WO2021221350A1 - 배터리 전기흐름검사 시스템 및 방법 - Google Patents

배터리 전기흐름검사 시스템 및 방법 Download PDF

Info

Publication number
WO2021221350A1
WO2021221350A1 PCT/KR2021/004588 KR2021004588W WO2021221350A1 WO 2021221350 A1 WO2021221350 A1 WO 2021221350A1 KR 2021004588 W KR2021004588 W KR 2021004588W WO 2021221350 A1 WO2021221350 A1 WO 2021221350A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
frequency
impedance
insulation resistance
voltage
Prior art date
Application number
PCT/KR2021/004588
Other languages
English (en)
French (fr)
Inventor
홍영진
명희경
이재훈
홍성준
황인재
Original Assignee
주식회사 민테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210032828A external-priority patent/KR102657996B1/ko
Application filed by 주식회사 민테크 filed Critical 주식회사 민테크
Priority to CN202180002391.9A priority Critical patent/CN113906301A/zh
Priority to US17/435,034 priority patent/US20220326310A1/en
Priority to EP21755881.6A priority patent/EP3934005B1/en
Publication of WO2021221350A1 publication Critical patent/WO2021221350A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3646Constructional arrangements for indicating electrical conditions or variables, e.g. visual or audible indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to an electricity flow inspection technology for a waste battery (used battery), and before reusing or recycling the waste battery, confirming the state of charge of the waste battery and whether it can be charged, and checking electrical resistance through electrical resistance test It relates to a battery electricity flow inspection system and method for checking the presence or absence.
  • the electricity flow inspection of the waste battery is to check the current state of charge and whether charging is possible through the connection of the charging equipment, and to check whether there is an abnormality in the electricity flow through the electrical resistance test.
  • the problem to be solved by the present invention is to provide a battery electricity flow inspection system and method capable of performing electricity flow inspection of a waste battery.
  • An object of the present invention is to provide a battery electricity flow inspection system and method capable of performing an electricity flow diagram inspection on a waste battery of an electric vehicle at a low price.
  • the embodiment according to the present invention may be used to achieve other problems not specifically mentioned.
  • the battery electricity flow inspection system for solving the above problems operates in response to the output of the user input unit, and registers, corrects, deletes, and displays setting values, measured values, and diagnostic values for each battery inspection item.
  • Inspection item management unit for managing, a setting value storage unit for matching and storing the setting value for each inspection item registered by the inspection item management unit to the corresponding battery type, sequentially inputting the input frequency to the waste battery by varying the input frequency AC impedance measuring device that outputs an output frequency for frequency, operating the AC impedance measuring device according to the instruction of the inspection item management unit, and grasping the phase difference between the input frequency input to the waste battery and the output frequency corresponding to the input frequency
  • An impedance determination unit that finds the resonance frequency of , and calculates an AC impedance corresponding to the resonant frequency of the found high frequency, compares the AC impedance calculated by the impedance determination unit with the upper limit of electric flow, and the calculated AC impedance is lower than the upper limit of electric flow If it is high, it
  • the battery electricity flow inspection system operates a battery voltage measuring device electrically connected according to the instruction of the inspection item management unit, and a battery voltage determining unit for determining the voltage of the waste battery through the battery voltage measuring unit;
  • a voltage diagnosis unit that compares the battery voltage grasped by the battery voltage grasper with a set voltage range, and diagnoses normal if the identified battery voltage is within the set voltage range, otherwise diagnoses abnormal.
  • the insulation resistance measuring unit electrically connected according to the operation is performed, and the insulation resistance grasping unit which grasps the insulation resistance of the waste battery through the insulation resistance meter, the insulation resistance grasped by the insulation resistance determination unit is compared with the set insulation resistance lower limit, and the When the insulation resistance is lower than the set insulation resistance, it is determined that it is abnormal, and when it is high, the insulation resistance diagnosis unit diagnoses normal, and the voltage diagnosis unit, the insulation resistance diagnosis unit, and the It may further include a conformity diagnosis unit for determining whether or not the appropriate suitability.
  • the inspection item management unit has a field in which a user can input or display a battery type, the set voltage range according to the battery type, the insulation resistance lower limit, and the electric flow upper limit, and the battery voltage, insulation Item setting screen having a field for displaying resistance and AC impedance, a field for displaying the state of charge, electrical flow and insulation safety according to the diagnosis result of each diagnostic unit, and a field for displaying the final conformity diagnosed by the conformity diagnosis unit is provided to the user through the display device.
  • the battery electricity flow inspection method for solving the above problems includes the steps of setting the type of the waste battery to be inspected and the set value for each inspection item, and operating the AC impedance measuring device according to the user's request to the waste battery inputting a first input frequency to and determining a first output frequency with respect to the first input frequency; determining a first phase difference between the first input frequency and the first output frequency; 0' to find the resonance frequency, input a second input frequency to the waste battery by varying the frequency, and determine a second output frequency for the second input frequency, setting the frequency to a set frequency sequentially Variably input to the waste battery, identifying the phase difference between the input frequency input to the waste battery and the output frequency corresponding to the input frequency to find and register a resonance frequency, the highest frequency band among the registered resonance frequencies determining as the resonance frequency of the high frequency, calculating an AC impedance using the voltage and current at the resonance frequency of the high frequency, and comparing the calculated AC impedance with the upper limit of electric flow of the set value
  • An object of the present invention is to provide a system and method capable of inspecting an electric flow diagram of a battery after use of an electric vehicle at a low price using an AC power source.
  • the embodiment according to the present invention may be used to achieve other problems not specifically mentioned.
  • FIG. 1 is a block diagram of a battery electricity flow inspection system according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a battery electricity flow inspection system according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing in detail the configuration of impedance measurement in the battery electricity flow inspection system according to an embodiment of the present invention.
  • FIG 4 and 5 are diagrams for explaining an impedance measurement operation in the battery electricity flow inspection system according to an embodiment of the present invention.
  • FIG. 6 and 7 are views showing a screen for displaying inspection items and inspection results in the battery electricity flow inspection system according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a battery electricity flow test method according to an embodiment of the present invention.
  • unit used in the specification may mean a hardware component or a circuit.
  • a battery referred to below means a waste battery used in an electric vehicle, and the battery to be inspected is one of a battery cell, a battery module, or a battery pack.
  • the battery electricity flow inspection system 100 includes an inspection item management unit 110 , a set value storage unit 120 , a battery voltage determination unit 130 , and an insulation resistance determination unit ( 140 , an impedance determining unit 150 , a voltage diagnosis unit 160 , an insulation resistance diagnosis unit 170 , an electric flow diagnosis unit 180 , a suitability diagnosis unit 190 , and an AC impedance measuring unit 230 .
  • the system 100 may omit the AC impedance measuring device 230 .
  • the battery electricity flow test system uses only the AC impedance measuring unit 230 , the battery voltage determining unit 130 , the insulation resistance determining unit 140 , the voltage diagnosis unit 160 , and the insulation resistance
  • the diagnosis unit 170 may be omitted.
  • the inspection item management unit 110 manages a set value, a measured value, a diagnostic value, and a final inspection value for each battery inspection item.
  • the set value means a reference value for each test item for comparison with the measured value
  • the measured value means a value measured for each test item, for example, a measured battery voltage, a measured battery insulation resistance, and a measured battery impedance.
  • the diagnosis value is a result of comparison between a reference value and a measured value for each test item, and means normal (pass) or abnormal (fail).
  • the final test value is a value indicating the suitability of the final battery according to the diagnostic value, and means, for example, suitability or non-compliance.
  • the inspection item management unit 110 registers a set value that is a reference value of each inspection item for each battery type according to a user's request input through the user input unit 10, and performs management such as correction or deletion of the set value. do.
  • the inspection item management unit 110 generates an item setting screen to be displayed externally through the display device 20, and the user inputs and registers a new battery type and set values for the new battery type through the item setting screen, Check the setting values for each inspection item, various diagnostic values, and final inspection values for the battery to be used through the item setting screen.
  • FIGS. 6 and 7 are views showing a screen for displaying inspection items and inspection results in the battery electricity flow inspection system according to an embodiment of the present invention.
  • a field (1) in which a user inputs a battery ID (identification information) or calls a registered battery ID and displays it, and the user enters or registers a battery type A field to call and display the battery type (2), a button to call a new item setting screen to record new battery information (3), a button to delete the currently displayed battery information (4), A field (5) for the user to enter a set value for an inspection item or to call the registered setting value and display it and a button (6) to instruct the start of the inspection are displayed.
  • the button (6) instructing the start of the examination is changed to "initialization of examination" and displayed when the user clicks the corresponding button.
  • the SOC is calculated using the battery voltage or is determined using an SOC table generated using the maximum and minimum voltages of the battery.
  • the measured battery voltage is 27.72V, which is located within the set voltage range of 24.20V to 29.40V and is displayed as normal (pass), and AC impedance, that is, electricity flow It is displayed as pass because the property is 15.62 ⁇ and less than the set value of 20.00 ⁇ , and the measured insulation resistance is displayed as pass because the measured insulation resistance exceeds the set value of 1.00M ⁇ . Accordingly, the final inspection result was marked as “suitable/refillable” as all inspection items were normal.
  • the measured battery voltage is 27.71V, which is out of the set voltage range of 288.00V to 403.20V, and is displayed as abnormal (FAIL), and AC impedance, that is, Since the electrical flow property is 15.62 ⁇ and less than the set value of 416.65 ⁇ , it is displayed as pass, and the measured insulation resistance exceeds the set value of 1.00M ⁇ and is displayed as pass.
  • FAIL abnormal
  • AC impedance that is, Since the electrical flow property is 15.62 ⁇ and less than the set value of 416.65 ⁇ , it is displayed as pass, and the measured insulation resistance exceeds the set value of 1.00M ⁇ and is displayed as pass.
  • the final inspection result was marked as "unsuitable/impossible to fill" as there was an abnormality in one of all inspection items.
  • the setting value storage unit 120 stores the setting value for each inspection item registered by the inspection item management unit 110 by matching the corresponding battery type.
  • the set value storage unit 120 may store the test result of the tested waste battery.
  • the battery electricity flow inspection system 100 has a measurement value identification unit (A) for understanding the measurement value for each inspection item.
  • A measurement value identification unit
  • Each determination unit of the measurement value determination unit A operates according to the instruction of the inspection item management unit 110 , and provides the determined measurement value to the examination item management unit 110 .
  • the measurement value determination unit A includes a battery voltage determination unit 130 , an insulation resistance determination unit 140 , and an impedance determination unit 150 .
