WO2021220929A1 - ウエハ加工用仮接着剤、ウエハ積層体及び薄型ウエハの製造方法 - Google Patents

ウエハ加工用仮接着剤、ウエハ積層体及び薄型ウエハの製造方法 Download PDF

Info

Publication number
WO2021220929A1
WO2021220929A1 PCT/JP2021/016272 JP2021016272W WO2021220929A1 WO 2021220929 A1 WO2021220929 A1 WO 2021220929A1 JP 2021016272 W JP2021016272 W JP 2021016272W WO 2021220929 A1 WO2021220929 A1 WO 2021220929A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
temporary adhesive
mass
silicone resin
support
Prior art date
Application number
PCT/JP2021/016272
Other languages
English (en)
French (fr)
Inventor
光夫 武藤
道博 菅生
昭平 田上
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020227039904A priority Critical patent/KR20230005219A/ko
Priority to CN202180031672.7A priority patent/CN115485814A/zh
Priority to JP2022517686A priority patent/JPWO2021220929A1/ja
Priority to US17/921,440 priority patent/US11970639B2/en
Priority to EP21797814.7A priority patent/EP4144808A1/en
Publication of WO2021220929A1 publication Critical patent/WO2021220929A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0016Abrading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/502Additional features of adhesives in the form of films or foils characterized by process specific features process for debonding adherents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Definitions

