WO2021221246A1 - 내식성이 향상된 페라이트계 스테인리스강 및 이의 제조방법 - Google Patents

내식성이 향상된 페라이트계 스테인리스강 및 이의 제조방법 Download PDF

Info

Publication number
WO2021221246A1
WO2021221246A1 PCT/KR2020/014033 KR2020014033W WO2021221246A1 WO 2021221246 A1 WO2021221246 A1 WO 2021221246A1 KR 2020014033 W KR2020014033 W KR 2020014033W WO 2021221246 A1 WO2021221246 A1 WO 2021221246A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
corrosion resistance
ferritic stainless
rolling
improved corrosion
Prior art date
Application number
PCT/KR2020/014033
Other languages
English (en)
French (fr)
Inventor
김진석
공정현
이문수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US17/917,993 priority Critical patent/US20230144982A1/en
Priority to EP20933238.6A priority patent/EP4119691A1/en
Priority to CN202080100181.9A priority patent/CN115461486B/zh
Publication of WO2021221246A1 publication Critical patent/WO2021221246A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the present invention relates to a ferritic stainless steel having improved corrosion resistance and a method for manufacturing the same, and more particularly, to a ferritic stainless steel having a beautiful surface and improved corrosion resistance and a method for manufacturing the same.
  • Ferritic stainless steels are used in various fields because they have excellent corrosion resistance and high price competitiveness compared to austenitic stainless steels while adding little expensive alloying elements.
  • ferritic stainless steel bright annealing materials (BA, Bright Annealing materials) are used.
  • the surface quality required for interior/exterior decoration materials for automobiles should be not only gloss (GS 20°C) of 1,050 or more and sharpness of 90 or more, but also should not generate rust during use.
  • Gloss is a measure of the amount of light reflected from the surface of an object at a specular angle. is one measure.
  • Distinctness of Reflected Image represents the ratio of the difference between the amount of light reflected by specular reflection from the surface of an object and the amount of light deviating by ⁇ 0.3° from the specular reflection. Also called resolution, the sharpness of the object is a measure of Even if the glossiness is the same, the sharpness may be different depending on the shape of the surface of the object and the distribution and shape of micro flaws.
  • ferritic stainless steel cold-rolled steel sheet for interior/exterior decoration of automobiles is obtained by temper rolling a bright annealed sheet.
  • clear surface quality cannot be secured when observed with
  • micro-scratches that degrade the surface properties are caused by the lubricating oil remaining in the concave grooves on the surface of the ferritic stainless steel during cold rolling.
  • cold rolling is performed with a rough surface or shot blasting treatment is introduced to remove surface scale during hot rolling annealing and pickling, so that shot ball marks are formed. It is known that micro flaws occur even in this case.
  • Embodiments of the present invention are to provide a ferritic stainless steel capable of securing surface properties as well as corrosion resistance by controlling the surface micro-scratches and the sulfur content in the film within 5 nm from the surface, and a method for manufacturing the same.
  • Ferritic stainless steel with improved corrosion resistance according to an embodiment of the present invention, by weight, C: 0.001 to 0.05%, N: 0.001 to 0.05%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.0%, Cr : 12.0 to 22.0%, Ti: 0.01 to 1.0%, Nb: 0.01 to 1.0%, including the remaining Fe and unavoidable impurities, the area ratio of micro flaws is 2% or less, sulfur (S) in the film within 5 nm from the surface The content is less than 10%.
  • Mo 0.01 to 2.0%
  • Al 0.10% or less (excluding 0)
  • Cu 1.0% or less (excluding 0)
  • V 0.01 to 0.3%
  • Zr 0.01 to 0.3%
  • B may further include one or more of 0.0010 to 0.0100%.
  • the distribution of micro flaws having a length of 100 ⁇ m or more may be 5/mm 2 or less.
  • a method of manufacturing a ferritic stainless steel having improved corrosion resistance by weight, C: 0.001 to 0.05%, N: 0.001 to 0.05%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.0 %, Cr: 12.0 to 22.0%, Ti: 0.01 to 1.0%, Nb: 0.01 to 1.0%, hot rolling and hot annealing of the slab containing the remaining Fe and unavoidable impurities; Controlling the roll diameter to 70 mm or less, cold rolling and cold annealing the hot rolled material twice or more; degreasing the cold-rolled annealing material for 60 to 120 seconds; And bright annealing the cold rolled material; and, after hot rolling annealing or after primary cold rolling, a surface polishing treatment is introduced.
  • Mo 0.01 to 2.0%
  • Al 0.10% or less (excluding 0)
  • Cu 1.0% or less (excluding 0)
  • V 0.01 to 0.3%
  • Zr 0.01 to 0.3%
  • B may further include one or more of 0.0010 to 0.0100%.
  • the cold rolling, primary cold rolling rolling at a reduction ratio of 40% or more; and secondary cold rolling to be rolled at a reduction ratio of 40% or more, and the total reduction ratio may be 80% or more.
  • the cold rolling may further include tertiary cold rolling rolling at a reduction ratio of 40% or more.
  • the reheating temperature may be 1050 to 1280 °C
  • the finish rolling temperature may be 800 to 950 °C.
  • the surface polishing treatment may be performed to remove a surface layer of 7 ⁇ m or more using an abrasive belt having a roughness of #70 mesh or more.
  • the surface polishing treatment may be performed 1 to 2 times.
  • the cold rolling annealing may be performed at 850 to 1,100 °C.
  • the bright annealing may be performed at 850 to 1,100 °C.
  • the temper rolling may be performed with a work roll having an average roughness of #600 or more.
  • the temper rolling may be performed 2 to 5 times.
  • a ferritic stainless steel capable of securing surface properties as well as corrosion resistance by controlling the surface micro-scratches and the sulfur content in the film within 5 nm from the surface, and a method for manufacturing the same.
  • FIG. 1 is a graph showing a method for measuring sulfur (S) content in a film of ferritic stainless steel according to Examples and Comparative Examples of the present invention by Glow Discharge Spectroscopy (GD-OES).
  • Ferritic stainless steel with improved corrosion resistance according to an embodiment of the present invention, by weight, C: 0.001 to 0.05%, N: 0.001 to 0.05%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.0%, Cr : 12.0 to 22.0%, Ti: 0.01 to 1.0%, Nb: 0.01 to 1.0%, including the remaining Fe and unavoidable impurities, the area ratio of micro flaws is 2% or less, sulfur (S) in the film within 5 nm from the surface The content is less than 10%.
  • Micro flaws are generated from various factors during the steelmaking process, hot rolling/annealing pickling and cold rolling, and appear in various forms such as steel-making inclusions, hot-ductile defects, and oil pits and white roots generated by non-uniform texture during cold rolling.
  • micro flaws are generated as lubricating oil remains in concave grooves on the surface of ferritic stainless steel during cold rolling.
  • fine defects may occur even when cold rolling is performed with a rough surface after hot rolling or cold rolling is performed with shot ball marks formed by shot blast treatment during hot rolling annealing and pickling. do.
  • the present inventors were able to obtain the following knowledge as a result of conducting various studies in order to simultaneously secure the surface properties and corrosion resistance of ferritic stainless steel.
  • micro flaws such as oil pits
  • sulfur (S) among the components of the rolling oil remaining in the micro flaws remains in the film formed after bright annealing, and when corrosion occurs, it interferes with the formation of the passivation film, thereby improving the corrosion resistance of the ferritic stainless steel bright annealing material. may act as a degrading factor.
  • the corrosion resistance of the ferritic stainless steel cold-rolled steel sheet could be improved by controlling the fine flaw fraction and the content of sulfur (S) in the BA film formed after bright annealing.
  • S sulfur
  • the ferritic stainless steel with improved corrosion resistance according to an aspect of the present invention, by weight, C: 0.001 to 0.05%, N: 0.001 to 0.05%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.0%, Cr: 12.0 to 22.0%, Ti: 0.01 to 1.0%, Nb: 0.01 to 1.0%, remaining Fe and unavoidable impurities.
  • the unit is % by weight.
  • the content of C is 0.001 to 0.05%.
  • Carbon (C) is an interstitial solid solution strengthening element and serves to improve the strength of ferritic stainless steel, so it can be added in an amount of 0.001% or more. However, if the content is excessive, impact toughness, corrosion resistance and workability are reduced, so the upper limit may be limited to 0.05%.
  • the content of N is 0.001 to 0.05%.
  • the content is excessive, it is combined with aluminum or titanium to form a nitride, and not only reduces the ductility of steel, but also causes stretcher strain in cold rolled products, and the upper limit may be limited to 0.05%.
  • the content of Si is 0.1 to 1.0%.
  • Silicon (Si) serves as a deoxidizer during the steelmaking process and is an element that stabilizes the ferrite phase.
  • Si serves as a deoxidizer during the steelmaking process and is an element that stabilizes the ferrite phase.
  • the upper limit thereof is limited to 1.0%.
  • the content of Mn is 0.1 to 1.0%.
  • Manganese (Mn) is an element for stabilizing austenite and may be added in an amount of 0.1% or more. However, when the content is excessive, there is a problem of lowering corrosion resistance, and the upper limit may be limited to 1.0%.
  • the content of Cr is 12.0 to 22.0%.
  • Chromium (Cr) is a basic element that stabilizes ferrite and contains the most among elements for improving corrosion resistance of stainless steel. In the present invention, 12.0% or more may be added to form a passivation film to inhibit oxidation to secure corrosion resistance. However, when the content is excessive, there are problems in that the manufacturing cost increases and the moldability is inferior, so the upper limit may be limited to 22.0%.
  • the content of Ti is 0.01 to 1.0%.
  • Titanium (Ti) preferentially combines with interstitial elements such as carbon (C) and nitrogen (N) to form precipitates (carbonitrides), thereby reducing the amount of solid solution C and solid solution N in steel and reducing the formation of a Cr depleted region. It is an element effective in securing the corrosion resistance of steel by suppressing it, and in the present invention, 0.01% or more may be added. However, when the content is excessive, there is a problem in manufacturing by forming Ti-based inclusions, and there is a problem in that surface defects such as scabs occur, and the upper limit thereof may be limited to 1.0%.
  • the content of Nb is 0.01 to 1.0%.
  • Niobium (Nb) is an element that improves corrosion resistance by lowering the solid solution C content by preferentially combining with interstitial elements such as carbon (C) and nitrogen (N) to form carbonitride, and in the present invention, 0.01% or more can be added have.
  • the content is excessive, it causes an increase in cost, forms laves precipitates, causes deterioration of formability and brittle fracture, and there are problems in that toughness is lowered, so the upper limit can be limited to 1.0%.
  • Mo 0.01 to 2.0%
  • Al 0.1% or less (excluding 0)
  • Cu 1.0% or less (excluding 0)
  • V 0.01 to 0.3%
  • Zr 0.01 to 0.3%
  • B may further include one or more of 0.001 to 0.01%.
  • the content of Mo is 0.01 to 2.0%.
  • Molybdenum (Mo) is an element effective in securing corrosion resistance, particularly, pitting resistance of steel, and may be added in an amount of 0.01% or more in the present invention. However, if the content is excessive, the manufacturing cost increases, the impact properties are lowered, and there is a problem that fracture occurs during processing, so the upper limit may be limited to 2.0%.
  • the content of Al is 0.1% or less.
