含む合金から選ばれる一種以上の金属を含むワイヤーが、低い体積抵抗率の導電性線状体21とする観点から好ましい。
 金属ワイヤーとしては、炭素材料で被覆された金属ワイヤーも挙げられる。金属ワイヤーは、炭素材料で被覆されていると、金属光沢が低減し、金属ワイヤーの存在を目立たなくすることが容易となる。また、金属ワイヤーは、炭素材料で被覆されていると金属腐食も抑制される。
 金属ワイヤーを被覆する炭素材料としては、非晶質炭素(例えば、カーボンブラック、活性炭、ハードカーボン、ソフトカーボン、メソポーラスカーボン、及びカーボンファイバー等)、グラファイト、フラーレン、グラフェン及びカーボンナノチューブ等が挙げられる。
 本実施形態において、金属ワイヤーは、めっき処理等の工程を省略できる観点から、単一の金属種からなることが好ましい。本実施形態によれば、導電性線状体21と電極4との接触を安定させ、抵抗値上昇が発生しにくくできる。そのため、接触抵抗が優れる金属によりめっきされた金属ワイヤーを用いずに、単一の金属種からなる金属ワイヤーを用いた場合にも、導電性線状体21と電極4との接触抵抗を安定化できる。なお、単一の金属種からなる金属ワイヤーとは、めっき等による異種の金属種の被覆が表面に形成されていないだけでなく、炭素材料及びポリマー等を含む、当該単一の金属種以外の材料によって表面が被覆されていないことを意味する。
 カーボンナノチューブ線状体は、例えば、カーボンナノチューブフォレスト(カーボンナノチューブを、基板に対して垂直方向に配向するよう、基板上に複数成長させた成長体のことであり、「アレイ」と称される場合もある)の端部から、カーボンナノチューブをシート状に引き出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚ることにより得られる。このような製造方法において、撚りの際に捻りを加えない場合には、リボン状のカーボンナノチューブ線状体が得られ、捻りを加えた場合には、糸状の線状体が得られる。リボン状のカーボンナノチューブ線状体は、カーボンナノチューブが捻られた構造を有しない線状体である。このほか、カーボンナノチューブの分散液から、紡糸をすること等によっても、カーボンナノチューブ線状体を得ることができる。紡糸によるカーボンナノチューブ線状体の製造は、例えば、米国特許出願公開第2013/0251619号明細書(日本国特開2012-126635号公報)に開示されている方法により行うことができる。カーボンナノチューブ線状体の直径の均一さが得られる観点からは、糸状のカーボンナノチューブ線状体を用いることが望ましく、純度の高いカーボンナノチューブ線状体が得られる観点からは、カーボンナノチューブシートを撚ることによって糸状のカーボンナノチューブ線状体を得ることが好ましい。カーボンナノチューブ線状体は、2本以上のカーボンナノチューブ線状体同士が編まれた線状体であってもよい。また、カーボンナノチューブ線状体は、カーボンナノチューブと他の導電性材料が複合された線状体(以下「複合線状体」とも称する)であってもよい。
 複合線状体としては、例えば、(1)カーボンナノチューブフォレストの端部から、カーボンナノチューブをシート状に引き出し、引き出したカーボンナノチューブシートを束ねた後、カーボンナノチューブの束を撚るカーボンナノチューブ線状体を得る過程において、カーボンナノチューブのフォレスト、シート若しくは束、又は撚った線状体の表面に、金属単体又は金属合金を蒸着、イオンプレーティング、スパッタリング、湿式めっき等により担持させた複合線状体、(2)金属単体の線状体若しくは金属合金の線状体又は複合線状体と共に、カーボンナノチューブの束を撚った複合線状体、(3)金属単体の線状体若しくは金属合金の線状体又は複合線状体と、カーボンナノチューブ線状体又は複合線状体とを編んだ複合線状体等が挙げられる。なお、(2)の複合線状体においては、カーボンナノチューブの束を撚る際に、(1)の複合線状体と同様にカーボンナノチューブに対して金属を担持させてもよい。また、(3)の複合線状体は、2本の線状体を編んだ場合の複合線状体であるが、少なくとも1本の金属単体の線状体若しくは金属合金の線状体又は複合線状体が含まれていれば、カーボンナノチューブ線状体又は金属単体の線状体若しくは金属合金の線状体若しくは複合線状体の3本以上を編み合わせてあってもよい。
 複合線状体の金属としては、例えば、金、銀、銅、鉄、アルミニウム、ニッケル、クロム、スズ、亜鉛等の金属単体、及び、これら金属単体の少なくとも一種を含む合金(銅-ニッケル-リン合金、及び、銅-鉄-リン-亜鉛合金等)が挙げられる。
 導電性線状体21は、糸に導電性被覆が施された線状体であってもよい。糸としては、ナイロン、及びポリエステル等の樹脂から紡糸した糸等が挙げられる。導電性被覆としては、金属、導電性高分子、及び炭素材料等の被膜等が挙げられる。導電性被覆は、メッキ又は蒸着法等により形成することができる。糸に導電性被覆が施された線状体は、糸の柔軟性を維持しつつ、線状体の導電性を向上させることができる。つまり、疑似シート構造体2の抵抗を、低下させることが容易となる。
(硬化物層)
 硬化物層3は、硬化性の接着剤の硬化物からなる層である。本実施形態に係る配線シート100が第一基材を有する場合、図1及び図2に示すように、硬化物層3は、第一基材1と、疑似シート構造体2の間に設けられることが好ましい。硬化物層3により疑似シート構造体2を、面形状を維持して固定することができる。すなわち、疑似シート構造体2は、硬化物層3により支持される。また、硬化物層3の表面のうち、疑似シート構造体2に含まれる個々の導電性線状体21と接していない領域と、電極4及び、第二基材5のうちの少なくとも1つとを接着することにより、これらを固定することができる。配線シート100が、硬化物層3ではなく、硬化性を有しない接着剤層を備える場合には、配線シート100の内部における厚さ方向の変形に起因して、導電性線状体21が移動し、電極4から離れてしまう場合があり、抵抗値上昇が発生してしまう。そこで、導電性線状体21と電極4との接触を維持するために、導電性線状体21及び電極4に対して、接触圧力の印加が必要であった。これに対し、本実施形態のような硬化物層3を用いれば、導電性線状体21を固定でき、導電性線状体21と電極4との接触を安定させ、抵抗値上昇が発生しにくくできる。