  • the present invention relates to a temporary adhesive for wafer processing, a wafer laminate, and a method for manufacturing a thin wafer.
  • the three-dimensional mounting technology is a semiconductor manufacturing technology in which one semiconductor chip is made thinner and then laminated in multiple layers while being connected by a through silicon via (TSV).
  • TSV through silicon via
  • a back surface protective tape is attached to the opposite side of the ground surface to prevent wafer damage during grinding.
  • this tape uses an organic resin film as a supporting base material and is flexible, it has insufficient strength and heat resistance, and is not suitable for performing a TSV forming step or a wiring layer forming step on the back surface. ..
  • Patent Document 1 As a method of peeling the temporary adhesive layer known so far, the adhesive layer containing a light-absorbing substance is irradiated with high-intensity light, and the adhesive layer is decomposed to peel the adhesive layer from the support.
  • Patent Document 2 A technique (Patent Document 1) and a technique (Patent Document 2) of joining and peeling in a heat-melted state using a heat-meltable hydrocarbon compound as an adhesive have been proposed.
  • the former technique requires an expensive device such as a laser, and has problems such as a long processing time per substrate. Further, the latter technique is simple because it is controlled only by heating, but its application range is narrow because the thermal stability at a high temperature exceeding 200 ° C. is insufficient. Further, these temporary adhesive layers are not suitable for forming a uniform film thickness of a high-step substrate and for complete adhesion to a support.
  • a technique has been proposed in which a silicone pressure-sensitive adhesive is used for the temporary adhesive layer.
  • a substrate is bonded to a support using a heat-curable silicone pressure-sensitive adhesive, and the silicone resin is melted or decomposed at the time of peeling.
  • the substrate is separated from the support by immersing it in such a chemical agent (Patent Document 3). Therefore, it takes a very long time to peel off, and it is difficult to apply it to an actual manufacturing process. Further, after peeling, it takes a long time to clean the silicone adhesive remaining as a residue on the substrate, which also has a problem in terms of cleaning and removing property.
  • the bonding step in the case of heat-curable silicone, heating of about 150 ° C.
  • the present invention has been made in view of the above problems, and it is possible to join a substrate and a support at a relatively low temperature in a short time, thereby improving workability and wafer warpage at the time of joining, and also having a high step. Even when a substrate is used, it has sufficient substrate retention after bonding, is highly adaptable to the wafer back surface grinding process, TSV forming process, and wafer back surface wiring process, and has excellent wafer thermal process resistance, while in the peeling process.
  • a temporary adhesive for wafer processing, a wafer laminate, and a method for manufacturing a thin wafer using the temporary adhesive for wafer processing which is easy to peel off and has excellent residue cleanability of the substrate after peeling, which leads to improvement in productivity of thin wafers. The purpose is to do.
  • the present invention provides the following temporary adhesive for wafer processing, a wafer laminate, and a method for producing a thin wafer.
  • a temporary adhesive for wafer processing for temporarily adhering a wafer to a support which comprises a photocurable silicone resin composition containing a non-functional organopolysiloxane.
  • the photocurable silicone resin composition containing the non-functional organopolysiloxane (A) Organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass, (B) Organohydrogenpolysiloxane containing a hydrogen atom (SiH group) bonded to two or more silicon atoms in one molecule: SiH group in the component (B) with respect to the total number of alkenyl groups in the component (A).
  • the photocurable silicone resin composition containing the non-functional organopolysiloxane further contains a hydrosilylation reaction control agent as the component (E) at 0 with respect to the total mass of the components (A), (B) and (C).
  • a temporary adhesive for wafer processing according to any one of 1 to 3 containing .001 to 10 parts by mass. 5. After curing the photocurable silicone resin composition containing the non-functional organopolysiloxane, any of 1 to 4 in which the 180 ° peel peeling force of the 25 mm wide test piece against the silicon substrate at 25 ° C. is 2 gf or more and 50 gf or less. Temporary adhesive for wafer processing. 6.
  • steps (a) and (b) After curing of the photocurable silicone resin composition containing the non-functional organopolysiloxane, temporary bonding for wafer processing according to any one of 1 to 5 having a storage elastic modulus at 25 ° C. of 1,000 Pa or more and 1,000 MPa or less. Agent. 7.
  • steps (a) and (b) the non-functional organopolysiloxane containing any of the following aspects is used.
  • the steps (c) to (e) are common.
  • Step of applying the adhesive composition and joining (b1) Step of photocuring the temporary adhesive of the bonded wafer (Aspect 2) (A2) Step of irradiating the temporary adhesive composition for wafer processing according to any one of 1 to 6 with light (b2)
  • the circuit forming surface of a wafer having a circuit forming surface on the front surface and a circuit non-forming surface on the back surface, and /
  • a step of applying the temporary adhesive composition for wafer processing subjected to light irradiation in (a2) to the bonding surface of the support with the wafer, joining and curing the wafer (c) Wafer circuit of the wafer laminate.
  • Step of grinding or polishing the non-formed surface (d) Step of processing the circuit non-formed surface of the wafer (e) Step of peeling the processed wafer from the support.
  • the support is provided with a temporary adhesive layer obtained from the temporary adhesive for wafer processing according to any one of 1 to 6 laminated on the support, and a wafer having a circuit forming surface on the front surface and a circuit non-forming surface on the back surface.
  • the temporary adhesive for wafer processing of the present invention uses a photocurable silicone resin composition containing a non-functional organopolysiloxane, which enables the bonding of substrates at a relatively low temperature and in a short time by light irradiation. As a result, the warp of the wafer at the time of bonding is suppressed, and the bonding time can be shortened. Further, even after joining, not only the resin does not undergo thermal decomposition, but also the resin does not flow even at a high temperature of 200 ° C. or higher, and the heat resistance is high.
  • the wafer can be easily peeled from the support from the support after the thin wafer is manufactured, for example, at room temperature, and the fragile thin wafer can be easily peeled. It becomes possible to manufacture.
  • the temporary adhesive of the present invention can be selectively adhered to the support, after peeling, no residue derived from the temporary adhesive remains on the thin wafer, and the subsequent cleaning and removing property is also excellent. According to the method for manufacturing a thin wafer of the present invention, a thin wafer having a through electrode structure or a bump connection structure can be easily manufactured.
  • the temporary adhesive for wafer processing of the present invention comprises a photocurable silicone resin composition containing a non-functional organopolysiloxane. From the viewpoint of applicability to silicon wafers and the like having steps, a silicone resin composition having good spin coating properties is preferably used as a temporary adhesive for wafer processing.
  • Such a photocurable silicone resin composition preferably contains, for example, the following components (A) to (D).
  • (A) Organopolysiloxane having two or more alkenyl groups in one molecule: 100 parts by mass
  • (B) Organohydrogenpolysiloxane containing a hydrogen atom (SiH group) bonded to two or more silicon atoms in one molecule: SiH group in the component (B) with respect to the total number of alkenyl groups in the component (A).
  • the component (A) is an organopolysiloxane having two or more alkenyl groups in one molecule.
  • the component (A) is a linear or branched diorganopolysiloxane containing two or more alkenyl groups in one molecule, and contains two or more alkenyl groups in one molecule in units of SiO 4/2.
  • Examples thereof include an organopolysiloxane having a three-dimensional network structure having a represented siloxane unit (Q unit). Of these, diorganopolysiloxane or organopolysiloxane having a three-dimensional network structure having an alkenyl group content of 0.6 to 9 mol% is preferable.
  • the alkenyl group content is the ratio (mol%) of the number of alkenyl groups to the number of Si atoms in the molecule.
  • organopolysiloxane examples include those represented by the following formulas (A-1), (A-2) or (A-3). These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • R 1 to R 16 are independently monovalent hydrocarbon groups other than aliphatic unsaturated hydrocarbon groups.
  • X 1 to X 5 are independently alkenyl group-containing monovalent organic groups.
  • a and b are independently integers of 0 to 3.
  • c 1 , c 2 , d 1 and d 2 are 0 ⁇ c 1 ⁇ 10, 2 ⁇ c 2 ⁇ 10, 0 ⁇ d 1 ⁇ 100 and 0 ⁇ d. It is an integer that satisfies 2 ⁇ 100.
  • a, b, c 1 , c 2 , d 1 and d 2 are a combination of numbers such that the alkenyl group content is 0.6 to 9 mol%.
  • e is an integer of 1 to 3.
  • f 1 , f 2 and f 3 (f 2 + f 3 ) / f 1 is 0.3 to 3.0, and f 3 / (f 1 + f 2 + f 3 ) is 0.01 to 0.6. Is a number like.
  • the monovalent hydrocarbon group other than the aliphatic unsaturated hydrocarbon group preferably has 1 to 10 carbon atoms, and is, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or a tert.
  • -Alkyl groups such as butyl group, n-pentyl group and n-hexyl group
  • cycloalkyl groups such as cyclopentyl group and cyclohexyl group
  • aryl groups such as phenyl group and tolyl group can be mentioned.
  • an alkyl group such as a methyl group or a phenyl group is preferable.
  • the alkenyl group-containing monovalent organic group preferably has 2 to 10 carbon atoms, and is, for example, an alkenyl group such as a vinyl group, an allyl group, a hexenyl group, or an octenyl group; an acryloylpropyl group, an acryloylethyl group, or an acryloylmethyl group.
  • (Meta) acryloylalkyl groups such as methacryloylpropyl groups; (meth) acryloylalkyl groups such as acryloxypropyl groups, acryloxyethyl groups, acryloxymethyl groups, methacryoxypropyl groups, methacryloxyethyl groups, and methacryloxymethyl groups.
  • a and b are independently integers of 0 to 3, but if a and b are 1 to 3, the molecular chain ends are blocked with an alkenyl group, so that the reaction occurs. It is preferable because the reaction can be completed in a short time by the alkenyl group at the end of the molecular chain having good properties. Further, from the viewpoint of cost, it is industrially preferable that a and b are 1.
  • the properties of the alkenyl group-containing diorganopolysiloxane represented by the formula (A-1) or (A-2) are preferably oily or raw rubber.
  • the organopolysiloxane represented by the formula (A-3) contains 4/2 units of SiO and has a three-dimensional network structure.
  • e is an integer of 1 to 3 independently, but it is industrially preferable that it is 1 from the viewpoint of cost.
  • the product of the average value of e and f 3 / (f 1 + f 2 + f 3 ) is preferably 0.02 to 1.5, and more preferably 0.03 to 1.0.
  • the organopolysiloxane represented by the formula (A-3) may be used as a solution dissolved in an organic solvent.
  • the number average molecular weight (Mn) of the organopolysiloxane of the component (A) is preferably 100 to 1,000,000, more preferably 1,000 to 100,000.
  • Mn is a polystyrene-equivalent measured value obtained by gel permeation chromatography using toluene as a solvent.
  • the component (A) may be used alone or in combination of two or more.
  • an organopolysiloxane represented by the formula (A-1) in combination with an organopolysiloxane represented by the formula (A-3).
  • the amount of the organopolysiloxane represented by the formula (A-3) is preferably 1 to 1,000 parts by mass with respect to 100 parts by mass of the organopolysiloxane represented by the formula (A-1). More preferably, 10 to 500 parts by mass.
  • the component (B) is a cross-linking agent, and is an organohydrogenpolysiloxane having at least two, preferably three or more hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule.
  • the organohydrogenpolysiloxane may be linear, branched or cyclic. Further, the organohydrogenpolysiloxane may be used alone or in combination of two or more.
  • the viscosity of the organohydrogenpolysiloxane of the component (B) at 25 ° C. is preferably 1 to 5,000 mPa ⁇ s, more preferably 5 to 500 mPa ⁇ s.
  • the viscosity is a value measured at 25 ° C. by a rotational viscometer.
  • the Mn of the organohydrogenpolysiloxane as the component (B) is preferably 100 to 100,000, more preferably 500 to 10,000. When Mn is in the above range, it is preferable in terms of workability associated with the viscosity of the composition and processability associated with the storage elastic modulus after curing.
  • the total amount of SiH groups in the component (B) to the total number of alkenyl groups in the component (A) is in the range of 0.3 to 10 in terms of molar ratio (SiH group / alkenyl group). It is preferably blended, and more preferably blended in the range of 1.0 to 8.0.
  • the molar ratio is 0.3 or more, the crosslink density does not decrease, and the problem that the temporary adhesive layer does not cure does not occur. Further, when the molar ratio is 10 or less, the crosslink density does not become too high, sufficient adhesive strength and tack can be obtained, and the usable time of the treatment liquid can be lengthened.
  • the component (C) is a non-functional organopolysiloxane.
  • “non-functional” has a reactive group such as an alkenyl group, a hydrogen atom, a hydroxy group, an alkoxy group, a halogen atom, an epoxy group, etc., which are bonded to a silicon atom directly or via an arbitrary group in the molecule. It means not to.
  • Such a non-functional organopolysiloxane includes, for example, an unsubstituted or substituted organosole having a monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms.
  • a monovalent hydrocarbon group include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and a heptyl group; a cycloalkyl group such as a cyclohexyl group; a phenyl group and a trill.
  • Aryl groups such as groups, xsilyl groups and naphthyl groups; aralkyl groups such as benzyl groups and phenethyl groups can be mentioned. Further, a part or all of the hydrogen atoms of these groups may be substituted with halogen atoms such as chlorine atom, fluorine atom and bromine atom, and such groups include chloromethyl group and 3-chloropropyl group. Examples thereof include alkyl halide groups such as groups 3,3,3-trifluoropropyl groups.
  • the monovalent hydrocarbon group is preferably an alkyl group or an aryl group, and more preferably a methyl group or a phenyl group.
  • the molecular structure of the non-functional organopolysiloxane of the component (C) is not particularly limited and may be linear, branched, cyclic or the like, but a linear or branched organopolysiloxane is preferable. It is preferably a linear diorganopolysiloxane in which the chain basically consists of repeating diorganosiloxane units and both ends of the molecular chain are sealed with a triorganosyloxy group.
  • the component (C), the non-functional organopolysiloxane has a viscosity (25 ° C.) in a 30 mass% toluene solution of the workability of the composition, the coatability on the substrate, the mechanical properties of the cured product, and the support. From the viewpoint of peelability and the like, the one having 100 to 500,000 mPa ⁇ s is preferable, and the one having 200 to 100,000 mPa ⁇ s is more preferable. Within the above range, since the silicone resin composition has an appropriate molecular weight, it volatilizes when the silicone resin composition is heat-cured, making it difficult to obtain an effect, or causing wafer cracking in a wafer thermal process such as CVD. It is preferable because it does not spill and has good workability and coatability.
  • non-functional organopolysiloxane examples include a trimethylsiloxy group-blocked dimethylsiloxane polymer at both ends of the molecular chain, a trimethylsiloxy group-blocked phenylmethylpolysiloxane at both ends of the molecular chain, and a trimethylsiloxy group-blocked 3,3,3- at both ends of the molecular chain.
  • Trifluoropropylmethylsiloxane polymer trimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecular chain, methylphenylsiloxane copolymer, trimethylsiloxy group-blocked dimethylsiloxane at both ends of the molecular chain, 3,3,3-trifluoropropylmethyl copolymer , Molecular chain double-ended trimethylsiloxy group-blocked methylphenylsiloxane ⁇ 3,3,3-trifluoropropylmethyl copolymer, Molecular chain double-ended trimethylsiloxy group-blocked dimethylsiloxane ⁇ 3,3,3-trifluoropropylmethylsiloxane ⁇ Methylphenylsiloxane copolymer, dimethylphenylsiloxy group-blocked dimethylpolysiloxane at both ends of the molecular chain, dimethylphenylsiloxy group-blocked methylphenylpoly
  • the non-functional organopolysiloxane of the component (C) may be used alone or in combination of two or more. Moreover, the property is preferably oil-like or raw rubber-like.
  • the component (D) is a photoactive hydrosilylation reaction catalyst, and the photoactive hydrosilylation reaction catalyst is activated by irradiation with light, particularly ultraviolet rays having a wavelength of 300 to 400 nm, and an alkenyl group in the component (A). And a catalyst that promotes the addition reaction with the Si—H group in the component (B).
  • This accelerating effect is temperature-dependent, and a high accelerating effect can be obtained at a higher temperature. Therefore, it is preferable to use the product under an environmental temperature of 0 to 200 ° C., more preferably 10 to 100 ° C. after preferable light irradiation, in that the reaction is completed within an appropriate reaction time.
  • the photoactive hydrosilylation reaction catalyst mainly corresponds to a platinum group metal catalyst or an iron group metal catalyst, and the platinum group metal catalyst includes a platinum group, a palladium group, a rhodium group metal complex, and an iron group type.
  • the metal catalyst include nickel-based, iron-based, and cobalt-based iron group complexes. Among them, platinum-based metal complexes are preferable because they are relatively easy to obtain and exhibit good catalytic activity, and are often used.
  • a ligand that exhibits catalytic activity with UV light having a medium to long wavelength of UV-B to UV-A is preferable in terms of suppressing damage to the wafer.
  • examples of such a ligand include a cyclic diene ligand, a ⁇ -diketonato ligand and the like.
  • the cyclic diene ligand type for example, a ( ⁇ 5 -cyclopentadienyl) tri ( ⁇ -alkyl) platinum (IV) complex, particularly specific (Methylcyclopentadienyl) trimethylplatinum (IV), (cyclopentadienyl) trimethylplatinum (IV), (1,2,3,4,5-pentamethylcyclopentadienyl) trimethylplatinum (IV) , (Cyclopentadienyl) dimethylethyl platinum (IV), (cyclopentadienyl) dimethylacetyl platinum (IV), (trimethylsilylcyclopentadienyl) trimethylplatinum (IV), (methoxycarbonylcyclopentadienyl) trimethylplatinum Examples thereof include (IV), (dimethylphenylsilylcyclopentadienyl) trimethylplatinum (
  • the component (A) when they are solid catalysts, they can be used in a solid state, but in order to obtain a more uniform cured product, those dissolved in an appropriate solvent are used as the component (A). It is preferably used by being compatible with an organopolysiloxane having an alkenyl group.
  • the solvent include isononane, toluene, 2- (2-butoxyethoxy) ethyl acetate and the like.
  • the amount of the component (D) added may be an effective amount, but is usually 0.1 to 5,000 ppm as the platinum content (in terms of metal atomic weight) with respect to the total mass of (A), (B), and (C). Yes, 0.5 to 2,000 ppm, more preferably 1 to 500 ppm. If it is 0.1 ppm or more, the curability of the composition does not decrease, the crosslink density does not decrease, and the holding power does not decrease. If it is 0.5% or less, the usable time of the treatment bath can be lengthened.
  • the photocurable silicone resin composition may further contain a reaction control agent as the component (E).
  • the reaction control agent is optionally added when the composition is prepared or applied to the base material in order to prevent the composition from thickening or gelling.
  • reaction control agent examples include 3-methyl-1-butyne-3-ol, 3-methyl-1-pentyne-3-ol, 3,5-dimethyl-1-hexin-3-ol, and 1-ethynylcyclohexanol.
  • the control ability differs depending on the chemical structure. Therefore, the content thereof should be adjusted to the optimum amount, but the curability, storage stability, and the like.
  • the total mass of the components (A), (B) and (C) is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 10 parts by mass. Is.
  • the content of the component (E) is within the above range, the composition can be used for a long time, long-term storage stability can be obtained, and curability and workability are good.
  • the photocurable silicone resin composition further contains 0.5 units of RA 3 SiO (in the formula, RA is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, respectively). and comprises SiO 2 units, may be added to the organopolysiloxane molar ratio of R a 3 SiO 0.5 units to SiO 2 units (R a 3 SiO 0.5 / SiO 2) is from 0.3 to 1.8.
  • the amount added is preferably 0 to 500 parts by mass with respect to 100 parts by mass of the component (A). More preferably, it is larger than 0 to 300 parts by mass.
  • a filler such as silica may be added to the photocurable silicone resin composition within a range that does not impair its performance.
  • the photocurable silicone resin composition is used as a solution by adding a solvent for the reasons of improving workability and miscibility by lowering the viscosity of the composition, adjusting the film thickness of the temporary adhesive layer, and the like. May be good.
  • the solvent used is not particularly limited as long as it can dissolve the above components, but hydrocarbon solvents such as pentane, hexane, cyclohexane, isooctane, nonane, decane, p-mentane, pinene, isododecane, and limonene are preferable.
  • a method of solutionization a method of preparing the photocurable silicone resin composition and finally adding a solvent to adjust the viscosity to a desired value, or a method of adjusting the viscosity to a desired value, or high viscosity (A), (B) and / or ( C) Examples thereof include a method in which the components are diluted with a solvent in advance to improve workability and miscibility, and then the remaining components are mixed. Further, as a mixing method at the time of solution formation, a mixing method may be appropriately selected from the viscosity and workability of the composition, such as a shaking mixer, a magnetic stirrer, and various mixers.
  • the blending amount of the solvent may be appropriately set from the viewpoint of adjusting the viscosity and workability of the composition, the film thickness of the temporary adhesive layer, and the like.
  • the temporary adhesive layer can be formed by applying the photocurable silicone resin composition onto the substrate by a method such as spin coating or roll coating. Of these, when the temporary adhesive layer is formed on the substrate by a method such as spin coating, it is preferable to solution the photocurable silicone resin composition and coat it.
  • the solution-coated photocurable silicone resin composition preferably has a viscosity at 25 ° C. of 1 to 100,000 mPa ⁇ s, more preferably 10 to 10,000 mPa ⁇ s, from the viewpoint of coatability.
  • the 180 ° peel peeling force of a test piece having a width of 25 mm (for example, a silicon substrate test piece) at 25 ° C. after curing is usually 2 to 50 gf, preferably 3 to 30 gf. It is more preferably 5 to 20 gf. If it is 2 gf or more, there is no possibility that the wafer is displaced during wafer grinding, and if it is 50 gf or less, the wafer can be easily peeled off.
  • the photocurable silicone resin composition has a storage elastic modulus at 25 ° C. after curing of 1,000 Pa or more and 1,000 MPa or less, preferably 10,000 Pa or more and 500 MPa or less. If the storage elastic modulus is 1,000 Pa or more, the film to be formed is tough, there is no risk of wafer misalignment and accompanying wafer cracking during wafer grinding, and if it is 1,000 MPa or less, a wafer such as CVD. The deformation stress during the thermal process can be relaxed, and it is stable during the thermal process on the wafer.
  • the method for producing a thin wafer of the present invention is characterized in that a temporary adhesive layer made of a photocurable silicone resin composition is used as an adhesive layer between a wafer having a semiconductor circuit or the like and a support. Two aspects and their illustrations are shown in FIG. In any aspect, the thickness of the thin wafer obtained by the production method of the present invention is typically 5 to 300 ⁇ m, more typically 10 to 100 ⁇ m.
  • the method for producing a thin wafer of the present invention has the following steps (a1) to (e) as a first aspect. Further, if necessary, the steps (f) to (i) are included.
  • Step (a1) is a temporary bonding step, in which the circuit forming surface of a wafer having a circuit forming surface on the front surface and a circuit non-forming surface on the back surface is detachably bonded to the support using the temporary adhesive for wafer processing. This is a step of forming a wafer laminate.
  • a method and a support method in which a temporary adhesive layer is formed on the surface of the wafer using the temporary adhesive for processing the wafer, and the support and the surface of the wafer are bonded to each other via the temporary adhesive layer.
  • Wafers applicable to the present invention are usually semiconductor wafers.
  • the semiconductor wafer include not only silicon wafers but also germanium wafers, gallium-arsenide wafers, gallium-phosphorus wafers, gallium-arsenide-aluminum wafers and the like.