  • Aluminum (Al) is a powerful deoxidizer and is an element that lowers the oxygen content in molten steel. However, if the content is excessive, there is a problem that the sleeve defect of the cold-rolled strip occurs due to an increase in non-metallic inclusions, so the upper limit may be limited to 0.1%.
  • the content of Cu is 1.0% or less.
  • Copper (Cu) may be additionally added to improve corrosion resistance, and there is a problem in that workability is deteriorated when excessively added, so it is preferable to limit the upper limit to 1.0%.
  • V and Zr The content of V and Zr is 0.01 to 0.3%.
  • Vanadium (V) and zirconium (Zr) are elements that form carbonitrides by fixing carbon (C) and nitrogen (N).
  • C carbon
  • N nitrogen
  • 0.01% or more can be added to improve corrosion resistance and high temperature strength. have.
  • the upper limit may be limited to 0.3%.
  • the content of B is 0.001 to 0.01%.
  • Boron (B) is an effective element for suppressing crack generation during casting to ensure good surface quality, and may be added at 0.001%$ or more.
  • nitride (BN) may be formed on the surface of the product during the annealing/pickling process to deteriorate the surface quality, and thus the upper limit may be limited to 0.01%.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • the area ratio of micro flaws is 2% or less, and the length is 100 ⁇ m or more.
  • the distribution of flaws should be derived not more than 5/mm 2 .
  • the sulfur (S) content in the film formed after bright annealing is 10% or less.
  • the content of the sulfur (S) component in the film means the sulfur (S) content (%) in the film within 5 nm from the surface.
  • the present inventors confirmed that the higher the fine flaw area ratio and the higher the content of sulfur (S) component in the film, the more rusting occurred during use. Specifically, if 5.12 * micro flaw area ratio (%) + content (%) of sulfur (S) component in the film exceeds 17, the micro flaw acts as a corrosion site, and the sulfur (S) component may cause the BA film to be destroyed. Considering that the time passivation is delayed, the upper limit of Equation (1) is to be limited to 17.
  • a method of manufacturing a ferritic stainless steel having improved corrosion resistance includes the steps of: hot rolling and hot annealing of a slab including the alloy component composition described above; Controlling the roll diameter to 70 mm or less, cold rolling and cold annealing the hot rolled material twice or more; degreasing the cold-rolled annealing material for 60 to 120 seconds; And bright annealing the cold rolled material; and, after hot rolling annealing or after primary cold rolling, a surface polishing treatment is introduced.
  • cold rolling and cold rolling annealing After performing a series of hot rolling and hot annealing on the slab containing the composition, cold rolling and cold rolling annealing, immersion, bright annealing and temper rolling may be performed to form a final product.
  • the slab is reheated to a temperature range of 1,050 to 1,280 °C.
  • the upper limit of the temperature and the finish rolling temperature may be limited to 1,280°C and 950°C, respectively.
  • the lower the reheating temperature and finish rolling temperature the higher the strain accumulation energy during hot rolling, which helps to improve recrystallization and anisotropy during annealing. sticking) defects are easy to occur, so the lower limits of the reheating temperature and the finish rolling temperature during hot rolling can be limited to 1,100°C and 800°C, respectively.
  • the manufactured hot-rolled steel sheet is subjected to pickling treatment and cold rolling.
  • the cold rolling may be performed two or more times as primary cold rolling and secondary cold rolling while controlling the roll diameter to 70 mm or less.
  • the diameter of the cold rolling roll should be small. This is because, as the roll diameter increases, the length of the fine flaws increases along the rolling direction, thereby reducing the sharpness and reducing the surface properties.
  • the diameter of the roll by controlling the diameter of the roll to 70 mm or less, it was attempted to minimize the number of micro flaws with a length of 100 ⁇ m or more to 5 pieces/mm 2 or less.
  • the roll diameter during cold rolling is 40 to 70 mm.
  • the primary cold rolling may be performed at a reduction ratio of 40% or more. Thereafter, the primary cold-rolled steel sheet may be annealed at 850 to 1,050° C.
  • the secondary cold rolling may be performed at a reduction ratio of 40% or more. Thereafter, the secondary cold-rolled steel sheet may be annealed at 850 to 1,050° C. Accordingly, the secondary cold-rolled steel sheet may have a total reduction ratio of 80% or more.
  • the secondary cold rolling annealed steel sheet may be subjected to a third cold rolling step of rolling at a reduction ratio of 40% or more.
  • Cold rolling annealing may be performed at a temperature of 850 to 1,100 °C.
  • the cold rolling annealing temperature range is limited to 850 °C or higher.
  • surface polishing treatment was introduced after hot rolling annealing or after primary cold rolling to remove non-uniform surface scales and micro flaws generated after annealing.
  • the surface polishing treatment may be performed to remove a surface layer of 7 ⁇ m or more with an abrasive belt having a roughness of #70 mesh or more, after the primary cold rolling and before the secondary cold rolling.
  • Such a surface polishing process is preferably performed once or twice in consideration of cost and productivity according to process load.
  • the bright annealing process is performed to show the inherent luster without forming oxide scale on the surface of the cold-rolled annealing material so that it can be applied as an interior/exterior decoration material for automobiles. rough
  • sulfur (S) remains in the film formed after bright annealing, and when corrosion occurs, it prevents the formation of a passivation film. It is necessary to remove sulfur (S).
  • a degreasing step was introduced as a pretreatment process of the bright annealing, and the sulfur (S) content in the film within 5 nm from the surface after the bright annealing was controlled to 10% or less.
  • a step of degreasing for 60 to 120 seconds before final bright annealing is performed.
  • the degreasing time before bright annealing is reduced. It was limited from 60 seconds to 120 seconds.
  • the degreasing solution may be 80 °C, 2.5% by weight of sodium hydroxide (NaOH) solution.
  • bright annealing may be performed in a reducing atmosphere under hydrogen or nitrogen conditions, at a temperature range of 850 to 1,100 °C.
  • the bright annealing temperature is 1,100 °C or less.
  • cold-rolled annealing is performed at an excessively low temperature, there is a problem in that sufficient workability cannot be secured due to lack of recrystallization.
  • the sulfur (S) content in the film within 5 nm from the surface may be 10% or less.
  • temper rolling (Skin Pass Rolling) is performed in order to improve the surface glossiness of the ferritic stainless steel.
  • the temper rolling can be performed with a work roll having an average roughness of #600 or more.
  • the average roughness of the work roll is less than #600, the work roll is too rough to reduce the glossiness of the steel sheet surface, and it is difficult to secure a desired level of glossiness.
  • the temper rolling may be performed 2 to 5 times. When the temper rolling is performed only once, it is difficult to ensure sufficient glossiness, and when the temper rolling is performed 6 or more times, there is a problem in that the cost increases and the productivity according to the process load cannot be secured.
  • the final cold-rolled steel sheet subjected to temper rolling may have a length of 100 ⁇ m or more in a matrix structure, 5 pieces/mm 2 or less, and may include micro flaws, and the area ratio of micro flaws may be 2% or less.
  • surface polishing treatment can be introduced to remove non-uniform surface scale and fine flaws, and during cold rolling, by controlling the roll diameter to 70 mm or less, fine flaws occurring on the surface length can be reduced.
  • a degreasing step was introduced as a pretreatment process of the bright annealing, and the sulfur (S) content in the film within 5 nm from the surface after the bright annealing was controlled to 10% or less.
  • the slab was manufactured through ingot melting, heated at 1,100° C. for 2 hours, and then hot rolling was performed. After hot rolling, hot rolling annealing was performed at 1,000° C. for 90 seconds. Thereafter, using a roll having a diameter of 50 mm, the first cold rolling was performed at a reduction ratio of 40%, and the first cold rolling annealing was performed at 1,000 ° C. for 90 seconds. Under the condition, the surface of the cold-rolled annealed material was polished to 7 ⁇ m or more at a time.
  • Comparative Examples are the case in which the final steel sheet was manufactured under the same conditions as in Example, except that any one or more of the roll diameter, immersion time before bright annealing, and surface polishing treatment conditions were changed during cold rolling in Table 1 below.
  • Example 1 1 time 70 120
  • Example 2 Episode 2 50 60
  • Example 3 1 time 50 120
  • Example 4 1 time 50 60
  • Example 5 1 time 50 60
  • Example 6 1 time 50 60
  • Example 7 Episode 2 50 60
  • Example 8 Episode 2 50 60
  • Example 9 Episode 2 50 60
  • Example 10 Episode 2 50 60 Comparative Example 1 Episode 2 50 30
  • Comparative Example 2 - 140 120 Comparative Example 3 - 140 120 Comparative Example 4 1 time 50 60
  • Comparative Example 5 Comparative Example 6 - 140 30
  • Comparative Example 9 Episode 2 50 30
  • Comparative Example 10 - 140 60 60 Comparative Example 11 - 140 60
  • Comparative Example 12 50
  • Comparative Example 13 1 time 50
  • Comparative Example 14 - 140 30 Comparative Example 15 1 time 50 60 Comparative Example 16 - 140 60 Comparative Example 17 1 time 140 120 Comparative Example 18 1 time 140 120
  • GD-OES Glow Discharge Spectroscopy
  • the peak value in the component distribution in the depth direction from the surface of sulfur (S) was set as a representative value of the sulfur content in the film, and is shown in Table 2 below.
  • Corrosion resistance was evaluated by an accelerated copper chloride spray test, and the test solution was 50 g/L sodium chloride (NaCl) with 0.26 g/L copper chloride (CuCl 2 .2H2O) and acetic acid (CH 3 COOH) mixed solution added to determine whether or not rust occurred in the table below. 2 is shown.
  • NaCl sodium chloride
  • CuCl 2 .2H2O copper chloride
  • CH 3 COOH acetic acid
  • Comparative Examples 2, 3, 6, 7, 10, 11, 14, and 16 are the cases in which the roll diameter exceeds 70 mm during cold rolling without surface polishing. was found to exceed 2%.
  • Comparative Examples 17 and 18 satisfy the conditions of the micro-defect area ratio and the sulfur (S) content in the film after bright annealing, but the distribution density of the micro-defects with a length of 100 ⁇ m or more exceeds 5/mm 2 , so rusting occurred. classified as an example.
  • Example 1 that satisfies the conditions of introducing 1 to 2 times of surface polishing after primary cold rolling, performing cold rolling using a roll having a diameter of 70 mm or less, and degreasing for 60 to 120 seconds before light annealing.
  • the area ratio of fine flaws is 2% or less
  • the distribution density of fine flaws with a length of 100 ⁇ m or more is 5 pieces/mm 2 or less
  • the sulfur (S) content in the film after bright annealing is It is shown to be less than 10%, so it can be confirmed that rust does not occur during corrosion resistance evaluation.
  • the BA film formed after the bright annealing by controlling the immersion time before the bright annealing while minimizing the occurrence of micro flaws on the surface of the ferritic stainless steel by primarily introducing the surface polishing treatment and controlling the roll diameter during cold rolling. It is possible to manufacture ferritic stainless steel with improved corrosion resistance by controlling the content of sulfur (S) resistance.
  • the ferritic stainless steel according to the present invention can secure corrosion resistance as well as surface properties, so it can be applied to materials for interior/exterior decoration such as automobile molding materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