  • the battery voltage determiner 130 controls the operation of the battery voltage meter 210 to receive the measurement result measured by the battery voltage meter 210 and measure the battery voltage (eg, the voltage of the battery cell or battery module or battery pack).
  • the battery voltage measuring device 210 is a device that measures the voltage of the battery by having one measuring terminal connected to the negative electrode of the battery and the other measuring terminal being connected to the positive electrode of the battery, and is a typical battery voltage measuring device.
  • the insulation resistance determination unit 140 controls the operation of the battery voltage meter 210 to receive and determine the insulation resistance of the battery measured by the insulation resistance meter 220 .
  • the insulation resistance measuring device 220 is a device for measuring the insulation resistance of a conventional battery, for example, one terminal is connected to one of the positive or negative terminals of the battery, and the other terminal is connected to the body of the battery. It may be a device for measuring the insulation resistance of a battery.
  • the impedance determining unit 150 controls the operation of the AC impedance measuring device 230 to receive the frequency of a plurality of currents supplied from the AC impedance measuring device 230 and the frequency of the voltage measured in response to the frequency of the supplied current and , after determining the phase difference between the frequency with respect to the current and voltage of the same frequency, the AC impedance is determined using the voltage and current of the frequency with no phase difference.
  • the AC impedance represents the same value as the DC impedance with respect to the DC power source using the voltage and current of a frequency having no phase difference.
  • the battery electricity flow inspection system 100 has a measurement value diagnosis unit B for diagnosing whether a measurement value for each inspection item is normal or abnormal.
  • Each diagnosis unit of the measurement value diagnosis unit B provides a diagnosis result to the inspection item management unit 110 .
  • the measurement value diagnosis unit determination unit B includes a voltage determination unit 160 , an insulation resistance diagnosis unit 170 , and an electricity flow diagnosis unit 180 .
  • the voltage diagnosis unit 160 compares the voltage determined by the battery voltage determination unit 130 with a set voltage, that is, a set voltage range, and diagnoses whether the detected voltage is within the set voltage range.
  • the voltage diagnosis unit 160 diagnoses normal if the detected voltage is within the set voltage range, and otherwise diagnoses as abnormal.
  • the insulation resistance diagnosis unit 170 compares the insulation resistance determined by the insulation resistance determination unit 140 with the set insulation resistance, and if the insulation resistance determined is higher than the set insulation resistance, it is diagnosed as normal, otherwise it is diagnosed as abnormal.
  • the electric flow diagnosis unit 180 compares the AC impedance determined by the impedance determination unit 150 with the set impedance, and if the determined AC impedance is lower than the set insulation resistance, it is diagnosed as normal, otherwise it is diagnosed as abnormal.
  • the conformity diagnosis unit 190 receives each diagnosis result output from the voltage diagnosis unit 160, the insulation resistance diagnosis unit 170, and the electricity flow diagnosis unit 180, determines the final compatibility, and determines the compatibility result. is provided to the inspection item management unit 110 .
  • AC impedance measuring device 230 sequentially generates the frequency of the set frequency band in the order of the minimum frequency to the maximum frequency or in the order of the maximum frequency to the minimum frequency, and inputs it to the waste battery 30, and outputs the frequency corresponding to the input frequency to the impedance provided to the grasping unit 150 .
  • the battery electricity flow inspection system 100 according to an embodiment of the present invention configured as described above is manufactured as shown in FIG. 2 as an example.
  • 2 is a perspective view of a battery electricity flow inspection system according to an embodiment of the present invention.
  • the display device 20 is configured as a general monitor, and in the battery electricity flow inspection system 100 , a connection member of a socket or plug to be electrically connected to the terminals of each measuring instrument 210 , 220 , 230 . is installed
  • the AC impedance measuring device 230 is configured as a configuration, the battery electricity flow test system 100 will be integrally configured with the AC impedance measuring device 230 .
  • FIGS. 3 to 5 are views showing in detail the configuration of impedance measurement in the battery electric flow inspection system according to an embodiment of the present invention
  • Figures 4 and 5 are to explain the impedance measurement principle in the battery electric flow inspection system according to an embodiment of the present invention is a drawing for
  • Equation 1 The inductive reactance (X L ) and the capacitive reactance (X C ) can be expressed by Equations 1 and 2 below.
  • Equations 1 and 2 f is frequency, L is inductance, and C is capacitance.
  • the inductive reactance (X L ) and the capacitive reactance (X C ) are affected by frequency. That is, the inductive reactance (X(L)) and the capacitive reactance (X(C)) are factors that affect the frequency of the current and the frequency of the voltage. Affects the period and rate of change with respect to the frequency of the current. These inductive reactance (X(L)) and capacitive reactance (X(C)) cause them to move opposite in magnitude with frequency.
  • phase difference ( ⁇ ) between the frequency of the current and the frequency of the voltage can be expressed by the following Equation (3).
  • the resonance frequency when the phase difference between the frequency of the current and the frequency of the voltage becomes '0' in the electric circuit is called the resonance frequency.
  • the resonance frequency is found during electric flow measurement, and the AC impedance at the resonance frequency is used as the measured AC impedance.
  • the impedance determining unit 150 and the AC impedance measuring unit 230 are configured as shown in FIG. 3 .
  • 3 is a diagram showing in detail the configuration of impedance measurement in the battery electricity flow inspection system according to an embodiment of the present invention.
  • the impedance determining unit 150 includes a measurement control unit 151 , a phase difference determining unit 152 , and an impedance calculating unit 153
  • the AC impedance measuring unit 230 includes a frequency adjusting unit 231 .
  • an input frequency generating unit 232 and an output frequency measuring unit 233 are included.
  • the measurement control unit 151 operates the AC impedance measuring unit 230 according to the instruction of the inspection item management unit 110 , and the phase difference determining unit 152 uses the input frequency input to the waste battery 30 and the waste battery 30 . Receive the output frequency and find out the phase difference between the two frequencies.
  • the input frequency is the frequency of the current
  • the output frequency is the frequency of the voltage.
  • the impedance calculating unit 153 determines when the value of the phase difference continuously received from the phase difference determining unit 152 is '0', and the amplitude of the input frequency and the output frequency at the time when the value of the phase difference is '0', that is, , calculate the AC impedance (Z) using the current and voltage values. At this time, since the value of the phase difference of the AC impedance Z is '0', only the resistance R is calculated.
  • FIGS. 4 and 5 are diagrams for explaining an impedance measurement operation in a battery electricity flow inspection system according to an embodiment of the present invention
  • FIG. 4 is a Bode plot showing a phase difference and impedance change of frequency according to frequency change
  • FIG. 5 is a Nyquist plot for a real part and an imaginary part.
  • theta ( ⁇ ) which is the phase difference between the current and the voltage detected by the impedance calculator 153 when the frequency is changed from 0.1 by the AC impedance measuring device 230, is As in the g1 graph, it changes from a negative value to a positive value. Among these changes, at least one resonant frequency at which the phase difference becomes '0' is found, and the impedance calculator 153 searches for the highest frequency among the at least one resonant frequency, that is, the resonant frequency of the high frequency.
  • the impedance calculating unit 153 calculates the impedance at the resonant frequency of the high frequency found in FIG.
  • the section in which the value of the vertical axis, which is the imaginary part, is '0' and the value on the horizontal axis, which is the real part, only exists is the section in which the phase difference between the voltage and the current is '0', and the impedance at the point where the value of the real part is the most is the impedance calculating unit 153 ) is the AC impedance calculated from
  • FIG. 8 is a flowchart illustrating a battery electricity flow test method according to an embodiment of the present invention.
  • the user electrically connects the battery voltage meter 210 and the insulation resistance meter 220 to the system 100 for the battery electric flow test, and the battery voltage meter 210 and the insulation resistance meter 220 ) and the test terminal of the AC impedance measuring device 230 is connected to the waste battery 30 .
  • the inspection item management unit 110 displays an item setting screen, which is a setting window, through the display device 20 (S801).
  • the inspection item management unit 110 receives inspection target information, for example, a battery type or battery ID ( S802), the set value for each test item for the received test target is called from the set value storage unit 120 and displayed on the item setting screen (S803).
  • inspection target information for example, a battery type or battery ID ( S802)
  • the set value for each test item for the received test target is called from the set value storage unit 120 and displayed on the item setting screen (S803).
  • test item management unit 110 notifies each of the grasping units 130, 140, 150 of the start of the test (S804).
  • the battery voltage determining unit 130 operates the battery voltage measuring unit 210 to measure the voltage of the waste battery 30, and through the measured result, the battery voltage is determined and provided to the voltage diagnosis unit 160 ( S805).
  • the voltage diagnosis unit 160 calculates the state of charge (SOC) of the waste battery with the received battery voltage, and provides the voltage of the battery and the calculated SOC information of the battery to the inspection item management unit 110 to display each information on the item setting screen. to be displayed (S806)
  • the voltage diagnosis unit 160 diagnoses whether the received battery voltage is within a set voltage range and whether the SOC of the battery is appropriate, and provides the diagnosis result to the inspection item management unit 110 for diagnosis related to the battery voltage on the item setting screen. The result is displayed (S807).
  • the insulation resistance determining unit 140 operates the insulation resistance measuring unit 220 to measure the insulation resistance of the waste battery 30, and the insulation resistance of the battery is determined through the measurement result and provided to the insulation resistance diagnosis unit 170 ( S808).
  • the insulation resistance diagnosis unit 170 diagnoses whether the received insulation resistance exceeds the set insulation resistance lower limit, and provides the diagnosis result to the inspection item management unit 110 so that the insulation resistance, that is, the insulation stability-related diagnostic result is displayed on the item setting screen to be (S809).
  • the impedance determining unit 150 operates the AC impedance measuring device 230 (S810), and the AC impedance measuring device 230 varies the frequency so that the input frequency increases from 0.1 Hz to the set frequency (S811), and the battery 30 ) and an output frequency corresponding thereto are provided to the impedance determining unit 150 to determine a phase difference between the input frequency and the output frequency in the impedance determining unit 150 (S812).
  • the impedance determination unit 150 finds the resonance frequency of the high frequency with a phase difference of '0' (S813), and uses the voltage value and current value of the resonance frequency of the high frequency found to determine the AC impedance, and diagnose the AC impedance as an electrical flow It is provided to the unit 180 and the inspection item management unit 110 (S814). Accordingly, the electricity flow diagnosis unit 180 compares the identified AC impedance with the set electric flow upper limit, and if the AC impedance is lower than the electric flow upper limit, diagnoses it as normal, and if it is high, it diagnoses it as abnormal, and provides the diagnosis result to the inspection item management unit 110 to be displayed on the item setting screen (S815).
  • the diagnosis results from the respective diagnosis units 160 , 170 , and 180 are received by the suitability determining unit 190 , and the suitability determining unit 190 synthesizes each diagnosis result to diagnose conformity or nonconformity, and transmits the diagnosis result to the inspection item management unit. It is provided to 110 to be displayed on the item setting screen (S816).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Human Computer Interaction (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