  • the thickness of the wafer is not particularly limited, but is typically 600 to 800 ⁇ m, and more typically 625 to 775 ⁇ m.
  • the support since the photocurable silicone resin composition is irradiated with light through a support, the support includes light transmission of a glass plate, a quartz plate, an acrylic plate, a polycarbonate plate, a polyethylene terephthalate plate, or the like.
  • a plastic substrate can be used.
  • the glass plate is preferable because it is transparent to ultraviolet rays and has excellent heat resistance.
  • the temporary adhesive layer may be formed by laminating a film-shaped photocurable silicone resin composition on a wafer or a support, and the photocurable silicone resin composition is spin-coated and rolled. It may be formed by applying it by a method such as coating.
  • the photocurable silicone resin composition is a solution containing a solvent
  • prebaking is performed in advance at a temperature of preferably 20 to 200 ° C., more preferably 30 to 150 ° C., depending on the volatilization conditions of the solvent. Later, it will be used.
  • the temporary adhesive layer is preferably formed and used with a film thickness of 0.1 to 500 ⁇ m, preferably 1.0 to 200 ⁇ m.
  • a film thickness of 0.1 to 500 ⁇ m, preferably 1.0 to 200 ⁇ m.
  • the film thickness is 0.1 ⁇ m or more, when it is applied on the base material, it can be applied to the entire surface without causing a portion that cannot be applied.
  • the film thickness is 500 ⁇ m or less, it can withstand the grinding process when forming a thin wafer.
  • a method of uniformly pressure bonding under reduced pressure in a temperature range of preferably 0 to 200 ° C., more preferably 20 to 100 ° C. is used. Can be mentioned.
  • the pressure at which the wafer and the support on which the temporary adhesive layer is formed is pressure-bonded is preferably 0.01 to 10 MPa, more preferably 0.05 to 1.0 MPa, although it depends on the viscosity of the temporary adhesive layer. be.
  • the pressure is 0.01 MPa or more, the circuit forming surface and the space between the wafer and the support can be filled with the temporary adhesive layer, and when the pressure is 10 MPa or less, the wafer is cracked and the wafer and the temporary adhesive layer are flat. There is no risk of deterioration of the wafer, and the subsequent wafer processing is good.
  • Wafer bonding can be performed using a commercially available wafer bonder, for example, EVG520IS, 850TB from EVG, XBS300 from SUS MicroTech, or the like.
  • the step (b1) is a step of photocuring the temporary adhesive layer. After the wafer processed body (laminated body substrate) is formed, light irradiation is performed from the light-transmitting support side to photocure the temporary adhesive layer.
  • the active ray type at that time is not particularly limited, but ultraviolet rays are preferable, and ultraviolet rays having a wavelength of 300 to 400 nm are preferable.
  • UV irradiation amount (illuminance) is, 100mJ / cm 2 ⁇ 100,000mJ / cm 2 as the accumulated light quantity is preferably 500mJ / cm 2 ⁇ 10,000mJ / cm 2, more preferably 1,000 ⁇ 5,000mJ / cm 2 Is desirable in order to obtain good curability.
  • the ultraviolet irradiation amount (illuminance) is equal to or higher than the above range, sufficient energy can be obtained to activate the photoactive hydrosilylation reaction catalyst in the temporary adhesive layer, and a sufficient cured product can be obtained.
  • the ultraviolet irradiation amount (illuminance) is less than the above range, the composition is irradiated with sufficient energy, and the components in the polymer layer are not decomposed or a part of the catalyst is not deactivated. , A sufficient cured product can be obtained.
  • Ultraviolet irradiation may be light having a plurality of emission spectra or light having a single emission spectrum. Further, the single emission spectrum may have a broad spectrum in the region of 300 nm to 400 nm. Light having a single emission spectrum is light having a peak (ie, maximum peak wavelength) in the range of 300 nm to 400 nm, preferably 350 nm to 380 nm. Examples of the light source for irradiating such light include an ultraviolet light emitting diode (ultraviolet LED) and an ultraviolet light emitting semiconductor element light source such as an ultraviolet light emitting semiconductor laser.
  • an ultraviolet light emitting diode ultraviolet light emitting diode
  • an ultraviolet light emitting semiconductor element light source such as an ultraviolet light emitting semiconductor laser.
  • Light sources that irradiate light with multiple emission spectra include metal halide lamps, xenon lamps, carbon arc lamps, chemical lamps, sodium lamps, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, and other lamps. Examples thereof include a gas laser, a liquid laser of an organic dye solution, and a solid laser in which an inorganic single crystal contains rare earth ions.
  • the light has a peak in a wavelength region shorter than 300 nm in the emission spectrum, or when there is a wavelength in the wavelength region shorter than 300 nm having a emission illuminance larger than 5% of the emission illuminance of the maximum peak wavelength in the emission spectrum (for example, when the emission spectrum is broad over a wide wavelength region) and when a substrate such as a quartz wafer having light transmission to a wavelength shorter than 300 nm is used as the support, a wavelength shorter than 300 nm is used by an optical filter. It is preferable to remove light having a wavelength in the region in order to obtain a sufficiently cured product.
  • the irradiance of each wavelength in the wavelength region shorter than 300 nm is set to 5% or less, preferably 1% or less, more preferably 0.1% or less, still more preferably 0% of the irradiance of the maximum peak wavelength.
  • the peak wavelength showing the maximum absorbance among them is set as the maximum peak wavelength.
  • the optical filter is not particularly limited as long as it cuts a wavelength shorter than 300 nm, and a known optical filter may be used. For example, a 365 nm bandpass filter or the like can be used.
  • the illuminance and spectral distribution of ultraviolet rays can be measured with a spectral irradiance meter, for example, USR-45D (Ushio, Inc.).
  • the light irradiation device is not particularly limited, but for example, an irradiation device such as a spot type irradiation device, a surface type irradiation device, a line type irradiation device, or a conveyor type irradiation device can be used.
  • an irradiation device such as a spot type irradiation device, a surface type irradiation device, a line type irradiation device, or a conveyor type irradiation device can be used.
  • the light irradiation time depends on the illuminance and cannot be unconditionally specified. However, for example, it is 1 to 300 seconds, preferably 10 to 200 seconds, and more preferably 30 to 150 seconds. If the illuminance is adjusted so as to be seconds, the irradiation time is also appropriately short, and there is no particular problem in the work process. Further, the photocurable silicone resin composition subjected to light irradiation gels after 1 to 120 minutes of irradiation, particularly 5 to 60 minutes. In the present invention, gelation means a state in which the curing reaction of the photocurable silicone resin composition partially proceeds and the composition loses its fluidity.
  • the step (c) is a step of grinding or polishing the circuit non-formed surface of the wafer temporarily bonded to the support, that is, the back surface side of the wafer laminate obtained in the step is ground to reduce the thickness of the wafer. This is the process of thinning.
  • the method of grinding the back surface of the wafer is not particularly limited, and a known grinding method is adopted. Grinding is preferably performed while cooling the wafer and the grindstone (diamond or the like) with water. Examples of the apparatus for grinding the back surface of the wafer include DAG-810 (trade name) manufactured by Disco Corporation. Further, the back surface side of the wafer may be chemically mechanically polished (CMP).
  • the step (d) is a step of processing the circuit non-formed surface of the wafer laminate obtained by grinding the circuit non-formed surface in the step (c). That is, it is a step of processing the circuit non-formed surface of the wafer of the wafer laminate thinned by backside grinding.
  • This process involves various processes used at the wafer level. Examples include electrode formation, metal wiring formation, protective film formation, and the like. More specifically, metal sputtering for forming electrodes and the like, wet etching for etching a metal sputtering layer, application of resist for forming a mask for metal wiring, pattern formation by exposure and development, and peeling of resist. , Dry etching, metal plating formation, silicon etching for TSV formation, oxide film formation on the silicon surface, and the like.
  • the step (e) is a step of peeling the wafer processed in the step (d) from the support, that is, after performing various processing on the thinned wafer, the wafer is peeled from the support before dicing. It is a process.
  • This peeling step is generally carried out under relatively mild conditions of about room temperature to about 60 ° C.
  • a peeling method one of the wafer or the support of the wafer laminate is fixed horizontally and the other is lifted at a certain angle from the horizontal direction. The wafer laminate is immersed in a solvent in advance and temporarily bonded.
  • Examples thereof include a method in which the material layer is swollen and then peeled off in the same manner as described above, a method in which a protective film is attached to the ground surface of the ground wafer, and the wafer and the protective film are peeled off from the wafer laminate by a peeling method.
  • a peeling step is performed by these peeling methods, it is usually carried out at room temperature.
  • step (e) is (E1) A step of attaching a dicing tape to the wafer surface of the processed wafer, (E2) includes a step of vacuum-adsorbing the dicing tape surface to the suction surface, and (e3) a step of peeling off the support from the processed wafer when the temperature of the suction surface is in the range of 10 to 100 ° C. Is preferable. By doing so, the support can be easily peeled off from the processed wafer, and the subsequent dicing step can be easily performed.
  • step (F) It is preferable to perform a step of removing the temporary adhesive layer remaining on the circuit forming surface of the peeled wafer.
  • a part of the temporary adhesive layer may remain on the circuit forming surface of the wafer peeled off from the support in the step (e), and the removal of the temporary adhesive layer is, for example, cleaning the wafer.
  • any cleaning solution that dissolves the silicone resin of the temporary adhesive layer can be used.
  • pentane, hexane, cyclohexane, decane, isononan, p-mentane, and pinene can be used.
  • Isododecane, limonene and the like These solvents may be used alone or in combination of two or more.
  • bases and acids may be added to the cleaning solution.
  • bases amines such as ethanolamine, diethanolamine, triethanolamine, triethylamine and ammonia; and ammonium salts such as tetramethylammonium hydroxide can be used.
  • acids organic acids such as acetic acid, oxalic acid, benzenesulfonic acid, and dodecylbenzenesulfonic acid can be used.
  • the amount of the bases and acids added is such that the concentration in the cleaning liquid is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass.
  • an existing surfactant may be added in order to improve the removability of the residue.
  • the SPIS-TA-CLEANER series manufactured by Shin-Etsu Chemical Co., Ltd.
  • Examples of the wafer cleaning method include a method of cleaning with a paddle using the cleaning liquid, a method of spraying and cleaning, and a method of immersing in a cleaning liquid tank.
  • the temperature for cleaning is preferably 10 to 80 ° C, more preferably 15 to 65 ° C, and if necessary, the temporary adhesive layer is dissolved with these cleaning liquids, and finally rinsed with water or alcohol. And the drying treatment may be carried out.
  • steps (a2) and (b2) below are shown.
  • steps (c) to (e), preferably steps (c) to (f) are the same as those in the first aspect described above.
  • Step (a2) is a step of forming the photocurable silicone resin composition layer subjected to light irradiation on the wafer and / or on the support.
  • light irradiation of the photocurable silicone resin composition before bonding eliminates the need for a light irradiation step through the support, and as a result.
  • the support does not require light transmission. Therefore, according to this aspect, in addition to the application example of the support, a substrate that does not transmit light such as silicon, aluminum, SUS, copper, germanium, gallium-arsenide, gallium-phosphosphide, and gallium-arsenide-aluminum is also a support. Applicable as. Further, according to this method, the influence of curing inhibition from the wafer can be reduced, so that the applicable range of the wafer can be expanded.
  • the photocurable silicone resin composition subjected to light irradiation it can be applied to either [1] wafer [2] support [3] wafer and both sides of the support.
  • the method of irradiating the photocurable silicone resin composition with light before joining the method of applying light on the wafer and / or the support while irradiating the composition with light, and after irradiating the entire composition with light.
  • a method of coating on a wafer and / or a support, a method of applying light on a wafer and / or a support and then irradiating light, etc. but there is no particular limitation and in consideration of workability. It may be selected as appropriate.
  • the ultraviolet irradiation amount (illuminance), the light source, the emission spectrum, the light irradiation device, and the light irradiation time in the light irradiation the method described in [Step (b1)] of the first aspect can be used. ..
  • the method for forming the first and second temporary adhesive layers can be carried out in the same manner as in the first aspect, and the film or the corresponding composition or a solution thereof can be applied onto the wafer and / or by a method such as spin coating or a roll coater, respectively. It can be formed on a support.
  • a method such as spin coating or a roll coater, respectively. It can be formed on a support.
  • spin coating it is prebaked in advance at a temperature of 20 to 200 ° C., preferably 30 to 150 ° C., depending on the volatilization conditions of the solvent, and then used.
  • the step (b2) is a step of joining the wafer with a circuit and / or the support on which the photocurable silicone resin composition layer produced in the step (a2) is formed under vacuum. At this time, the wafer is bonded to the support by uniformly crimping the substrate under reduced pressure (vacuum) at this temperature in a temperature range of preferably 0 to 200 ° C., more preferably 20 to 100 ° C. A work piece (laminated body substrate) is formed.
  • the wafer bonding device the same device as in the first aspect can be used.
  • the viscosity is a value measured at 25 ° C. by a TVB-10M type rotational viscometer (manufactured by Toki Sangyo Co., Ltd.).
  • a solution consisting of 50 parts by mass of dimethylpolysiloxane and 120 parts by mass of toluene and 0.6 parts by mass of 1-ethynylcyclohexanol were added and mixed. Further, a photoactive hydrosilylation reaction catalyst; 0.4 parts by mass of a toluene solution (platinum concentration 1.0% by mass) of (methylcyclopentadienyl) trimethylplatinum (IV) was added thereto, and a 0.2 ⁇ m membrane was added.
  • a photocurable silicone resin solution A1 was prepared by filtering with a filter. The viscosity of the resin solution A1 at 25 ° C. was 230 mPa ⁇ s.
  • a photoactive hydrosilylation reaction catalyst 0.4 parts by mass of a toluene solution of (methylcyclopentadienyl) trimethylplatinum (IV) (platinum concentration 1.0% by mass) was added thereto, and a 0.2 ⁇ m membrane was added.
  • a photocurable silicone resin solution A2 was prepared by filtering with a filter. The viscosity of the resin solution A2 at 25 ° C. was 100 mPa ⁇ s.
  • Preparation Example 3 4/2 units of SiO (Q units) in a solution consisting of 100 parts by mass of dimethylpolysiloxane and 200 parts by mass of toluene having 2.5 mol% vinyl groups at both ends and side chains of the molecule and Mn of 30,000.
  • a solution consisting of 50 parts by mass of methylpolysiloxane and 100 parts by mass of toluene, 230 parts by mass of organohydrogenpolysiloxane having a Mn of 2,800 represented by the formula (M-1), and a viscosity (25 ° C.) of a 30% by mass toluene solution.
  • a photocurable silicone resin solution A3 was prepared by filtering with a filter. The viscosity of the resin solution A3 at 25 ° C. was 330 mPa ⁇ s.
  • Preparation Example 4 4/2 units of SiO (Q units) in a solution consisting of 100 parts by mass of dimethylpolysiloxane and 200 parts by mass of toluene having 2.5 mol% vinyl groups at both ends and side chains of the molecule and Mn of 30,000.
  • a solution consisting of 200 parts by mass of methylpolysiloxane and 400 parts by mass of toluene, 430 parts by mass of organohydrogenpolysiloxane having a Mn of 2,800 represented by the formula (M-1), and a viscosity (25 ° C.) of a 30% by mass toluene solution.
  • a photocurable silicone resin solution A4 was prepared by filtering with a filter. The viscosity of the resin solution A4 at 25 ° C. was 120 mPa ⁇ s.
  • organohydrogenpolysiloxane 150 parts by mass of dimethylpolysiloxane with both ends of the molecular chain having a viscosity (25 ° C.) of 1,000 mPa ⁇ s in a 30 mass% toluene solution, and 1 -1.2 parts by mass of ethynylcyclohexanol was added and mixed. Further, a photoactive hydrosilylation reaction catalyst; 0.8 parts by mass of a toluene solution of (methylcyclopentadienyl) trimethylplatinum (IV) (platinum concentration 1.0% by mass) was added thereto, and a 0.2 ⁇ m membrane was added.
  • a photocurable silicone resin solution A5 was prepared by filtering with a filter. The viscosity of the resin solution A5 at 25 ° C. was 80 mPa ⁇ s.
  • Preparation Example 6 4/2 units of SiO (Q units) in a solution consisting of 100 parts by mass of dimethylpolysiloxane and 200 parts by mass of toluene having 2.5 mol% vinyl groups at both ends and side chains of the molecule and Mn of 30,000.
  • a solution consisting of 50 parts by mass of methylpolysiloxane and 100 parts by mass of toluene, 230 parts by mass of organohydrogenpolysiloxane having a Mn of 2,800 represented by the formula (M-1), and a viscosity (25 ° C.) of a 30% by mass toluene solution.
  • organohydrogenpolysiloxane 150 parts by mass of dimethylpolysiloxane with both ends of the molecular chain having a viscosity (25 ° C.) of 1,000 mPa ⁇ s in a 30 mass% toluene solution, and 1 -1.2 parts by mass of ethynylcyclohexanol was added and mixed.
  • a photoactive hydrosilylation reaction catalyst a solution of bis (2,4-heptandionat) platinum (II) in 2- (2-butoxyethoxy) ethyl acetate (platinum concentration 0.5% by mass) was added thereto in 1.6.
  • a part of a photocurable silicone resin solution A7 was added and filtered through a 0.2 ⁇ m membrane filter to prepare a photocurable silicone resin solution A7.
  • the viscosity of the resin solution A7 at 25 ° C. was 80 mPa ⁇ s.
  • thermoactive hydrosilylation reaction catalyst 0.4 parts by mass of a toluene solution of (methylcyclopentadienyl) trimethylplatinum (IV) (platinum concentration 1.0% by mass) is a thermoactive hydrosilylation reaction catalyst;
  • CAT-PL- A thermosetting silicone resin solution CA1 was prepared in the same manner as in Preparation Example 1 except that it was changed to 0.4 parts by mass of 5 (manufactured by Shin-Etsu Chemical Industry Co., Ltd., platinum concentration 1.0% by mass).
  • the viscosity of the resin solution CA1 at 25 ° C. was 230 mPa ⁇ s.
  • a photocurable silicone resin solution CA2 was prepared in the same manner as in Preparation Example 1 except that a solution consisting of 50 parts by mass of dimethylpolysiloxane and 120 parts by mass of toluene was not added.
  • the viscosity of the resin solution CA2 at 25 ° C. was 150 mPa ⁇ s.
  • a photocurable silicone resin solution CA3 was prepared in the same manner as in Preparation Example 2 except that 30 parts by mass of dimethylpolysiloxane, which was a trimethylsiloxy group-sealed trimethylsiloxy group at both ends of the molecular chain, was not added.
  • the viscosity of the resin solution CA3 at 25 ° C. was 180 mPa ⁇ s.
  • a silicon wafer having a temporary adhesive layer and a glass plate are respectively joined by EVG's wafer bonding device EVG520IS so that the temporary adhesive layer and the glass plate are combined.
  • vacuum bonding was performed at 25 ° C., 10 -3 mbar or less, and a load of 5 kN.
  • a surface irradiation type UV-LED (wavelength 365 nm) irradiator was used to irradiate the curable silicone resin composition layer with light under the conditions shown in Table 1 to prepare a wafer laminate.
  • heating was performed on a hot plate under the conditions shown in Table 1 to prepare a wafer laminate.
  • CVD resistance test (3) After the back surface grinding resistance test is completed, the wafer laminate is introduced into the CVD device, a film formation experiment of a 2 ⁇ m SiO 2 film is performed, and the presence or absence of an appearance abnormality at that time is visually observed. Investigated by. The case where no appearance abnormality occurred was evaluated as good and indicated by " ⁇ ", and the case where appearance abnormality such as voids, wafer swelling, and wafer breakage occurred was evaluated as defective and indicated by "x”.
  • Peelability test For the peelability of the substrate, first, (4) use a dicing frame on the wafer side of the wafer laminate that has undergone the CVD resistance test, and apply a dicing tape (ELP UB-3083D manufactured by Nitto Denko Corporation). The dicing tape surface was attached and set on the adsorption plate by vacuum adsorption. Then, at room temperature, one point of the glass was lifted with tweezers to peel off the glass substrate. The case where the wafer having a thickness of 50 ⁇ m could be peeled off without breaking was indicated by “ ⁇ ”, and the case where an abnormality such as cracking occurred was evaluated as defective and indicated by “x”.
  • a silicone resin solution A1 to A7 and CA1 to CA5 are spin-coated on a silicon wafer (thickness: 725 ⁇ m) having a diameter of 200 mm, and heated on a hot plate at 100 ° C. for 2 minutes.
  • a silicone resin layer was formed with the film thickness shown in Table 1.
  • the curable silicone resin composition layer was irradiated with light under the conditions shown in Table 1 to cure the temporary adhesive layer.
  • heating was performed on a hot plate under the conditions shown in Table 1 to cure the temporary adhesive layer.
  • the silicon substrate containing the obtained temporary adhesive layer was sandwiched between 25 mm aluminum plates so that a load of 50 gf was applied to the temporary adhesive layer using Ares G2 manufactured by TA Instruments, Inc. at 25 ° C. and 1 Hz.
  • the elastic modulus was measured, and the obtained elastic modulus was taken as the storage elastic modulus of the silicone resin layer.
  • the wafer laminates of Examples 1 to 7 containing the temporary adhesive layer of the present invention can be cured at a relatively low temperature in a short time, and the wafer warp during curing accordingly. Has also been reduced. It was also confirmed that the product has sufficient processing durability, is excellent in peelability, and has good cleaning and removing property after peeling. On the other hand, as shown in Table 2, in Comparative Examples 1 and 2 using the thermoactive catalyst, insufficient curing due to insufficient heating and wafer warpage during curing were confirmed.
  • Example 8 The photocurable silicone resin solution A1 was irradiated with light under the conditions shown in Table 2 using a surface irradiation type UV-LED (wavelength 365 nm) irradiator, and then a copper post having a height of 10 ⁇ m and a diameter of 40 ⁇ m was formed on the surface.
  • a silicon wafer Si wafer with circuit, thickness: 725 ⁇ m
  • the agent layer was formed on the wafer bump forming surface.
  • a Si wafer with a diameter of 200 mm Si wafer, thickness: 770 ⁇ m
  • a Si wafer with a circuit having a temporary adhesive layer and a Si wafer of the support are combined so that the temporary adhesive layer and the Si wafer are combined.
  • a wafer laminate was produced by vacuum bonding at 25 ° C., 10 -3 mbar or less, and a load of 5 kN using a wafer bonding device EVG520IS manufactured by EVG.
  • Example 9 In Example 8, a wafer laminate was produced in the same manner except that the object to which the light-irradiated photocurable silicone resin solution A1 was applied was changed from the silicon wafer with a circuit to the Si wafer of the support. ..
  • Example 10 The same applies to Example 8 except that the object to which the light-irradiated photocurable silicone resin solution A1 is applied is changed from the silicon wafer with a circuit to the Si wafer with a circuit and the Si wafer of the support. To prepare a wafer laminate.
  • Example 11 A wafer laminate was produced in the same manner except that the photocurable silicone resin solution used in Example 8 was changed from A1 to A6.
  • Example 12 A wafer laminate was produced in the same manner except that the photocurable silicone resin solution used in Example 9 was changed from A1 to A6.
  • Example 13 A wafer laminate was produced in the same manner except that the photocurable silicone resin solution used in Example 10 was changed from A1 to A6.
  • Examples 8 to 13 the obtained wafer laminates were subjected to the same tests as in the above (1) wafer warp test to (6) wash removability test. The results are shown in Table 3.
  • a photocurable silicone resin solution previously irradiated with light was spun on a silicon wafer (Si wafer, thickness: 770 ⁇ m) having a diameter of 200 mm.
  • the silicone resin layer was cured by coating and heating on a hot plate at 100 ° C. for 5 minutes to prepare a test sample. After that, the peel peeling force test and the elastic modulus measurement test were carried out in the same manner as described above, and the results are shown in Table 3.
  • the wafer is equivalent to the case where light irradiation is performed after coating and bonding. It was confirmed that workability was obtained. In this case, since it is not necessary to irradiate light through the support, the applicable range of the support can be expanded, and light damage to the device wafer can be avoided.