내식성이 향상된 페라이트계 스테인리스강 및 이의 제조방법이 개시된다. 본 발명의 일 실시예에 따른 페라이트계 스테인리스강에 따르면, 중량%로, C: 0.001 내지 0.05%, N: 0.001 내지 0.05%, Si: 0.1 내지 1.0%, Mn: 0.1 내지 1.0%, Cr: 12.0 내지 22.0%, Ti: 0.01 내지 1.0%, Nb: 0.01 내지 1.0%, 나머지 Fe 및 불가피한 불순물을 포함하고, 미세흠의 면적율이 2% 이하이고, 표면으로부터 5nm 이내의 피막 내 황(S)성분의 함량이 10% 이하이다.

Description

내식성이 향상된 페라이트계 스테인리스강 및 이의 제조방법
본 발명은 내식성이 향상된 페라이트계 스테인리스강 및 이의 제조방법에 관한 것으로, 보다 상세하게는 표면이 미려하면서도 내식성이 향상된 페라이트계 스테인리스강 및 그 제조방법에 관한 것이다.
페라이트계 스테인리스 강재는 고가의 합금원소가 적게 첨가되면서도 내식성이 뛰어나, 오스테나이트계 스테인리스 강재에 비하여 가격 경쟁력이 높으므로 다양한 분야에 적용되고 있는 강종이다.
한편, 자동차 몰딩재 등 내/외부 장식용 소재에서는, 미려한 표면 외관이 요구되기 때문에, 페라이트계 스테인리스 광휘소둔재(BA, Bright Annealing materials)가 이용되고 있다. 구체적으로, 자동차 내/외부 장식용 소재에서 요구되는 표면 품질은 광택도(GS 20℃) 1,050 이상, 선영도 90 이상일 뿐만 아니라, 사용 중 발청이 발생하지 않아야 한다.
광택도(Gloss)는 물체의 표면에서 거울면 반사(Specular angle)로 반사되는 빛의 양을 측정하는 것으로, 일정한 굴절률을 갖는 표준 샘플의 광택값을 기준으로 물체 표면의 광택의 정도를 %로 정량화한 척도이다.
선영도(Distinctness of Reflected Image, DOI)는 물체의 표면에서 거울면 반사로 반사되는 빛의 양과 거울면 반사에서 ±0.3°벗어난 빛의 양의 차이에 대한 비율을 나타내는 것으로, 해상도라고도 하며 물체의 선명도를 나타내는 척도이다. 광택도가 동일하더라도 물체 표면의 형상 및 미세흠의 분포 및 형태에 따라 선영도는 다를 수 있다.
일반적으로, 자동차 내/외부 장식용 페라이트계 스테인리스 냉연 강판은 광휘 소둔한 판재를 조질 압연하여 얻어지는데, 기존의 제조 방법으로는 광택도 및 선영도가 요구품질 수준 이상이더라도 표면에 미세한 흠이 잔존하여 육안으로 관찰할 경우 선명한 표면품질을 확보할 수 없다는 문제점이 있다.
이와 같이, 표면 특성을 저하시키는 미세흠은 냉간압연 시 윤활유가 페라이트계 스테인리스강 표면의 오목한 홈 내에서 잔존함에 따라 발생하는 것으로 파악되었다. 또한, 열간압연 후, 표면이 거친 상태로 냉간압연을 하거나 열연 소둔산세 시 표면 스케일 제거를 위해 샷 블라스트(shot blast) 처리를 도입함에 따라 샷 볼(shot ball) 자국이 형성된 상태로 냉간압연을 하는 경우에도 미세흠이 발생하는 것으로 알려져 있다.
따라서, 최종적인 냉간 압연 전에 페라이트계 스테인리스강 표면의 미세흠을 줄이는 것이 페라이트계 스테인리스강의 표면특성을 향상시키는데 필수적이다.
한편, 미세흠에 의해 표면의 광택도나 선영성이 열위해지는 문제점에 대해서는 기존 선행문헌에서 다루고 있으나, 표면 미세흠이 내식성에 미치는 영향에 대해서는 명확하지 않다.
본 발명의 실시예들은 표면 미세흠과 표면으로부터 5nm 이내의 피막 내 황 함량을 제어함으로써 표면 특성 뿐만 아니라 내식성을 확보할 수 있는 페라이트계 스테인리스강 및 그 제조방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 내식성이 향상된 페라이트계 스테인리스강은, 중량%로, C: 0.001 내지 0.05%, N: 0.001 내지 0.05%, Si: 0.1 내지 1.0%, Mn: 0.1 내지 1.0%, Cr: 12.0 내지 22.0%, Ti: 0.01 내지 1.0%, Nb: 0.01 내지 1.0%, 나머지 Fe 및 불가피한 불순물을 포함하고, 미세흠의 면적율이 2% 이하이고, 표면으로부터 5nm 이내의 피막 내 황(S) 함량이 10% 이하이다.
또한, 본 발명의 일 실시예에 따르면, Mo: 0.01 내지 2.0%, Al: 0.10% 이하(0은 제외), Cu: 1.0% 이하(0은 제외), V: 0.01 내지 0.3%, Zr: 0.01 내지 0.3% 및 B: 0.0010 내지 0.0100% 중 1종 이상을 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 길이가 100㎛ 이상인 미세흠의 분포가 5개/mm 2 이하일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 하기 식 (1)을 만족할 수 있다.
식(1): 5.12 * 미세흠 면적율(%) + 피막 내 황(S)성분의 함량 (%) ≤ 17
본 발명의 다른 일 실시예에 따른 내식성이 향상된 페라이트계 스테인리스강의 제조 방법은, 중량%로, C: 0.001 내지 0.05%, N: 0.001 내지 0.05%, Si: 0.1 내지 1.0%, Mn: 0.1 내지 1.0%, Cr: 12.0 내지 22.0%, Ti: 0.01 내지 1.0%, Nb: 0.01 내지 1.0%, 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 열간 압연 및 열연 소둔하는 단계; 롤 직경을 70mm 이하로 제어하여, 상기 열간 압연재를 2회 이상 냉간 압연 및 냉연소둔하는 단계; 상기 냉연 소둔재를 60 내지 120초 동안 탈지하는 단계; 및 상기 냉간 압연재를 광휘 소둔하는 단계; 를 포함하고, 열연 소둔 후 또는 1차 냉간 압연 후에, 표면 연마처리를 도입한다.
또한, 본 발명의 일 실시예에 따르면, Mo: 0.01 내지 2.0%, Al: 0.10% 이하(0은 제외), Cu: 1.0% 이하(0은 제외), V: 0.01 내지 0.3%, Zr: 0.01 내지 0.3% 및 B: 0.0010 내지 0.0100% 중 1종 이상을 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 냉간 압연은, 40% 이상의 압하율로 압연하는 1차 냉간 압연; 및 40% 이상의 압하율로 압연하는 2차 냉간 압연을 포함하며, 총 압하율이 80% 이상일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 냉간 압연은, 40% 이상의 압하율로 압연하는 3차 냉간 압연을 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 열간 압연 시, 재가열 온도는 1050 내지 1280℃이고, 마무리 압연 온도는 800 내지 950℃일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 표면 연마처리는 거칠기가 #70 mesh 이상의 연마 벨트를 사용하여 7㎛ 이상의 표층을 제거하도록 수행될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 표면 연마처리는 1 내지 2회 수행될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 냉연소둔은 850 내지 1,100℃에서 수행될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 광휘 소둔은 850 내지 1,100℃에서 수행될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 조질 압연은 평균 거칠기가 #600 이상의 워크 롤로 수행될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 조질 압연은 2 내지 5회로 수행될 수 있다.
본 발명의 사상에 따르면, 표면 미세흠과 표면으로부터 5nm 이내의 피막 내 황 함량을 제어함으로써 표면 특성 뿐만 아니라 내식성을 확보할 수 있는 페라이트계 스테인리스강 및 그 제조방법을 제공할 수 있다.
도 1은 본 발명의 실시예 및 비교예에 따른 페라이트계 스테인리스강의 피막 내 황(S) 함량을 글로우 방전 광 방출 분광법(GD-OES, Glow discharge Spectroscopy)으로 측정하는 방법을 나타낸 그래프이다.
도 2는 본 발명의 실시예 및 비교예에 따른 피막 내 황(S) 함량과 표면 미세흠 면적율(%) 사이의 관계를 나타낸 그래프이다.