 硬化物層3の23℃における貯蔵弾性率は、5.0×10Pa以上1.0×1010Pa以下であることが必要である。貯蔵弾性率が5.0×10Pa未満である場合には、導電性線状体21にかかる圧力が低過ぎるために、抵抗値上昇を抑制するためには、接触圧力の印加が必要となる。他方、貯蔵弾性率が1.0×1010Paを超える場合には、硬化物層3が硬過ぎるために、製造後に配線シート100に変形が加えられた場合に、導電性線状体21と電極4との接続部分が破壊され、抵抗値上昇が生じたり、通電できなくなったりするおそれがある。
 上記の観点から、硬化物層3の23℃における貯蔵弾性率は、0.8×10Pa以上8.0×10Pa以下であることが好ましく、1.0×10Pa以上5.0×10Pa以下であることがより好ましい。
 硬化物層3の厚さは、導電性線状体21の直径Dよりも小さいことが好ましい。硬化物層3の厚さが導電性線状体21の直径Dよりも小さい場合には、電極4と導電性線状体21との間に接着剤が入り込みにくくなり、電極4と導電性線状体21との接触抵抗を安定化できる。硬化物層3の厚さは、導電性線状体21の直径Dの0.95倍以下であることが好ましく、導電性線状体21の直径Dの0.9倍以下であることがより好ましい。具体的に、硬化物層3の厚さは、5μm以上75μm未満であることが好ましく、8μm以上60μm未満であることがより好ましく、12μm以上40μm未満であることがさらに好ましい。
 硬化性の接着剤としては、熱により硬化する熱硬化性の接着剤、及びエネルギー線硬化性の接着剤等が挙げられる。エネルギー線としては、紫外線、可視エネルギー線、赤外線、及び電子線等が挙げられる。なお、「エネルギー線硬化」には、エネルギー線を用いた加熱による熱硬化も含まれる。
 熱硬化性の接着剤は、熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、特に限定されず、具体的には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ベンゾオキサジン樹脂、フェノキシ樹脂、アミン系化合物、及び酸無水物系化合物等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール系硬化触媒を使用した硬化に適すという観点から、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物を使用することが好ましく、特に、優れた硬化性を示すという観点から、エポキシ樹脂、フェノール樹脂、それらの混合物、又はエポキシ樹脂と、フェノール樹脂、メラミン樹脂、尿素樹脂、アミン系化合物及び酸無水物系化合物からなる群から選択される少なくとも1種との混合物を使用することが好ましく、エポキシ樹脂を使用することが好ましい。
 エポキシ樹脂としては、芳香族エポキシ樹脂又は、脂環式エポキシ樹脂のように、環式のものが、硬化物層の貯蔵弾性率を高くする観点で好ましい。オキシアルキレン鎖のような柔軟性のセグメントを有するエポキシ樹脂は、硬化物層の貯蔵弾性率を低下させる傾向がある。
 エネルギー線硬化性の接着剤は、エネルギー線硬化性樹脂を含むことが好ましい。エネルギー線硬化性樹脂としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 アクリレート系化合物としては、例えば、鎖状脂肪族骨格含有(メタ)アクリレート(ジシクロペンタジエンジアクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、及び1,6-ヘキサンジオールジ(メタ)アクリレート等)、環状脂肪族骨格含有(メタ)アクリレート(ジシクロペンタニルジ(メタ)アクリレート等)、ポリアルキレングリコール(メタ)アクリレート(ポリエチレングリコールジ(メタ)アクリレート等)、オリゴエステル(メタ)アクリレート、ウレタン(メタ)アクリレートオリゴマー、エポキシ変性(メタ)アクリレート、ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート、及びイタコン酸オリゴマー等が挙げられる。
 エネルギー線硬化性樹脂の重量平均分子量(Mw)は、100以上30000以下であることが好ましく、300以上10000以下であることがより好ましい。
 接着剤が含有するエネルギー線硬化性樹脂は、1種のみでもよいし、2種以上でもよい。エネルギー線硬化性樹脂が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 エネルギー線硬化性樹脂又は熱硬化性樹脂を用いる場合、光重合開始剤、及び熱重合開始剤等を用いることが好ましい。光重合開始剤及び熱重合開始剤等を用いることで、硬化性樹脂の重合反応を容易に開始させることができ、硬化反応の制御が容易になる。
 光重合開始剤としては、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、2-クロールアンスラキノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド、及びビス(2,4,6-トリメチルベンゾイル)-フェニル-ホスフィンオキサイド等の光ラジカル重合開始剤が挙げられる。
 また、光重合開始剤としては、光ラジカル重合開始剤以外に、光カチオン重合開始剤が挙げられる。光カチオン重合開始剤は、活性エネルギー線が照射されることによってカチオン種を発生して、カチオン硬化性化合物の硬化反応を開始させる化合物であり、活性エネルギー線を吸収するカチオン部と酸の発生源となるアニオン部からなる。
 光カチオン重合開始剤としては、例えば、スルホニウム塩系化合物、ヨードニウム塩系化合物、ホスホニウム塩系化合物、アンモニウム塩系化合物、アンチモン酸塩系化合物、ジアゾニウム塩系化合物、セレニウム塩系化合物、オキソニウム塩系化合物、臭素塩系化合物等が挙げられる。これらの中でも、(A)成分との相溶性に優れ、得られる接着剤の保存安定性に優れるという観点から、スルホニウム塩系化合物が好ましく、芳香族基を有する芳香族スルホニウム塩系化合物がより好ましい。