Abstract

本発明は、無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物からなる、ウエハを支持体に仮接着するためのウエハ加工用仮接着剤、ウエハ加工体及びウエハ加工用仮接着剤を使用する薄型ウエハの製造方法を提供する。

Description

ウエハ加工用仮接着剤、ウエハ積層体及び薄型ウエハの製造方法
 本発明は、ウエハ加工用仮接着剤、ウエハ積層体及び薄型ウエハの製造方法に関する。
 3次元の半導体実装は、より一層の高密度、大容量化を実現するために必須となってきている。3次元実装技術とは、1つの半導体チップを薄型化し、更にこれをシリコン貫通電極(TSV:through silicon via)によって結線しながら多層に積層していく半導体作製技術である。これを実現するためには、半導体回路を形成した基板を回路非形成面(「裏面」ともいう。)研削によって薄型化し、更に裏面にTSVを含む電極形成を行う工程が必要である。従来、シリコン基板の裏面研削工程では、研削面の反対側に裏面保護テープを貼り、研削時のウエハ破損を防いでいる。しかし、このテープは有機樹脂フィルムを支持基材に用いており、柔軟性がある反面、強度や耐熱性が不十分であり、TSV形成工程や裏面での配線層形成工程を行うには適しない。
 そこで、半導体基板をシリコン、ガラス等の支持体に接着剤層を介して接合することによって、裏面研削、TSVや裏面電極形成の工程に十分耐え得るシステムが提案されている。このとき重要なのが、基板を支持体に接合する際の接着剤層である。これは基板を支持体に隙間なく接合でき、後の工程に耐えるだけの十分な耐久性が必要で、更に最後に薄型ウエハを支持体から簡便に剥離できることが必要である。このように、最後に剥離することから、本明細書では、この接着剤層を仮接着剤層ともいう。
 これまでに公知の仮接着剤層とその剥離方法としては、光吸収性物質を含む接着剤に高強度の光を照射し、接着剤層を分解することによって支持体から接着剤層を剥離する技術(特許文献1)、及び、熱溶融性の炭化水素系化合物を接着剤に用い、加熱溶融状態で接合・剥離を行う技術(特許文献2)が提案されている。前者の技術はレーザ等の高価な装置が必要であり、かつ基板1枚あたりの処理時間が長くなるなどの問題があった。また後者の技術は加熱だけで制御するため簡便である反面、200℃を超える高温での熱安定性が不十分であるため、適用範囲は狭かった。更にこれらの仮接着剤層では、高段差基板の均一な膜厚形成と、支持体への完全接着にも適さなかった。
 シリコーン粘着剤を仮接着材層に用いる技術が提案されているが、これは基板を支持体に加熱硬化型のシリコーン粘着剤を用いて接合し、剥離の際にはシリコーン樹脂を溶解、あるいは分解するような薬剤に浸漬して基板を支持体から分離するものである(特許文献3)。そのため剥離に非常に長時間を要し、実際の製造プロセスへの適用は困難である。また剥離後、基板上に残渣として残ったシリコーン粘着剤を洗浄するのにも長時間が必要となり、洗浄除去性という点からも課題を有していた。一方、接合工程においては、加熱硬化型のシリコーンの場合150℃程度の加熱が必要であり、特にホットプレート上で加熱を行う場合ではウエハの反りが問題となることがあった。そのため、ウエハの反りを抑えるために低温で接合させようとした場合には、硬化の完了に長時間を要するという問題があった。
特開2004-64040号公報 特開2006-328104号公報 米国特許第7541264号明細書
 本発明は、前記課題に鑑みなされたもので、基板と支持体とを比較的低温かつ短時間での接合が可能であり、これにより接合時の作業性やウエハ反りが改善され、また高段差基板を用いた場合でも接合後の基板保持性が十分にあり、ウエハ裏面研削工程、TSV形成工程、ウエハ裏面配線工程に対する工程適合性が高く、ウエハ熱プロセス耐性にも優れ、一方で剥離工程における剥離が容易であり、剥離後の基板の残渣洗浄性にも優れる等、薄型ウエハの生産性向上に繋がるウエハ加工用仮接着剤、ウエハ積層体、及びこれを使用する薄型ウエハの製造方法を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意検討した結果、無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物を仮接着剤に使用することで前記課題を解決できることを見出し、本発明を完成させた。
 したがって、本発明は、下記ウエハ加工用仮接着剤、ウエハ積層体及び薄型ウエハの製造方法を提供する。
1.無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物からなる、ウエハを支持体に仮接着するためのウエハ加工用仮接着剤。
2.前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物が、
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)1分子中に2個以上のケイ素原子に結合した水素原子(SiH基)を含有するオルガノハイドロジェンポリシロキサン:(A)成分中のアルケニル基の合計に対する(B)成分中のSiH基の合計が、モル比で0.3~10となる量、
(C)無官能性オルガノポリシロキサン:0.1~200質量部、及び
(D)光活性型ヒドロシリル化反応触媒:(A)、(B)及び(C)成分の合計質量に対し、金属原子量換算で0.1~5,000ppm
を含むものである1のウエハ加工用仮接着剤。
3.(C)成分の無官能性オルガノポリシロキサンの30質量%トルエン溶液の25℃における粘度が100~500,000mPa・sである2のウエハ加工用仮接着剤。
4.前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物が、更に(E)成分としてヒドロシリル化反応制御剤を前記(A)、(B)及び(C)成分の合計質量に対し、0.001~10質量部含む1~3のいずれかのウエハ加工用仮接着剤。
5.前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物の硬化後、25℃でのシリコン基板に対する25mm幅の試験片の180°ピール剥離力が2gf以上50gf以下である1~4のいずれかのウエハ加工用仮接着剤。
6.前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物の硬化後、25℃での貯蔵弾性率が1,000Pa以上1,000MPa以下である1~5のいずれかのウエハ加工用仮接着剤。
7.ウエハと支持体とを仮接着剤層を介して接合し硬化する工程(以下、(a)、(b)の工程)において、以下のいずれかの態様を含む、前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物を用いた薄型ウエハの製造方法。ここで、いずれの態様においても(c)~(e)の工程については共通である。