본 발명의 일 실시예에 따른 내식성이 향상된 페라이트계 스테인리스강은, 중량%로, C: 0.001 내지 0.05%, N: 0.001 내지 0.05%, Si: 0.1 내지 1.0%, Mn: 0.1 내지 1.0%, Cr: 12.0 내지 22.0%, Ti: 0.01 내지 1.0%, Nb: 0.01 내지 1.0%, 나머지 Fe 및 불가피한 불순물을 포함하고, 미세흠의 면적율이 2% 이하이고, 표면으로부터 5nm 이내의 피막 내 황(S) 함량이 10% 이하이다.
이하에서는 본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.
이하에서는 본 발명에 따른 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 우선 페라이트계 스테인리스강에 대해 설명한 후, 페라이트 스테인리스강의 제조방법에 대해 설명한다.
미세흠은 제강 공정부터 열연/소둔산세 및 냉간압연 과정에서 다양한 요인으로부터 생성되며, 제강성 개재물, 열연성 결함 및 냉연시 불균일 집합조직에 의해 생성되는 oil pit 및 백근 등 다양한 형태로 나타난다
구체적으로, 미세흠은 냉간압연 시 윤활유가 페라이트계 스테인리스강 표면의 오목한 홈 내에서 잔존함에 따라 발생한다. 또한, 열간압연 후, 표면이 거친 상태로 냉간압연을 하거나 열연 소둔산세 시 샷 블라스트(shot blast) 처리에 따른 샷 볼(shot ball) 자국이 형성된 상태로 냉간압연을 하는 경우에도 미세흠이 발생하기도 한다.
이 경우, 육안으로 관찰했을 때 페라이트계 스테인리스강의 표면 특성뿐만 아니라 내식성을 확보할 수 없다는 문제점이 있다.
본 발명자들은 페라이트계 스테인리스강의 표면 특성 및 내식성을 동시에 확보하기 위하여 다양한 검토를 행한 결과, 이하의 지견을 얻을 수 있었다.
먼저 Oil pit과 같은 미세흠이 형성되면, 미세흠이 부식의 시작점으로 작용할 수 있으므로 내식성 관점에서 미세흠을 최소화하는 것이 중요하다.
한편, 미세흠에 잔존하는 압연유 성분 중 황(S)은, 광휘소둔 후 형성되는 피막 내에 잔류하게 되고, 부식이 발생하는 경우, 부동태 피막형성을 방해하는 역할을 하여 페라이트계 스테인리스 광휘소둔재의 내식성을 저하시키는 요인으로 작용할 수 있다.
본 발명에서는, 여러가지 표면 인자에 대해 검토한 결과, 미세흠 분율 및 광휘소둔 후 형성된 BA 피막 내 황(S)의 함량을 제어하여 페라이트계 스테인리스 냉연강판의 내식성을 향상시킬 수 있음을 발견하였다. 이를 위해서는 표면처리 공정을 도입하고, 냉간 압연시 롤 직경을 70mm 이하로 확보함과 동시에 광휘 소둔 전 침지 시간을 제어함으로써 달성할 수 있다.
본 발명의 일 측면에 따른 내식성이 향상된 페라이트계 스테인리스강은, 중량%로, C: 0.001 내지 0.05%, N: 0.001 내지 0.05%, Si: 0.1 내지 1.0%, Mn: 0.1 내지 1.0%, Cr: 12.0 내지 22.0%, Ti: 0.01 내지 1.0%, Nb: 0.01 내지 1.0%, 나머지 Fe 및 불가피한 불순물을 포함한다.
이하, 본 발명의 실시예에서의 합금성분 원소 함량의 수치한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.
C의 함량은 0.001 내지 0.05%이다.
탄소(C)는 침입형 고용강화 원소로서 페라이트계 스테인리스강의 강도를 향상시키는 역할을 하므로 0.001% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, 충격인성, 내식성 및 가공성이 저하되는 바, 그 상한을 0.05%로 한정할 수 있다.
N의 함량은 0.001 내지 0.05%이다.
질소(N)는 탄소와 마찬가지로 침입형 고용강화 원소로서 페라이트계 스테인리스강의 강도를 향상 시키는 역할을 하므로 0.001% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, 알루미늄 또는 티타늄 등과 결합하여 질화물을 형성하고, 강의 연성을 저하시킬 뿐만 아니라 냉연제품의 스트레처 스트레인의 원인이 되어, 그 상한을 0.05%로 한정할 수 있다.
Si의 함량은 0.1 내지 1.0%이다.
실리콘(Si)은 제강공정 중 탈산제의 역할을 하고, 페라이트 상을 안정화하는 원소이다. 본 발명에서는, 페라이트계 스테인리스강의 강도와 내식성을 확보하기 위해 Si를 0.1% 이상 첨가하는 것이 바람직하다. 다만, 그 함량이 과다할 경우, 연성 및 성형성이 저하되는 문제가 있어, 본 발명에서는 그 상한을 1.0%로 한정한다.
Mn의 함량은 0.1 내지 1.0%이다.
망간(Mn)은 오스테나이트 안정화하는 원소로, 0.1% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, 내식성을 저하시키는 문제가 있어, 그 상한을 1.0%로 한정할 수 있다.
Cr의 함량은 12.0 내지 22.0%이다.
크롬(Cr)은 페라이트를 안정화하고, 스테인리스강의 내식성 향상 원소 중 가장 많이 함유되어 기본이 되는 원소이다. 본 발명에서는 산화를 억제하는 부동태피막 형성하여 내식성을 확보하기 위해 12.0% 이상 첨가할 수 있다. 다만 그 함량이 과도할 경우, 제조비용이 상승하고, 성형성이 열위해지는 문제가 있어 그 상한을 22.0%로 한정할 수 있다.
Ti의 함량은 0.01 내지 1.0%이다.
티타늄(Ti)은 탄소(C)와 질소(N)와 같은 침입형 원소와 우선적으로 결합하여 석출물(탄질화물)을 형성함으로써, 강 중 고용 C 및 고용 N의 양을 저감하고 Cr 고갈영역 형성을 억제하여 강의 내식성 확보에 효과적인 원소로, 본 발명에서는 0.01% 이상 첨가할 수 있다. 다만, 그 함량이 과다할 경우, Ti계 개재물을 형성하여 제조상에 어려움이 있고, 스캡(scab)과 같은 표면결함이 발생하는 문제가 있어, 그 상한을 1.0%로 한정할 수 있다.
Nb의 함량은0.01 내지 1.0%이다.
니오븀(Nb)은 탄소(C)와 질소(N)와 같은 침입형 원소와 우선적으로 결합하여 탄질화물을 형성함으로써 고용 C 함량을 낮추어 내식성을 향상시키는 원소로, 본 발명에서는 0.01% 이상 첨가할 수 있다. 다만, 그 함량이 과도할 경우, 비용의 상승을 초래하고, Laves 석출물을 형성하여 성형성의 저하 및 취성파괴를 일으키며, 인성이 저하되는 문제가 있는 바, 그 상한을 1.0%로 한정할 수 있다.
또한, 본 발명의 일 실시예에 따르면, Mo: 0.01 내지 2.0%, Al: 0.1% 이하(0은 제외), Cu: 1.0% 이하(0은 제외), V: 0.01 내지 0.3%, Zr: 0.01 내지 0.3% 및 B: 0.001 내지 0.01% 중 1종 이상을 더 포함할 수 있다.
Mo의 함량은 0.01 내지 2.0%이다.
몰리브덴(Mo)은 강의 내식성, 특히 내공식성 확보에 효과적인 원소로, 본 발명에서는 0.01% 이상 첨가할 수 있다. 다만, 그 함량이 과다할 경우, 제조비용이 상승하고, 충격 특성이 저하되어 가공 시 파단 발생하는 문제가 있어 그 상한을 2.0%로 한정할 수 있다.
Al의 함량은 0.1% 이하이다.
알루미늄(Al)은 강력한 탈산제로써 용강 중 산소의 함량을 낮추는 역할을 하는 원소이다. 다만, 그 함량이 과다할 경우 비금속 개재물 증가로 인해 냉연 스트립의 슬리브 결함이 발생하는 문제가 있어 그 상한을 0.1%로 한정할 수 있다.
Cu의 함량은 1.0% 이하이다.
구리(Cu)는 내식성을 향상시키기 위해 추가적으로 첨가될 수 있으며, 과량 첨가될 경우 가공성이 저하되는 문제점이 있어, 그 상한을 1.0%로 제한하는 것이 바람직하다.
V 및 Zr의 함량은 0.01 내지 0.3%이다.
바나듐(V), 지르코늄(Zr)은 탄소(C), 질소(N)를 고정하여 탄질화물을 형성하는 역할을 하는 원소로, 본 발명에서는 내식성 및 고온강도를 향상시키기 위해 0.01% 이상 첨가할 수 있다. 다만, 그 함량이 과다할 경우, 제조비용이 상승하는 문제가 있어 그 상한을 0.3%로 한정할 수 있다.
B의 함량은 0.001 내지 0.01%이다.
붕소(B)는 주조 중의 크랙 발생을 억제하여 양호한 표면 품질을 확보하는데 효과적인 원소로, 0.001%$ 이상 첨가할 수 있다. 다만, 그 함량이 과도할 경우, 소둔/산세 공정 중 제품 표면에 질화물(BN)을 형성시켜 표면품질을 저하시킬 수 있어 그 상한을 0.01%로 한정할 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
