WO2021223759A1 - 一种高强耐蚀镍基多晶高温合金及其制备方法 - Google Patents

一种高强耐蚀镍基多晶高温合金及其制备方法 Download PDF

Info

Publication number
WO2021223759A1
WO2021223759A1 PCT/CN2021/092494 CN2021092494W WO2021223759A1 WO 2021223759 A1 WO2021223759 A1 WO 2021223759A1 CN 2021092494 W CN2021092494 W CN 2021092494W WO 2021223759 A1 WO2021223759 A1 WO 2021223759A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
temperature
hours
corrosion
strength
Prior art date
Application number
PCT/CN2021/092494
Other languages
English (en)
French (fr)
Inventor
严靖博
谷月峰
袁勇
杨征
张醒兴
Original Assignee
华能国际电力股份有限公司
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能国际电力股份有限公司, 西安热工研究院有限公司 filed Critical 华能国际电力股份有限公司
Publication of WO2021223759A1 publication Critical patent/WO2021223759A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention belongs to the field of high-temperature alloys, and specifically relates to a high-strength, corrosion-resistant nickel-based polycrystalline high-temperature alloy and a preparation method thereof, and is particularly suitable for key components such as over/reheaters of advanced ultra-supercritical units of thermal power plants.
  • the super/reheater is the most severe component in the thermal power unit boiler. While ensuring its excellent strength performance, it must also have excellent resistance to coal ash corrosion and water vapor oxidation.
  • the superalloys developed for the key components of advanced ultra-supercritical unit super/reheaters have high Cr element content to ensure their good corrosion/oxidation performance, such as Inconel 740H developed by Special Metals Corporation of the United States, and Hastelloy Nickel such as Haynes 282 developed by the company, CCA 617 developed by ThyssenKrupp in Germany, Nimonic 263 developed by Rolls-Royce in the UK, FENIX700 developed by Hitachi in Japan, TOS1X developed by Toshiba in Japan, LTESR700 developed by Mitsubishi in Japan, etc.
  • the purpose of the present invention is to provide a high-strength, corrosion-resistant nickel-based polycrystalline high-temperature alloy and a preparation method thereof.
  • a method for preparing a high-strength, corrosion-resistant nickel-based polycrystalline high-temperature alloy includes the following steps:
  • Alloy smelting The alloy components include: Cr: 13-17%, Co: 15-20%, Ti: 0.1-0.5%, Al: 5.0-5.5%, W: 3.0-7.0%, Si: ⁇ 0.5%, Mn: ⁇ 0.5%, Nb: 1.5 ⁇ 2.0%, C: 0.04 ⁇ 0.07%, the balance is Ni; the above alloy components are smelted, and then refined by electroslag remelting process, and finally alloy ingots are obtained ;
  • a further improvement of the present invention is that, before step 2), the alloy ingot is held at 1000-1050°C for 0.5-1.0 hours, and then step 2) is performed.
  • a further improvement of the present invention is that the temperature is raised from room temperature to 1000-1050°C at a temperature rise rate of not higher than 10°C/min.
  • a further improvement of the present invention is that, in step 2), the temperature of the homogenization treatment is 1160-1200°C, and the time is 24-72 hours.
  • a further improvement of the present invention lies in that, in step 2), the outside of the alloy ingot is covered with 304 stainless steel with a thickness of 0.5-1.0 mm during rolling.
  • a further improvement of the present invention is that in step 2), after each pass of deformation is completed, the furnace is returned to the furnace for 15-20 minutes and then the next pass is rolled.
  • step 3 is: heating the rolled alloy with the furnace to a temperature range of 70-150°C above the ⁇ 'dissolution temperature for 0.5-1.0 hours, and air cooling to room temperature after completion; The alloy is heated to 300-350°C below the ⁇ 'dissolution temperature for 3-9 hours and then air-cooled, and finally heated to the ⁇ 'dissolution temperature within the range of 200-250°C for 1 to 3 hours and then air-cooled.
  • the present invention has the following beneficial effects:
  • the present invention limits the content of Cr element in the alloy to less than 17% and increases the content of Al element to more than 5.0%, while avoiding the addition of Mo element and limiting the upper limit of Ti element content to no more than 0.5%, and finally obtains an excellent high-temperature strength, A superalloy with corrosion/oxidation resistance and good high-temperature structural stability.
  • the average grain size of the alloy after heat treatment is 30-50 ⁇ m, and a large number of dispersed ⁇ 'phases are precipitated in the crystal, and the average diameter does not exceed 50nm.
  • the discontinuous carbides are distributed on the grain boundary, and the size of the discontinuous carbide does not exceed 5 ⁇ m.
  • the tensile yield strength of the alloy at room temperature and 850°C is higher than 900MPa and 680MPa, respectively, and it has excellent processing properties and structural stability. It has no harmful phase precipitation during heat exposure at 850°C, and after heat exposure at this temperature for 1000 hours The tensile yield strength at room temperature and 850°C are higher than 850MPa and 450MPa respectively. And after the alloy is corroded in a high temperature flue gas environment (N 2 -15% CO 2 -3.5% O 2 -0.1% SO 2 ) for 1000 hours, a dense Al 2 O 3 layer is formed on the surface, and the weight change is less than 0.2 mg/cm 2 .
  • the outer surface of the out-of-rolling alloy ingot is sheathed with 304 stainless steel with a thickness of 0.5-1.0mm to slow down the temperature drop rate after being out of the furnace.
  • Figure 1 is a photo of the tissue of Example 1 exposed to 1000 hours of heat
  • Figure 2 is a cross-sectional photograph of the coal ash of Example 1 after 1000 hours of corrosion
  • Figure 3 is a photo of the tissue of Example 2 after 1000 hours of heat exposure
  • Figure 4 is a photo of the organization of Comparative Example 1;
  • Figure 5 is a tissue photo of Comparative Example 1 after 1000 hours of heat exposure
  • Figure 6 is a cross-sectional photo of the coal ash of Comparative Example 2 after 1000 hours of corrosion
  • Figure 7 is a cross-sectional photograph of the coal ash of Comparative Example 3 after 1000 hours of corrosion.
  • the invention is developed in response to the requirements of advanced ultra-supercritical thermal power units, and can meet the performance requirements of high-temperature components such as superheaters/reheaters.
  • the present invention provides a high-strength, corrosion-resistant nickel-based polycrystalline high-temperature alloy, which, in terms of mass percentage, includes the following elements: Cr: 13-17%, Co: 15-20%, Ti: 0.1-0.5%, Al: 5.0-5.5 %, W: 3.0-7.0%, Si: ⁇ 0.5%, Mn: ⁇ 0.5%, Nb: 1.5-2.0%, C: 0.04-0.07%, and the balance is Ni.
  • the preparation method of the above-mentioned high-strength, corrosion-resistant nickel-based polycrystalline superalloy is: homogenization treatment after smelting, hot rolling, and finally heat treatment. details as follows:
  • Alloy smelting Use vacuum induction furnace for alloy smelting, and ensure that the vacuum degree is lower than 5 ⁇ 10 -3 before passing high-purity argon gas. The electroslag remelting process is then used for refining, and finally an alloy ingot is obtained for processing; it is ensured that the N element content of the alloy after the electroslag remelting is not higher than 300ppm, and the P and S content is not higher than 0.03%.
  • High temperature rolling heat the alloy to 950-1020°C for 0.5-1.0 hours, then conduct homogenization treatment at 1160-1200°C for 24-72 hours, and finally perform it at 50-100°C above the ⁇ 'dissolution temperature
  • the total deformation is not less than 50%, and the deformation per pass is 10-20%; among them, the temperature rise rate is controlled not to be higher than 10°C/min during the homogenization of the alloy and rises to 1000-1050 After holding at °C for 0.5-1.0 hours, continue to heat up to the specified temperature for homogenization treatment.
  • the alloy ingot is covered with 304 stainless steel with a thickness of 0.5-1.0mm to slow down the rate of temperature drop after the furnace is released, and at the same time, the deformation of each pass is controlled to not exceed 20%, and the deformation is completed after the return to the furnace for 15-20min. Next rolling.
  • the average grain size of the alloy after heat treatment is 30-50 ⁇ m, and a large number of dispersed ⁇ 'phases are precipitated in the crystal, and the average diameter does not exceed 50nm.
  • the discontinuous carbides are distributed on the grain boundary, and the size of the discontinuous carbide does not exceed 5 ⁇ m.
  • the tensile yield strength of the alloy at room temperature and 850°C is higher than 900MPa and 680MPa, respectively, and it has excellent processing properties and structural stability. It has no harmful phase precipitation during heat exposure at 850°C, and after heat exposure at this temperature for 1000 hours The tensile yield strength at room temperature and 850°C are higher than 850MPa and 450MPa respectively. And after the alloy is corroded in a high temperature flue gas environment (N 2 -15% CO 2 -3.5% O 2 -0.1% SO 2 ) for 1000 hours, a dense Al 2 O 3 layer is formed on the surface, and the weight change is less than 0.2mg/cm 2 .
  • the alloy is homogenized at 1200°C for 24 hours, and then rolled at a temperature of 70°C above the ⁇ 'dissolution temperature.
  • the total deformation is 50%, and the deformation per pass is 10-20%.
  • the heating rate is controlled not to be higher than 10°C/min, and after the temperature is raised to 1050°C for 0.5 hours, the temperature is continued to be raised to the specified temperature for homogenization treatment.
  • a 304 stainless steel sheath with a thickness of 1.0mm is used on the outside of the alloy ingot to slow down the temperature drop rate after the furnace is released, and the next rolling is performed after the deformation is completed and the temperature is returned to the furnace for 15 minutes.
  • the average grain size of the alloy after heat treatment is 30-50 ⁇ m, and a large number of dispersed ⁇ 'phases are precipitated in the crystal, and the average diameter does not exceed 50nm.
  • the discontinuous carbides are distributed on the grain boundary, and the size of the discontinuous carbide does not exceed 5 ⁇ m.
  • Figure 1 is a photo of the structure of Example 1 after 1000 hours of heat exposure. It can be seen that it has good structure stability and no harmful phases are precipitated during heat exposure at 850°C. The performance test results confirmed that the alloy has excellent high temperature performance.
  • the yield strength of the alloy at room temperature and 850°C after heat treatment is 901MPa and 692MPa, respectively. After 1000 hours of heat exposure at 850°C, the yield strength was 869MPa and 481MPa, respectively.
  • Figure 2 is a cross-sectional photograph of Example 1 after being corroded by coal ash for 1000 hours. It can be seen that the surface of the alloy is covered with a complete layer of Al 2 O 3 . It effectively protects the matrix, and the weight gain is only 0.18mg/cm 2 after 1000 hours of corrosion.
  • the alloy is homogenized at 1200°C for 24 hours, and then rolled at a temperature of 70°C above the ⁇ 'dissolution temperature.
  • the total deformation is 50%, and the deformation per pass is 10-20%.
  • the heating rate is controlled not to be higher than 10°C/min, and after the temperature is raised to 1000°C for 0.5 hours, the temperature is increased to the specified temperature for homogenization treatment.
  • a 304 stainless steel sheath with a thickness of 1.0mm is used on the outside of the alloy ingot to slow down the temperature drop rate after the furnace is released, and the next rolling is performed after the deformation is completed and the temperature is returned to the furnace for 15 minutes.
  • the rolled alloy is heated in the furnace to 100°C above the ⁇ 'dissolution temperature and kept for 0.5 hours, and then air-cooled to room temperature after completion; then the alloy is heated to 300°C below the ⁇ 'dissolution temperature for 8 hours and then air-cooled, and finally heated to ⁇ ' Keep it at 200°C below the dissolution temperature for 2 hours and then air-cool it.
  • the alloy has an average grain size of 30-50 ⁇ m after heat treatment, and discontinuous carbides are distributed on the grain boundary.
  • Figure 3 is a photo of the structure of Example 2 after 1000 hours of heat exposure. It can be seen that it has good structure stability and no harmful phases are precipitated during the heat exposure at 850°C. The performance test results confirmed that the alloy has excellent high-temperature properties. After heat treatment, the yield strength of the alloy at room temperature and 850°C is 923MPa and 763MPa, respectively. After 1000 hours of heat exposure at 850°C, the yield strengths were 867MPa and 479MPa, respectively. In addition, the weight gain of the alloy is only 0.17 mg/cm 2 after being corroded by coal ash for 1000 hours.
  • Alloy smelting The alloy components include: Cr: 13%, Co: 15%, Ti: 0.5%, Al: 5.3%, W: 6.0%, Si: 0.5%, Mn: 0.2%, Nb: 2.0%, C: 0.04%, the balance is Ni; the above alloy components are smelted, and then refined by electroslag remelting process, and finally an alloy ingot is obtained;
  • High temperature rolling first heat the alloy ingot from room temperature to 1000°C at a heating rate of 10°C/min for 1.0 hour, then heat the alloy ingot at 950°C for 1.0 hour, and then homogenize at 1160°C After 72 hours of treatment, the outer alloy ingot is sheathed with 304 stainless steel with a thickness of 0.5mm, then rolled at 100°C above the ⁇ 'dissolution temperature, and the deformation per pass is 20%. After each pass is completed, it is returned to the furnace for heat preservation After 15 minutes, the next rolling is carried out, and the total deformation is not less than 50%;
  • Alloy smelting The alloy composition includes: Cr: 15%, Co: 20%, Ti: 0.3%, Al: 5%, W: 3.0%, Si: 0.1%, Mn: 0.5%, Nb: 1.5%, C: 0.05%, the balance is Ni; the above alloy components are smelted, and then refined by an electroslag remelting process, and finally an alloy ingot is obtained;