(態様1)
(a1)表面に回路形成面及び裏面に回路非形成面を有するウエハの前記回路形成面、及び/または支持体の前記ウエハとの接合面に、前記1~6のいずれかのウエハ加工用仮接着剤組成物を塗布し、接合する工程
(b1)前記接合したウエハの仮接着剤を光硬化させる工程
(態様2)
(a2)前記1~6のいずれかのウエハ加工用仮接着剤組成物に光照射する工程
(b2)表面に回路形成面及び裏面に回路非形成面を有するウエハの前記回路形成面、及び/または支持体の前記ウエハとの接合面に、前記(a2)で光照射を行ったウエハ加工用仮接着剤組成物を塗布し、接合、硬化する工程
(c)前記ウエハ積層体のウエハの回路非形成面を研削又は研磨する工程
(d)前記ウエハの回路非形成面に加工を施す工程
(e)前記加工を施したウエハを前記支持体から剥離する工程
8.支持体と、その上に積層された1~6のいずれかのウエハ加工用仮接着剤から得られる仮接着剤層と、表面に回路形成面及び裏面に回路非形成面を有するウエハとを備えるウエハ積層体であって、前記仮接着剤層が、前記ウエハの表面に剥離可能に接着されたものであるウエハ積層体。
 本発明のウエハ加工用仮接着剤は、無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物を使用することで、光照射によって比較的低温かつ短時間で基板の接合が可能となり、その結果接合時のウエハの反りが抑えられ、かつ接合時間の短縮も可能となる。また、接合後においても、樹脂の熱分解が生じないことはもとより、特に200℃以上の高温でも樹脂の流動が生じず、耐熱性が高い。そのため、幅広い半導体成膜プロセスに適用でき、CVD(化学気相成長)耐性にも優れ、また、段差を有するウエハに対しても、膜厚均一性の高い仮接着剤層を形成でき、この膜厚均一性のため容易に50μm以下の均一な薄型ウエハを作製することが可能となる。さらに、無官能性オルガノポリシロキサンを使用することで剥離性にも優れるため、薄型ウエハ作製後、ウエハを支持体から、例えば室温で、容易に剥離することができ、割れやすい薄型ウエハを容易に製造することが可能となる。また、本発明の仮接着剤は、支持体と選択的に接着可能なため、剥離後、薄型ウエハ上には仮接着剤由来の残渣が残らず、その後の洗浄除去性にも優れる。本発明の薄型ウエハの製造方法によれば、貫通電極構造や、バンプ接続構造を有する薄型ウエハを容易に製造することができる。
本発明の薄型ウエハの製造方法の工程を示す説明図である。
[ウエハ加工用仮接着剤]
 本発明のウエハ加工用仮接着剤は、無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物からなるものである。段差を有するシリコンウエハ等への適用性から、良好なスピンコート性を有するシリコーン樹脂組成物がウエハ加工用仮接着剤として好適に使用される。
 このような光硬化性シリコーン樹脂組成物としては、例えば、下記(A)~(D)成分を含むものであることが好ましい。
(A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
(B)1分子中に2個以上のケイ素原子に結合した水素原子(SiH基)を含有するオルガノハイドロジェンポリシロキサン:(A)成分中のアルケニル基の合計に対する(B)成分中のSiH基の合計が、モル比で0.3~10となる量、
(C)無官能性オルガノポリシロキサン:0.1~200質量部、及び
(D)光活性型ヒドロシリル化反応触媒:(A)、(B)及び(C)成分の合計質量に対し、金属原子量換算で0.1~5,000ppm。
[(A)成分]
 (A)成分は、1分子中に2個以上のアルケニル基を有するオルガノポリシロキサンである。(A)成分としては、1分子中に2個以上のアルケニル基を含む直鎖状又は分岐状のジオルガノポリシロキサン、1分子中に2個以上のアルケニル基を含み、SiO4/2単位で表されるシロキサン単位(Q単位)を有する三次元網目構造のオルガノポリシロキサン等が挙げられる。これらのうち、アルケニル基含有率が0.6~9モル%である、ジオルガノポリシロキサン又は三次元網目構造のオルガノポリシロキサンが好ましい。なお、本発明においてアルケニル基含有率とは、分子中のSi原子数に対するアルケニル基数の割合(モル%)である。
 このようなオルガノポリシロキサンとしては、下記式(A-1)、(A-2)又は(A-3)で表されるものが挙げられる。これらは1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000001
 式(A-1)~(A-3)中、R1~R16は、それぞれ独立に、脂肪族不飽和炭化水素基以外の1価炭化水素基である。X1~X5は、それぞれ独立に、アルケニル基含有1価有機基である。
 式(A-1)中、a及びbは、それぞれ独立に、0~3の整数である。式(A-1)及び(A-2)中、c1、c2、d1及びd2は、0≦c1≦10、2≦c2≦10、0≦d1≦100及び0≦d2≦100を満たす整数である。ただし、a+b+c1≧2である。a、b、c1、c2、d1及びd2は、アルケニル基含有率が0.6~9モル%となるような数の組み合わせであることが好ましい。
 式(A-3)中、eは、1~3の整数である。f1、f2及びf3は、(f2+f3)/f1が0.3~3.0となり、f3/(f1+f2+f3)が0.01~0.6となるような数である。
 前記脂肪族不飽和炭化水素基以外の1価炭化水素基としては、炭素数1~10のものが好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基等のアリール基等が挙げられる。これらのうち、メチル基等のアルキル基又はフェニル基が好ましい。
 前記アルケニル基含有1価有機基としては、炭素数2~10のものが好ましく、例えば、ビニル基、アリル基、ヘキセニル基、オクテニル基等のアルケニル基;アクリロイルプロピル基、アクリロイルエチル基、アクリロイルメチル基、メタクリロイルプロピル基等の(メタ)アクリロイルアルキル基;アクリロキシプロピル基、アクリロキシエチル基、アクリロキシメチル基、メタクリロキシプロピル基、メタクリロキシエチル基、メタクリロキシメチル基等の(メタ)アクリロキシアルキル基;シクロヘキセニルエチル基、ビニルオキシプロピル基等のアルケニル基含有1価炭化水素基が挙げられる。これらのうち、工業的観点から、ビニル基が好ましい。
 式(A-1)中、a及びbは、それぞれ独立に、0~3の整数であるが、a及びbが1~3であれば、分子鎖末端がアルケニル基で封鎖されるため、反応性のよい分子鎖末端アルケニル基により短時間で反応を完結することができるため好ましい。また、コスト面から、a及びbは1であることが工業的に好ましい。式(A-1)又は(A-2)で表されるアルケニル基含有ジオルガノポリシロキサンの性状は、オイル状又は生ゴム状であることが好ましい。
 式(A-3)で表されるオルガノポリシロキサンは、SiO4/2単位を含み、三次元網目構造を有するものである。式(A-3)中、eは、それぞれ独立に、1~3の整数であるが、コスト面から1であることが工業的に好ましい。また、eの平均値とf3/(f1+f2+f3)との積が、0.02~1.5であることが好ましく、0.03~1.0であることがより好ましい。式(A-3)で表されるオルガノポリシロキサンは、有機溶剤に溶解させた溶液として使用してもよい。
 (A)成分のオルガノポリシロキサンの数平均分子量(Mn)は、100~1000,000が好ましく、1,000~100,000がより好ましい。Mnが前記範囲であれば、組成物粘度に伴う作業性や硬化後の貯蔵弾性率に伴う加工性の点において好ましい。なお、本発明においてMnは、トルエンを溶剤として用いたゲルパーミエーションクロマトグラフィーによるポリスチレン換算測定値である。
 (A)成分は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。特に、式(A-1)で表されるオルガノポリシロキサンと式(A-3)で表されるオルガノポリシロキサンとを組み合わせて使用することが好ましい。このとき、式(A-3)で表されるオルガノポリシロキサンの使用量は、式(A-1)で表されるオルガノポリシロキサン100質量部に対し、1~1,000質量部が好ましく、10~500質量部がより好ましい。
[(B)成分]
 (B)成分は、架橋剤であり、1分子中にケイ素原子に結合した水素原子(SiH基)を少なくとも2個、好ましくは3個以上有するオルガノハイドロジェンポリシロキサンである。前記オルガノハイドロジェンポリシロキサンは、直鎖状、分岐状、環状のいずれでもよい。また、前記オルガノハイドロジェンポリシロキサンは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (B)成分のオルガノハイドロジェンポリシロキサンの25℃における粘度は、1~5,000mPa・sが好ましく、5~500mPa・sがより好ましい。なお、本発明において粘度は、回転粘度計による25℃における測定値である。
 (B)成分のオルガノハイドロジェンポリシロキサンのMnは、100~100,000が好ましく、500~10,000がより好ましい。Mnが前記範囲であれば、組成物粘度に伴う作業性や硬化後の貯蔵弾性率に伴う加工性の点において好ましい。
 (B)成分は、(A)成分中のアルケニル基の合計に対する(B)成分中のSiH基の合計が、モル比(SiH基/アルケニル基)で0.3~10の範囲となるように配合することが好ましく、1.0~8.0の範囲となるように配合することがより好ましい。前記モル比が0.3以上であれば、架橋密度が低くなることもなく、仮接着剤層が硬化しないといった問題も起こらない。また、前記モル比が10以下であれば、架橋密度が高くなりすぎることもなく、十分な粘着力及びタックが得られ、処理液の使用可能時間を長くすることができる。
[(C)成分]
 (C)成分は、無官能性オルガノポリシロキサンである。ここで「無官能性」とは、分子内にケイ素原子に直接又は任意の基を介して結合したアルケニル基、水素原子、ヒドロキシ基、アルコキシ基、ハロゲン原子、エポキシ基等の反応性基を有しないという意味である。
 このような無官能性オルガノポリシロキサンとしては、例えば、非置換又は置換の、炭素数1~12、好ましくは1~10の、脂肪族不飽和炭化水素基以外の1価炭化水素基を有するオルガノポリシロキサンが挙げられる。このような1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。また、これらの基の水素原子の一部又は全部が、塩素原子、フッ素原子、臭素原子等のハロゲン原子で置換されていてもよく、このような基としては、クロロメチル基、3-クロロプロピル基、3,3,3-トリフロロプロピル基等のハロゲン化アルキル基等が挙げられる。前記1価炭化水素基としては、好ましくはアルキル基、アリール基であり、より好ましくはメチル基、フェニル基である。
 (C)成分の無官能性オルガノポリシロキサンの分子構造は、特に限定されず、直鎖状、分岐状、環状等のいずれでもよいが、直鎖状又は分岐状のオルガノポリシロキサンが好ましく、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、直鎖状ジオルガノポリシロキサンであることが好ましい。
 (C)成分、無官能性オルガノポリシロキサンは、その30質量%トルエン溶液における粘度(25℃)が、組成物の作業性、基材への塗工性、硬化物の力学特性、支持体の剥離性等の観点から、100~500,000mPa・sであるものが好ましく、200~100,000mPa・sであるものがより好ましい。前記範囲であれば、適切な分子量を有しているため、シリコーン樹脂組成物を加熱硬化させる際に揮発して効果が得られにくくなってしまったり、CVD等のウエハ熱プロセスにおいてウエハ割れを引き起こしたりすることがなく、作業性や塗工性も良好であるため好ましい。
 前記無官能性オルガノポリシロキサンとしては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン重合体、分子鎖両末端トリメチルシロキシ基封鎖フェニルメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖3,3,3-トリフロロプロピルメチルシロキサン重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・3,3,3-トリフロロプロピルメチル共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルフェニルシロキサン・3,3,3-トリフロロプロピルメチル共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・3,3,3-トリフロロプロピルメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルフェニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルフェニルシロキシ基封鎖メチルフェニルポリシロキサン、分子鎖両末端ジメチルフェニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体等が挙げられる。
 (C)成分の無官能性オルガノポリシロキサンは、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、その性状はオイル状又は生ゴム状であることが好ましい。
[(D)成分]
 (D)成分は、光活性型ヒドロシリル化反応触媒であり、この光活性型ヒドロシリル化反応触媒は、光、特に波長300~400nmの紫外線の照射によって活性化され、(A)成分中のアルケニル基と、(B)成分中のSi-H基との付加反応を促進する触媒である。この促進効果には温度依存性があり、より高温で高い促進効果が得られる。よって、好ましい光照射後は0~200℃、より好ましくは10~100℃の環境温度下で使用することが、適切な反応時間内に反応を完結させる点で好ましい。
 光活性型ヒドロシリル化反応触媒は、主に白金族系金属触媒あるいは鉄族系金属触媒がこれに該当し、白金族系金属触媒としては白金系、パラジウム系、ロジウム系の金属錯体、鉄族系金属触媒としてはニッケル系、鉄系、コバルト系の鉄族錯体がある。中でも白金系金属錯体は、比較的入手し易くかつ良好な触媒活性を示すため好ましく、よく用いられる。
 また配位子としてはUV-B~UV-Aの中~長波長のUV光で触媒活性を示すものが、ウエハへのダメージを抑える点で好ましい。そのような配位子としては環状ジエン配位子、β-ジケトナト配位子などが挙げられる。
 以上より、光活性型ヒドロシリル化反応触媒の好ましい例として、環状ジエン配位子型としては、例えば、(η5-シクロペンタジエニル)トリ(σ-アルキル)白金(IV)錯体、特に具体的には(メチルシクロペンタジエニル)トリメチル白金(IV)、(シクロペンタジエニル)トリメチル白金(IV)、(1,2,3,4,5-ペンタメチルシクロペンタジエニル)トリメチル白金(IV)、(シクロペンタジエニル)ジメチルエチル白金(IV)、(シクロペンタジエニル)ジメチルアセチル白金(IV)、(トリメチルシリルシクロペンタジエニル)トリメチル白金(IV)、(メトキシカルボニルシクロペンタジエニル)トリメチル白金(IV)、(ジメチルフェニルシリルシクロペンタジエニル)トリメチル白金(IV)などが挙げられ、またβ-ジケトナト配位子型としては、β-ジケトナト白金(II)若しくは白金(IV)錯体、特に具体的にはトリメチル(アセチルアセトナト)白金(IV)、トリメチル(3,5-ヘプタンジオネート)白金(IV)、トリメチル(メチルアセトアセテート)白金(IV)、ビス(2,4-ペンタンジオナト)白金(II)、ビス(2,4-へキサンジオナト)白金(II)、ビス(2,4-へプタンジオナト)白金(II)、ビス(3,5-ヘプタンジオナト)白金(II)、ビス(1-フェニル-1,3-ブタンジオナト)白金(II)、ビス(1,3-ジフェニル-1,3-プロパンジオナト)白金(II)、ビス(ヘキサフルオロアセチルアセトナト)白金(II)などが挙げられる。
 これらの触媒の使用にあたっては、それが固体触媒であるときには固体状で使用することも可能であるが、より均一な硬化物を得るためには適切な溶剤に溶解したものを(A)成分のアルケニル基を有するオルガノポリシロキサンに相溶させて使用することが好ましい。
 溶媒としては、イソノナン、トルエン、酢酸2-(2-ブトキシエトキシ)エチル等が挙げられる。
 (D)成分の添加量は有効量であればよいが、通常(A)、(B)、(C)の合計質量に対し、白金分(金属原子量換算)として0.1~5,000ppmであり、0.5~2,000ppm、さらに1~500ppmであることが好ましい。0.1ppm以上であれば組成物の硬化性が低下することもなく、架橋密度が低くなることも、保持力が低下することもない。0.5%以下であれば、処理浴の使用可能時間を長くすることができる。
[(E)成分]
 前記光硬化性シリコーン樹脂組成物は、更に(E)成分として反応制御剤を含んでもよい。反応制御剤は、組成物を調製したり、基材に塗布したりする際に、組成物が増粘やゲル化を起こさないようにするために必要に応じて任意に添加するものである。
 前記反応制御剤としては、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、1-エチニルシクロヘキサノール、3-メチル-3-トリメチルシロキシ-1-ブチン、3-メチル-3-トリメチルシロキシ-1-ペンチン、3,5-ジメチル-3-トリメチルシロキシ-1-ヘキシン、1-エチニル-1-トリメチルシロキシシクロヘキサン、ビス(2,2-ジメチル-3-ブチニルオキシ)ジメチルシラン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン等が挙げられる。これらのうち、1-エチニルシクロヘキサノール及び3-メチル-1-ブチン-3-オールが好ましい。
 前記光硬化性シリコーン樹脂組成物が(E)成分を含む場合、化学構造によって制御能力が異なるため、その含有量は、それぞれ最適な量に調整すべきであるが、硬化性、保存安定性、硬化後物性への影響等を鑑みれば、前記(A)、(B)及び(C)成分の合計質量に対し、好ましくは0.001~10質量部、より好ましくは0.01~10質量部である。(E)成分の含有量が前記範囲であれば、組成物の使用可能時間が長く、長期保存安定性が得られ、硬化性や作業性が良好である。
 前記光硬化性シリコーン樹脂組成物には、更にRA 3SiO0.5単位(式中、RAは、それぞれ独立に、炭素数1~10の非置換又は置換の1価炭化水素基である。)及びSiO2単位を含み、SiO2単位に対するRA 3SiO0.5単位のモル比(RA 3SiO0.5/SiO2)が0.3~1.8であるオルガノポリシロキサンを添加してもよい。その添加量は、(A)成分100質量部に対し、0~500質量部が好ましい。さらに好ましくは0より大~300質量部である。
 前記光硬化性シリコーン樹脂組成物には、これから得られる仮接着剤層の耐熱性を更に高めるため、シリカ等のフィラーをその性能を損なわない範囲で添加してもよい。
 光硬化性シリコーン樹脂組成物は、該組成物の低粘度化による作業性向上や混合性の向上、仮接着剤層の膜厚調整等の理由から、溶剤を添加して溶液化して使用してもよい。用いる溶剤は、前記成分を溶解できるものであれば特に限定されないが、例えばペンタン、へキサン、シクロヘキサン、イソオクタン、ノナン、デカン、p-メンタン、ピネン、イソドデカン、リモネン等の炭化水素系溶剤が好ましい。
 溶液化の方法としては、前記光硬化性シリコーン樹脂組成物を調製した後、最後に溶剤を添加して所望の粘度に調整する方法や、高粘度の(A)、(B)及び/又は(C)成分を予め溶剤で希釈し、作業性や混合性を改善した上で残りの成分を混合する方法が挙げられる。また、溶液化する際の混合方法としては、振とう混合機、マグネチックスターラー、各種ミキサー等、組成物粘度と作業性から適宜混合方法を選択して実施すればよい。
 溶剤の配合量は、組成物の粘度や作業性、仮接着剤層の膜厚を調整する観点等から適宜設定すればよいが、例えば、光硬化性シリコーン樹脂組成物100質量部に対し、好ましくは5~900質量部、より好ましくは10~400質量部である。
 仮接着剤層は、前記光硬化性シリコーン樹脂組成物をスピンコート、ロールコート等の方法によって基板上に塗布することで、形成することができる。このうち、スピンコート等の方法によって仮接着剤層を基板上に形成する場合は、前記光硬化性シリコーン樹脂組成物を溶液化してコートすることが好ましい。
 溶液化した光硬化性シリコーン樹脂組成物は、その25℃における粘度が、塗布性の観点から、1~100,000mPa・sが好ましく、10~10,000mPa・sがより好ましい。
 前記光硬化性シリコーン樹脂組成物は、硬化後における25℃での25mm幅の試験片(例えば、シリコン基板試験片)の180°ピール剥離力が、通常2~50gfであり、好ましくは3~30gfであり、更に好ましくは5~20gfである。2gf以上であれば、ウエハ研削時にウエハのズレが生じるおそれがなく、50gf以下であれば、ウエハの剥離が容易となる。
 光硬化性シリコーン樹脂組成物は、硬化後における25℃での貯蔵弾性率が1,000Pa以上1,000MPa以下、好ましくは10,000Pa以上500MPa以下である。貯蔵弾性率が1,000Pa以上であれば、形成される膜が強靭であり、ウエハ研削時にウエハのズレやそれに伴うウエハ割れが生じるおそれがなく、1,000MPa以下であれば、CVD等のウエハ熱プロセス中の変形応力を緩和することができ、ウエハへの熱プロセス時にも安定である。
[薄型ウエハの製造方法]
 本発明の薄型ウエハの製造方法は、半導体回路等を有するウエハと支持体との接着層として、光硬化性シリコーン樹脂組成物からなる仮接着材層を用いることを特徴とするものであり、ここに2つの態様とその図説を図1に示す。いずれの態様においても本発明の製造方法により得られる薄型ウエハの厚さは、典型的には5~300μm、より典型的には10~100μmである。
 本発明の薄型ウエハの製造方法は第一の態様として以下の(a1)~(e)の工程を有する。また、必要に応じて、(f)~(i)の工程を有する。
[工程(a1)]
 工程(a1)は、仮接着工程であり、表面に回路形成面及び裏面に回路非形成面を有するウエハの回路形成面を、前記ウエハ加工用仮接着剤を用いて支持体に剥離可能に接着し、ウエハ積層体を形成する工程である。
 具体的には、前記ウエハの表面に前記ウエハ加工用仮接着剤を用いて仮接着剤層を形成し、該仮接着剤層を介して支持体と前記ウエハの表面とを貼り合わせる方法、支持体の表面に前記ウエハ加工用仮接着剤を用いて仮接着剤層を形成し、該仮接着剤層を介して支持体と前記ウエハの表面とを貼り合わせる方法、前記ウエハの表面と支持体の表面の両方に前記ウエハ加工用仮接着剤を用いて仮接着剤層を形成し、該仮接着剤層を介して支持体と前記ウエハの表面とを貼り合わせる方法のいずれかの方法が適用される。
 本発明に適用できるウエハは、通常、半導体ウエハである。前記半導体ウエハの例としては、シリコンウエハのみならず、ゲルマニウムウエハ、ガリウム-ヒ素ウエハ、ガリウム-リンウエハ、ガリウム-ヒ素-アルミニウムウエハ等が挙げられる。前記ウエハの厚さは、特に限定されないが、典型的には600~800μm、より典型的には625~775μmである。
 本発明の第一の態様において、光硬化性シリコーン樹脂組成物への光照射は支持体を通して行うため、支持体としてはガラス板、石英板、アクリル板、ポリカーボネート板、ポリエチレンテレフタレート板等の光透過性のある基板が使用可能である。中でもガラス板が紫外線の光透過性があり、かつ耐熱性に優れるため好ましい。
 仮接着剤層は、前記光硬化性シリコーン樹脂組成物をフィルム状に成形したものをウエハや支持体に積層することで形成してもよく、前記光硬化性シリコーン樹脂組成物をスピンコート、ロールコート等の方法で塗布することで形成してもよい。前記光硬化性シリコーン樹脂組成物が溶剤を含む溶液である場合、塗布後、その溶剤の揮発条件に応じ、好ましくは20~200℃、より好ましくは30~150℃の温度で予めプリベークを行った後、使用に供される。
 前記仮接着剤層は、膜厚が0.1~500μm、好ましくは1.0~200μmの間で形成されて使用されることが好ましい。膜厚が0.1μm以上であれば、基材上に塗布する場合に、塗布しきれない部分を生じることなく全体に塗布することができる。一方、膜厚が500μm以下であれば、薄型ウエハを形成する場合の研削工程に耐えることができる。
 前記仮接着剤層を介して支持体とウエハの表面とを貼り合わせる方法としては、好ましくは0~200℃、より好ましくは20~100℃の温度領域で、減圧下、均一に圧着する方法が挙げられる。
 仮接着剤層が形成されたウエハ及び支持体を圧着するときの圧力は、仮接着剤層の粘度にもよるが、好ましくは0.01~10MPa、より好ましくは0.05~1.0MPaである。圧力が0.01MPa以上であれば、回路形成面やウエハ-支持体間を仮接着剤層で満たすことができ、10MPa以下であれば、ウエハの割れや、ウエハ及び仮接着剤層の平坦性の悪化を招くおそれがなく、その後のウエハ加工が良好である。
 ウエハの貼り合わせは、市販のウエハボンダー、例えばEVG社のEVG520IS、850TB、SUSS MicroTec社のXBS300等を用いて行うことができる。
[工程(b1)]
 工程(b1)は、仮接着剤層を光硬化させる工程である。上記ウエハ加工体(積層体基板)が形成された後、光透過性のある支持体側から光照射を行い仮接着剤層を光硬化させる。その際の活性光線種は特に限定はされないが、紫外線が好ましく、さらに波長300-400nmの紫外線であることが好ましい。紫外線照射量(照度)は、積算光量として100mJ/cm2~100,000mJ/cm2、好ましくは500mJ/cm2~10,000mJ/cm2、より好ましくは1,000~5,000mJ/cm2であることが良好な硬化性を得る上で望ましい。紫外線照射量(照度)が上記範囲以上であれば、仮接着剤層中の光活性型ヒドロシリル化反応触媒を活性化するのに十分なエネルギーが得られ、十分な硬化物を得ることができる。一方、紫外線照射量(照度)が上記範囲以下であれば、組成物に十分なエネルギーが照射され、重合体層中の成分の分解が起こったり、触媒の一部が失活したりすることなく、十分な硬化物を得ることができる。
 紫外線照射は複数の発光スペクトルを有する光であっても、単一の発光スペクトルを有する光であってもよい。また、単一の発光スペクトルは300nmから400nmの領域にブロードなスペクトルを有するものであってもよい。単一の発光スペクトルを有する光は、300nmから400nm、好ましくは350nmから380nmの範囲にピーク(即ち、最大ピーク波長)を有する光である。このような光を照射する光源としては、紫外線発光ダイオード(紫外線LED)や、紫外線発光半導体レーザー等の紫外線発光半導体素子光源が挙げられる。
 複数の発光スペクトルを有する光を照射する光源としては、メタルハライドランプ、キセノンランプ、カーボンアーク灯、ケミカルランプ、ナトリウムランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ等のランプ等、窒素等の気体レーザー、有機色素溶液の液体レーザー、無機単結晶に希土類イオンを含有させた固体レーザー等が挙げられる。
 前記光が発光スペクトルにおいて300nmより短い波長領域にピークを有する場合、あるいは、300nmより短い波長領域に前記発光スペクトルにおける最大ピーク波長の放射照度の5%より大きい放射照度を有する波長が存在する場合(例えば、発光スペクトルが広域波長領域に渡ってブロードである場合)、かつ支持体に石英ウエハ等の300nmより短い波長に対しても光透過性を有する基板を用いる場合、光学フィルターにより300nmより短い波長領域にある波長の光を除去することが、十分な硬化物を得る上で好ましい。これにより、300nmより短い波長領域にある各波長の放射照度を最大ピーク波長の放射照度の5%以下、好ましくは1%以下、より好ましくは0.1%以下、さらに好ましくは0%にする。尚、発光スペクトルにおいて300nmから400nmの波長領域に複数のピークが存在する場合には、その中で最大の吸光度を示すピーク波長を最大ピーク波長とする。光学フィルターは300nmより短い波長をカットするものであれば特に制限されず公知の物を使用すればよい。例えば365nmバンドパスフィルター等を使用することができる。なお、紫外線の照度、スペクトル分布は分光放射照度計、例えばUSR-45D(ウシオ電機)にて測定することができる。
 光照射装置としては、特に限定はされないが、例えばスポット式照射装置、面式照射装置、ライン式照射装置、コンベア式照射装置等の照射装置が使用できる。