전술한 바와 같이, 페라이트 스테인리스강의 내식성을 개선하기 위해서는 표면 미세흠을 감소시키는 것이 필요하다.
구체적으로, 전술한 합금조성을 만족하는 페라이트계 스테인리스강이 자동차 내/외부 장식용 소재에서 요구되는 표면 품질 요건을 만족하면서도 내식성을 확보하기 위해서는 미세흠의 면적율이 2% 이하이고, 길이가 100㎛ 이상인 미세흠의 분포가 5개/mm 2 이하로 도출되어야 한다.
또한, 페라이트 스테인리스강의 내식성을 개선하기 위해서는 광휘소둔 후 형성되는 피막 내 황(S) 함량을 최소화하는 것이 필요하다. 본 발명의 일 실시예에 따른 표면 특성이 향상된 페라이트계 스테인리스강은, 표면으로부터 5nm 이내의 피막 내 황(S) 함량이 10% 이하이다.
본 발명에서는 페라이트계 스테인리스강의 내식성을 향상하기 위해 내식성에 영향을 미치는 표면 인자에 대해서 고찰을 하였다. 표면 미세흠 결함이 내식성에 영향을 주는 것은 주지의 사실이나, 페라이트계 스테인리스강의 피막성분이 내식성에 미치는 영향에 대해서는 명확하지 않다. 본 발명에서는 피막 내 여러가지 성분과 내식성 사이의 상관관계를 분석한 결과, 피막 내 성분 중 황(S) 성분이 내식성에 영향을 미치는 것을 확인하여, 하기 식(1)을 도출하였다.
식(1): 5.12 * 미세흠 면적율(%) + 피막 내 황(S)성분의 함량 ≤ 17
여기서, 피막 내 황(S)성분의 함량은, 표면으로부터 5nm 이내의 피막 내 황(S) 함량(%)을 의미한다.
본 발명자들은 미세흠 면적율과 피막 내 황(S)성분의 함량이 높을수록, 사용 중 발청이 발생하는 것을 확인하였다. 구체적으로, 5.12*미세흠 면적율(%) + 피막 내 황(S)성분의 함량(%)이 17을 초과하는 경우, 미세흠은 부식 개소로 작용하고, 황(S) 성분은 BA 피막이 파괴되었을 시 부동태화를 지연시키는 점을 고려하여, 식 (1)의 상한값을 17로 한정하고자 한다.
다음으로, 본 발명의 다른 일 실시예에 따른 내식성이 향상된 페라이트계 스테인리스강의 제조방법에 대하여 설명한다.
본 발명의 일 실시예에 따른 내식성이 향상된 페라이트계 스테인리스강의 제조 방법은, 상술한 합금성분 조성을 포함하는 슬라브를 열간 압연 및 열연 소둔하는 단계; 롤 직경을 70mm 이하로 제어하여, 상기 열간 압연재를 2회 이상 냉간 압연 및 냉연소둔하는 단계; 상기 냉연 소둔재를 60 내지 120초 동안 탈지하는 단계; 및 상기 냉간 압연재를 광휘 소둔하는 단계; 를 포함하고, 열연 소둔 후 또는 1차 냉간 압연 후에, 표면 연마처리를 도입한다.
상기의 조성을 포함하는 슬라브를 일련의 열간압연, 열연소둔을 수행한 후, 냉간압연 및 냉연소둔을 거쳐, 침지, 광휘 소둔 및 조질 압연을 하여 최종 제품을 형성할 수 있다.
페라이트계 스테인리스강의 표면특성 및 내식성을 동시에 향상시키기 위해서는 표면 미세흠을 감소시켜야 한다. 본 발명에서는, 표면처리 공정을 도입하여 표면 스케일 및 미세흠을 제거하고, 냉간압연 시 롤 직경을 제어하여 페라이트계 스테인리스강의 표면 미세흠 발생을 최소화하고자 하였다. 또한, 광휘 소둔 전 침지 시간을 제어함으로써 광휘소둔 후 형성된 BA 피막 내 황(S)의 함량을 최소화하고자 하였다.
먼저, 슬라브를 1,050 내지 1,280℃의 온도범위로 재가열한다.
열간압연 조건의 경우, 슬라브 재가열 온도 및 마무리 압연 온도가 높을수록 열연 조업 중 재결정 형성에 유리하지만, 온도가 너무 높으면 조대한 band 조직이 형성됨에 따라, 향후 냉간압연 및 소둔을 진행하여도 재결정이 원활하게 진행되지 않아 연신율 및 이방성이 저하되고, 추후 냉간압연 시 재결정되는 조직과 두께의 불균일이 발생하며, 이에 따라 오목한 홈 내에서 기름이 유입되어 미세흠이 다량 발생하게 되는바, 열간압연 시 슬라브 재가열 온도 및 마무리 압연 온도의 상한을 각각 1,280℃, 950℃로 한정할 수 있다.
반대로, 재가열 온도 및 마무리압연 온도가 낮을수록 열간압연 중에 변형축적 에너지가 높아져 소둔 시 재결정 및 이방성 향상에 도움을 주지만, 재가열 온도 및 마무리 압연 온도가 너무 낮으면 압연롤에 소재가 달라붙는 스티킹(sticking) 결함이 발생하기 쉽기 때문에 열간압연 시 재가열 온도 및 마무리 압연 온도의 하한을 각각 1,100℃ 및 800℃로 한정할 수 있다.
이후, 제조된 열연강판을 산세처리, 냉간 압연하는 과정을 거친다. 개시된 실시예에 따르면, 상기 냉간 압연은 롤 직경을 70mm 이하로 제어하면서도, 1차 냉간 압연 및 2차 냉간 압연으로 2회 이상에 걸쳐 수행될 수 있다.
표면에 발생하는 미세흠의 길이를 줄이기 위해서는 냉간압연 롤 직경이 작아야 한다. 롤 직경이 커질수록 압연방향을 따라 미세흠의 길이가 길어짐에 따라, 선영도를 저하시켜 표면 특성을 저하시키는 요인으로 작용하기 때문이다.
본 발명에서는, 롤 직경을 70mm 이하로 제어함으로써 길이가 100㎛ 이상인 미세흠을 5개/mm 2 이하로 최소화하고자 하였다. 바람직하게, 냉간 압연 시 롤 직경은 40 내지 70mm이다.
예를 들어, 상기 1차 냉간 압연은 40% 이상의 압하율로 수행될 수 있다. 이후, 상기 1차 냉간 압연된 강판을 850 내지 1,050℃에서 소둔 열처리 할 수 있다.
다음으로, 상기 2차 냉간 압연은 40% 이상의 압하율로 수행될 수 있다. 이후, 상기 2차 냉간 압연된 강판을 850 내지 1,050℃에서 소둔 열처리 할 수 있다. 이에 따라, 상기 2차 냉간 압연된 강판은 총 압하율이 80% 이상일 수 있다.
필요에 따라, 상기 2차 냉연 소둔된 강판을 40% 이상의 압하율로 압연하는 3차 냉간 압연 단계를 거칠 수 있다.
냉연 소둔은 850 내지 1,100℃의 온도에서 진행할 수 있다. 본 발명에서는 조대한 band 조직이 형성됨에 따라, 추후 냉간압연 시 재결정되는 조직과 두께의 불균일이 발생하는 것을 방지하기 위해, 냉연소둔 온도를 1,100°C 이하로 제어하는 것이 바람직하다. 하지만, 지나치게 낮은 온도에서 냉연 소둔을 진행할 경우, 충분한 재결정 효과를 얻을 수 없으므로 냉연 소둔 온도 범위를 850°C 이상으로 한정하고자 한다.
한편, 본 발명에서는 소둔 후 생성되는 불균일한 표면 스케일 및 미세흠을 제거하기 위해 열연 소둔 후 또는 1차 냉간 압연 후에, 표면 연마처리를 도입하였다.
예를 들어, 표면 연마처리는 1차 냉간 압연 후 2차 냉간 압연 전에, #70 mesh 이상의 거칠기를 갖는 연마 벨트로 7㎛ 이상의 표층을 제거하도록 수행될 수 있다. 이러한 표면 연마 공정은 비용 및 공정 부하에 따른 생산성을 고려하여 1 내지 2회 진행되는 것이 바람직하다.
2회 이상의 냉간 압연 및 냉연 소둔을 거친 후, 자동차 내/외부 장식용 소재로 적용할 수 있도록 냉연 소둔재 표면에 산화 스케일을 형성하지 않고 고유의 광택을 나타내기 위해, 광휘 소둔(Bright Annealing) 공정을 거친다.
하지만, 전술한 바와 같이 냉간 압연시 사용되는 압연유 성분 중 황(S)은 광휘소둔 후 형성되는 피막 내에 잔류하게 되고, 부식이 발생하는 경우, 부동태 피막형성을 방해하는 역할을 하므로 광휘 소둔 전 표면의 황(S)을 제거할 필요가 있다.
본 발명에서는 광휘 소둔의 전처리 공정으로 탈지 단계를 도입하여, 광휘소둔 후 표면으로부터 5nm 이내의 피막 내 황(S) 함량을 10% 이하로 제어하고자 하였다.
개시된 실시예에 따르면, 2회 이상의 냉간 압연 후, 최종 광휘 소둔 전 60 내지 120초 동안 탈지하는 단계를 거친다.
탈지 시간이 60초 미만인 경우에는, 냉간압연유가 완전히 제거되지 않는 문제가 있고, 탈지 시간이 과다한 경우에는 연속 공정에서 생산성이 떨어지는 문제가 있는 점을 고려하여, 본 발명에서는 광휘 소둔 전, 탈지 시간을 60초 내지 120초 한정하였다.
이 때, 탈지용액은 80°C, 2.5중량%의 수산화나트륨(NaOH) 용액을 사용할 수 있다.
다음으로, 광휘 소둔은 수소 또는 질소 조건의 환원성 분위기에서, 850 내지 1,100℃ 온도범위에서 진행할 수 있다.
본 발명에서는 조대한 band 조직이 형성됨에 따라, 추후 냉간압연 시 재결정되는 조직과 두께의 불균일이 발생하는 것을 방지하기 위해, 광휘 소둔 온도를 1,100°C 이하로 제어하는 것이 바람직하다. 하지만, 지나치게 낮은 온도에서 냉연 소둔을 진행할 경우, 재결정 부족으로 인해 충분한 가공성을 확보할 수 없는 문제가 있어, 광휘 소둔 온도 범위를 850°C 이상으로 한정하고자 한다.
