WO2021220578A1 - 固体電解質材料およびそれを用いた電池 - Google Patents

固体電解質材料およびそれを用いた電池 Download PDF

Info

Publication number
WO2021220578A1
WO2021220578A1 PCT/JP2021/004838 JP2021004838W WO2021220578A1 WO 2021220578 A1 WO2021220578 A1 WO 2021220578A1 JP 2021004838 W JP2021004838 W JP 2021004838W WO 2021220578 A1 WO2021220578 A1 WO 2021220578A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte material
material according
battery
negative electrode
Prior art date
Application number
PCT/JP2021/004838
Other languages
English (en)
French (fr)
Inventor
圭織 竹内
良明 田中
哲也 浅野
章裕 酒井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180028957.5A priority Critical patent/CN115428217A/zh
Priority to JP2022518613A priority patent/JPWO2021220578A1/ja
Priority to EP21796463.4A priority patent/EP4144700A1/en
Publication of WO2021220578A1 publication Critical patent/WO2021220578A1/ja
Priority to US18/049,194 priority patent/US20230108478A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a solid electrolyte material and a battery using the same.
  • Patent Document 1 discloses an all-solid-state battery using a sulfide solid electrolyte material.
  • the purpose of the present disclosure is to provide a new solid electrolyte material with high usefulness.
  • the solid electrolyte material of the present disclosure comprises Li, M, Al, O, and X, where M is at least one selected from the group consisting of Ta and Nb, where X is from F, Cl, and Br. At least one selected from the group of
  • the present disclosure provides a new solid electrolyte material with high usefulness.
  • FIG. 1 shows a cross-sectional view of the battery 1000 according to the second embodiment.
  • FIG. 2 shows a cross-sectional view of the electrode material 1100 according to the second embodiment.
  • FIG. 3 shows a schematic view of a pressure forming die 300 used for evaluating the ionic conductivity of a solid electrolyte material.
  • FIG. 4A is a graph showing the X-ray diffraction pattern of the solid electrolyte material according to Examples 1 to 7.
  • FIG. 4B is a graph showing the X-ray diffraction pattern of the solid electrolyte material according to Examples 8 and 9.
  • FIG. 5 is a graph showing the X-ray diffraction pattern of the solid electrolyte material according to Comparative Examples 1 and 2.
  • FIG. 6 is a graph showing the initial discharge characteristics of the battery according to the first embodiment.
  • the solid electrolyte material according to the first embodiment comprises Li, M, Al, O, and X, where M is at least one selected from the group consisting of Ta and Nb, where X is F, Cl, and. At least one selected from the group consisting of Br.
  • the solid electrolyte material according to the first embodiment can have, for example, practical lithium ion conductivity, for example, high lithium ion conductivity.
  • the high lithium ion conductivity is, for example, 1 ⁇ 10 -3 mS / cm or more. That is, the solid electrolyte material according to the first embodiment can have, for example, an ionic conductivity of 1 ⁇ 10 -3 mS / cm or more.
  • the solid electrolyte material according to the first embodiment can be used to obtain a battery having excellent charge / discharge characteristics.
  • An example of such a battery is an all-solid-state battery.
  • the all-solid-state battery may be a primary battery or a secondary battery.
  • the solid electrolyte material according to the first embodiment can maintain high lithium ion conductivity in the assumed operating temperature range of the battery. Therefore, the battery using the solid electrolyte material according to the first embodiment can operate stably even in an environment where there is a temperature change.
  • the operating temperature range of the battery is, for example, ⁇ 30 ° C. to 80 ° C.
  • the solid electrolyte material according to the first embodiment contains substantially no sulfur.
  • the fact that the solid electrolyte material according to the first embodiment is substantially free of sulfur means that the solid electrolyte material does not contain sulfur as a constituent element except for sulfur which is inevitably mixed as an impurity. In this case, the amount of sulfur mixed as an impurity in the solid electrolyte material is, for example, 1 mol% or less. It is desirable that the solid electrolyte material according to the first embodiment does not contain sulfur.
  • the sulfur-free solid electrolyte material is excellent in safety because it does not generate hydrogen sulfide even when exposed to the atmosphere.
  • the sulfide solid electrolyte material disclosed in Patent Document 1 can generate hydrogen sulfide when exposed to the atmosphere.
  • the solid electrolyte material according to the first embodiment may substantially consist of Li, M, Al, O, and X.
  • the solid electrolyte material according to the first embodiment is substantially composed of Li, M, Al, O, and X
  • the ratio means the amount of substance of all the elements constituting the solid electrolyte material according to the first embodiment. It means that the ratio (that is, mole fraction) of the total amount of substance of Li, M, Al, O, and X to the total of is 90% or more. As an example, the ratio may be 95% or more.