 スルホニウム塩系化合物としては、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス[ジフェニルスルホニオ]ジフェニルスルフィド-ビスヘキサフルオロホスフェート、4,4’-ビス[ジ(β-ヒドロキシエトキシ)フェニルスルホニオ]ジフェニルスルフィド-ビスヘキサフルオロアンチモネート、7-[ジ(p-トルイル)スルホニオ]-2-イソプロピルチオキサントンヘキサフルオロホスフェート、7-[ジ(p-トルイル)スルホニオ]-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-[ジ(p-トルイル)スルホニオ]-2-イソプロピルテトラキス(ペンタフルオロフェニル)ボレート、フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロホスフェート、フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロアンチモネート、4-tert-ブチルフェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロホスフェート、4-tert-ブチルフェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロアンチモネート、4-tert-ブチルフェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-テトラキス(ペンタフルオロフェニル)ボレート、チオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、チオフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-{4-(2-クロロベンゾイル)フェニルチオ}フェニルビス(4-フルオロフェニル)スルホニウムヘキサフルオロアンチモネート、チオフェニルジフェニルスルホニウムヘキサフルオロアンチモネートのハロゲン化物、4,4’,4’’-トリ(β-ヒドロキシエトキシフェニル)スルホニウムヘキサフルオロアンチモネート、4,4’-ビス[ジフェニルスルホニオ]ジフェニルスルフィド-ビスヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムトリフルオロトリスペンタフルオロエチルホスファート、トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムトリス[(トリフルオロメチル)スルホニル]メタニド等が挙げられる。
 ヨードニウム塩系化合物としては、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェート、(トリクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
 ホスホニウム塩系化合物としては、トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド等が挙げられる。
 アンモニウム塩系化合物としては、ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド等が挙げられる。
 アンチモン酸塩系化合物としては、トリフェニルスルホニウムヘキサフルオロアンチモネート、p-(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、4-クロルフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート及びジアリルヨードニウムヘキサフルオロアンチモネート等が挙げられる。
 また、光カチオン重合開始剤として、市販品を用いることができる。市販品としては、サイラキュアUVI-6970、サイラキュアUVI-6974、サイラキュアUVI-6990、サイラキュアUVI-950(以上、ユニオンカーバイド社製)、イルガキュア250、イルガキュア261、イルガキュア264(以上、チバ・スペシャルティ・ケミカルズ社製)、SP-150、SP-151、SP-170、オプトマーSP-171(以上、ADEKA社製)、CG-24-61(チバ・スペシャルティ・ケミカルズ社製)、DAICAT II(ダイセル社製)、UVAC1590、UVAC1591(以上、ダイセル・サイテック社製)、CI-2064、CI-2639、CI-2624、CI-2481、CI-2734、CI-2855、CI-2823、CI-2758、CIT-1682(以上、日本曹達社製)、PI-2074(ローディア社製)、FFC509(3M社製)、BBI-102、BBI-101、BBI-103、MPI-103、TPS-103、MDS-103、DTS-103、NAT-103、NDS-103(以上、ミドリ化学社製)、CD-1010、CD-1011、CD-1012(Sartomer社製)、CPI-100P、CPI-101A、CPI-200K、CPI-310B(以上、サンアプロ社製)等が挙げられる。
 熱重合開始剤としては、過酸化水素、ペルオキソ二硫酸塩(ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、及びペルオキソ二硫酸カリウム等)、アゾ系化合物(2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビスイソブチロニトリル、及び2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等)、及び有機過酸化物(過酸化ベンゾイル、過酸化ラウロイル、過酢酸、過コハク酸、ジ-t-ブチルパーオキサイド、t-ブチルヒドロパーオキサイド、及びクメンヒドロパーオキサイド等)等の熱ラジカル重合開始剤が挙げられる。
 また、熱重合開始剤としては、上記の熱ラジカル重合開始剤以外に、熱カチオン重合開始剤が挙げられる。熱カチオン重合開始剤は、加熱によって、重合を開始させるカチオン種を発生しうる化合物である。熱カチオン重合開始剤としては、スルホニウム塩、第四級アンモニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩等が挙げられる。これらの中でも、入手が容易であること、接着性と透明性により優れる封止材が得られ易いこと等の観点から、スルホニウム塩が好ましい。
 スルホニウム塩としては、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロアルシネート、トリス(4-メトキシフェニル)スルホニウムヘキサフルオロアルシネート、ジフェニル(4-フェニルチオフェニル)スルホニウムヘキサフルオロアルシネート等が挙げられる。
 また、スルホニウム塩として、市販品を用いることもできる。市販品としては、アデカオプトンSP-150、アデカオプトンSP-170、アデカオプトンCP-66、アデカオプトンCP-77(以上、ADEKA社製)、サンエイドSI-60L、サンエイドSI-80L、サンエイドSI-100L、サンエイドSI-B3、サンエイドSI-B7(以上、三新化学社製)、CYRACURE UVI-6974、CYRACURE UVI-6990(以上、ユニオン・カーバイド社製)、UVI-508、UVI-509(以上、ゼネラル・エレクトリック社製)、FC-508、FC-509(以上、ミネソタ・マイニング・アンド・マニュファクチュアリング社製)、CD-1010、CD-1011(以上、サーストマー社製)、CIシリーズの製品(日本曹達社製)等が挙げられる。