  • High temperature rolling first heat the alloy ingot from room temperature to 1050°C at a heating rate of 1°C/min for 0.5 hours, then heat the alloy ingot at 1020°C for 0.5 hours, and then homogenize at 1180°C After 50 hours of treatment, the outer alloy ingot is sheathed with 304 stainless steel with a thickness of 0.5mm, then rolled at 100°C above the ⁇ 'melting temperature, and the deformation per pass is 15%. After each pass is deformed, it is returned to the furnace for heat preservation After 20 minutes, the next rolling is carried out, and the total deformation is not less than 50%;
  • Alloy smelting The alloy components include: Cr: 17%, Co: 18%, Ti: 0.1%, Al: 5.5%, W: 7.0%, Nb: 1.7%, C: 0.07%, the balance by mass percentage It is Ni; the above alloy components are smelted, and then refined by the electroslag remelting process, and finally an alloy ingot is obtained;
  • High-temperature rolling first heat the alloy ingot from room temperature to 1020°C at a heating rate of 5°C/min for 0.8 hours, then heat the alloy ingot at 980°C for 0.7 hours, and then homogenize at 1200°C After 24 hours of treatment, the outer alloy ingot is sheathed with 304 stainless steel with a thickness of 1mm, then rolled at 70°C above the ⁇ 'melting temperature, and the deformation per pass is 10%. After each pass is deformed, it is returned to the furnace for 17 minutes. Then carry out the next rolling, the total deformation is not less than 50%;
  • the alloy composition meets the following requirements in terms of mass percentage: Cr: 20%, Co: 20%, Al: 6.0%, W: 7.0%, Si: 0.2%, Mn: 0.2%, Nb: 1.5%, C: 0.07%, remaining
  • the amount is Ni.
  • the electroslag remelting process is then used for refining, and finally an alloy ingot is obtained for processing. Ensure that the N element content of the alloy after electroslag remelting is not higher than 300ppm, and the P and S content is not higher than 0.03%.
  • the alloy is homogenized at 1200°C for 24 hours, and then rolled at a temperature of 100°C above the ⁇ 'dissolution temperature.
  • the total deformation is 50%, and the deformation per pass is 10-20%.
  • the heating rate is controlled not to be higher than 10°C/min, and after the temperature is raised to 1000°C for 0.5 hours, the temperature is increased to the specified temperature for homogenization treatment.
  • a 304 stainless steel sheath with a thickness of 1.0mm is used on the outside of the alloy ingot to slow down the temperature drop rate after the furnace is released, and the next rolling is performed after the deformation is completed and the temperature is returned to the furnace for 15 minutes.
  • Figure 4 is a photo of the heat-treated structure of Comparative Example 1. It can be seen that a large number of NiAl camera large M6C-type carbides appear in the alloy.
  • Figure 5 is a microstructure photograph of Comparative Example 1 exposed to 1000 hours of heat. It can be seen that NiAl is relatively stable in the alloy. The performance test results confirmed that the alloy has poor high temperature strength. The yield strength of the alloy at room temperature and 850°C after heat treatment is 692MPa and 352MPa, respectively. After 1000 hours of heat exposure at 850°C, the yield strength was 766MPa and 347MPa, respectively. In addition, the alloy has a weight gain of only 0.08 mg/cm 2 after being corroded by coal ash for 1000 hours.
  • the alloy composition meets the following requirements by mass percentage: Cr: 17%, Co: 15%, Ti: 1.5%, Al: 5.8%, W: 5.0%, Si: 0.2%, Mn: 0.2%, Nb: 1.5%, C : 0.07%, the balance is Ni.
  • Use vacuum induction furnace for alloy smelting and ensure that the vacuum degree is lower than 5*10 -3 before introducing high-purity argon gas.
  • the electroslag remelting process is then used for refining, and finally an alloy ingot is obtained for processing. Ensure that the N element content of the alloy after electroslag remelting is not higher than 300ppm, and the P and S content is not higher than 0.03%.
  • the alloy is homogenized at 1200°C for 24 hours, and then rolled at a temperature of 100°C above the ⁇ 'dissolution temperature.
  • the total deformation is 50%, and the deformation per pass is 10-20%.
  • the heating rate is controlled not to be higher than 10°C/min, and after the temperature is raised to 1000°C for 0.5 hours, the temperature is increased to the specified temperature for homogenization treatment.
  • a 304 stainless steel sheath with a thickness of 1.0mm is used on the outside of the alloy ingot to slow down the temperature drop rate after the furnace is released, and the next rolling is performed after the deformation is completed and the temperature is returned to the furnace for 15 minutes.
  • Figure 6 is a cross-sectional photograph of the coal ash of Comparative Example 2 after 1000 hours of corrosion.
  • the surface of the alloy is covered with a layer of complete Al 2 O 3 , and its weight loss reaches 0.15 mg/cm 2 .
  • a large amount of NiAl phase can also be observed inside the matrix.
  • the alloy composition meets the following requirements in terms of mass percentage: Cr: 21%, Co: 20%, Ti: 1.7%, Al: 4.5%, W: 7.0%, Si: 0.2%, Mn: 0.2%, Nb: 1.5%, C : 0.07%, the balance is Ni.
  • Use vacuum induction furnace for alloy smelting and ensure that the vacuum degree is lower than 5*10 -3 before introducing high-purity argon gas.
  • the electroslag remelting process is then used for refining, and finally an alloy ingot is obtained for processing. Ensure that the N element content of the alloy after electroslag remelting is not higher than 300ppm, and the P and S content is not higher than 0.03%.
  • the alloy is homogenized at 1200°C for 24 hours, and then rolled at a temperature of 100°C above the ⁇ 'dissolution temperature.
  • the total deformation is 50%, and the deformation per pass is 10-20%.
  • the heating rate is controlled not to be higher than 10°C/min, and after the temperature is raised to 1000°C for 0.5 hours, the temperature is increased to the specified temperature for homogenization treatment.
  • the outside of the alloy ingot is covered with 304 stainless steel with a thickness of 1.0mm to slow down the temperature drop rate after the furnace is released, and after the deformation is completed, the temperature is returned to the furnace for 15 minutes and then the next rolling is performed.
  • the yield strength of the alloy at room temperature and 850°C after heat treatment is 859MPa and 567MPa, respectively. After 1000 hours of heat exposure at 850°C, the yield strengths were 915 and 451 MPa, respectively. It can be seen that when the content of aluminum in the alloy is low, it can ensure that it has better high-temperature strength performance.
  • FIG. 7 is a cross-sectional photograph of the coal ash of Comparative Example 3 after 1000 hours of corrosion.
  • the alloy surface oxide layer is composed of an inner layer of Al 2 O 3 and an outer layer of Cr 2 O 3 .
  • the inner Al 2 O 3 layer is discontinuous, and the weight loss of the alloy after being corroded by coal ash for 1000 hours is as high as 1.35 mg/cm 2 .
  • a large amount of ⁇ -Cr can be seen inside the alloy matrix.