본 발명은 사용자 입력부의 출력에 대응하여 동작하고, 배터리 검사항목별 설정값과 측정값, 진단값에 대한 등록, 수정, 삭제, 표시를 관리하고, 각 검사항목별 설정값을 해당 배터리 타입에 매칭하여 저장하며, 상기 폐배터리에 순차적으로 가변하여 입력하는 입력주파수와 각 입력주파수에 대한 출력주파수 간의 위상차를 파악하여 고주파의 공진주파수를 찾고, 찾은 고주파의 공진주파수에 대응하는 교류 임피던스를 산출한 후 산출한 교류 임피던스를 전기흐름상한과 비교하여 상기 산출한 교류 임피던스가 전기흐름상한보다 낮으면 정상이라고 진단하고, 높으면 비정상이라고 판단한다.

Description

배터리 전기흐름검사 시스템 및 방법
본 발명은 폐배터리(사용후 배터리)에 대한 전기흐름 검사 기술에 관한 것으로, 폐배터리를 재사용 또는 재활용하기 이전에 폐배터리의 충전 상태 및 충전 가능 여부를 확인하고, 전기적 저항 검사를 통한 전기 흐름 이상 유무를 확인하는 배터리 전기흐름검사 시스템 및 방법에 관한 것이다.
「폐기물관리법」 제13조의2 3항, 동법 시행규칙 제13조2 3항, 동법 시행규칙 별표5의4 3호에 의거한 「폐기물을 재활용하는 자의 구체적인 준수사항」에 따르면, "전기자동차의 폐배터리를 재활용하려는 자는 재활용하기 이전에 전기자동차 폐배터리의 외관검사와 전기흐름검사를 수행하여야 한다."라고 고시되어 있다.
고시된 내용에서 페배터리의 전기흐름검사는 충전장비 연결을 통한 현재의 충전 상태 및 충전 가능 여부 확인 및 그리고 전기적 저항 검사를 통한 전기흐름 이상 유무 확인을 하는 것이다.
그런데 현재까지 충전장비 연결을 통한 폐배터리의 전기흐름검사를 하는 시스템 또는 장치가 제공되고 있지 않다.
본 발명이 해결하고자 하는 과제는 폐배터리의 전기흐름검사를 할 수 있는배터리 전기흐름검사 시스템 및 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 과제는 저렴한 가격으로 전기자동차의 폐배터리에 대한 전기흐름도 검사를 할 수 있는 배터리 전기흐름검사 시스템 및 방법을 제공하는 것이다.
상기 과제 이외에도 구체적으로 언급되지 않은 다른 과제를 달성하는 데 본 발명에 따른 실시 예가 사용될 수 있다.
상기 과제를 해결하기 위한 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템은 사용자 입력부의 출력에 대응하여 동작하고, 배터리 검사항목별 설정값과 측정값, 진단값에 대한 등록, 수정, 삭제, 표시를 관리하는 검사항목 관리부, 상기 검사항목 관리부에 의해 등록된 각 검사항목별 설정값을 해당 배터리 타입에 매칭하여 저장하는 설정값 저장부, 상기 폐배터리에 입력주파수를 가변하여 순차적으로 입력하고 각 입력주파수에 대한 출력주파수를 출력하는 교류임피던스 측정기, 상기 검사항목 관리부의 지시에 따라 상기 교류피던스 측정기를 동작시키고 폐배터리에 입력된 입력주파수와 해당 입력주파수에 대응하는 출력주파수간의 위상차를 파악하여 고주파의 공진주파수를 찾고, 찾은 고주파의 공진주파수에 대응하는 교류 임피던스를 산출하는 임피던스 파악부, 상기 임피던스 파악부에서 산출한 교류 임피던스를 전기흐름상한과 비교하여 상기 산출한 교류 임피던스가 전기흐름상한보다 낮으면 정상이라고 진단하고, 높으면 비정상이라고 판단하는 임피던스 진단부를 포함한다.
본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템은 상기 검사항목 관리부의 지시에 따라 전기적으로 연결된 배터리전압 측정기를 동작시키고, 상기 배터리전압 측정기를 통해 상기 폐배터리의 전압을 파악하는 배터리전압 파악부, 상기 배터리전압 파악부에서 파악한 배터리 전압을 설정 전압범위와 비교하고 상기 파악한 배터리 전압이 상기 설정 전압범위 내에 위치하하면 정상이라고 진단하고 그렇지 않으면 비정상이라고 진단하는 전압 진단부, 상기 검사항목 관리부의 지시에 따라 전기적으로 연결된 절연저항 측정기를 동작시키고, 상기 절연저항 측정기를 통해 상기 폐배터리의 절연저항을 파악하는 절연저항 파악부, 상기 절연저항 파악부에서 파악한 절연저항을 설정 절연저항하한과 비교하고 상기 파악한 절연저항이 상기 설정 절연저항보다 낮으면 비정상이라고 판단하고 높으면 정상이라고 진단하는 절연저항 진단부, 그리고 상기 전압 진단부, 상기 절연저항 진단부 및 상기 전기흐름 진단부서 출력하는 각 진단 결과를 수신하여 최종적인 적합성 여부를 판단하는 적합성 진단부를 더 포함할 수 있다.
상기 검사항목 관리부는 배터리 타입, 상기 배터리 타입에 따른 상기 설정 전압범위, 상기 절연저항하한, 상기 전기흐름상한을 사용자가 입력하거나 표시할 수 있는 필드를 가지고, 상기 각 파악부에서 파악한 배터리 전압, 절연저항 및 교류임피던스를 표시하는 필드, 각 진단부의 진단결과에 따른 충전상태, 전기흐름성 및 절연안전성을 표시하는 필드 및 상기 적합성 진단부에서 진단한 최종적인 적합성 여부를 표시하는 필드를 가지는 항목설정화면을 표시장치를 통해 사용자에게 제공한다.
상기 과제를 해결하기 위한 본 발명의 실시 예에 따른 배터리 전기흐름검사 방법은 검사할 폐배터리의 타입과 검사항목별 설정값을 설정하는 단계, 사용자의 요청에 따라 교류임피던스 측정기를 동작시켜 상기 폐배터리에 제1 입력주파수를 입력하고 상기 제1 입력주파수에 대한 제1 출력주파수를 파악하는 단계, 상기 제1 입력주파수와 상기 제1 출력주파수간의 제1 위상차를 파악하는 단계, 상기 제1 위상차가 '0'인지를 파악하여 공진주파수를 찾는 단계, 주파수를 가변하여 제2 입력주파수를 상기 폐배터리에 입력하고 상기 제2 입력주파수에 대한 제2 출력주파수를 파악하는 단계, 주파수를 설정 주파수까지 순차적으로 가변하여 상기 폐배터리에 입력하고, 상기 폐배터리에 입력된 입력주파수와 해당 입력주파수에 대응하는 출력주파수간의 위상차를 파악하여 공진주파수를 찾아 등록하는 단계, 상기 등록된 공진주파수 중 가장 대역이 높은 주파수를 고주파의 공진주파수로 판단하는 단계, 상기 고주파의 공진주파수에서의 전압과 전류를 이용하여 교류 임피던스를 산출하는 단계, 그리고 산출한 교류 임피던스를 상기 설정값의 전기흐름상한과 비교하여 상기 산출한 교류 임피던스가 전기흐름상한보다 낮으면 정상이라고 진단하고, 높으면 비정상이라고 판단하는 단계를 포함한다.
본 발명의 실시 예에 따르면, 환경부 고시령에 의거하여 전기자동차의 사용후 배터리에 대한 전기흐름도 검사를 할 수 있게 한다.
본 발명이 해결하고자 하는 과제는 교류 전원을 이용하여 저렴한 가격으로 전기자동차의 사용후 배터리에 대한 전기흐름도 검사를 할 수 있는 시스템 및 방법을 제공하는 것이다.
상기 과제 이외에도 구체적으로 언급되지 않은 다른 과제를 달성하는 데 본 발명에 따른 실시 예가 사용될 수 있다.
도 1은 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템의 블럭 구성도이다.
도 2는 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템의 사시도이다.
도 3은 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템에서 임피던스 측정 구성을 상세히 보인 도면이다.