 第四級アンモニウム塩としては、テトラブチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムヘキサフルオロホスフェート、テトラブチルアンモニウムハイドロジェンサルフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムp-トルエンスルホネート、N,N-ジメチル-N-ベンジルアニリニウムヘキサフルオロアンチモネート、N,N-ジメチル-N-ベンジルアニリニウムテトラフルオロボレート、N,N-ジメチル-N-ベンジルピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-ベンジルトリフルオロメタンスルホネート、N,N-ジメチル-N-(4-メトキシベンジル)ピリジニウムヘキサフルオロアンチモネート、N,N-ジエチル-N-(4-メトキシベンジル)トルイジニウムヘキサフルオロアンチモネートなどが具体的に挙げられる。また、前記ホスホニウム塩としては、例えば、エチルトリフェニルホスホニウムヘキサフルオロアンチモネート、テトラブチルホスホニウムヘキサフルオロアンチモネート等が挙げられる。
 ジアゾニウム塩としては、AMERICURE(アメリカン・キャン社製)、ULTRASET(ADEKA社製)等が挙げられる。ヨードニウム塩としては、ジフェニルヨードニウムヘキサフルオロアルシネート、ビス(4-クロロフェニル)ヨードニウムヘキサフルオロアルシネート、ビス(4-ブロモフェニル)ヨードニウムヘキサフルオロアルシネート、フェニル(4-メトキシフェニル)ヨードニウムヘキサフルオロアルシネート等が挙げられる。また、市販品として、UV-9310C(東芝シリコーン社製)、Photoinitiator2074(ローヌ・プーラン社製)、UVEシリーズの製品(ゼネラル・エレクトリック社製)、FCシリーズの製品(ミネソタ・マイニング・アンド・マニュファクチュアリング社製)なども用いることができる。
 これらの重合開始剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの重合開始剤を用いて架橋構造を形成する場合、その使用量は、エネルギー線硬化性樹脂又は熱硬化性樹脂100質量部に対して、0.1質量部以上100質量部以下であることが好ましく、1質量部以上100質量部以下であることがより好ましく、1質量部以上10質量部以下であることが特に好ましい。
 また、熱硬化性樹脂を用いる場合、イミダゾール系硬化触媒等の、硬化触媒を用いてもよい。
 本実施形態において、接着剤は、エネルギー線硬化性樹脂又は熱硬化性樹脂とともに、硬化前のシート形状の維持を容易にするため、ポリマー成分を含有していてもよい。ポリマー成分として用いられるポリマーとしては、フェノキシ樹脂、ポリオレフィン系樹脂又はその変性物、ポリアミドイミド樹脂、ポリイミド樹脂、ゴム系樹脂、アクリル樹脂等が挙げられる。フェノキシ樹脂又は、ポリイミド樹脂等の剛直な骨格を持つポリマー成分を用いることで、硬化物層の貯蔵弾性率を高くすることが容易である。
 これらのポリマー成分は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 本実施形態の接着剤がポリマー成分を含む場合、接着剤が含むエネルギー線硬化性樹脂と熱硬化性樹脂の合計量は、硬化物層の貯蔵弾性率を上述した範囲に調整する観点から、ポリマー成分100質量部に対して、15質量部以上300質量部以下であることが好ましく、20質量部以上200質量部以下であることが好ましい。また、接着剤がエネルギー線硬化性樹脂又は熱硬化性樹脂を含み、ポリマー成分を含まない場合、硬化物層の貯蔵弾性率が高くなり過ぎてしまう傾向がある。
 本実施形態において、接着剤は、充填材を含有しないことが好ましい。接着剤が充填材を含有しない場合には、硬化物層3の23℃における貯蔵弾性率が高くなり過ぎることを防止できる。
 ただし、接着剤は、硬化物層3の23℃における貯蔵弾性率を前記範囲内に調整できる範囲において、充填材を含有していてもよい。
 充填材としては、例えば、無機粉末(例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、及び窒化ホウ素等の粉末)、無機粉末を球形化したビーズ、単結晶繊維、及びガラス繊維等が挙げられる。これらの中でも、シリカフィラー及びアルミナフィラーが好ましい。充填材は、1種単独で用いてもよく、2種以上を併用してもよい。
 接着剤には、その他の成分が含まれていてもよい。その他の成分としては、例えば、有機溶媒、カップリング剤、難燃剤、粘着付与剤、紫外線吸収剤、酸化防止剤、防腐剤、防黴剤、可塑剤、消泡剤、及び濡れ性調整剤等の周知の添加剤が挙げられる。
(電極)
 電極4は、導電性線状体21に電流を供給するために用いられる。電極4は、導電性線状体21に直接的に接触する。そして、電極4は、導電性線状体21の両端部に電気的に接続されて配置される。
 電極4は、公知の電極材料を用いて形成できる。電極材料としては、導電性ペースト(銀ペースト等)、金属箔(銅箔等)、及び金属ワイヤー等が挙げられる。硬化物層3から受ける接触圧力により、簡便に導電性線状体21との電気的な接続を図ることができる観点から、電極4は、金属ワイヤー又は金属箔であることが好ましく、金属ワイヤー又は厚さ40μm以下の金属箔であることがより好ましい。電極が金属ワイヤーである場合、電極を電源からの配線と繋ぐ際に、金属線同士であるため、接続が容易である。また、厚さ40μm以下の薄い金属箔は、配線シート100の全体の厚さを低減することができるとともに、電極形成部の段差を小さくする観点から好ましい。本実施形態によれば、導電性線状体21と電極4との接触を安定させ、抵抗値上昇が発生しにくくできる。そのため、接触抵抗が優れる導電性ペースト又は、厚い金属箔を用いずに、金属ワイヤー又は厚さ40μm以下の金属箔を用いた場合にも、導電性線状体21と電極4との接触抵抗を安定化できる。電極材料が金属ワイヤーである場合、金属ワイヤーは、1本であってもよいが、2本以上であることが好ましい。