탈지 단계를 도입한 광휘 소둔재는, 표면으로부터 5nm 이내의 피막 내 황(S) 함량이 10% 이하일 수 있다.
다음으로, 페라이트계 스테인리스강의 표면 광택도를 향상시키기 위하여 조질 압연(Skin Pass Rolling)을 수행한다.
조질 압연은 평균 거칠기가 #600 이상의 워크 롤로 수행할 수 있다. 워크 롤의 평균 거칠기가 #600 미만인 경우, 워크 롤이 너무 거칠어 강판 표면의 광택도가 감소하며 원하는 수준의 광택도를 확보하기 어렵다.
조질 압연은 2 내지 5회로 실시될 수 있다. 조질 압연이 1회만 실시되는 경우, 충분한 광택도를 확보하기 어렵고, 조질 압연이 6회 이상 실시되는 경우, 비용이 증가하고, 공정 부하에 따른 생산성을 확보할 수 없다는 문제가 있다.
조질 압연을 거친 최종 냉연강판은, 기지조직 내 길이가 100㎛ 이상이고, 5개/mm 2 이하로 존재하는 미세흠을 포함할 수 있으며, 미세흠의 면적율이 2% 이하일 수 있다.
이와 같이, 열연 소둔 후 또는 1차 냉간 압연 후에, 표면 연마처리를 도입하여 불균일한 표면 스케일 및 미세흠을 제거할 수 있고, 냉간압연 시 롤 직경을 70mm 이하로 제어함으로써 표면에 발생하는 미세흠의 길이를 줄일 수 있다. 또한, 광휘 소둔의 전처리 공정으로 탈지 단계를 도입하여, 광휘소둔 후 표면으로부터 5nm 이내의 피막 내 황(S) 함량을 10% 이하로 제어함으로써 내식성 저하 요인으로 작용할 수 있는 요인을 최소화하고자 하였다.
이하 본 발명의 바람직한 실시예를 통해 보다 상세히 설명하기로 한다.
실시예
중량%로, C: 0.02%, N: 0.02%, Si: 0.4%, Mn: 0.3%, Cr: 18%, Nb: 0.4%, Mo: 1%, 나머지 Fe 및 불가피한 불순물을 포함하는 성분범위에 대하여, 잉곳(Ingot) 용해를 통해 슬라브를 제조하고, 1,100℃에서 2시간 가열한 후 열간압연을 진행 하였으며, 열간압연 이후 1,000℃에서 90초간 열연소둔을 진행하였다. 이후, 직경 50 mm의 롤을 사용하여 40%의 압하율로 1차 냉간압연, 1,000℃에서 90초간 1차 냉연소둔을 진행하였으며, #80 메쉬의 거칠기를 갖는 연마벨트를 이용하여 하기 표 1의 조건으로 냉연소둔재의 표면을 1회에 7㎛ 이상 연마하였다. 다음으로, 직경 50 내지 140mm의 롤을 사용하여 40%의 압하율로 2차 냉간압연, 1,000℃에서 90초간 2차 냉연소둔을 진행한 후, 80°C, 2.5중량%의 수산화나트륨(NaOH) 용액에 30 내지 120초 동안 침지하였다. 다음으로, 100% 수소 분위기 및 1,000℃의 온도조건에서 60초 동안 광휘 소둔을 진행한 후, 평균 거칠기가 #600 이상의 워크 롤로 조질 압연을 실시하여 최종 강판을 제조하였다.
비교예들은 하기 표 1의 냉간 압연시 롤 직경, 광휘 소둔 전 침지 시간, 표면 연마처리 조건 중 어느 하나 이상을 달리한 것을 제외하고, 실시예에 동일한 조건에서 최종 강판을 제조한 경우이다.
연마횟수 냉간압연 시, 롤 직경(mm) 탈지시간 (초)
실시예1 1회 70 120
실시예2 2회 50 60
실시예3 1회 50 120
실시예4 1회 50 60
실시예5 1회 50 60
실시예6 1회 50 60
실시예7 2회 50 60
실시예8 2회 50 60
실시예9 2회 50 60
실시예10 2회 50 60
비교예1 2회 50 30
비교예2 - 140 120
비교예3 - 140 120
비교예4 1회 50 60
비교예5 1회 140 30
비교예6 - 140 30
비교예7 - 140 30
비교예8 1회 140 60
비교예9 2회 50 30
비교예10 - 140 60
비교예11 - 140 60
비교예12 2회 50 30
비교예13 1회 50 30
비교예14 - 140 30
비교예15 1회 50 60
비교예16 - 140 60
비교예17 1회 140 120
비교예18 1회 140 120
조질 압연된 소재에 대해, 광학현미경의 광원을 최대로 설정하고, 50배의 배율로 촬영한 다음 image analyzer로 미세흠 면적율, 길이가 100㎛ 이상인 미세흠의 분포밀도를 측정하여 하기 표 2에 기재하였다.
도 1은 광휘소둔 후 형성된 피막 내 황(S) 함량을 글로우 방전 광 방출 분광법(GD-OES, Glow discharge Spectroscopy)으로 측정하는 방법을 설명하기 위한 도면이다.
도 1과 같이, 황(S)의 표면으로부터 깊이 방향 성분 분포도에서 피크값을 피막 내 황 함량의 대푯값으로 설정하여 하기 표 2에 나타내었다.
내식성은 염화동 가속 분무실험으로 평가 하였으며, 실험용액은 50g/L 염화나트륨(NaCl)에 0.26g/L 염화동(CuCl 2·2H2O)과 아세트산(CH 3COOH) 혼합용액을 첨가하여, 발청 유무를 하기 표 2에 나타내었다.
미세흠 면적율(%) 길이가 100㎛ 이상 미세흠 분포밀도 (갯수/mm 2) 피막 내S함량 (%) 발청 유무
실시예1 0.794 0.5 3.88 X
실시예2 0.394 0 6.95 X
실시예3 1.282 1.3 3.96 X
실시예4 1.600 1.7 4.26 X
실시예5 1.600 1.56 5.26 X
실시예6 1.00 0.85 5.54 X
실시예7 0.47 0 7.80 X
실시예8 0.45 0 5.00 X
실시예9 0.25 0 8.51 X
실시예10 0.12 0 6.98 X
비교예1 0.10 0 15
비교예2 3.00 21 2
비교예3 2.30 11 1.50
비교예4 1.50 1.80 9.89
비교예5 0.89 5.50 12.35
비교예6 2.50 10 11.30
비교예7 2.10 12 12.50
비교예8 0.98 6.10 9
비교예9 0.30 0 10.50
비교예10 2.50 21 6
비교예11 3.00 25 9.80
비교예12 0.10 0 18
비교예13 2.00 3.20 17
비교예14 3.50 12 17.50
비교예15 1.50 1.50 7.50
비교예16 2.20 1.90 8
비교예17 0.654 5.1 2.76
비교예18 0.902 6.4 2.01
도 2는 본 발명의 실시예 및 비교예에 따른 피막 내 황(S) 함량과 표면 미세흠 면적율(%) 사이의 관계를 나타낸 그래프이다.
도 2 및 표 2를 참조하면, 비교예 2, 3, 6, 7, 10, 11, 14 및 16은 표면 연마를 하지 않은 상태에서 냉간 압연 시, 롤 직경이 70mm를 초과하는 경우로 미세흠 면적율이 2%를 초과하는 것으로 나타났다.
비교예 5 및 8 은 표면 연마를 수행하여 미세흠 면적율은 2% 이하로 나타났으나, 탈지 시간을 충분하게 확보하지 못하여, 광휘소둔 후 피막 내 황(S) 함량이 높게 도출된 경우이다.
비교예 4, 13 및 15는 표면 연마를 수행하고, 직경이 70mm 이하인 롤로 냉간압연을 수행하여 미세흠 결함은 2% 이내 이나, 탈지 시간을 충분하게 확보하지 못하여, 광휘소둔 후 피막 내 황(S) 함량이 높게 도출된 경우이다.
비교예 1, 9 및 12는 표면 연마를 2회 수행하고, 직경이 70mm 이하인 롤로 냉간압연을 수행하여 미세흠 결함은 2% 이내 이나, 탈지 시간을 충분하게 확보하지 못하여, 광휘소둔 후 피막 내 황(S) 함량이 높게 도출된 경우이다.
비교예 17,18은 미세흠결함 면적율과 광휘소둔 후 피막 내 황(S) 함량 조건은 만족하나, 길이가 100㎛ 이상인 미세흠의 분포밀도가 5개/mm 2를 초과하여 발청이 발생하였으므로 비교예로 분류한 것이다.
이에 비해, 1차 냉간 압연 후 표면 연마처리를 1 내지 2회 도입하고, 직경이 70mm 이하인 롤을 사용하여 냉간 압연을 수행하고, 광후 소둔 전 60 내지 120초 동안 탈지하는 조건을 만족하는 실시예 1 내지 실시예 10의 페라이트계 스테인리스강은 미세흠의 면적율이 2% 이하이고, 길이가 100㎛ 이상인 미세흠의 분포밀도가 5개/mm 2 이하이며, 광휘소둔 후 피막 내 황(S) 함량이 10% 이하로 나타나 내식성 평가 시, 발청이 발생하지 않은 것을 확인할 수 있다.
개시된 실시예에 따르면, 1차적으로 표면 연마처리를 도입하고, 냉간압연 시 롤 직경을 제어하여 페라이트계 스테인리스강의 표면 미세흠 발생을 최소화하면서도, 광휘 소둔 전 침지 시간을 제어함으로써 광휘소둔 후 형성된 BA 피막 내 황(S)의 함량을 제어하여 내식성을 향상시킨 페라이트계 스테인리스강을 제조할 수 있다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명에 따른 페라이트계 스테인리스강은 표면 특성 뿐만 아니라 내식성을 확보할 수 있어, 자동차 몰딩재 등 내/외부 장식용 소재에 적용이 가능하다.