 本発明の光硬化性シリコーン樹脂組成物を硬化させる際、光照射時間は照度にもよるため一概に規定はできないが、例えば1~300秒、好ましくは10~200秒、より好ましくは30~150秒となるように照度調整を行えば、照射時間も適度に短く、作業工程上で特に問題になることは無い。また、光照射を行った光硬化性シリコーン樹脂組成物は、照射の1~120分後、特には5~60分後にはゲル化する。なお、本発明においてゲル化とは光硬化性シリコーン樹脂組成物の硬化反応が一部進行し組成物が流動性を失った状態のことを意味する。
[工程(c)]
 工程(c)は、支持体と仮接着したウエハの回路非形成面を研削又は研磨する工程、すなわち、前記工程で得られたウエハ積層体のウエハ裏面側を研削して、該ウエハの厚みを薄くしていく工程である。ウエハ裏面の研削加工の方式には特に制限はなく、公知の研削方式が採用される。研削は、ウエハと砥石(ダイヤモンド等)に水をかけて冷却しながら行うことが好ましい。ウエハ裏面を研削加工する装置としては、例えば(株)ディスコ製DAG-810(商品名)等が挙げられる。また、ウエハ裏面側を化学機械研磨(CMP)してもよい。
[工程(d)]
 工程(d)は、工程(c)で回路非形成面を研削したウエハ積層体の回路非形成面に加工を施す工程である。すなわち、裏面研削によって薄型化されたウエハ積層体のウエハの回路非形成面に加工を施す工程である。この工程には、ウエハレベルで用いられる様々なプロセスが含まれる。例としては、電極形成、金属配線形成、保護膜形成等が挙げられる。より具体的には、電極等の形成のための金属スパッタリング、金属スパッタリング層をエッチングするウェットエッチング、金属配線形成のマスクとするためのレジストの塗布、露光、及び現像によるパターンの形成、レジストの剥離、ドライエッチング、金属めっきの形成、TSV形成のためのシリコンエッチング、シリコン表面の酸化膜形成など、従来公知のプロセスが挙げられる。
[工程(e)]
 工程(e)は、工程(d)で加工を施したウエハを支持体から剥離する工程、すなわち、薄型化したウエハに様々な加工を施した後、ダイシングする前にウエハを支持体から剥離する工程である。この剥離工程としては、一般に、室温から60℃程度の比較的温和な条件で実施される。剥離方法としては、ウエハ積層体のウエハ又は支持体の一方を水平に固定しておき、他方を水平方向から一定の角度を付けて持ち上げる方法、事前にウエハ積層体を溶剤に浸漬させて仮接着材層を膨潤させた後、上記同様ピール剥離に処する方法、研削されたウエハの研削面に保護フィルムを貼り、ウエハと保護フィルムをピール方式でウエハ積層体から剥離する方法等が挙げられる。これらの剥離方法で剥離工程を行う場合は、通常、室温で実施される。
 また、工程(e)は、
(e1)加工を施したウエハのウエハ面にダイシングテープを貼付する工程、
(e2)ダイシングテープ面を吸着面に真空吸着する工程、及び
(e3)吸着面の温度が10~100℃の範囲で、支持体を、加工を施したウエハからピールオフにて剥離する工程
を含むことが好ましい。このようにすることで、支持体を、加工を施したウエハから容易に剥離することができ、また、後のダイシング工程を容易に行うことができる。
 また、工程(e)後に、
(f)剥離したウエハの回路形成面に残存する仮接着剤層を除去する工程
を行うことが好ましい。工程(e)により支持体より剥離されたウエハの回路形成面には、仮接着剤層が一部残存している場合があり、該仮接着剤層の除去は、例えば、ウエハを洗浄することにより行うことができる。
 この工程(f)では、仮接着剤層のシリコーン樹脂を溶解するような洗浄液であればすべて使用可能であり、具体的には、ペンタン、へキサン、シクロヘキサン、デカン、イソノナン、p-メンタン、ピネン、イソドデカン、リモネン等が挙げられる。これらの溶剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
 また、仮接着剤層を除去しにくい場合は、前記洗浄液に塩基類や酸類を添加してもよい。前記塩基類としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリエチルアミン、アンモニア等のアミン類;テトラメチルアンモニウムヒドロキシド等のアンモニウム塩類が使用可能である。前記酸類としては、酢酸、シュウ酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸等の有機酸が使用可能である。前記塩基類や酸類の添加量は、洗浄液中の濃度が好ましくは0.01~10質量%、より好ましくは0.1~5質量%となる量である。また、残存物の除去性を向上させるため、既存の界面活性剤を添加してもよい。また、ウエハ洗浄剤として入手可能なSPIS-TA-CLEANERシリーズ(信越化学工業(株)製)も好適に使用可能である。
 ウエハの洗浄方法としては、前記洗浄液を用いてパドルで洗浄を行う方法、スプレー噴霧して洗浄する方法、洗浄液槽に浸漬する方法が挙げられる。洗浄する際の温度は、好ましくは10~80℃、より好ましくは15~65℃であり、必要があれば、これらの洗浄液で仮接着剤層を溶解した後、最終的に水又はアルコールによるリンスを行い、乾燥処理を行ってもよい。
 本発明の薄型ウエハの製造方法の第二の態様として、以下(a2)、(b2)の工程の工程を示す。(b2)以下の工程、つまり(c)~(e)、好ましくは(c)~(f)の工程に関しては上述の第一の態様と同様である。
[工程(a2)]
 工程(a2)は、光照射を行った光硬化性シリコーン樹脂組成物層をウエハ上及び/または支持体上に形成する工程である。
 ウエハと支持体を接合した後に光照射を行う第一の態様とは異なり、接合前に光硬化性シリコーン樹脂組成物に光照射を行うことで支持体越しの光照射工程が不要となり、その結果、支持体には光透過性が不要となる。よってこの態様によれば、上記支持体の適用例に追加してシリコン、アルミニウム、SUS、銅、ゲルマニウム、ガリウム-ヒ素、ガリウム-リン、ガリウム-ヒ素-アルミニウム等の光を透過しない基板も支持体として適用可能である。またこの方法によれば、ウエハからの硬化阻害の影響も低減可能であるため、ウエハの適用範囲も広げることが可能である。
 光照射を行った光硬化性シリコーン樹脂組成物の塗布に関しては、〔1〕ウエハ〔2〕支持体〔3〕ウエハと支持体の両側のいずれかに塗布して用いることができる。
 接合前に光硬化性シリコーン樹脂組成物に光照射を行う方法については、組成物に光照射を行いながらウエハ上及び/または支持体上に塗布する方法、組成物全体に光照射を行った後、ウエハ上及び/または支持体上に塗布する方法、ウエハ上及び/または支持体上に組成物を塗布した後に光照射を行う方法などが例示できるが、特に限定は無く、作業性を鑑みて適宜選択し行えばよい。また光照射における活性光線種、紫外線照射量(照度)、光源、発光スペクトル、光照射装置、光照射時間については、第一の態様の[工程(b1)]に挙げた方法を用いることができる。
 第一及び第二仮接着層の形成方法は第一の態様と同様に行うことができ、それぞれフィルム、あるいは対応する組成物またはその溶液をスピンコート、ロールコータなどの方法によりウエハ上及び/または支持体上に形成することができる。溶液として使用する場合、スピンコート後、その溶剤の揮発条件に応じ、20~200℃、好ましくは30~150℃の温度で、予めプリベークを行ったのち、使用に供される。
[工程(b2)]
 工程(b2)は、工程(a2)で作製された光硬化性シリコーン樹脂組成物層が形成された回路付きウエハ及び/または支持体を真空下で接合する工程である。このとき、好ましくは0~200℃、より好ましくは20~100℃の温度領域で、この温度にて減圧(真空)下、この基板を均一に圧着することで、ウエハが支持体と接合したウエハ加工体(積層体基板)が形成される。ここで、ウエハ貼り合わせ装置としては第一の態様と同様のものが使用可能である。
 以下、調製例、比較調製例、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、粘度は、TVB-10M型回転粘度計(東機産業(株)製)による25℃における測定値である。
[1]光硬化性シリコーン樹脂溶液の調製
[調製例1]
 2.5モル%のビニル基を分子側鎖に有し、Mnが3万のジメチルポリシロキサン100質量部及びトルエン200質量部からなる溶液に、SiO4/2単位(Q単位)50モル%、(CH3)3SiO1/2単位(M単位)48モル%及び(CH2=CH)3SiO1/2単位(Vi単位)2モル%からなるMnが7,000のビニルメチルポリシロキサン50質量部及びトルエン100質量部からなる溶液、下記式(M-1)で表されるMnが2,800のオルガノハイドロジェンポリシロキサン230質量部、30質量%トルエン溶液の粘度(25℃)が30,000mPa・sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン50質量部及びトルエン120質量部からなる溶液、並びに1-エチニルシクロヘキサノール0.6質量部を添加し、混合した。さらに、そこへ光活性型ヒドロシリル化反応触媒;(メチルシクロペンタジエニル)トリメチル白金(IV)のトルエン溶液(白金濃度1.0質量%)を0.4質量部添加し、0.2μmのメンブレンフィルターで濾過して、光硬化性シリコーン樹脂溶液A1を調製した。樹脂溶液A1の25℃における粘度は、230mPa・sであった。
Figure JPOXMLDOC01-appb-C000002
[調製例2]
 2.5モル%のビニル基を分子側鎖に有し、Mnが3万のジメチルポリシロキサン70質量部、0.15モル%のビニル基を両末端鎖に有し、Mnが6万のジメチルポリシロキサン30質量部及びトルエン200質量部からなる溶液に、SiO4/2単位(Q単位)50モル%、(CH3)3SiO1/2単位(M単位)48モル%及び(CH2=CH)3SiO1/2単位(Vi単位)2モル%からなるMnが7,000のビニルメチルポリシロキサン50質量部及びトルエン100質量部からなる溶液、式(M-1)で表されるMnが2,800のオルガノハイドロジェンポリシロキサン180質量部、30質量%トルエン溶液の粘度(25℃)が1,000mPa・sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン30質量部、並びに1-エチニルシクロヘキサノール0.6質量部を添加し、混合した。さらに、そこへ光活性型ヒドロシリル化反応触媒;(メチルシクロペンタジエニル)トリメチル白金(IV)のトルエン溶液(白金濃度1.0質量%)を0.4質量部添加し、0.2μmのメンブレンフィルターで濾過して、光硬化性シリコーン樹脂溶液A2を調製した。樹脂溶液A2の25℃における粘度は、100mPa・sであった。
[調製例3]
 2.5モル%のビニル基を分子の両末端及び側鎖に有し、Mnが3万のジメチルポリシロキサン100質量部及びトルエン200質量部からなる溶液に、SiO4/2単位(Q単位)50モル%、(CH3)3SiO1/2単位(M単位)48モル%及び(CH2=CH)3SiO1/2単位(Vi単位)2モル%からなるMnが7,000のビニルメチルポリシロキサン50質量部及びトルエン100質量部からなる溶液、式(M-1)で表されるMnが2,800のオルガノハイドロジェンポリシロキサン230質量部、30質量%トルエン溶液の粘度(25℃)が100,000mPa・sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン20質量部及びトルエン300質量部からなる溶液、並びに1-エチニルシクロヘキサノール0.6質量部を添加し、混合した。さらに、そこへ光活性型ヒドロシリル化反応触媒;(メチルシクロペンタジエニル)トリメチル白金(IV)のトルエン溶液(白金濃度1.0質量%)を0.4質量部添加し、0.2μmのメンブレンフィルターで濾過して、光硬化性シリコーン樹脂溶液A3を調製した。樹脂溶液A3の25℃における粘度は、330mPa・sであった。
[調製例4]
 2.5モル%のビニル基を分子の両末端及び側鎖に有し、Mnが3万のジメチルポリシロキサン100質量部及びトルエン200質量部からなる溶液に、SiO4/2単位(Q単位)50モル%、(CH3)3SiO1/2単位(M単位)48モル%及び(CH2=CH)3SiO1/2単位(Vi単位)2モル%からなるMnが7,000のビニルメチルポリシロキサン200質量部及びトルエン400質量部からなる溶液、式(M-1)で表されるMnが2,800のオルガノハイドロジェンポリシロキサン430質量部、30質量%トルエン溶液の粘度(25℃)が30,000mPa・sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン100質量部及びトルエン120質量部からなる溶液、並びに1-エチニルシクロヘキサノール1.2質量部を添加し、混合した。さらに、そこへ光活性型ヒドロシリル化反応触媒;(メチルシクロペンタジエニル)トリメチル白金(IV)のトルエン溶液(白金濃度1.0質量%)を0.8質量部添加し、0.2μmのメンブレンフィルターで濾過して、光硬化性シリコーン樹脂溶液A4を調製した。樹脂溶液A4の25℃における粘度は、120mPa・sであった。
[調製例5]
 2.5モル%のビニル基を分子側鎖に有し、Mnが3万のジメチルポリシロキサン70質量部、0.15モル%のビニル基を両末端鎖に有し、Mnが6万のジメチルポリシロキサン30質量部及びトルエン200質量部からなる溶液に、SiO4/2単位(Q単位)50モル%、(CH3)3SiO1/2単位(M単位)48モル%及び(CH2=CH)3SiO1/2単位(Vi単位)2モル%からなるMnが7,000のビニルメチルポリシロキサン200質量部及びトルエン400質量部からなる溶液、式(M-1)で表されるMnが2,800のオルガノハイドロジェンポリシロキサン380質量部、30質量%トルエン溶液の粘度(25℃)が1,000mPa・sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン150質量部、並びに1-エチニルシクロヘキサノール1.2質量部を添加し、混合した。さらに、そこへ光活性型ヒドロシリル化反応触媒;(メチルシクロペンタジエニル)トリメチル白金(IV)のトルエン溶液(白金濃度1.0質量%)を0.8質量部添加し、0.2μmのメンブレンフィルターで濾過して、光硬化性シリコーン樹脂溶液A5を調製した。樹脂溶液A5の25℃における粘度は、80mPa・sであった。
[調製例6]
 2.5モル%のビニル基を分子の両末端及び側鎖に有し、Mnが3万のジメチルポリシロキサン100質量部及びトルエン200質量部からなる溶液に、SiO4/2単位(Q単位)50モル%、(CH3)3SiO1/2単位(M単位)48モル%及び(CH2=CH)3SiO1/2単位(Vi単位)2モル%からなるMnが7,000のビニルメチルポリシロキサン50質量部及びトルエン100質量部からなる溶液、式(M-1)で表されるMnが2,800のオルガノハイドロジェンポリシロキサン230質量部、30質量%トルエン溶液の粘度(25℃)が30,000mPa・sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン50質量部及びトルエン120質量部からなる溶液、並びに1-エチニルシクロヘキサノール0.6質量部を添加し、混合した。さらに、そこへ光活性型ヒドロシリル化反応触媒;ビス(2,4-へプタンジオナト)白金(II)の酢酸2-(2-ブトキシエトキシ)エチル溶液(白金濃度0.5質量%)を0.8質量部添加し、0.2μmのメンブレンフィルターで濾過して、光硬化性シリコーン樹脂溶液A6を調製した。樹脂溶液A6の25℃における粘度は、230mPa・sであった。
[調製例7]
 2.5モル%のビニル基を分子側鎖に有し、Mnが3万のジメチルポリシロキサン70質量部、0.15モル%のビニル基を両末端鎖に有し、Mnが6万のジメチルポリシロキサン30質量部及びトルエン200質量部からなる溶液に、SiO4/2単位(Q単位)50モル%、(CH3)3SiO1/2単位(M単位)48モル%及び(CH2=CH)3SiO1/2単位(Vi単位)2モル%からなるMnが7,000のビニルメチルポリシロキサン200質量部及びトルエン400質量部からなる溶液、式(M-1)で表されるMnが2,800のオルガノハイドロジェンポリシロキサン380質量部、30質量%トルエン溶液の粘度(25℃)が1,000mPa・sである分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン150質量部、並びに1-エチニルシクロヘキサノール1.2質量部を添加し、混合した。さらに、そこへ光活性型ヒドロシリル化反応触媒;ビス(2,4-へプタンジオナト)白金(II)の酢酸2-(2-ブトキシエトキシ)エチル溶液(白金濃度0.5質量%)を1.6質量部添加し、0.2μmのメンブレンフィルターで濾過して、光硬化性シリコーン樹脂溶液A7を調製した。樹脂溶液A7の25℃における粘度は、80mPa・sであった。
[比較調製例1]
 光活性型ヒドロシリル化反応触媒;(メチルシクロペンタジエニル)トリメチル白金(IV)のトルエン溶液(白金濃度1.0質量%)0.4質量部を熱活性型ヒドロシリル化反応触媒;CAT-PL-5(信越化学工業(株)製、白金濃度1.0質量%)0.4質量部に変更したこと以外は、調製例1と同様の方法で熱硬化性シリコーン樹脂溶液CA1を調製した。樹脂溶液CA1の25℃における粘度は、230mPa・sであった。
[比較調製例2]
 分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン50質量部及びトルエン120質量部からなる溶液を添加しなかったこと以外は、調製例1と同様の方法で光硬化性シリコーン樹脂溶液CA2を調製した。樹脂溶液CA2の25℃における粘度は、150mPa・sであった。
[比較調製例3]
 分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン30質量部を添加しなかったこと以外は、調製例2と同様の方法で光硬化性シリコーン樹脂溶液CA3を調製した。樹脂溶液CA3の25℃における粘度は、180mPa・sであった。
[比較調製例4]
 分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン50質量部を、下記式(M-2)で表される側鎖にエポキシ基を含むポリシロキサン(30質量%トルエン溶液の粘度(25℃):33,000mPa・s)50質量部に変更したこと以外は、調製例1と同様の方法で光硬化性シリコーン樹脂溶液CA4を得た。樹脂溶液CA4の25℃における粘度は、260mPa・sであった。
Figure JPOXMLDOC01-appb-C000003
[比較調製例5]
 分子鎖両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン30質量部を、下記式(M-3)で表される側鎖にトリメトキシシリル基を含むポリシロキサン(30質量%トルエン溶液の粘度(25℃):2,500mPa・s)30質量部に変更したこと以外は、調製例2同様の方法で光硬化性シリコーン樹脂溶液CA5を得た。樹脂溶液CA5の25℃における粘度は、190mPa・sであった。
Figure JPOXMLDOC01-appb-C000004
[2]ウエハ積層体の作製及びその評価
[実施例1~7及び比較例1~5]
 表面に高さ10μm、直径40μmの銅ポストが全面に形成された直径200mmのシリコンウエハ(厚さ:725μm)上に、硬化性シリコーン樹脂溶液A1~A7、CA1~CA5をそれぞれスピンコートし、ホットプレートにて100℃で2分間加熱して、下記表1に示す膜厚で仮接着剤層をウエハバンプ形成面に成膜した。直径200mm(厚さ:500μm)のガラス板を支持体として、仮接着剤層を有するシリコンウエハ及びガラス板をそれぞれ、仮接着剤層とガラス板が合わさるように、EVG社のウエハ接合装置EVG520ISを用いて25℃、10-3mbar以下、荷重5kNにて真空貼り合わせを行った。その後、面照射タイプUV-LED(波長365nm)照射器を用いて、表1に示す条件にて硬化性シリコーン樹脂組成物層に光照射を行い、ウエハ積層体を作製した。また、熱硬化性シリコーン樹脂溶液CA1を用いたサンプルにおいては、ホットプレート上、表1に示す条件にて加熱を行い、ウエハ積層体を作製した。
 その後、得られたウエハ積層体に対して下記試験を行った。その結果を表1に併記する。また、試験は下記方法によって行った。
(1)ウエハ反り試験
 上記ウエハ積層体の作製において、仮接着層硬化時のウエハの反り状態を目視観察により確認した。反りが全く無かった場合を「○」、反りが発生した場合を「×」で評価した。
(2)接着性試験
 前記ウエハ積層体を180℃で1時間オーブンを用いて加熱し、室温まで冷却した後、ウエハ界面の接着状況を目視で確認し、界面に気泡等の異常が発生しなかった場合を良好と評価して「○」で示し、異常が発生した場合を不良と評価して「×」で示した。
(3)裏面研削耐性試験
 前記ウエハ積層体を用いて、グラインダー((株)ディスコ製DAG-810)でダイヤモンド砥石を用いてシリコンウエハの裏面研削を行った。基板の厚さが50μmになるまでグラインドした後、光学顕微鏡(100倍)にてクラック、剥離等の異常の有無を調べた。異常が発生しなかった場合を良好と評価して「○」で示し、異常が発生した場合を不良と評価して「×」で示した。
(4)CVD耐性試験
 (3)裏面研削耐性試験を終えた後のウエハ積層体をCVD装置に導入し、2μmのSiO2膜の成膜実験を行い、その際の外観異常の有無を目視観察によって調べた。外観異常が発生しなかった場合を良好と評価して「○」で示し、ボイド、ウエハ膨れ、ウエハ破損等の外観異常が発生した場合を不良と評価して「×」で示した。CVD耐性試験の条件は、以下のとおりである。
 装置名:サムコ(株)製プラズマCVD、PD270STL
 RF500W、内圧40Pa
 TEOS(テトラエチルオルソシリケート):O2=20sccm:680sccm
(5)剥離性試験
 基板の剥離性は、まず、(4)CVD耐性試験を終えたウエハ積層体のウエハ側にダイシングフレームを用いてダイシングテープ(日東電工(株)製ELP UB-3083D)を貼り、このダイシングテープ面を真空吸着によって、吸着板にセットした。その後、室温にて、ガラスの1点をピンセットにて持ち上げることで、ガラス基板を剥離した。50μm厚のウエハを割ることなく剥離できた場合を「○」で示し、割れ等の異常が発生した場合を不良と評価して「×」で示した。
(6)洗浄除去性試験
 (5)剥離性試験終了後のダイシングテープを介してダイシングフレームに装着された直径200mmウエハ(CVD耐性試験条件に晒されたもの)を、剥離面を上にしてスピンコーターにセットし、洗浄溶剤としてSPIS-TA-CLEANER 25(信越化学工業(株)製)を5分間噴霧したのち、ウエハを回転させながらイソプロピルアルコール(IPA)を噴霧してリンスを行った。その後、外観を観察して残存する接着剤の有無を目視でチェックした。樹脂の残存が認められないものを良好と評価して「○」で示し、樹脂の残存が認められたものを不良と評価して「×」で示した。
(7)ピール剥離力試験
 直径200mmのシリコンウエハ(厚さ:725μm)上にシリコーン樹脂溶液A1~A7及びCA1~CA5をそれぞれスピンコートし、ホットプレートにて100℃で2分間加熱することで、表1に示す膜厚でシリコーン樹脂層を成膜した。その後、面照射タイプUV-LED(波長365nm)照射器を用いて、表1に示す条件にて硬化性シリコーン樹脂組成物層に光照射を行い、仮接着剤層を硬化させた。また、熱硬化性シリコーン樹脂溶液CA1を用いたサンプルにおいては、ホットプレート上、表1に示す条件で加熱を行い、仮接着剤層を硬化させた。
 その後、前記ウエハ上のシリコーン樹脂層上に150mm長×25mm幅のポリイミドテープを5本貼り付け、テープが貼られていない部分の仮接着剤層を除去した。(株)島津製作所のAUTOGRAPH (AG-1)を用いて25℃、300mm/分の速度でテープの一端から180°剥離で120mm剥がし、そのときにかかる力の平均(120mmストローク×5回)を、そのシリコーン樹脂層のピール剥離力とした。
(8)貯蔵弾性率測定
 シリコン基板上に硬化性シリコーン樹脂溶液A1~A7及びCA1~CA5をそれぞれスピンコートし、ホットプレートにて100℃で2分間加熱することで、表1に示す膜厚でシリコン基板上にシリコーン樹脂層を形成した。その後、面照射タイプUV-LED(波長365nm)照射器を用いて、表1に示す条件にて硬化性シリコーン樹脂組成物層に光照射を行い、仮接着剤層を硬化させた。一方、熱硬化性シリコーン樹脂溶液CA1を用いたサンプルにおいては、ホットプレート上、表1に示す条件にて加熱を行い、仮接着剤層を硬化させた。
 得られた仮接着剤層を含むシリコン基板を、TAインスツルメント社製アレスG2を使用し、仮接着剤層に50gfの荷重がかかるよう25mmアルミニウムプレートで挟んだ状態で25℃、1Hzでの弾性率測定を行い、得られた弾性率の値をシリコーン樹脂層の貯蔵弾性率とした。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1に示したように、本発明の仮接着剤層を含む実施例1~7のウエハ積層体は、比較的低温かつ短時間での硬化が可能であり、それに伴って硬化時のウエハ反りも低減されている。また十分な加工耐久性を有しており、かつ剥離性にも優れ、また剥離後の洗浄除去性も良好であることが確認された。一方、表2に示したように、熱活性型の触媒を用いた比較例1、2では、加熱不足による硬化不足や硬化時のウエハ反りが確認された。また、無官能性オルガノポリシロキサンを有しない比較例3、4や官能性オルガノポリシロキサンを含む比較例5、6では、回路付ウエハと支持体とが強密着となり、その結果、剥離工程でウエハ割れが発生し、また剥離もできなかった。
[実施例8]
 光硬化性シリコーン樹脂溶液A1に、面照射タイプUV-LED(波長365nm)照射器を用いて、表2に示す条件にて光照射を行い、次いで表面に高さ10μm、直径40μmの銅ポストが全面に形成された直径200mmのシリコンウエハ(回路付きSiウエハ、厚さ:725μm)上にスピンコートし、ホットプレートにて100℃で2分間加熱して、下記表2に示す膜厚で仮接着剤層をウエハバンプ形成面に成膜した。直径200mmのシリコンウエハ(Siウエハ、厚さ:770μm)を支持体として、仮接着剤層を有する回路付きSiウエハ及び支持体のSiウエハをそれぞれ、仮接着剤層とSiウエハが合わさるように、EVG社のウエハ接合装置EVG520ISを用いて25℃、10-3mbar以下、荷重5kNにて真空貼り合わせを行い、ウエハ積層体を作製した。
[実施例9]
 前記実施例8において、光照射を行った光硬化性シリコーン樹脂溶液A1を塗布する対象を回路付きSiウエハ上から支持体のSiウエハ上に変更した以外は、同様にしてウエハ積層体を作製した。
[実施例10]
 前記実施例8において、光照射を行った光硬化性シリコーン樹脂溶液A1を塗布する対象を回路付きSiウエハ上から回路付きSiウエハ上及び支持体のSiウエハ上の両方に変更した以外は、同様にしてウエハ積層体を作製した。
[実施例11]
 前記実施例8において、用いる光硬化性シリコーン樹脂溶液をA1からA6に変更した以外は同様にしてウエハ積層体を作製した。
[実施例12]
 前記実施例9において、用いる光硬化性シリコーン樹脂溶液をA1からA6に変更した以外は同様にしてウエハ積層体を作製した。
[実施例13]
 前記実施例10において、用いる光硬化性シリコーン樹脂溶液をA1からA6に変更した以外は同様にしてウエハ積層体を作製した。
 前記実施例8~13において、得られたウエハ積層体に対して前記(1)ウエハ反り試験~(6)洗浄除去性試験と同様の試験を行った。その結果を表3に示す。
 また、(7)ピール剥離力試験と(8)貯蔵弾性率測定については、予め光照射を行った光硬化性シリコーン樹脂溶液を直径200mmのシリコンウエハ(Siウエハ、厚さ:770μm)上にスピンコートし、ホットプレートにて100℃で5分間加熱することで、シリコーン樹脂層を硬化させ、試験サンプルを準備した。その後は前記同様、ピール剥離力試験及び弾性率測定試験を実施し、その結果を表3に記載した。
Figure JPOXMLDOC01-appb-T000007
 表3に示したように、本発明の薄型ウエハの製造方法において、予め光照射を行ったシリコーン樹脂溶液を塗布し、接合した場合でも、塗布、接合後に光照射を行った場合と同等のウエハ加工性が得られることが確認された。この場合、支持体を透過しての光照射が不要となるため、支持体の適用範囲が広がり、またデバイスウエハへの光ダメージを回避することができる等の利点が考えられる。