 金属箔又は金属ワイヤーの金属としては、銅、アルミニウム、タングステン、鉄、モリブデン、ニッケル、チタン、銀、金等の金属、又は、金属を2種以上含む合金(例えば、ステンレス鋼、炭素鋼等の鋼鉄、真鍮、りん青銅、ジルコニウム銅合金、ベリリウム銅、鉄ニッケル、ニクロム、ニッケルチタン、カンタル、ハステロイ、及びレニウムタングステン等)が挙げられる。また、金属箔又は金属ワイヤーは、錫、亜鉛、銀、ニッケル、クロム、ニッケルクロム合金、又は、はんだ等でめっきされたものであってもよい。特に、銅及び銀並びにこれらを含む合金から選ばれる一種以上の金属を含むものが、低い体積抵抗率の金属という観点から好ましい。
 電極4の幅は、疑似シート構造体2の平面視において、3000μm以下であることが好ましく、2000μm以下であることがより好ましく、1500μm以下であることがさらに好ましい。電極に金属ワイヤーを2本以上用いた場合の電極4の幅とは、各金属ワイヤーの幅の和のことをいう。複数の金属ワイヤーは、直接接触していても、導電性線状体21を介して電気的に接続されていてもよい。なお、電極4が単一の金属ワイヤーである場合には、電極4の幅は、金属ワイヤーの直径である。
 「電極4の抵抗値/疑似シート構造体2の抵抗値」の計算式により求められる、電極4と疑似シート構造体2の抵抗値の比は、0.0001以上0.3以下であることが好ましく、0.0005以上0.1以下であることがより好ましい。配線シート100を発熱体として用いる場合、疑似シート構造体2を発熱させるため、疑似シート構造体2はある程度の抵抗を有する必要がある一方、電極4は可能な限り電流が流れやすいことが好ましい。このため、電極4の抵抗値と疑似シート構造体2の抵抗値の間に格差が生じる。このような理由から、電極4と疑似シート構造体2の抵抗値の比が大きくなると、温度ムラは発生しやすい傾向にある。
 電極4と疑似シート構造体2の抵抗値は、テスターを用いて測定することができる。まず電極4の抵抗値を測定し、電極4を貼付した疑似シート構造体2の抵抗値を測定する。その後、電極を貼付した疑似シート構造体2の抵抗値から電極4の測定値を差し引くことで、電極4及び疑似シート構造体2それぞれの抵抗値を算出する。また、必要に応じて、配線シート100から電極4を取り出して、抵抗値を測定できる。
(第二基材)
 第二基材5としては、第一基材1と同様のものが挙げられる。この第二基材5は、硬化物層3の電極4がある側に設けられる。この第二基材5により、疑似シート構造体2を保護できる。また、第一基材1と第二基材5により、疑似シート構造体2及び電極4を挟み込むことで、導電性線状体21と電極4との接触部において、配線シート100の内部における厚さ方向の変形がより抑制されることから、導電性線状体21と電極4との接触をさらに安定させることができる。
 また、第二基材5は、エネルギー線を透過できることが好ましい。このような第二基材5を用いる場合には、エネルギー線を第二基材5の側から照射して、エネルギー線硬化性の接着剤を硬化させることができる。
(配線シートの製造方法)
 本実施形態に係る配線シート100の製造方法は、特に限定されない。配線シート100は、例えば、次の工程により、製造できる。
 まず、図3Aに示すように、第一基材1の上に、硬化物層3を形成するための熱硬化性の接着剤を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、接着剤層3’を作製する。次に、図3Bに示すように、接着剤層3’上に、導電性線状体21を配列しながら配置して、疑似シート構造体2を形成する。例えば、ドラム部材の外周面に第一基材1付きの接着剤層3’を配置した状態で、ドラム部材を回転させながら、接着剤層3’上に導電性線状体21を螺旋状に巻き付ける。その後、螺旋状に巻き付けた導電性線状体21の束をドラム部材の軸方向に沿って切断する。これにより、疑似シート構造体2を形成すると共に、接着剤層3’上に配置する。このようにして、第一基材1付きの接着剤層3’上に疑似シート構造体2が形成された、シート状部材が得られる。この方法によれば、例えば、ドラム部材を回転させながら、導電性線状体21の繰り出し部をドラム部材の軸と平行な方向に沿って移動させることで、疑似シート構造体2における隣り合う導電性線状体21の間隔Lを調整することが容易である。
 次に、図3Cに示すように、電極4を、シート状部材の疑似シート構造体2における導電性線状体21の両端部に、貼り合わせる。次いで、図3Dに示すように、第二基材5を積層し、加熱処理により、硬化性の接着剤を硬化させて、硬化物層3を形成して、配線シート100を作製できる。
(実施形態の作用効果)
 本実施形態によれば、次のような作用効果を奏することができる。
(1)本実施形態によれば、硬化物層3により、導電性線状体21を固定でき、配線シート100の内部における厚さ方向の変形を抑制し、導電性線状体21と電極4との接触を安定させ、抵抗値上昇が発生しにくくできる。
(2)本実施形態によれば、硬化物層3の23℃における貯蔵弾性率を、5.0×10Pa以上1.0×1010Pa以下とすることで、配線シート100に変形が加えられた場合に、導電性線状体21と電極4との接続部分が破壊されるのを防止しつつ、導電性線状体21を固定できる。
[実施形態の変形]
 本発明は前述の実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれる。
 例えば、前述の実施形態では、配線シート100は、第二基材5を備えているが、これに限定されない。例えば、配線シート100は、第二基材5を備えていなくてもよい。すなわち、本実施形態に係る配線シート100は、第一基材1と、硬化物層3と、疑似シート構造体2と、一対の電極4とをこの順に備える。本実施形態の配線シート100は、接着剤層3’により、配線シート100を被着体に貼り付けて、その後、硬化性の接着剤を硬化させて硬化物層3を形成して、使用できる。この場合には、被着体が剛性の高い材質からなるものであれば、導電性線状体21と電極4との接触を安定させやすい。剛性の高い材質としては、例えば、金属、樹脂、及びガラス等が挙げられる。
 また、配線シート100が第二基材5を有する場合、配線シート100は、電極4と第二基材5の間に、第二の硬化物層を有していてもよい。つまり、配線シート100は、疑似シート構造体2及び電極4が、前述の硬化物層3と、第二の硬化物層とで挟まれる形態であってもよい。すなわち、本実施形態に係る配線シート100は、第一基材1と、硬化物層3と、疑似シート構造体2と、一対の電極4と、第二の硬化物層と、第二基材5とをこの順に備える。これにより、疑似シート構造体2及び電極4は、二層の硬化物層により、より強固に配線シート100の内部において固定される。第二の硬化物層の材質、厚さ及びその他の特性は、前述の硬化物層3と同様である。