Claims (15)

  1. 중량%로, C: 0.001 내지 0.05%, N: 0.001 내지 0.05%, Si: 0.1 내지 1.0%, Mn: 0.1 내지 1.0%, Cr: 12.0 내지 22.0%, Ti: 0.01 내지 1.0%, Nb: 0.01 내지 1.0%, 나머지 Fe 및 불가피한 불순물을 포함하고,
    미세흠의 면적율이 2% 이하이고,
    표면으로부터 5nm 이내의 피막 내 황(S) 함량이 10% 이하인 내식성이 향상된 페라이트계 스테인리스강.
  2. 제1항에 있어서,
    Mo: 0.01 내지 2.0%, Al: 0.10% 이하(0은 제외), Cu: 1.0% 이하(0은 제외), V: 0.01 내지 0.3%, Zr: 0.01 내지 0.3% 및 B: 0.0010 내지 0.0100% 중 1종 이상을 더 포함하는 내식성이 향상된 페라이트계 스테인리스강.
  3. 제1항에 있어서,
    길이가 100㎛ 이상인 미세흠의 분포가 5개/mm 2 이하인 내식성이 향상된 페라이트계 스테인리스강.
  4. 제1항에 있어서,
    하기 식 (1)을 만족하는 내식성이 향상된 페라이트계 스테인리스강.
    식(1): 5.12 * 미세흠 면적율(%) + 피막 내 황(S)성분의 함량 (%) ≤ 17
  5. 중량%로, C: 0.001 내지 0.05%, N: 0.001 내지 0.05%, Si: 0.1 내지 1.0%, Mn: 0.1 내지 1.0%, Cr: 12.0 내지 22.0%, Ti: 0.01 내지 1.0%, Nb: 0.01 내지 1.0%, 나머지 Fe 및 불가피한 불순물을 포함하는 슬라브를 열간 압연 및 열연 소둔하는 단계;
    롤 직경을 70mm 이하로 제어하여, 상기 열간 압연재를 2회 이상 냉간 압연 및 냉연소둔하는 단계;
    상기 냉연 소둔재를 60 내지 120초 동안 탈지하는 단계; 및
    상기 냉간 압연재를 광휘 소둔하는 단계; 를 포함하고,
    열연 소둔 후 또는 1차 냉간 압연 후에, 표면 연마처리를 도입하는 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  6. 제5항에 있어서,
    Mo: 0.01 내지 2.0%, Al: 0.10% 이하(0은 제외), Cu: 1.0% 이하(0은 제외), V: 0.01 내지 0.3%, Zr: 0.01 내지 0.3% 및 B: 0.0010 내지 0.0100% 중 1종 이상을 더 포함하는 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  7. 제5항에 있어서,
    상기 냉간 압연은,
    40% 이상의 압하율로 압연하는 1차 냉간 압연; 및
    40% 이상의 압하율로 압연하는 2차 냉간 압연을 포함하며,
    총 압하율이 80% 이상인 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  8. 제7항에 있어서,
    상기 냉간 압연은,
    40% 이상의 압하율로 압연하는 3차 냉간 압연을 더 포함하는 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  9. 제5항에 있어서,
    상기 열간 압연 시, 재가열 온도는 1050 내지 1280℃이고, 마무리 압연 온도는 800 내지 950℃인 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  10. 제5항에 있어서,
    상기 표면 연마처리는 거칠기가 #70 mesh 이상의 연마 벨트를 사용하여 7㎛ 이상의 표층을 제거하도록 수행되는 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  11. 제10항에 있어서,
    상기 표면 연마처리는 1 내지 2회 수행되는 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  12. 제5항에 있어서,
    상기 냉연소둔은 850 내지 1,100℃에서 수행되는 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  13. 제5항에 있어서,
    상기 광휘 소둔은 850 내지 1,100℃에서 수행되는 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  14. 제5항에 있어서,
    상기 조질 압연은 평균 거칠기가 #600 이상의 워크 롤로 수행되는 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
  15. 제14항에 있어서,
    상기 조질 압연은 2 내지 5회로 수행되는 내식성이 향상된 페라이트계 스테인리스강의 제조 방법.
PCT/KR2020/014033 2020-04-28 2020-10-14 내식성이 향상된 페라이트계 스테인리스강 및 이의 제조방법 WO2021221246A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/917,993 US20230144982A1 (en) 2020-04-28 2020-10-14 Ferritic stainless steel having improved corrosion resistance, and method for manufacturing same
EP20933238.6A EP4119691A1 (en) 2020-04-28 2020-10-14 Ferritic stainless steel having improved corrosion resistance, and method for manufacturing same
CN202080100181.9A CN115461486B (zh) 2020-04-28 2020-10-14 具有改善的耐腐蚀性的铁素体不锈钢及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0051691 2020-04-28
KR1020200051691A KR102370505B1 (ko) 2020-04-28 2020-04-28 내식성이 향상된 페라이트계 스테인리스강 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2021221246A1 true WO2021221246A1 (ko) 2021-11-04