Claims (8)

  1.  無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物からなる、ウエハを支持体に仮接着するためのウエハ加工用仮接着剤。
  2.  前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物が、
    (A)1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン:100質量部、
    (B)1分子中に2個以上のケイ素原子に結合した水素原子(SiH基)を含有するオルガノハイドロジェンポリシロキサン:(A)成分中のアルケニル基の合計に対する(B)成分中のSiH基の合計が、モル比で0.3~10となる量、
    (C)無官能性オルガノポリシロキサン:0.1~200質量部、及び
    (D)光活性型ヒドロシリル化反応触媒:(A)、(B)及び(C)成分の合計質量に対し、金属原子量換算で0.1~5,000ppm
    を含むものである請求項1記載のウエハ加工用仮接着剤。
  3.  (C)成分の無官能性オルガノポリシロキサンの30質量%トルエン溶液の25℃における粘度が100~500,000mPa・sである請求項2記載のウエハ加工用仮接着剤。
  4.  前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物が、更に(E)成分としてヒドロシリル化反応制御剤を前記(A)、(B)及び(C)成分の合計質量に対し、0.001~10質量部含む請求項1~3のいずれか1項記載のウエハ加工用仮接着剤。
  5.  前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物の硬化後、25℃でのシリコン基板に対する25mm幅の試験片の180°ピール剥離力が2gf以上50gf以下である請求項1~4のいずれか1項記載のウエハ加工用仮接着剤。
  6.  前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物の硬化後、25℃での貯蔵弾性率が1,000Pa以上1,000MPa以下である請求項1~5のいずれか1項記載のウエハ加工用仮接着剤。
  7.  ウエハと支持体とを仮接着剤層を介して接合、硬化する工程(以下、(a)、(b)の工程)において、以下のいずれかの態様を含む、前記無官能性オルガノポリシロキサンを含む光硬化性シリコーン樹脂組成物を用いた薄型ウエハの製造方法。ここで、いずれの態様においても(c)~(e)の工程については共通のものとする。
    (態様1)
    (a1)表面に回路形成面及び裏面に回路非形成面を有するウエハの前記回路形成面、及び/または支持体の前記ウエハとの接合面に、前記1~6のいずれかのウエハ加工用仮接着剤組成物を塗布し、接合する工程
    (b1)前記接合したウエハの仮接着剤を光硬化させる工程
    (態様2)
    (a2)前記1~6のいずれかのウエハ加工用仮接着剤組成物に光照射する工程
    (b2)表面に回路形成面及び裏面に回路非形成面を有するウエハの前記回路形成面、及び/または支持体の前記ウエハとの接合面に、前記(a-2)で光照射を行ったウエハ加工用仮接着剤組成物を塗布し、接合する工程
    (c)前記ウエハ積層体のウエハの回路非形成面を研削又は研磨する工程
    (d)前記ウエハの回路非形成面に加工を施す工程
    (e)前記加工を施したウエハを前記支持体から剥離する工程
  8.  支持体と、その上に積層された請求項1~6のいずれか1項記載のウエハ加工用仮接着剤から得られる仮接着剤層と、表面に回路形成面及び裏面に回路非形成面を有するウエハとを備えるウエハ積層体であって、
     前記仮接着剤層が、前記ウエハの表面に剥離可能に接着されたものであるウエハ積層体。
PCT/JP2021/016272 2020-04-30 2021-04-22 ウエハ加工用仮接着剤、ウエハ積層体及び薄型ウエハの製造方法 WO2021220929A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227039904A KR20230005219A (ko) 2020-04-30 2021-04-22 웨이퍼 가공용 가접착제, 웨이퍼 적층체 및 박형 웨이퍼의 제조 방법
CN202180031672.7A CN115485814A (zh) 2020-04-30 2021-04-22 晶片加工用临时粘接剂、晶片层叠体以及薄型晶片的制造方法
JP2022517686A JPWO2021220929A1 (ja) 2020-04-30 2021-04-22
US17/921,440 US11970639B2 (en) 2020-04-30 2021-04-22 Temporary adhesive for wafer processing, wafer laminate and method for producing thin wafer
EP21797814.7A EP4144808A1 (en) 2020-04-30 2021-04-22 Temporary adhesive for wafer processing, wafer laminate and method for producing thin wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020080245 2020-04-30
JP2020-080245 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021220929A1 true WO2021220929A1 (ja) 2021-11-04