 配線シート100が第二基材5を有さず、配線シート100が被着体に貼り付けられる場合、第二の硬化物層が、電極4と被着体の間に設けられ、第二の硬化物層を形成するための接着剤により配線シート100を被着体に貼り付けてもよい。すなわち、本実施形態に係る配線シート100は、第一基材1と、硬化物層3と、疑似シート構造体2と、一対の電極4と、第二の硬化物層とをこの順に備える。
 さらに、配線シート100が第二の硬化物層を有する場合には、配線シート100が前述の硬化物層3を有さず、第二の硬化物層のみを、本発明の硬化物層として有していてもよい。すなわち、本実施形態では、配線シート100は、第一基材1と、疑似シート構造体2と、一対の電極4と、第二の硬化物層と、第二基材5とを備え、又は、配線シート100は、第一基材1と、疑似シート構造体2と、一対の電極4と、第二の硬化物層とをこの順に備える。
(配線シートの用途)
 配線シート100を発熱体(シート状ヒーター)として用いる場合、発熱体の用途としては、例えば、窓ガラス用のデフォッガー(曇り取り)、及びデフロスター(霜取り)等が挙げられる。近年では、電気自動車のバッテリーの温度コントロールにヒーターが使われており、薄いヒーターはラミネート型セルの個別の温度コントロールに好適である。また、電気信号の配線のためのフラットケーブルとしても利用することができる。
 以下、本発明を、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本発明を制限するものではない。
[調製例1]
 酸変性ポリオレフィン系樹脂(α-オレフィン重合体、三井化学社製、商品名「ユニストールH-200」、質量平均分子量(Mw):52,000)100質量部に、水添ビスフェノールAジグリシジルエーテル(三菱ケミカル社製、製品名「YX8034」)25質量部、シランカップリング剤(信越化学工業社製、製品名「KBM-4803」)0.1質量部、及び、イミダゾール系硬化触媒(四国化成社製、製品名「キュアゾール2E4MZ」、2-エチル-4-メチルイミダゾール)1質量部を配合して、硬化性の接着剤を得た。
[調製例2]
 フェノキシ樹脂(三菱ケミカル社製、商品名「YX7200B35」)100質量部に、水添ビスフェノールAジグリシジルエーテル(三菱化学社製、製品名「YX8000」)170質量部、シランカップリング剤(信越化学工業社製、製品名「KBM-4803」)0.2質量部、熱カチオン重合開始剤(三新化学工業社製、製品名「サンエイドSI-B3」)2質量部、及び、熱カチオン重合開始剤(三新化学工業社製、製品名「サンエイドSI-B7」)2質量部を配合して、硬化性の接着剤を得た。
[調整例3]
 n-ブチルアクリレートを主成分とし、アクリル酸を添加した原料モノマーに由来の構成単位を有するアクリル系共重合体に、架橋剤として、イソシアネート系架橋剤を配合して、非硬化性の粘着剤を得た。
[調製例4]
 有機無機ハイブリッド材料(JSR社製、製品名「オプスターZ7530」、反応性シリカ60質量部、ジペンタエリスリトールヘキサアクリレート40質量部、及び、光重合開始剤を含有)を、硬化性の接着剤として準備した。
[調製例5]
 フェノキシ樹脂(三菱ケミカル社製、商品名「YX7200B35」)100質量部に、オキシアルキレン鎖を有するエポキシ化合物(三菱ケミカル社製、製品名「YX7400」)70質量部、及び、光カチオン重合開始剤(サンアプロ社製、製品名「CPI-100P」)2質量部を配合して、硬化性の接着剤を得た。
[実施例1]
 厚み50μmのポリイミドフィルム(東レ・デュポン社製、商品名:カプトン200H)上に、調製例1で得られた接着剤の溶媒希釈物を塗布し乾燥して、厚さ20μmの接着剤層を形成した後、257mm×364mmの長方形に裁断し、接着シートを作製した。導電性線状体として、タングステンワイヤー(直径25μm、メーカー名:株式会社トクサイ製、製品名:TWG-CS、以下、「ワイヤー」とも称する。)を準備した。次に、外周面がゴム製のドラム部材に上記接着シートを、接着剤層の表面が外側を向き、しわのないように巻きつけ、円周方向における上記接着シートの両端部を両面テープでドラム部材に固定した。ボビンに巻き付けたワイヤーを、ドラム部材の端部付近に位置する接着シートの接着剤層の表面に付着させた上で、ワイヤーを繰り出しながらドラム部材で巻き取り、少しずつドラム部材をドラム軸と平行な方向に移動させていき、ワイヤーが等間隔40mmでらせんを描きながらドラム部材に巻きつくようにした。これにより、ワイヤーが接着剤層の表面に6本並べられた状態で疑似シート構造体を形成した。その後、ワイヤーを切断し、ドラム部材上から、疑似シート構造体が設けられた接着シートを取り外した。次に、電極として、金めっき銅線(直径150μm、メーカー名:株式会社トクサイ製、製品名:C1100-H AuP)を電極として準備した。タングステンワイヤーの延びる方向と直交する方向で、タングステンワイヤー間距離が150mmとなるように、一対のワイヤー電極を各タングステンワイヤーを跨ぐようにして載せ、電極を取り付けた(図3C参照。)。続いて、電極付きフィルムのワイヤーを配置した接着剤層の表面に、厚み50μmのポリイミドフィルム(東レ・デュポン社製、商品名:カプトン200H)を貼り合わせた。その後、真空ラミネーター(ニッコー・マテリアルズ社製、製品名:V130)を用いて、100℃、0.5MPa、及び、1時間の条件で、加熱ラミネートして、配線シートを得た。次いで、配線シートから疑似シート構造体からワイヤー1本分が取り出されるように、40mm幅に配線シートを裁断し、評価用の配線エレメントを作製した。なお、本例及び他の実験例の配線シートは、配線エレメントを採取するために、実際の製品に適したワイヤー間の間隔よりも、大きな間隔で作製した。
[実施例2]
 接着シートの作製において、調製例1で得られた接着剤の代わりに調製例2で得られた接着剤を用い、加熱ラミネートの条件を110℃、50分間とした以外、実施例1と同様にして、配線シートを作製した。また、評価用の配線エレメントも作製した。
[比較例1]
 接着シートの作製において、調製例1で得られた接着剤の代わりに調製例3で得られた非硬化性の粘着剤を用い、加熱ラミネートに代えて、ローラー式のラミネーターにより、電極付きフィルムのワイヤーを配置した接着剤層の表面に、ポリイミドフィルムを貼り合わせたこと以外、実施例1と同様にして、配線シートを作製した。また、評価用の配線エレメントも作製した。
[比較例2]