Abstract

一种高强耐蚀镍基多晶高温合金及其制备方法,按质量百分比计包括:Cr:13~17%,Co:15~20%,Ti:0.1~0.5%,Al:5.0~5.5%,W:3.0~7.0%,Si:≤0.5%,Mn:≤0.5%,Nb:1.5~2.0%,C:0.04~0.07%,余量为Ni;熔炼后均匀化处理,热轧,最后热处理。本发明的合金兼具优异的强度及抗腐蚀性能,其在室温及850℃拉伸屈服强度分别高于900MPa与680MPa。同时,具有优异的加工性能及组织稳定性。

Description

一种高强耐蚀镍基多晶高温合金及其制备方法 技术领域
本发明属高温合金领域,具体涉及一种高强耐蚀镍基多晶高温合金及其制备方法,特别适用于火电先进超超临界机组过/再热器等关键部件。
背景技术
随着我国用电需求不断增加,能源紧缺及环境污染问题日益凸显,发展高效、节能、环保发电方式的需求越发紧迫。火力发电作为我国长期以来最主要的发电技术,提高机组蒸汽参数被认为是解决上述问题最有效的途径。以往大量实践表明,关键部件材料的服役性能是制约锅炉机组蒸汽参数提高的最主要原因,而作为火电机组锅炉中服役工况最严苛的关键部件之一,过/再热器管道对材料的服役性能提出了极高的要求。过/再热器在服役期间将承受高温蠕变、热疲劳、氧化及高温烟气腐蚀等多重因素的影响。随着火电机组主蒸汽参数的大幅提高,开发出可以满足高参数机组过/再热器管使用性能需求的高温合金材料已成为火力发电行业亟待解决的课题。
过/再热器作为火电机组锅炉中服役工况最严苛的部件,在保障其具备优异强度性能的同时,也要起具备出色的抗煤灰腐蚀及水蒸汽氧化能力。目前针对先进超超临界机组过/再热器关键部件研发的高温合金均具备较高的Cr元素含量以保障其良好的抗腐蚀/氧化性能,如美国特殊金属公司开发的Inconel 740H、美国哈氏公司开发的Haynes 282、德国蒂森克虏伯公司开发的CCA 617、英国Rolls-Royce公司开发的Nimonic 263、日本日立公司开发的FENIX700、日本东芝公司开发的TOS1X、日本三菱公司开发的LTESR700等镍基变形高温合金。然而,Cr元素含量的提高不利于组织稳定性,因此往往以牺牲合金强度为代价以确保其含量在较高的范围(一般不低于20%)。另一方面,Al元素是合金中重要的析出强化促进元素,较高的Al元素添加有助于提高合金中Ni 3Al体积分数,进而使合金获得优异的强度性能。同时,Al 元素的加入也会促进Al 2O 3的形成,对合金的高温抗氧化、抗腐蚀能力带来极大改善。但在煤灰腐蚀环境中,随着Al 2O 3的形成伴随着基体中Al元素的贫瘠,并在达到一定程度时氧化层失去稳定性而无法保护基体。一般认为仅当Al元素含量高于5%时可确保Al 2O 3在腐蚀环境中保持稳定,而这也将对合金组织与性能带来新的危害。此外,Ti、Mo等强化元素的加入也会进一步对合金耐蚀性能造成影响,因此也需在保障合金强度的同时严格控制其含量。
发明内容
本发明的目的在于提供一种高强耐蚀镍基多晶高温合金及其制备方法。
为了实现以上发明目的,本发明所采用的技术方案为:
一种高强耐蚀镍基多晶高温合金,按质量百分比计包括:Cr:13~17%,Co:15~20%,Ti:0.1~0.5%,Al:5.0~5.5%,W:3.0~7.0%,Si:≤0.5%,Mn:≤0.5%,Nb:1.5~2.0%,C:0.04~0.07%,余量为Ni。
一种高强耐蚀镍基多晶高温合金的制备方法,包括以下步骤:
1)合金冶炼:合金成分按质量百分比计包括:Cr:13~17%,Co:15~20%,Ti:0.1~0.5%,Al:5.0~5.5%,W:3.0~7.0%,Si:≤0.5%,Mn:≤0.5%,Nb:1.5~2.0%,C:0.04~0.07%,余量为Ni;将上述合金成分进行冶炼,随后采用电渣重熔工艺精炼,最终获得合金铸锭;
2)高温轧制:将合金铸锭在950~1020℃保温0.5~1.0小时,然后进行均匀化处理,最后在γ’溶解温度以上50~100℃进行轧制,每道次变形量为10~20%,总变形量不低于50%;
3)热处理。
本发明进一步的改进在于,进行步骤2)前,先将合金铸锭在1000~1050℃保温0.5~1.0小时后,再进行步骤2)。
本发明进一步的改进在于,以不高于10℃/min的升温速率自室温升温至1000~1050℃。
本发明进一步的改进在于,步骤2)中,均匀化处理的温度为1160~1200℃,时间为24~72小时。
本发明进一步的改进在于,步骤2)中,轧制时合金铸锭外部采用厚度0.5~1.0mm的304不锈钢包套。
本发明进一步的改进在于,步骤2)中,在每道次变形完成后回炉保温15~20min后进行下一道次轧制。
本发明进一步的改进在于,步骤3)的具体过程为:将轧制后的合金随炉升温至γ’溶解温度以上70~150℃范围内保温0.5~1.0小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下300~350℃范围内保温3~9小时后空冷,最后加热至γ’溶解温度以下200~250℃范围内保温1~3小时后空冷。
与现有技术相比,本发明具有的有益效果:
由于氧化铝与氧化铬在高温条件下具有更高的稳定性,可以有效提高合金的抗腐蚀/抗氧化性能。然而,较高的Al元素含量可能会对合金组织带来影响,进而对其加工成型性能及强度性能造成危害。所以本发明通过限制合金中Cr元素含量至17%以下并提高Al元素含量至5.0%以上,同时避免Mo元素的加入并限制Ti元素含量上限不超过0.5%,最终获得一种具有优异高温强度、抗腐蚀/氧化性能,并且兼具良好高温组织稳定性的高温合金。
合金经过热处理后平均晶粒尺寸30-50μm,晶内大量析出弥散分布的γ’相,其平均直径不超过50nm。晶界分布不连续碳化物,其尺寸最大不超过5μm。
合金室温及850℃拉伸屈服强度分别高于900MPa与680MPa,同时具有优异的加工性能及组织稳定性,其在850℃热暴露期间无有害相析出,且在该温度下经热暴露1000小时后室温及850℃拉伸屈服强度分别高于850MPa与450MPa。并且合金经850℃高温烟气环境(N 2-15%CO 2-3.5%O 2-0.1%SO 2)腐蚀1000小时后表面形成致密Al 2O 3层,其重量变化小于0.2 mg/cm 2
进一步的,轧制过时合金铸锭外部采用厚度0.5-1.0mm的304不锈钢包套以减缓出炉后温度下降速率。
附图说明
图1为实施例1的热暴露1000小时组织照片;
图2为实施例1的煤灰腐蚀1000小时后截面照片;
图3为实施例2的热暴露1000小时组织照片;
图4为对比例1的组织照片;
图5为对比例1的热暴露1000小时组织照片;
图6为对比例2的煤灰腐蚀1000小时后截面照片;
图7为对比例3的煤灰腐蚀1000小时后截面照片。
具体实施方式
下面结合实施例对本发明作进一步详细说明。
本发明针对先进超超临界火电机组要求而开发的,可满足过热器/再热器等高温部件的使用性能需求。