Family

ID=78373572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016272 WO2021220929A1 (ja) 2020-04-30 2021-04-22 ウエハ加工用仮接着剤、ウエハ積層体及び薄型ウエハの製造方法

Country Status (7)

Country Link
US (1) US11970639B2 (ja)
EP (1) EP4144808A1 (ja)
JP (1) JPWO2021220929A1 (ja)
KR (1) KR20230005219A (ja)
CN (1) CN115485814A (ja)
TW (1) TW202204517A (ja)
WO (1) WO2021220929A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730715B (zh) 2020-03-27 2023-04-25 三井金属矿业株式会社 临时固定用组合物及接合结构体的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064040A (ja) 2002-06-03 2004-02-26 Three M Innovative Properties Co 被研削基材を含む積層体、その製造方法並びに積層体を用いた極薄基材の製造方法及びそのための装置
JP2006328104A (ja) 2005-05-23 2006-12-07 Jsr Corp 接着剤組成物
US7541264B2 (en) 2005-03-01 2009-06-02 Dow Corning Corporation Temporary wafer bonding method for semiconductor processing
JP2009543708A (ja) * 2006-07-14 2009-12-10 スリーエム イノベイティブ プロパティズ カンパニー 層状体、及び前記層状体を用いた薄型基材の製造方法
JP2014525953A (ja) * 2011-07-22 2014-10-02 ワッカー ケミー アクチエンゲゼルシャフト 化学的に類似している基材の仮接着
JP2016119438A (ja) * 2014-12-24 2016-06-30 信越化学工業株式会社 ウエハの仮接着方法及び薄型ウエハの製造方法
WO2017191815A1 (ja) * 2016-05-02 2017-11-09 日立化成株式会社 仮固定用樹脂フィルム
JP2020029519A (ja) * 2018-08-23 2020-02-27 デンカ株式会社 組成物
WO2020050167A1 (ja) * 2018-09-03 2020-03-12 マクセルホールディングス株式会社 ダイシング用粘着テープおよび半導体チップの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183415B2 (en) * 2016-06-22 2021-11-23 Nissan Chemical Corporation Adhesive containing polydimethyl siloxane

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004064040A (ja) 2002-06-03 2004-02-26 Three M Innovative Properties Co 被研削基材を含む積層体、その製造方法並びに積層体を用いた極薄基材の製造方法及びそのための装置
US7541264B2 (en) 2005-03-01 2009-06-02 Dow Corning Corporation Temporary wafer bonding method for semiconductor processing
JP2006328104A (ja) 2005-05-23 2006-12-07 Jsr Corp 接着剤組成物
JP2009543708A (ja) * 2006-07-14 2009-12-10 スリーエム イノベイティブ プロパティズ カンパニー 層状体、及び前記層状体を用いた薄型基材の製造方法
JP2014525953A (ja) * 2011-07-22 2014-10-02 ワッカー ケミー アクチエンゲゼルシャフト 化学的に類似している基材の仮接着
JP2016119438A (ja) * 2014-12-24 2016-06-30 信越化学工業株式会社 ウエハの仮接着方法及び薄型ウエハの製造方法
WO2017191815A1 (ja) * 2016-05-02 2017-11-09 日立化成株式会社 仮固定用樹脂フィルム
JP2020029519A (ja) * 2018-08-23 2020-02-27 デンカ株式会社 組成物
WO2020050167A1 (ja) * 2018-09-03 2020-03-12 マクセルホールディングス株式会社 ダイシング用粘着テープおよび半導体チップの製造方法

Also Published As

Publication number Publication date
TW202204517A (zh) 2022-02-01
CN115485814A (zh) 2022-12-16
JPWO2021220929A1 (ja) 2021-11-04
KR20230005219A (ko) 2023-01-09
US20230088354A1 (en) 2023-03-23
US11970639B2 (en) 2024-04-30
EP4144808A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
JP6130522B2 (ja) ウエハ加工体、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
JP5687230B2 (ja) ウエハ加工体、ウエハ加工用部材、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
TWI668077B (zh) 晶圓之暫時接著方法及薄型晶圓之製造方法
JP5348147B2 (ja) 仮接着材組成物、及び薄型ウエハの製造方法
TWI545171B (zh) Wafer processing body, wafer processing member, temporary adhesive material for wafer processing, and manufacturing method of thin wafer
JP6023737B2 (ja) ウエハ加工体、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
JP5767159B2 (ja) ウエハ加工体、ウエハ加工用部材、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
JP7045765B2 (ja) 回路付基板加工体及び回路付基板加工方法
JP7361127B2 (ja) ウエハ加工体、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
WO2021220929A1 (ja) ウエハ加工用仮接着剤、ウエハ積層体及び薄型ウエハの製造方法
WO2021112070A1 (ja) ウエハ加工用仮接着剤、ウエハ積層体及び薄型ウエハの製造方法
JP7454922B2 (ja) 基板加工用仮接着材料及び積層体の製造方法
JP7351260B2 (ja) デバイス基板用仮接着剤、デバイス基板積層体及びデバイス基板積層体の製造方法
JP2020012020A (ja) ウエハ加工用仮接着剤、ウエハ積層体、ウエハ積層体の製造方法、及び薄型ウエハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517686

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227039904

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021797814

Country of ref document: EP

Effective date: 20221130