도 4 및 도 5는 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템에서 임피던스측정 동작을 설명하기 위한 도면이다.
도 6 및 도 7은 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템에서 검사항목 및 검사결과를 표시하는 화면을 보인 도면이다.
도 8은 본 발명의 실시 예에 따른 배터리 전기흐름검사 방법을 보인 순서도이다.
아래에서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자들(이하, 통상의 기술자들)이 본 발명을 용이하게 실시할 수 있도록, 첨부되는 도면들을 참조하여 몇몇 실시 예가 명확하고 상세하게 설명될 것이다. 또한, 명세서에서 사용되는 "부" 이라는 용어는 하드웨어 구성요소 또는 회로를 의미할 수 있다.
이하에서는 첨부한 도면을 참조로 하여 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템 및 방법을 설명한다.
설명에 앞서, 이하에서 지칭하는 배터리는 전기자동차에서 사용되었던 폐배터리를 의미하며, 검사대상 배터리는 배터리셀 또는 배터리 모듈 또는 배터리 팩 중 하나이다.
도 1은 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템의 블럭 구성도이다. 도 1을 참고하면, 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템(100)은 검사항목 관리부(110), 설정값 저장부(120), 배터리전압 파악부(130), 절연저항 파악부(140), 임피던스 파악부(150), 전압 진단부(160), 절연저항 진단부(170), 전기흐름 진단부(180), 적합성 진단부(190) 및 교류임피던스 측정기(230)를 포함한다.
여기서 교류임피던스 측정기(230)를 본 발명의 시스템(100)에 착탈 가능한 형태로 제작하는 경우이면, 본 발명의 실시 예에 따른 시스템(100)은 교류임피던스 측정기(230)를 생략할 수 있다.
한편, 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템은 교류임피던스 측정기(230)만을 이용하는 경우이면 배터리전압 파악부(130), 절연저항 파악부(140), 전압 진단부(160) 및 절연저항 진단부(170)를 생략할 수 있다.
검사항목 관리부(110)는 배터리 검사항목별 설정값과 측정값, 진단값 및 최종 검사값을 관리한다. 설정값은 측정값과의 비교를 위한 검사항목별 기준값을 의미하고, 측정값은 검사항목별로 측정된 값, 예컨대, 측정된 배터리 전압, 측정된 배터리의 절연저항, 측정된 배터리의 임피던스를 의미한다. 그리고 진단값은 검사항목별로 기준값과 측정값의 비교 결과값으로 정상(pass) 또는 비정상(fail)을 의미한다. 또한 최종 검사값은 진단값에 따른 최종적인 배터리의 적합성을 나타내는 값으로, 예컨대, 적합 또는 부적합을 의미한다.
그리고, 검사항목 관리부(110)는 사용자 입력부(10)를 통해 입력된 사용자의 요청에 따라 배터리의 타입별로 각 검사항목의 기준값인 설정값을 등록하고, 설정값의 수정 또는 삭제 등의 관리를 수행한다. 검사항목 관리부(110)는 표시장치(20)를 통해 외부로 표시하는 항목설정화면을 생성하는데, 사용자는 항목설정화면을 통해 새로운 배터리 타입과 새로운 배터리 타입에 대한 설정값을 입력하고 등록하며, 검사할 배터리에 대한 검사항목별 설정값과 각종 진단값 및 최종 검사값을 항목설정화면을 통해 확인한다.
여기서, 도 6 및 도 7을 참조로 하여 항목설정화면을 설명한다. 도 6 및 도 7은 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템에서 검사항목 및 검사결과를 표시하는 화면을 보인 도면이다.
도 6 및 도 7을 참고하면, 항목설정화면의 좌측에는 사용자가 배터리 ID(식별정보)를 입력하거나 등록된 배터리 ID를 호출하여 표시하는 필드(①)가 있고, 사용자가 배터리 타입을 입력하거나 등록된 배터리 타입을 호출하여 표시하는 필드(②), 새로운 항목설정화면을 호출하여 새로운 배터리의 정보를 기록할 수 있게 하는 버튼(③), 현재 표시된 배터리의 정보를 삭제할 수 있게 하는 버튼(④), 사용자가 검사항목에 대한 설정값을 입력하거나 등록된 해당 설정값을 호출하여 표시하는 필드(⑤) 및 검사시작을 지시하는 버튼(⑥)이 표시되어 있다. 검사시작을 지시하는 버튼(⑥)은 사용자가 해당 버튼 클릭시에 "검사초기화"로 변경되어 표시된다.
그리고 필드(⑤)에는 "전압범위"라고 표시되어 있는, 해당 배터리 타입에서의 배터리 전압 상한 및 하한을 표시하는 필드, "용량"이라고 표시되어 있는, 기준 전류값을 표시한 필드, "전기흐름상한"이라고 표시되어 있는, 교류임피던스의 상한을 표시하는 필드, "절연저항하한"이라고 표시되어 있는, 절연저항의 하한을 표시한 필드가 있다.
또한, 항목설정화면의 우측에는 검사항목에 대한 측정값 및 측정결과를 표시하는 필드가 있다.
예컨대, 도 6과 도 7을 참고하면 항목설정화면의 우측에는 검사 진행 정도를 표시하는 필드(⑦)가 있고,, "충전상태"라고 표시되어 있는, 측정한 배터리 전압과 SOC(잔존용량)를 표시하는 필드(⑧), "전기흐름성"이라고 표시되어 있는, 측정한 교류 임피던스를 표시하는 필드(⑨), "절연안정성"이라고 표시되어 있는, 측정한 절연저항을 표시하는 필드(⑩), 각 측정값에 따른 진단결과를 표시하는 필드(⑪) 및 최종적으로 전기흐름검사 결과를 표시하는 필드(⑫)가 있다.
상기 SOC는 배터리 전압을 이용하여 산출하거나, 배터리의 최대전압과 최소전압을 이용하여 생성한 SOC 테이블을 이용하여 파악된다.
도 6에서, 항목설정화면의 우측에 측정 결과를 보면, 측정한 배터리의 전압이 27.72V로서 설정 전압범위인 24.20V~29.40V 내에 위치하여 정상(pass)으로 표시되고, 교류 임피던스 즉, 전기흐름성이 15.62Ω으로 설정값인 20.00Ω 이하이므로 정상(pass)로 표시되며, 측정한 절연저항이 설정값 1.00MΩ을 초과하여 정상(pass)으로 표시되었다. 그에 따라 최종 검사결과는 모든 검사항목이 정상임에 따라 "적합/충전가능"으로 표시되었다.
반면에, 도 7에서, 항목설정화면의 우측에 측정 결과를 보면, 측정한 배터리의 전압이 27.71V로서 설정 전압범위인 288.00V~403.20V를 벗어나서 비정상(FAIL)으로 표시되고, 교류 임피던스 즉, 전기흐름성이 15.62Ω으로 설정값인 416.65Ω 이하이므로 정상(pass)로 표시되며, 측정한 절연저항이 설정값 1.00MΩ을 초과하여 정상(pass)으로 표시되었다. 그에 따라 최종 검사결과는 모든 검사항목 중 하나의 비정상이 존재함에 따라 "부적합/충전불가능"으로 표시되었다.
다시 돌아와서, 설정값 저장부(120)는 검사항목 관리부(110)에 의해 등록되는 각 검사항목별 설정값을 해당 배터리 타입에 매칭하여 저장한다. 물론 설정값 저장부(120)는 검사를 마친 폐배터리의 검사 결과를 저장할 수 있다.
본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템(100)은 검사항목별 측정값을 파악하는 측정값 파악부(A)를 가진다. 측정값 파악부(A)의 각 파악부는 검사항목 관리부(110)의 지시에 따라 동작하고, 파악한 측정값을 검사항목 관리부(110)에 제공한다. 측정값 파악부(A)는 배터리전압 파악부(130), 절연저항 파악부(140) 및 임피던스 파악부(150)를 포함한다.