Family

ID=78332062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014033 WO2021221246A1 (ko) 2020-04-28 2020-10-14 내식성이 향상된 페라이트계 스테인리스강 및 이의 제조방법

Country Status (5)

Country Link
US (1) US20230144982A1 (ko)
EP (1) EP4119691A1 (ko)
KR (1) KR102370505B1 (ko)
CN (1) CN115461486B (ko)
WO (1) WO2021221246A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230072327A (ko) * 2021-11-17 2023-05-24 주식회사 포스코 내식성 및 자기적 성질이 향상된 페라이트계 스테인리스강 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229488A (ja) * 2009-03-27 2010-10-14 Nisshin Steel Co Ltd フェライト系ステンレス鋼研磨仕上げ材の製造方法
JP4651682B2 (ja) * 2008-01-28 2011-03-16 新日鐵住金ステンレス株式会社 耐食性と加工性に優れた高純度フェライト系ステンレス鋼およびその製造方法
KR20130074216A (ko) * 2011-12-26 2013-07-04 주식회사 포스코 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법
KR20150068648A (ko) * 2013-12-12 2015-06-22 주식회사 포스코 내식성이 우수한 페라이트계 스테인리스 강의 제조방법 및 이로부터 제조된 페라이트계 스테인리스 강
KR20160143900A (ko) * 2015-06-04 2016-12-15 주식회사 포스코 표면품질이 우수한 페라이트계 스테인리스 냉간압연강판 및 이의 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169989A (ja) * 1984-09-14 1986-04-10 Nippon Steel Corp フエライト系ステンレス熱間圧延鋼板の酸洗方法
JPH0680191B2 (ja) * 1986-12-19 1994-10-12 川崎製鉄株式会社 フエライト系ステンレス鋼光輝焼鈍材の耐銹性改善方法
JP3575175B2 (ja) * 1996-08-27 2004-10-13 住友金属工業株式会社 フェライト系ステンレス鋼帯の冷間圧延方法
JP5709845B2 (ja) * 2010-03-29 2015-04-30 新日鐵住金ステンレス株式会社 表面光沢と耐銹性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2016196019A (ja) * 2015-04-03 2016-11-24 日新製鋼株式会社 フェライト系ステンレス鋼板、カバー部材およびフェライト系ステンレス鋼板の製造方法
JP6301402B2 (ja) * 2016-07-01 2018-03-28 日新製鋼株式会社 フェライト系ステンレス鋼板およびその製造方法
KR101828282B1 (ko) * 2016-09-28 2018-02-14 주식회사 포스코 표면품질이 우수한 페라이트계 스테인리스 냉간압연강판 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651682B2 (ja) * 2008-01-28 2011-03-16 新日鐵住金ステンレス株式会社 耐食性と加工性に優れた高純度フェライト系ステンレス鋼およびその製造方法
JP2010229488A (ja) * 2009-03-27 2010-10-14 Nisshin Steel Co Ltd フェライト系ステンレス鋼研磨仕上げ材の製造方法
KR20130074216A (ko) * 2011-12-26 2013-07-04 주식회사 포스코 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법
KR20150068648A (ko) * 2013-12-12 2015-06-22 주식회사 포스코 내식성이 우수한 페라이트계 스테인리스 강의 제조방법 및 이로부터 제조된 페라이트계 스테인리스 강
KR20160143900A (ko) * 2015-06-04 2016-12-15 주식회사 포스코 표면품질이 우수한 페라이트계 스테인리스 냉간압연강판 및 이의 제조 방법

Also Published As

Publication number Publication date
US20230144982A1 (en) 2023-05-11
CN115461486B (zh) 2024-03-19
KR20210133027A (ko) 2021-11-05
CN115461486A (zh) 2022-12-09
KR102370505B1 (ko) 2022-03-04
EP4119691A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2019004662A1 (ko) 액상금속취화 균열 저항성이 우수한 강판 및 그 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2021221246A1 (ko) 내식성이 향상된 페라이트계 스테인리스강 및 이의 제조방법
WO2019124781A1 (ko) 상온내시효성 및 소부경화성이 우수한 아연계 도금강판 및 그 제조방법
WO2019004540A1 (ko) 핫 스탬핑 부품 및 이의 제조방법
WO2020130675A1 (ko) 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2021221245A1 (ko) 표면 특성이 향상된 페라이트계 스테인리스강 및 이의 제조방법
WO2018117480A1 (ko) 표면특성이 우수한 오스테나이트계 스테인리스강 가공품 및 이의 제조 방법
WO2017111303A1 (ko) 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
WO2017111518A1 (ko) 가공성이 우수한 열연도금강판 및 그 제조방법
WO2021261884A1 (ko) 생산성 및 원가 절감 효과가 우수한 고강도 오스테나이트계 스테인리스강 및 이의 제조방법
WO2020036370A1 (ko) 강도가 향상된 오스테나이트계 스테인리스강
WO2020111739A2 (ko) 법랑용 냉연 강판 및 그 제조방법
WO2024080657A1 (ko) 강판 및 이의 제조방법
WO2022131504A1 (ko) 고온 연화저항성이 향상된 오스테나이트계 스테인리스강
WO2021125734A1 (ko) 황화물 응력부식 균열 저항성이 우수한 강재 및 이의 제조방법
WO2022108219A1 (ko) 강도, 성형성 및 표면 품질이 우수한 도금강판 및 이의 제조방법
WO2023048495A1 (ko) 구멍확장성이 우수한 초고강도 냉연강판 및 그 제조방법
WO2024111984A1 (ko) 저망간 강재 및 이의 제조방법
WO2023096453A1 (ko) 연신율이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2023113535A1 (ko) 내피쉬스케일성이 우수한 법랑용 냉연강판 및 이의 제조 방법
WO2022131635A1 (ko) 강도, 성형성 및 표면 품질이 우수한 도금강판 및 이의 제조방법
WO2023224200A1 (ko) 용접성이 우수한 초고강도 아연도금강판 및 그 제조방법
WO2022119134A1 (ko) 입계침식이 개선된 페라이트계 스테인리스강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020933238

Country of ref document: EP

Effective date: 20221012

NENP Non-entry into the national phase

Ref country code: DE