 接着シートの作製において、調製例1で得られた接着剤の代わりに調製例4で得られた接着剤を用い、接着剤を塗布するポリイミドフィルム、及び電極付きフィルムのワイヤーを配置した接着剤層の表面に貼付するポリイミドフィルムをいずれも、ポリエチレンテレフタレートフィルム(東レ社製、製品名「ルミラーT60」)に変更し、40℃、2分間の条件で加熱ラミネート後に波長365nmの紫外線を、照度250mW/cm、光量170mJ/cmの条件で照射した以外、実施例1と同様にして、配線シートを作製した。また、評価用の配線エレメントも作製した。
[比較例3]
 接着シートの作製において、調製例1で得られた接着剤の代わりに調製例5で得られた接着剤を用い、接着剤を塗布するポリイミドフィルム、及び電極付きフィルムのワイヤーを配置した接着剤層の表面に貼付するポリイミドフィルムをいずれも、ポリエチレンテレフタレートフィルム(東レ社製、製品名「ルミラーT60」)に変更し、40℃、2分間の条件で加熱ラミネート後に波長365nmの紫外線を、照度200mW/cm、光量2000mJ/cmの条件で照射した以外、実施例1と同様にして、配線シートを作製した。また、評価用の配線エレメントも作製した。
[貯蔵弾性率測定]
 実施例1、比較例1及び比較例3については、次の方法により、貯蔵弾性率を測定した。すなわち、測定対象となる層を形成する組成物と同一の組成物から、剥離フィルム上に、厚さ20μmの接着剤層を形成したものを複数枚積層して、厚さ1mmの積層物を得た。この積層物を、直径8mmの円形に打ち抜くことで、円柱形の試験サンプルを作製した。試験サンプルに対して、各実験例と同一の条件にて加熱又は紫外線照射を行い、試験サンプルを硬化した。ただし、実施例1の試験サンプルについては、真空ラミネーターは用いず、大気圧にて加熱を行い、比較例1の試験サンプルには、このような硬化のための処理は行っていない。粘弾性測定装置(Anton Paar社製、装置名「MCR300」)を用いて、試験開始温度-20℃、試験終了温度150℃、昇温速度3℃/分、及び周波数1Hzの条件で、試験サンプルの貯蔵弾性率を測定した。
 実施例2及び比較例2については、次の方法により、貯蔵弾性率を測定した。すなわち、測定対象となる層を形成する組成物と同一の組成物から、剥離フィルム上に、厚さ20μmの接着剤層を形成したものを複数枚積層して、厚さ200μmの試験サンプルを作成した。試験サンプルに対して、各実験例と同一の条件にて加熱又は紫外線照射を行い、試験サンプルを硬化した。ただし、実施例2の試験サンプルについては、真空ラミネーターは用いず、大気圧にて加熱を行った。粘弾性測定装置(TAインスツルメント社製、装置名「DMAQ800」)を用いて、試験開始温度-20℃、試験終了温度150℃、昇温速度3℃/分、及び周波数1Hzの条件で、試験サンプルの貯蔵弾性率を測定した。
[配線シートの抵抗値評価]
 評価用の配線エレメントを直径17mmの丸棒に、丸棒の軸方向とタングステンワイヤーの向きが直交するように巻き付けることにより変形を加えた後、再び伸ばした評価用の配線エレメントに、直流電源を用いて3.0Vの電圧をかけ、電流値から抵抗値を求めた。比較例2に関しては、変形後に電流が流れなかったため、測定不可とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、実施例1及び2で得られた配線シートによれば、比較例1及び3で得られたシート状ヒーターと比較して、抵抗値が小さいことが分かった。また、比較例2で得られた配線シートは、抵抗値が測定不可であり、導電性線状体と電極との接続部分が破壊されたと推察される。これらのことから、本発明によれば、抵抗値上昇が発生しにくい配線シートが得られることが確認された。
 1…第一基材、2…疑似シート構造体、21…導電性線状体、3…硬化物層、4…電極、5…第二基材、100…配線シート。

Claims (7)

  1.  複数の導電性線状体が間隔をもって配列された疑似シート構造体と、前記疑似シート構造体を支持する硬化物層と、前記導電性線状体に直接的に接触する一対の電極とを備え、
     前記硬化物層は、硬化性の接着剤の硬化物からなり、前記硬化物層の23℃における貯蔵弾性率が、5.0×10Pa以上1.0×1010Pa以下である、
     配線シート。
  2.  請求項1に記載の配線シートにおいて、
     前記導電性線状体は、金属ワイヤーを含む、
     配線シート。
  3.  請求項2に記載の配線シートにおいて、
     前記金属ワイヤーは、単一の金属種からなる、
     配線シート。
  4.  請求項1から3のいずれか一項に記載の配線シートにおいて、
     前記電極は、金属ワイヤー又は厚さ40μm以下の金属箔である、
     配線シート。
  5.  請求項1から4のいずれか一項に記載の配線シートにおいて、
     前記硬化物層の厚さは、前記導電性線状体の直径よりも小さい、
     配線シート。
  6.  請求項1から5のいずれか一項に記載の配線シートにおいて、
     前記硬化物層は、充填材を含有しない、
     配線シート。
  7.  請求項1から6のいずれか一項に記載の配線シートにおいて、
     前記硬化物層の前記電極がある側と反対の側に、基材を有する、
     配線シート。
PCT/JP2021/017395 2020-05-08 2021-05-06 配線シート WO2021225142A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180034014.3A CN115517013A (zh) 2020-05-08 2021-05-06 布线片
JP2022519967A JPWO2021225142A1 (ja) 2020-05-08 2021-05-06
EP21800559.3A EP4149205A1 (en) 2020-05-08 2021-05-06 Wiring sheet
US17/923,486 US20230078492A1 (en) 2020-05-08 2021-05-06 Wiring sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-082584 2020-05-08
JP2020082584 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021225142A1 true WO2021225142A1 (ja) 2021-11-11

Family

ID=78468014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017395 WO2021225142A1 (ja) 2020-05-08 2021-05-06 配線シート