배터리전압 파악부(130)는 배터리전압 측정기(210)의 동작을 제어하여 배터리전압 측정기(210)에서 측정한 측정결과를 수신하고 배터리전압(예; 배터리셀 또는 배터리모듈 또는 배터리팩의 전압)을 파악한다. 여기서, 배터리전압 측정기(210)는 하나의 측정 단자가 배터리의 음극에 연결되고, 다른 하나의 측정 단자가 배터리의 양극에 연결되어 배터리의 전압을 측정하는 장치로서, 통상적인 배터리전압 측정장치이다.
절연저항 파악부(140)는 배터리전압 측정기(210)의 동작을 제어하여 절연저항 측정기(220)에서 측정한 배터리의 절연저항을 수신하고 파악한다. 여기서, 절연저항 측정기(220)는 통상적인 배터리의 절연저항을 측정하는 장치로서, 예컨대, 하나의 단자가 배터리의 양극 또는 음극 단자 중 하나에 연결되고, 다른 하나의 단자가 배터리의 몸체에 연결되어 배터리의 절연저항을 측정하는 장치일 수 있다.
임피던스 파악부(150)는 교류임피던스 측정기(230)의 동작을 제어하여 교류임피던스 측정기(230)에서 공급한 복수의 전류의 주파수와, 공급한 전류의 주파수에 대응하여 측정된 전압의 주파수를 수신하고, 동일 주파수의 전류와 전압에 대한 주파수간의 위상차를 파악한 후 위상차가 없는 주파수의 전압과 전류를 이용하여 교류 임피던스를 파악한다. 여기서, 위상차가 없는 주파수의 전압과 전류를 이용하여 교류 임피던스는 직류 전원에 대한 직류 임피던스와 동일한 값을 나타낸다.
본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템(100)은 검사항목별 측정값이 정상인지 또는 비정상인지를 진단하는 측정값 진단부(B)를 가진다. 측정값 진단부(B)의 각 진단부는 진단 결과를 검사항목 관리부(110)에 제공한다. 측정값 진단부 파악부(B)는 전압 파악부(160), 절연저항 진단부(170) 및 전기흐름 진단부(180)를 포함한다.
전압 진단부(160)는 배터리전압 파악부(130)에서 파악한 전압을 설정 전압 즉, 설정 전압범위와 비교하여 파악한 전압이 설정 전압범위 내에 위치하는지를 진단한다. 전압 진단부(160)는 파악한 전압이 설정 전압범위 내에 위치하면 정상이라고 진단하고 그렇지 않으면 비정상이라고 진단한다.
절연저항 진단부(170)는 절연저항 파악부(140)에서 파악한 절연저항을 설정 절연저항과 비교하여 파악한 절연저항이 설정 절연저항보다 높으면 정상이라고 진단하고 그렇지 않으면 비정상이라고 진단한다.
전기흐름 진단부(180)는 임피던스 파악부(150)에서 파악한 교류 임피던스를 설정 임피던스와 비교하여 파악한 교류 임피던스가 설정 절연저항보다 낮으면 정상이라고 진단하고 그렇지 않으면 비정상이라고 진단한다.
적합성 진단부(190)는 전압 진단부(160), 절연저항 진단부(170) 및 전기흐름 진단부(180)에서 출력하는 각 진단 결과를 수신하여 최종적인 적합성 여부를 판단하고 적합셩 여부의 결과를 검사항목 관리부(110)에 제공한다.
교류임피던스 측정기(230)는 설정 주파수대역의 주파수를 최소 주파수에서 최대 주파수 순서 또는 최대 주파수에서 최소 주파수의 순서로 순차적으로 발생시켜 폐배터리(30)에 입력하고, 입력 주파수에 대응하는 출력 주파수를 임피던스 파악부(150)에 제공한다.
이상과 같이 구성된 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템(100)은 일 예로 도 2와 같이 제작된다. 도 2는 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템의 사시도이다. 도 2를 참고하면, 표시장치(20)는 일반적인 모니터로 구성되고, 배터리 전기흐름검사 시스템(100)에는 각 측정기(210, 220, 230)의 단자와 전기적으로 연결되기 위한 소켓 또는 플러그의 연결부재가 설치되어 있다. 물론 교류임피던스 측정기(230)를 구성으로 하는 경우이면, 배터리 전기흐름검사 시스템(100)는 교류임피던스 측정기(230)와 일체화로 구성될 것이다.
이하에서는 도 3 내지 도 5를 참조하여 본 발명의 실시 예에 따른 전기흐름검사 시스템에서 임피던스 파악부(150) 및 교류임피던스 측정기(230)를 설명한다. 도 3은 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템에서 임피던스 측정 구성을 상세히 보인 도면이고, 도 4 및 도 5는 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템에서 임피던스측정 원리를 설명하기 위한 도면이다.
전기흐름검사는 교류 전류의 흐름을 검사하는 것으로, 교류 전류의 흐름은 교류 임피던스에 의해 영향을 받는다. 그런데 배터리는 직류 전기를 이용하는 전기화학장치이며, 이에 대한 전기흐름의 적합도를 보는 것이므로, 직류 전기에 대한 저항은 교류 전기를 통한 측정시에 전류와 전압의 위상차가 없을 때가 가장 유사한 직류 저항값을 나타낸다.
이를 구체적으로 설명하면, 일반적으로 알다시피 직류 전기에서의 임피던스(Z)는 "Z=저항(R)"로 산출되고, 교류 전기에서의 임피던스(Z)는 "Z=R(저항) + jX(임피던스)"로 산출된다. 즉, 교류 전기에서는 직류 전기에서와 달리, 교류 전류의 흐름이 임피던스(X)에 의해 영향을 받으며, 리액턴스(X)는 유도성 리액턴스(X L)과 용량성 리액턴스(X C)가 있다.
유도성 리액턴스(X L)과 용량성 리액턴스(X C)는 다음의 수학식 1 및 2와 같이 나타낼 수 있다.
Figure PCTKR2021004588-appb-img-000001
Figure PCTKR2021004588-appb-img-000002
상기 수학식 1 및 2에서 f는 주파수이고, L은 인덕턴스이고, C는 커패시턴스이다.
수학식 1 및 2를 보면, 유도성 리액턴스(X L)과 용량성 리액턴스(X C)는 주파수의 영향을 받는다는 것을 알 수 있다. 즉, 유도성 리액턴스(X(L))과 용량성 리액턴스(X(C))는 전류의 주파수와 전압의 주파수에 영향을 미치는 요소로서, 전압과 전류 주파수 간의 위상차이를 만들고, 전압의 주파수와 전류의 주파수에 대해 주기와 변화율에 영향을 준다. 이러한 유도성 리액턴스(X(L))과 용량성 리액턴스(X(C))는 주파수에 따라 크기가 서로 반대로 움직이게 한다.
전류의 주파수와 전압의 주파수 간 위상차(φ)는 다음의 수학식 3으로 나타낼 수 있다.
Figure PCTKR2021004588-appb-img-000003
따라서, 유도성 리액턴스(X(L))과 용량성 리액턴스(X(C))의 임피던스가 같아지는 시점에서는 전류의 주파수와 전압 주파수간의 위상차가 '0'되며, 그에 따라 교류 임피던스가 직류 임피던스와 같아지게 된다. 전기회로상에서 전류의 주파수와 전압 주파수간의 위상차가 '0'될 때의 주파수를 공진 주파수라 한다.
따라서 본 발명은 전기흐름측정시에 공진 주파수를이 찾고, 공진 주파수에서의 교류 임피던스를 측정 교류 임피던스로 한다.