本发明提供一种高强耐蚀镍基多晶高温合金,按质量百分比计,包括以下元素:Cr:13~17%,Co:15~20%,Ti:0.1~0.5%,Al:5.0~5.5%,W:3.0~7.0%,Si:≤0.5%,Mn:≤0.5%,Nb:1.5~2.0%,C:0.04~0.07%,余量为Ni。
上述高强耐蚀镍基多晶高温合金的制备方法为:熔炼后均匀化处理,热轧,最后热处理。具体如下:
1)合金冶炼:采用真空感应炉进行合金冶炼,通入高纯氩气前确保真空度低于5×10 -3。随后采用电渣重熔工艺精炼,最终获得合金铸锭以备加工;确保合金经电渣重熔后N元素含 量不高于300ppm,P、S含量不高于0.03%。
2)高温轧制:对合金升温至950-1020℃保温0.5-1.0小时,随后在1160-1200℃进行24-72小时的均匀化处理,最后将其在γ’溶解温度以上50-100℃进行高温轧制,总变形量不低于50%,每道次变形量10-20%;其中,合金均匀化升温过程中控制其升温速率不高于10℃/min,并在升至1000-1050℃保温0.5-1.0小时后继续升温至指定温度进行均匀化处理。
轧制过程中合金锭外部采用厚度0.5-1.0mm的304不锈钢包套以减缓出炉后温度下降速率,同时控制每道次变形量不超过20%,并在变形完成后回炉保温15-20min后进行下一道次轧制。
3)热处理:将轧制后的合金随炉升温至γ’溶解温度以上70-150℃范围内保温0.5-1.0小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下300-350℃范围内保温3-9小时后空冷,最后加热至γ’溶解温度以下200-250℃范围内保温1-3小时后空冷。
合金经过热处理后平均晶粒尺寸30-50μm,晶内大量析出弥散分布的γ’相,其平均直径不超过50nm。晶界分布不连续碳化物,其尺寸最大不超过5μm。
合金室温及850℃拉伸屈服强度分别高于900MPa与680MPa,同时具有优异的加工性能及组织稳定性,其在850℃热暴露期间无有害相析出,且在该温度下经热暴露1000小时后室温及850℃拉伸屈服强度分别高于850MPa与450MPa。并且合金经850℃高温烟气环境(N 2-15%CO 2-3.5%O 2-0.1%SO 2)腐蚀1000小时后表面形成致密Al 2O 3层,其重量变化小于0.2mg/cm 2
实施例1
限制合金中Cr元素含量至17%以下并提高Al元素含量至5.0%以上,同时避免Mo元素的加入并限制Ti元素含量上限不超过0.5%,其成分按质量百分比满足如下要求:Cr:17%,Co:15%,Ti:0.5%,Al:5.0%,W:7.0%,Si:0.2%,Mn:0.2%,Nb:1.5%,C:0.04%, 余量为Ni。采用真空感应炉进行合金冶炼,通入高纯氩气前确保真空度低于5*10 -3。随后采用电渣重熔工艺精炼,最终获得合金铸锭以备加工。确保合金经电渣重熔后N元素含量不高于300ppm,P、S含量不高于0.03%。
对合金在1200℃进行24小时的均匀化处理,然后将其在γ’溶解温度以上70℃进行高温轧制,总变形量为50%,每道次变形量为10-20%。合金均匀化升温过程中控制其升温速率不高于10℃/min,并在升至1050℃保温0.5小时后继续升温至指定温度进行均匀化处理。轧制过程中合金锭外部采用厚度1.0mm的304不锈钢包套以减缓出炉后温度下降速率,并在变形完成后回炉保温15min后进行下一道次轧制。
将轧制后的合金随炉升温至γ’溶解温度以上70℃保温0.5小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下300℃保温8小时后空冷,最后加热至γ’溶解温度以下200℃保温2小时后空冷。合金经过热处理后平均晶粒尺寸30-50μm,晶内大量析出弥散分布的γ’相,其平均直径不超过50nm。晶界分布不连续碳化物,其尺寸最大不超过5μm。
图1为实施例1热暴露1000小时组织照片,可见其具有良好的组织稳定性,在850℃热暴露期间无有害相析出。性能测试结果证实合金具备优异的高温性能,合金经热处理后室温及850℃屈服强度分别为901MPa与692MPa。经850℃热暴露1000小时后屈服强度分别为869MPa与481MPa。
图2为实施例1经煤灰腐蚀1000小时后截面照片,可见合金表面覆盖一层完整Al 2O 3。其有效保护基体,经1000小时腐蚀后增重仅0.18mg/cm 2
实施例2
限制合金中Cr元素含量至17%以下并提高Al元素含量至5.0%以上,同时避免Mo元素的加入并限制Ti元素含量上限不超过0.5%,其成分按质量百分比满足如下要求:Cr:16%,Co:20%,Ti:0.3%,Al:5.1%,W:7.0%,Si:0.2%,Mn:0.2%,Nb:1.8%,C:0.07%, 余量为Ni。采用真空感应炉进行合金冶炼,通入高纯氩气前确保真空度低于5*10 -3。随后采用电渣重熔工艺精炼,最终获得合金铸锭以备加工。确保合金经电渣重熔后N元素含量不高于300ppm,P、S含量不高于0.03%。
对合金在1200℃进行24小时的均匀化处理,然后将其在γ’溶解温度以上70℃进行高温轧制,总变形量50%,每道次变形量10-20%。合金均匀化升温过程中控制其升温速率不高于10℃/min,并在升至1000℃保温0.5小时后继续升温至指定温度进行均匀化处理。轧制过程中合金锭外部采用厚度1.0mm的304不锈钢包套以减缓出炉后温度下降速率,并在变形完成后回炉保温15min后进行下一道次轧制。
将轧制后的合金随炉升温至γ’溶解温度以上100℃保温0.5小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下300℃保温8小时后空冷,最后加热至γ’溶解温度以下200℃保温2小时后空冷。合金经过热处理后平均晶粒尺寸30-50μm,晶界分布不连续碳化物。
图3为实施例2热暴露1000小时组织照片,可见其具有良好的组织稳定性,在850℃热暴露期间无有害相析出。性能测试结果证实合金具备优异的高温性能,合金经热处理后室温及850℃屈服强度分别为923MPa与763MPa。经850℃热暴露1000小时后屈服强度分别为867MPa与479MPa。此外,合金经煤灰腐蚀1000小时后增重仅0.17mg/cm 2
实施例3
1)合金冶炼:合金成分按质量百分比计包括:Cr:13%,Co:15%,Ti:0.5%,Al:5.3%,W:6.0%,Si:0.5%,Mn:0.2%,Nb:2.0%,C:0.04%,余量为Ni;将上述合金成分进行冶炼,随后采用电渣重熔工艺精炼,最终获得合金铸锭;
2)高温轧制:先将合金铸锭以10℃/min的升温速率自室温升温至1000℃保温1.0小时后,再将合金铸锭在950℃保温1.0小时,然后在1160℃下进行均匀化处理72小时,最后合金铸锭外部采用厚度0.5mm的304不锈钢包套后,在γ’溶解温度以上100℃进行轧制,每道 次变形量为20%,在每道次变形完成后回炉保温15min后进行下一道次轧制,总变形量不低于50%;
3)热处理:将轧制后的合金随炉升温至γ’溶解温度以上70℃保温0.5小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下300℃保温9小时后空冷,最后加热至γ’溶解温度以下200℃保温3小时后空冷。