Country Status (5)

Country Link
US (1) US20230078492A1 (ja)
EP (1) EP4149205A1 (ja)
JP (1) JPWO2021225142A1 (ja)
CN (1) CN115517013A (ja)
WO (1) WO2021225142A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067194A1 (ja) * 2010-11-18 2012-05-24 日立化成工業株式会社 多層樹脂シート及び樹脂シート積層体
JP2012126635A (ja) 2010-11-22 2012-07-05 Furukawa Electric Co Ltd:The 凝集紡糸構造体の製造方法および凝集紡糸構造体
US20130251619A1 (en) 2010-11-22 2013-09-26 National Institute Of Advanced Industrial Science And Technology Aggregated thread structure, production method thereof, and electric wire using the same
WO2017086395A1 (ja) 2015-11-20 2017-05-26 リンテック株式会社 シート、発熱体、及び発熱装置
WO2018097323A1 (ja) * 2016-11-28 2018-05-31 リンテック オブ アメリカ インコーポレーテッド 三次元成形用導電性シート
WO2018105613A1 (ja) * 2016-12-07 2018-06-14 古河電気工業株式会社 半導体加工用テープ
WO2020045550A1 (ja) * 2018-08-29 2020-03-05 リンテック株式会社 シート状発熱体および発熱装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067194A1 (ja) * 2010-11-18 2012-05-24 日立化成工業株式会社 多層樹脂シート及び樹脂シート積層体
JP2012126635A (ja) 2010-11-22 2012-07-05 Furukawa Electric Co Ltd:The 凝集紡糸構造体の製造方法および凝集紡糸構造体
US20130251619A1 (en) 2010-11-22 2013-09-26 National Institute Of Advanced Industrial Science And Technology Aggregated thread structure, production method thereof, and electric wire using the same
WO2017086395A1 (ja) 2015-11-20 2017-05-26 リンテック株式会社 シート、発熱体、及び発熱装置
WO2018097323A1 (ja) * 2016-11-28 2018-05-31 リンテック オブ アメリカ インコーポレーテッド 三次元成形用導電性シート
WO2018105613A1 (ja) * 2016-12-07 2018-06-14 古河電気工業株式会社 半導体加工用テープ
WO2020045550A1 (ja) * 2018-08-29 2020-03-05 リンテック株式会社 シート状発熱体および発熱装置

Also Published As

Publication number Publication date
JPWO2021225142A1 (ja) 2021-11-11
EP4149205A1 (en) 2023-03-15
US20230078492A1 (en) 2023-03-16
CN115517013A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
JP6178948B1 (ja) シート、発熱体、及び発熱装置
WO2018097321A1 (ja) 三次元成形用発熱シート、および表面発熱物品
US12075530B2 (en) Article with conductive sheet and method for producing same
WO2021192775A1 (ja) 配線シート及びシート状ヒーター
WO2021225142A1 (ja) 配線シート
JP7345656B2 (ja) 配線シート
TW201728464A (zh) 薄片之製造方法
WO2021187361A1 (ja) 配線シート及びシート状ヒーター
WO2021261488A1 (ja) 配線シート
WO2021193239A1 (ja) シート状導電部材及びシート状ヒーター
WO2020189173A1 (ja) シート状導電部材及びその製造方法
WO2022070481A1 (ja) 配線シート、及び配線シートの製造方法
JP7308210B2 (ja) シート状導電部材
JP2022149123A (ja) 配線シート
WO2022202230A1 (ja) 配線シート
JP7284749B2 (ja) 発熱シート
WO2023063379A1 (ja) 配線シート
WO2021172150A1 (ja) 配線シート
WO2023188122A1 (ja) 配線シート
WO2024070718A1 (ja) 配線シート及びシート状ヒータ
WO2022071366A1 (ja) 導電性構造体、導電性構造体の製造方法、導電性構造体を含む物品、及び、導電性構造体を含む物品の製造方法
WO2022202216A1 (ja) 三次元成形用配線シート
JP2024052337A (ja) 配線シート及びシート状ヒータ
JP2024052310A (ja) 配線シート及びシート状ヒータ
TW202226886A (zh) 配線薄片及薄片狀加熱器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519967

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021800559

Country of ref document: EP

Effective date: 20221208

NENP Non-entry into the national phase

Ref country code: DE