이러한 본 발명의 전기흐름 측정 원리에 따라서 임피던스 파악부(150)와 교류 임피던스 측정기(230)는 도 3과 같이 구성된다. 도 3은 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템에서 임피던스 측정 구성을 상세히 보인 도면이다.
도 3을 참고하면, 임피던스 파악부(150)는 측정 제어부(151), 위상차 파악부(152) 및 임피던스 산출부(153)를 포함하여 구성하고, 교류 임피던스 측정기(230)는 주파수 조절부(231), 입력주파수 생성부(232) 및 출력주파수 측정부(233)를 포함하여 구성한다.
측정 제어부(151)는 검사항목 관리부(110)의 지시에 따라 교류임피던스 측정기(230)를 동작시키고, 위상차 파악부(152)는 폐배터리(30)에 입력된 입력주파수와 폐배터리(30)에서 출력된 출력주파수를 수신하여 두 주파수간의 위상차를 파악한다. 여기서, 입력주파수는 전류의 주파수이고, 출력주파수는 전압의 주파수이다.
임피던스 산출부(153)는 위상차 파악부(152)로부터 계속해서 수신되는 위상차의 값이 '0'인 시점을 파악하고, 위상차의 값이 '0'인 시점에서의 입력주파수와 출력주파수의 진폭 즉, 전류값과 전압값을 이용하여 교류 임피던스(Z)를 산출한다. 이때 교류 임피던스(Z)는 위상차의 값이 '0'이므로 저항(R)만이 산출된다.
이러한 위상차 파악부(152)와 임피던스 산출부(153)의 동작을 도 4와 도 5를 참조로 설명한다. 도 4 및 도 5는 본 발명의 실시 예에 따른 배터리 전기흐름검사 시스템에서 임피던스측정 동작을 설명하기 위한 도면으로, 도 4는 주파수 변화에 따른 주파수의 위상차와 임피던스 변화를 보인 보드선도(bode plot)이고, 도 5는 실수부와 허수부에 대한 나이키스트 선도(Nyquist plot)이다.
도 4의 (a)에 도시된 보드선도를 참고하면, 교류임피던스 측정기(230)에 의해 주파수를 0.1에서부터 변화시켰을 때 임피던스 산출부(153)에서 파악되는 전류와 전압간의 위상차인 세타(φ)는 g1 그래프와 같이 음의 값에서 양의 값으로 변화한다. 이러한 변화 중 위상차가 '0'이 되는 적어도 하나의 공진 주파수가 발견되는데, 임피던스 산출부(153)는 적어도 하나의 공진 주파수 중 가장 높은 주파수 즉, 고주파의 공진 주파수를 찾는다.
그리고 임피던스 산출부(153)는 도 4의 (b)에 도시된 바와 같이 도 4의 (a)에서 찾은 고주파의 공진주파수에서의 임피던스를 산출하여 전기흐름값인 교류 임피던스로 한다.
도 4의 내용을 도 5의 나이키스트 선도를 통해 설명하면, 01.에서부터 주파수를 변화시켰을 때 폐배터리(30)의 교류 임피던스는 허수부인 세로축의 값이 '0'이고 실수부인 가로축의 값만 존재하는 구간이 표시되고, 허수부와 실수부의 값이 동시에 나타나는 구간이 표시된다. 이때 허수부인 세로축의 값이 '0'이고 실수부인 가로축의 값만 존재하는 구간은 전압과 전류간의 위상차가 '0'인 구간이고, 이 구간 중에서 실수부의 값이 가장 지점의 임피던스가 임피던스 산출부(153)에서 산출하는 교류 임피던스이다.
이하에서는 본 발명의 실시 예에 따른 배터리 전기흐름검사 방법을 설명한다. 도 8은 본 발명의 실시 예에 따른 배터리 전기흐름검사 방법을 보인 순서도이다.
도 8을 참고하면, 사용자는 배터리 전기흐름검사를 위해서 배터리전압 측정기(210)와 절연저항 측정기(220)를 시스템(100)에 전기적으로 연결하고, 배터리전압 측정기(210)와 절연저항 측정기(220) 및 교류임피던스 측정기(230)의 검사용 단자를 폐배터리(30)에 연결시킨다.
이런 상태에서, 사용자가 사용자 입력부(10)를 통해 배터리 흐름검사를 요청하면, 검사항목 관리부(110)는 설정창인 항목설정화면을 표시장치(20)를 통해 표시한다(S801).
이에 사용자가 사용자 입력부(10)를 통해 항목설정화면에서 검사할 배터리에 대한 검사대상 정보를 선택 또는 입력하면, 검사항목 관리부(110)는 검사대상 정보, 예컨대 배터리의 타입 또는 배터리 ID를 수신하고(S802), 수신한 검사대상에 대한 각 검사항목별 설정값를 설정값 저장부(120)에서 호출하여 항목설정화면에 표시한다(S803).
그리고 사용자가 항목설정화면에서 검사시작 버튼(⑥)을 클릭하면, 검사항목 관리부(110)는 각 파악부(130, 140, 150)에게 검사 시작을 알린다(S804).
이에 배터리전압 파악부(130)는 배터리전압 측정기(210)를 동작시켜 폐배터리(30)의 전압을 측정하게 하고 측정된 결과를 통해 배터리의 전압을 파악하여 전압 진단부(160)에 제공한다(S805).
전압 진단부(160)는 수신한 배터리 전압으로 폐배터리의 SOC(State Of Charge)을 산출하고 배터리의 전압과 산출한 배터리의 SOC 정보를 검사항목 관리부(110)에 제공하여 항목설정화면에 각 정보가 표시되게 한다(S806)
그리고 전압 진단부(160)는 수신한 배터리 전압인 설정 전압범위 내에 위치하는지 및 배터리의 SOC가 적정한지를 진단하고, 진단 결과를 검사항목 관리부(110)에 제공하여 항목설정화면에 배터리 전압에 관련된 진단 결과가 표시되게 한다(S807).
절연저항 파악부(140)는 절연저항 측정기(220)를 동작시켜 폐배터리(30)의 절연저항을 측정하게 측정 결과를 통해 배터리의 절연저항을 파악하여 절연저항 진단부(170)에 제공한다(S808). 절연저항 진단부(170)는 수신한 절연저항이 설정된 절연저항하한을 초과하였는지를 진단하고 진단 결과를 검사항목 관리부(110)에 제공하여 항목설정화면에 절연저항 즉, 절연안정성에 관련된 진단 결과가 표시되게 한다(S809).
임피던스 파악부(150)는 교류임피던스 측정기(230)를 동작시키고(S810), 이에 교류임피던스 측정기(230)는 입력주파수가 0.1Hz에서부터 설정된 주파수까지 증가하도록 주파수를 가변시키며(S811), 배터리(30)에 입력된 입력 주파수와 이에 대응하는 출력 주파수를 임피던스 파악부(150)에 제공하여 임피던스 파악부(150)에서 입력 주파수와 출력 주파수간의 위상차를 파악한다(S812).
그리고 임피던스 파악부(150)는 위상차가 '0'인 고주파의 공진 주파수를 찾고(S813), 찾은 고주파의 공진 주파수의 전압값과 전류값을 이용하여 교류 임피던스를 파악하고 파악한 교류 임피던스를 전기흐름 진단부(180)와 검사항목 관리부(110)에 제공한다(S814). 이에 전기흐름 진단부(180)는 파악한 교류 임피던스를 설정된 전기흐름상한과 비교하여 교류 임피던스가 전기흐름상한보다 낮으면 정상으로 진단하고 높으면 비정상으로 진단하며, 진단 결과를 검사항목 관리부(110)에 제공하여 항목설정화면에 표시되게 한다(S815).
각 진단부(160, 170, 180)에서 진단한 결과는 적합성 판단부(190)에 수신되고, 적합성 판단부(190)는 각 진단 결과를 종합하여 적합 또는 부적합을 진단하고 진단 결과를 검사항목 관리부(110)에 제공하여 항목설정화면에 표시되게 한다(S816).
상기 설명들은 본 발명을 구현하기 위한 예시적인 구성들 및 동작들을 제공하도록 의도된다. 본 발명의 기술 사상은 위에서 설명된 실시 예들뿐만 아니라, 위 실시 예들을 단순하게 변경하거나 수정하여 얻어질 수 있는 구현들도 포함할 것이다. 또한, 본 발명의 기술 사상은 위에서 설명된 실시 예들을 앞으로 용이하게 변경하거나 수정하여 달성될 수 있는 구현들도 포함할 것이다.