实施例4
1)合金冶炼:合金成分按质量百分比计包括:Cr:15%,Co:20%,Ti:0.3%,Al:5%,W:3.0%,Si:0.1%,Mn:0.5%,Nb:1.5%,C:0.05%,余量为Ni;将上述合金成分进行冶炼,随后采用电渣重熔工艺精炼,最终获得合金铸锭;
2)高温轧制:先将合金铸锭以1℃/min的升温速率自室温升温至1050℃保温0.5小时后,再将合金铸锭在1020℃保温0.5小时,然后在1180℃下进行均匀化处理50小时,最后合金铸锭外部采用厚度0.5mm的304不锈钢包套后,在γ’溶解温度以上100℃进行轧制,每道次变形量为15%,在每道次变形完成后回炉保温20min后进行下一道次轧制,总变形量不低于50%;
3)热处理:将轧制后的合金随炉升温至γ’溶解温度以上100℃保温1小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下350℃保温3小时后空冷,最后加热至γ’溶解温度以下220℃保温2小时后空冷。
实施例5
1)合金冶炼:合金成分按质量百分比计包括:Cr:17%,Co:18%,Ti:0.1%,Al:5.5%,W:7.0%,Nb:1.7%,C:0.07%,余量为Ni;将上述合金成分进行冶炼,随后采用电渣重熔工艺精炼,最终获得合金铸锭;
2)高温轧制:先将合金铸锭以5℃/min的升温速率自室温升温至1020℃保温0.8小时后, 再将合金铸锭在980℃保温0.7小时,然后在1200℃下进行均匀化处理24小时,最后合金铸锭外部采用厚度1mm的304不锈钢包套后,在γ’溶解温度以上70℃进行轧制,每道次变形量为10%,在每道次变形完成后回炉保温17min后进行下一道次轧制,总变形量不低于50%;
3)热处理:将轧制后的合金随炉升温至γ’溶解温度以上150℃保温0.8小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下320℃保温6小时后空冷,最后加热至γ’溶解温度以下250℃,保温1小时后空冷。
对比例1
合金成分按质量百分比满足如下要求:Cr:20%,Co:20%,Al:6.0%,W:7.0%,Si:0.2%,Mn:0.2%,Nb:1.5%,C:0.07%,余量为Ni。采用真空感应炉进行合金冶炼,通入高纯氩气前确保真空度低于5*10 -3。随后采用电渣重熔工艺精炼,最终获得合金铸锭以备加工。确保合金经电渣重熔后N元素含量不高于300ppm,P、S含量不高于0.03%。
对合金在1200℃进行24小时的均匀化处理,然后将其在γ’溶解温度以上100℃进行高温轧制,总变形量50%,每道次变形量10-20%。合金均匀化升温过程中控制其升温速率不高于10℃/min,并在升至1000℃保温0.5小时后继续升温至指定温度进行均匀化处理。轧制过程中合金锭外部采用厚度1.0mm的304不锈钢包套以减缓出炉后温度下降速率,并在变形完成后回炉保温15min后进行下一道次轧制。
将轧制后的合金随炉升温至γ’溶解温度以上70℃保温0.5小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下300℃保温8小时后空冷,最后加热至γ’溶解温度以下200℃保温2小时后空冷。
图4为对比例1热处理态组织形貌照片,可见合金内部出现大量NiAl相机大块M6C型碳化物。图5为对比例1热暴露1000小时组织照片,可见合金中NiAl相较稳定。性能测试结果证实合金高温强度较差,合金经热处理后室温及850℃屈服强度分别为692MPa与 352MPa。经850℃热暴露1000小时后屈服强度分别为766MPa与347MPa。此外,合金经煤灰腐蚀1000小时后增重仅0.08mg/cm 2
对比例2
合金成分按质量百分比满足如下要求:Cr:17%,Co:15%,Ti:1.5%,Al:5.8%,W:5.0%,Si:0.2%,Mn:0.2%,Nb:1.5%,C:0.07%,余量为Ni。采用真空感应炉进行合金冶炼,通入高纯氩气前确保真空度低于5*10 -3。随后采用电渣重熔工艺精炼,最终获得合金铸锭以备加工。确保合金经电渣重熔后N元素含量不高于300ppm,P、S含量不高于0.03%。
对合金在1200℃进行24小时的均匀化处理,然后将其在γ’溶解温度以上100℃进行高温轧制,总变形量50%,每道次变形量10-20%。合金均匀化升温过程中控制其升温速率不高于10℃/min,并在升至1000℃保温0.5小时后继续升温至指定温度进行均匀化处理。轧制过程中合金锭外部采用厚度1.0mm的304不锈钢包套以减缓出炉后温度下降速率,并在变形完成后回炉保温15min后进行下一道次轧制。
将轧制后的合金随炉升温至γ’溶解温度以上70℃保温0.5小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下300℃保温8小时后空冷,最后加热至γ’溶解温度以下200℃保温2小时后空冷。
图6为对比例2煤灰腐蚀1000小时后的截面照片,合金表面覆盖一层完整Al 2O 3,其失重达0.15mg/cm 2。此外,在其基体内部同样可观察到大量NiAl相存在。
对比例3
合金成分按质量百分比满足如下要求:Cr:21%,Co:20%,Ti:1.7%,Al:4.5%,W:7.0%,Si:0.2%,Mn:0.2%,Nb:1.5%,C:0.07%,余量为Ni。采用真空感应炉进行合金冶炼,通入高纯氩气前确保真空度低于5*10 -3。随后采用电渣重熔工艺精炼,最终获得合金铸锭以备加工。确保合金经电渣重熔后N元素含量不高于300ppm,P、S含量不高于0.03%。
对合金在1200℃进行24小时的均匀化处理,然后将其在γ’溶解温度以上100℃进行高温轧制,总变形量50%,每道次变形量10-20%。合金均匀化升温过程中控制其升温速率不高于10℃/min,并在升至1000℃保温0.5小时后继续升温至指定温度进行均匀化处理。轧制过程中合金锭外部采用厚度1.0mm的304不锈钢包套以减缓出炉后温度下降速率,并在变形完成后回炉保温15min后进行下一道次轧制。
将轧制后的合金随炉升温至γ’溶解温度以上150℃保温0.5小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下300℃保温8小时后空冷,最后加热至γ’溶解温度以下200℃保温2小时后空冷。合金经热处理后室温及850℃屈服强度分别为859MPa与567MPa。经850℃热暴露1000小时后屈服强度分别为915与451MPa。可见,合金中铝元素含量较低时可以保障其具备较好的高温强度性能。然而,由于Al含量较低,且Ti、Cr等易氧化元素含量较高,影响了合金表面完整Al 2O 3的形成。图7为对比例3煤灰腐蚀1000小时后的截面照片,合金表面氧化层由内层Al 2O 3及外层Cr 2O 3组成。同时,内侧Al 2O 3层不连续,合金经煤灰腐蚀1000小时后的失重高达1.35mg/cm 2。此外,在合金基体内部可见大量α-Cr存在。