Claims (5)

  1. 폐배터리의 전기흐름을 검사하는 시스템에 있어서,
    사용자 입력부의 출력에 대응하여 동작하고, 배터리 검사항목별 설정값과 측정값, 진단값에 대한 등록, 수정, 삭제, 표시를 관리하는 검사항목 관리부,
    상기 검사항목 관리부에 의해 등록된 각 검사항목별 설정값을 해당 배터리 타입에 매칭하여 저장하는 설정값 저장부,
    상기 폐배터리에 입력주파수를 가변하여 순차적으로 입력하고 각 입력주파수에 대한 출력주파수를 출력하는 교류임피던스 측정기,
    상기 검사항목 관리부의 지시에 따라 상기 교류피던스 측정기를 동작시키고 폐배터리에 입력된 입력주파수와 해당 입력주파수에 대응하는 출력주파수간의 위상차를 파악하여 고주파의 공진주파수를 찾고, 찾은 고주파의 공진주파수에 대응하는 교류 임피던스를 산출하는 임피던스 파악부, 그리고
    상기 임피던스 파악부에서 산출한 교류 임피던스를 전기흐름상한과 비교하여 상기 산출한 교류 임피던스가 전기흐름상한보다 낮으면 정상이라고 진단하고, 높으면 비정상이라고 판단하는 임피던스 진단부를 포함하는 배터리 전기흐름검사 시스템.
  2. 제1항에서,
    상기 검사항목 관리부의 지시에 따라 전기적으로 연결된 배터리전압 측정기를 동작시키고, 상기 배터리전압 측정기를 통해 상기 폐배터리의 전압을 파악하는 배터리전압 파악부,
    상기 배터리전압 파악부에서 파악한 배터리 전압을 설정 전압범위와 비교하고 상기 파악한 배터리 전압이 상기 설정 전압범위 내에 위치하면 정상이라고 진단하고 그렇지 않으면 비정상이라고 진단하는 전압 진단부,
    상기 검사항목 관리부의 지시에 따라 전기적으로 연결된 절연저항 측정기를 동작시키고, 상기 절연저항 측정기를 통해 상기 폐배터리의 절연저항을 파악하는 절연저항 파악부,
    상기 절연저항 파악부에서 파악한 절연저항을 설정 절연저항하한과 비교하고 상기 파악한 절연저항이 상기 설정 절연저항보다 낮으면 비정상이라고 판단하고 높으면 정상이라고 진단하는 절연저항 진단부, 그리고
    상기 전압 진단부, 상기 절연저항 진단부 및 상기 전기흐름 진단부서 출력하는 각 진단 결과를 수신하여 최종적인 적합성 여부를 판단하는 적합성 진단부를 더 포함하는 배터리 전기흐름검사 시스템.
  3. 제2항에서,
    상기 검사항목 관리부는 배터리 타입, 상기 배터리 타입에 따른 상기 설정 전압범위, 상기 절연저항하한, 상기 전기흐름상한을 사용자가 입력하거나 표시할 수 있는 필드를 가지고, 상기 각 파악부에서 파악한 배터리 전압, 절연저항 및 교류임피던스를 표시하는 필드, 각 진단부의 진단결과에 따른 충전상태, 전기흐름성 및 절연안전성을 표시하는 필드 및 상기 적합성 진단부에서 진단한 최종적인 적합성 여부를 표시하는 필드를 가지는 항목설정화면을 표시장치를 통해 사용자에게 제공하는 배터리 전기흐름검사 시스템.
  4. 검사할 폐배터리의 타입과 검사항목별 설정값을 설정하는 단계,
    사용자의 요청에 따라 교류임피던스 측정기를 동작시켜 상기 폐배터리에 제1 입력주파수를 입력하고 상기 제1 입력주파수에 대한 제1 출력주파수를 파악하는 단계,
    상기 제1 입력주파수와 상기 제1 출력주파수간의 제1 위상차를 파악하는 단계,
    상기 제1 위상차가 '0'인지를 파악하여 공진주파수를 찾는 단계,
    주파수를 가변하여 제2 입력주파수를 상기 폐배터리에 입력하고 상기 제2 입력주파수에 대한 제2 출력주파수를 파악하는 단계,
    주파수를 설정 주파수까지 순차적으로 가변하여 상기 폐배터리에 입력하고, 상기 폐배터리에 입력된 입력주파수와 해당 입력주파수에 대응하는 출력주파수간의 위상차를 파악하여 공진주파수를 찾아 등록하는 단계,
    상기 등록된 공진주파수 중 가장 대역이 높은 주파수를 고주파의 공진주파수로 판단하는 단계,
    상기 고주파의 공진주파수에서의 전압과 전류를 이용하여 교류 임피던스를 산출하는 단계, 그리고
    산출한 교류 임피던스를 상기 설정값의 전기흐름상한과 비교하여 상기 산출한 교류 임피던스가 전기흐름상한보다 낮으면 정상이라고 진단하고, 높으면 비정상이라고 판단하는 단계를 포함하는 배터리 전기흐름검사 방법.
  5. 제4항에서,
    연결된 배터리전압 측정기를 통해 상기 폐배터리의 전압을 파악하는 단계,
    상기 폐배터리의 전압을 설정 전압범위와 비교하고 상기 폐배터리의 전압이 상기 설정 전압범위 내에 위치하면 정상이라고 진단하고 그렇지 않으면 비정상이라고 진단하는 단계,
    연결된 절연저항 측정기를 통해 상기 폐배터리의 절연저항을 파악하는 단계,
    상기에서 파악한 상기 폐배터리의 절연저항을 설정 절연저항하한과 비교하고 상기 파악한 절연저항이 상기 설정 절연저항보다 낮으면 비정상이라고 판단하고 높으면 정상이라고 진단하는 단계, 그리고
    상기 폐배터리의 전압에 대한 진단결과 및 상기 폐배터리의 절연저항에 대한 진단결과를 수신하여 최종적인 적합성 여부를 판단하는 단계를 더 포함하는 배터리 전기흐름검사 방법.
PCT/KR2021/004588 2020-04-28 2021-04-12 배터리 전기흐름검사 시스템 및 방법 WO2021221350A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180002391.9A CN113906301A (zh) 2020-04-28 2021-04-12 电池电流动检查系统及方法
US17/435,034 US20220326310A1 (en) 2020-04-28 2021-04-12 Battery electric flow test system and method
EP21755881.6A EP3934005B1 (en) 2020-04-28 2021-04-12 Battery electric flow test system and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200051636 2020-04-28
KR10-2020-0051636 2020-04-28
KR10-2021-0032828 2021-03-12
KR1020210032828A KR102657996B1 (ko) 2020-04-28 2021-03-12 배터리 전기흐름검사 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2021221350A1 true WO2021221350A1 (ko) 2021-11-04

Family

ID=78373653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004588 WO2021221350A1 (ko) 2020-04-28 2021-04-12 배터리 전기흐름검사 시스템 및 방법

Country Status (4)

Country Link
US (1) US20220326310A1 (ko)
EP (1) EP3934005B1 (ko)
CN (1) CN113906301A (ko)
WO (1) WO2021221350A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120099618A1 (en) * 2009-07-08 2012-04-26 Toyota Jidosha Kabushiki Kaisha Secondary battery temperature-estimating apparatus and method
US20130162258A1 (en) * 2011-12-23 2013-06-27 Saft Method for determining a state variable of an electrochemical cell using complex impedance at radioelectric frequencies
JP2017106889A (ja) * 2015-11-30 2017-06-15 積水化学工業株式会社 診断用周波数決定方法、蓄電池劣化診断方法、診断用周波数決定システムおよび蓄電池劣化診断装置
JP2019508697A (ja) * 2016-03-03 2019-03-28 バテル エナジー アライアンス,エルエルシー 周波数応答を使用して検査バッテリの内部インピーダンスを測定するためのデバイス、システム、および方法
KR102029776B1 (ko) * 2018-04-27 2019-10-08 주식회사 민테크 배터리 진단 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872457A (en) * 1972-07-31 1975-03-18 Said Ray By Said King Battery monitor
JP2639219B2 (ja) * 1990-11-28 1997-08-06 株式会社ユアサコーポレーション 鉛蓄電池の寿命判定方法
DE10345057B4 (de) * 2003-09-26 2005-09-15 Rheinisch-Westfälisch-Technische Hochschule Aachen Verfahren und Vorrichtung zur Bestimmung des Ladezustandes einer Batterie
KR100812760B1 (ko) * 2005-12-08 2008-03-12 김득수 축전지 내부 임피던스 유효성분 측정연산 장치 및 그 방법
US20080048622A1 (en) * 2006-02-27 2008-02-28 Fee John A Method and apparatus to determine battery resonance
CN101221223B (zh) * 2007-12-27 2011-03-16 武汉理工大学 一种燃料电池堆单片电池内阻与电压在线测试系统
KR101180830B1 (ko) * 2008-10-13 2012-09-07 주식회사 엘지화학 셀 모듈 어셈블리의 절연성 검사 장치와 방법 및 이를 위한 프로브
US9207285B1 (en) * 2010-12-08 2015-12-08 Global Energy Innovations, Inc. Automatic determination of multi-frequency baselines for battery testing
CN103760492A (zh) * 2014-01-17 2014-04-30 三峡大学 一种变电站铅酸蓄电池在线性能测试方法
EP3109652B1 (en) * 2014-02-19 2018-11-21 Nissan Motor Co., Ltd Impedance-measuring device and method for controlling impedance-measuring device
KR101628684B1 (ko) * 2014-12-15 2016-06-10 현대오트론 주식회사 연료전지 진단을 위한 임피던스 측정장치 및 그 방법
CN105954592B (zh) * 2016-07-18 2017-08-25 天津金星奥宇科技有限公司 一种动力电池组内阻测量系统
JP6939308B2 (ja) * 2017-09-19 2021-09-22 トヨタ自動車株式会社 電池の異常診断方法
CN108614220B (zh) * 2018-05-14 2019-09-20 浙江大学 一种基于阻尼振荡的蓄电池内阻测量方法
KR20200017367A (ko) * 2018-08-08 2020-02-18 주식회사 민테크 배터리 진단 장치
US11598812B2 (en) * 2018-11-15 2023-03-07 Lear Corporation Methods and systems for performing diagnostic processes with reduced processing time

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120099618A1 (en) * 2009-07-08 2012-04-26 Toyota Jidosha Kabushiki Kaisha Secondary battery temperature-estimating apparatus and method
US20130162258A1 (en) * 2011-12-23 2013-06-27 Saft Method for determining a state variable of an electrochemical cell using complex impedance at radioelectric frequencies
JP2017106889A (ja) * 2015-11-30 2017-06-15 積水化学工業株式会社 診断用周波数決定方法、蓄電池劣化診断方法、診断用周波数決定システムおよび蓄電池劣化診断装置
JP2019508697A (ja) * 2016-03-03 2019-03-28 バテル エナジー アライアンス,エルエルシー 周波数応答を使用して検査バッテリの内部インピーダンスを測定するためのデバイス、システム、および方法
KR102029776B1 (ko) * 2018-04-27 2019-10-08 주식회사 민테크 배터리 진단 방법

Also Published As

Publication number Publication date
CN113906301A (zh) 2022-01-07
US20220326310A1 (en) 2022-10-13
EP3934005C0 (en) 2024-07-31
EP3934005B1 (en) 2024-07-31
EP3934005A4 (en) 2022-05-18
EP3934005A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2010018959A2 (ko) 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩
WO2010024654A2 (ko) 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩
WO2012036498A2 (en) Insulation resistance measurement circuit having self-test function without generating leakage current
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
GB2406656A (en) Battery tester with user input of battery information
KR20200017367A (ko) 배터리 진단 장치
WO2022080692A1 (ko) 배터리 장치, 배터리 관리 시스템 및 연결 상태 진단 방법
WO2022092621A1 (ko) 배터리 진단 장치 및 방법
WO2019050279A1 (ko) 배터리 재사용 수명 진단 방법
WO2020054924A1 (ko) 배터리의 상태를 셀 단위로 진단하는 장치 및 방법
KR20110059318A (ko) 배터리의 셀 전압 측정 장치
WO2022145830A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 전기 차량
CN109239461A (zh) 电动汽车的绝缘电阻的测试方法和系统
WO2021221350A1 (ko) 배터리 전기흐름검사 시스템 및 방법
WO2018088685A1 (ko) 배터리 팩
WO2023101189A1 (ko) 셀 밸런싱 방법 및 그 방법을 제공하는 배터리 시스템
WO2023013961A1 (ko) 배터리 검사 장치 및 배터리 검사 시스템
WO2022149770A1 (ko) 방전 전압 그래프 예측 방법 및 이를 이용한 배터리 시스템
CN206020554U (zh) 一种汽车充电桩便携诊断盒
KR20210133134A (ko) 배터리 전기흐름검사 시스템 및 방법
WO2022085950A1 (ko) 배터리 장치 및 저항 상태 추정 방법
WO2022065635A1 (ko) 배터리 장치 및 배터리 상태 추정 방법
CN102544408A (zh) 电池盒和手机充、放电测试系统
WO2023075163A1 (ko) 배터리 장치, 배터리 관리 시스템 및 진단 방법
WO2021002537A1 (ko) 배터리 모듈 체결 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021755881

Country of ref document: EP

Effective date: 20210827

NENP Non-entry into the national phase

Ref country code: DE