Claims (8)

  1. 一种高强耐蚀镍基多晶高温合金,其特征在于,按质量百分比计包括:Cr:13~17%,Co:15~20%,Ti:0.1~0.5%,Al:5.0~5.5%,W:3.0~7.0%,Si:≤0.5%,Mn:≤0.5%,Nb:1.5~2.0%,C:0.04~0.07%,余量为Ni。
  2. 一种高强耐蚀镍基多晶高温合金的制备方法,其特征在于,包括以下步骤:
    1)合金冶炼:合金成分按质量百分比计包括:Cr:13~17%,Co:15~20%,Ti:0.1~0.5%,Al:5.0~5.5%,W:3.0~7.0%,Si:≤0.5%,Mn:≤0.5%,Nb:1.5~2.0%,C:0.04~0.07%,余量为Ni;将上述合金成分进行冶炼,随后采用电渣重熔工艺精炼,最终获得合金铸锭;
    2)高温轧制:将合金铸锭在950~1020℃保温0.5~1.0小时,然后进行均匀化处理,最后在γ’溶解温度以上50~100℃进行轧制,每道次变形量为10~20%,总变形量不低于50%;
    3)热处理。
  3. 根据权利要求2所述的一种高强耐蚀镍基多晶高温合金的制备方法,其特征在于,进行步骤2)前,先将合金铸锭在1000~1050℃保温0.5~1.0小时后,再进行步骤2)。
  4. 根据权利要求3所述的一种高强耐蚀镍基多晶高温合金的制备方法,其特征在于,以不高于10℃/min的升温速率自室温升温至1000~1050℃。
  5. 根据权利要求2所述的一种高强耐蚀镍基多晶高温合金的制备方法,其特征在于,步骤2)中,均匀化处理的温度为1160~1200℃,时间为24~72小时。
  6. 根据权利要求2所述的一种高强耐蚀镍基多晶高温合金的制备方法,其特征在于,步骤2)中,轧制时合金铸锭外部采用厚度0.5~1.0mm的304不锈钢包套。
  7. 根据权利要求2所述的一种高强耐蚀镍基多晶高温合金的制备方法,其特征在于,步骤2)中,在每道次变形完成后回炉保温15~20min后进行下一道次轧制。
  8. 根据权利要求2所述的一种高强耐蚀镍基多晶高温合金的制备方法,其特征在于,步 骤3)的具体过程为:将轧制后的合金随炉升温至γ’溶解温度以上70~150℃范围内保温0.5~1.0小时,完成后空冷至室温;随后将合金加热至γ’溶解温度以下300~350℃范围内保温3~9小时后空冷,最后加热至γ’溶解温度以下200~250℃范围内保温1~3小时后空冷。
PCT/CN2021/092494 2020-05-08 2021-05-08 一种高强耐蚀镍基多晶高温合金及其制备方法 WO2021223759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010382853.1A CN111394619A (zh) 2020-05-08 2020-05-08 一种高强耐蚀镍基多晶高温合金及其制备方法
CN202010382853.1 2020-05-08

Publications (1)

Publication Number Publication Date
WO2021223759A1 true WO2021223759A1 (zh) 2021-11-11

Family

ID=71428159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092494 WO2021223759A1 (zh) 2020-05-08 2021-05-08 一种高强耐蚀镍基多晶高温合金及其制备方法

Country Status (2)

Country Link
CN (1) CN111394619A (zh)
WO (1) WO2021223759A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134368A (zh) * 2021-11-18 2022-03-04 上海康晟航材科技股份有限公司 一种激光切割喷嘴用高温合金及其制备方法
CN115233074A (zh) * 2022-07-12 2022-10-25 北京科技大学 一种燃机动叶片用钴镍基高温合金及其制备方法
CN115846403A (zh) * 2022-09-23 2023-03-28 贵州大学 一种具有大量层错和形变纳米孪晶的长棒状相组织的钴基合金及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394619A (zh) * 2020-05-08 2020-07-10 华能国际电力股份有限公司 一种高强耐蚀镍基多晶高温合金及其制备方法
CN115233125B (zh) * 2022-07-25 2023-03-10 华能国际电力股份有限公司 一种厚壁高温合金部件的热处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540800A (zh) * 2013-10-17 2014-01-29 常熟市良益金属材料有限公司 一种铸造合金
CN107630153A (zh) * 2017-09-14 2018-01-26 上海怀德机电有限公司 一种高温模具用铸造镍基合金
CN110106398A (zh) * 2019-06-14 2019-08-09 中国华能集团有限公司 一种低铬耐蚀高强多晶高温合金及其制备方法
CN111394619A (zh) * 2020-05-08 2020-07-10 华能国际电力股份有限公司 一种高强耐蚀镍基多晶高温合金及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1039235A1 (ru) * 1982-04-05 1988-11-07 Научно-Производственное Объединение По Технологии Машиностроения "Цниитмаш" Сплав на основе никел

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540800A (zh) * 2013-10-17 2014-01-29 常熟市良益金属材料有限公司 一种铸造合金
CN107630153A (zh) * 2017-09-14 2018-01-26 上海怀德机电有限公司 一种高温模具用铸造镍基合金
CN110106398A (zh) * 2019-06-14 2019-08-09 中国华能集团有限公司 一种低铬耐蚀高强多晶高温合金及其制备方法
CN111394619A (zh) * 2020-05-08 2020-07-10 华能国际电力股份有限公司 一种高强耐蚀镍基多晶高温合金及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134368A (zh) * 2021-11-18 2022-03-04 上海康晟航材科技股份有限公司 一种激光切割喷嘴用高温合金及其制备方法
CN114134368B (zh) * 2021-11-18 2023-05-26 上海康晟航材科技股份有限公司 一种激光切割喷嘴用高温合金及其制备方法
CN115233074A (zh) * 2022-07-12 2022-10-25 北京科技大学 一种燃机动叶片用钴镍基高温合金及其制备方法
CN115846403A (zh) * 2022-09-23 2023-03-28 贵州大学 一种具有大量层错和形变纳米孪晶的长棒状相组织的钴基合金及其制备方法
CN115846403B (zh) * 2022-09-23 2023-08-15 贵州大学 一种具有大量层错和形变纳米孪晶的长棒状相组织的钴基合金及其制备方法

Also Published As

Publication number Publication date
CN111394619A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021223759A1 (zh) 一种高强耐蚀镍基多晶高温合金及其制备方法
WO2020249115A1 (zh) 一种复合强化型耐蚀高温合金及其制备工艺
WO2020249113A1 (zh) 一种低铬耐蚀高强多晶高温合金及其制备方法
WO2020249107A1 (zh) 一种析出强化型镍基高铬高温合金及其制备方法
WO2021223758A1 (zh) 一种可形成复合耐蚀层的变形高温合金及其制备工艺
WO2015123918A1 (zh) 700℃等级超超临界燃煤电站用镍基高温合金及其制备
CN110157993B (zh) 一种高强耐蚀铁镍基高温合金及其制备方法
CN111471897B (zh) 一种高强镍基高温合金制备成型工艺
EP4148157A1 (en) High-strength high-temperature alloys for thermal power units and processing technique therefor
CN111411266B (zh) 一种镍基高钨多晶高温合金的制备工艺
CN111394620B (zh) 一种高强镍基高温合金棒材的加工成型工艺
WO2023197976A1 (zh) 一种单晶高温合金及其制备方法和应用
CN113234961A (zh) 一种耐1100℃高温抗氧化燃烧室合金及其制备方法
CN108866389A (zh) 一种低成本高强抗热腐蚀镍基高温合金及其制备工艺和应用
JP2664692B2 (ja) ニッケル基合金製管状体およびその熱処理法
CN111534717A (zh) 一种高强镍钴基合金管材的制备成型工艺
GB2103243A (en) Ni-cr-w alloy having improved high temperature fatigue strength and method of producing the same
CN106399800B (zh) 一种奥氏体耐热钢及其热处理工艺
CN107937739A (zh) 一种Ni‑Fe基高温合金材料的制备方法
CN111455254A (zh) 一种低成本易加工铁镍钴基高温合金及其制备方法
CN101665886B (zh) 一种耐高温过热水蒸气腐蚀的锆合金材料
CN101008059A (zh) 一种无铼的镍基单晶高温合金材料
CN111500916B (zh) 一种镍钴基变形高温合金及其加工工艺
CN113969380B (zh) 一种核级镍基合金高性能棒材的制造方法、棒材及应用
JP2004091816A (ja) ニッケル基合金、ニッケル基合金の熱処理方法、およびニッケル基合金を用いた原子力用部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21800411

Country of ref document: EP

Kind code of ref document: A1