  • the solid electrolyte material according to the first embodiment may consist only of Li, M, Al, O, and X.
  • the solid electrolyte material according to the first embodiment has a diffraction peak in a diffraction angle range of 2 ⁇ (hereinafter, referred to as “first range”) of 11.08 ° or more and 15.63 ° or less in the X-ray diffraction pattern. May be.
  • first range a diffraction angle range of 2 ⁇
  • a pathway for diffusion of lithium ions is likely to be formed.
  • the solid electrolyte material according to the first embodiment has high lithium ion conductivity.
  • the diffraction peak in the X-ray diffraction pattern is also simply called a "peak".
  • the X-ray diffraction pattern of the solid electrolyte material according to the first embodiment uses Cu—K ⁇ rays (wavelengths 1.5405 ⁇ and 1.5444 ⁇ , that is, wavelengths 0.15405 nm and 0.15444 nm), and X by the ⁇ -2 ⁇ method. It can be obtained by line diffraction measurement.
  • the peak angle is an angle indicating the maximum intensity of a mountain-shaped portion having an SN ratio value of 3 or more and a half width of 10 ° or less.
  • the half-width when the maximum intensity of the peak was I MAX, a width intensity is represented by the difference between the two diffraction angles become half the value of I MAX.
  • the signal-to-noise ratio is the ratio of the signal S to the background noise N.
  • X may be at least one selected from the group consisting of Cl and Br.
  • M may be Ta in order to increase the ionic conductivity of the solid electrolyte.
  • the ratio of the amount of substance of Al to the total amount of substance of M and Al may be 5% or more and 70% or less.
  • the ratio of the amount of substance of Al to the total amount of substance of M and Al is calculated by the formula: ⁇ (amount of substance of Al) / (amount of substance of M + amount of substance of Al) ⁇ ⁇ 100.
  • the ratio of the amount of substance of Al to the total amount of substance of M and Al is also referred to as "Al / (M + Al) molar ratio".
  • the Al / (M + Al) molar ratio may be 10% or more and 70% or less.
  • the Al / (M + Al) molar ratio may be 10% or more and 60% or less.
  • the Al / (M + Al) molar ratio may be 10% or more and 40% or less.
  • the shape of the solid electrolyte material according to the first embodiment is not limited. Examples of such shapes are needle-shaped, spherical, and elliptical spherical.
  • the solid electrolyte material according to the first embodiment may be particles.
  • the solid electrolyte material according to the first embodiment may be formed to have the shape of a pellet or a plate.
  • the solid electrolyte material may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less, or 0.5 ⁇ m. It may have a median diameter of more than 10 ⁇ m and less than 10 ⁇ m. Thereby, the solid electrolyte material and other materials according to the first embodiment can be well dispersed.
  • the median diameter of a particle means a particle size (d50) corresponding to a cumulative volume of 50% in a volume-based particle size distribution.
  • the volume-based particle size distribution can be measured by a laser diffraction measuring device or an image analyzer.
  • the solid electrolyte material according to the first embodiment can be produced by the following method.
  • Raw material powder is prepared and mixed so as to have the desired composition.
  • Examples of raw material powders are oxides, hydroxides, halides, or acid halides.
  • the solid electrolyte material is composed of Li, Ta, Al, O, and Cl and the Al / (M + Al) molar ratio at the time of mixing the raw materials is 10%, that is, M is Ta and X is.
  • M is Ta and X is.
  • Li 2 O 2 , TaCl 5 , and AlCl 3 as the raw material powder are Li of 1: 1.8: 0.2.
  • 2 O 2 : TaCl 5 : AlCl 3 molar ratio is mixed.
  • M and X are determined by the selection of the raw material powder.
  • the Al / (M + Al) molar ratio is determined by selecting the molar ratio of the raw material powder.
  • the feedstock may be mixed in a pre-adjusted molar ratio to offset any compositional changes that may occur during the synthetic process.
  • the mixture of raw material powders is mechanochemically reacted with each other in a mixing device such as a planetary ball mill to obtain a reactant.
  • This method is often referred to as mechanochemical milling.
  • the reactants may be calcined in vacuum or in an inert atmosphere.
  • the mixture may be calcined in vacuum or in an atmosphere of an inert gas to give the reactants.
  • the inert atmosphere is, for example, an argon atmosphere or a nitrogen atmosphere.
  • the position of the peak of the solid electrolyte material according to the first embodiment that is, the composition of the crystal phase can be adjusted to the desired one.
  • the composition of the solid electrolyte material can be determined by, for example, inductively coupled plasma emission spectroscopy or ion chromatography.
  • the composition of Li, M, and Al can be determined by inductively coupled plasma emission spectroscopy
  • the composition of X can be determined by ion chromatography.
  • the battery according to the second embodiment includes a positive electrode, an electrolyte layer, and a negative electrode.
  • the electrolyte layer is arranged between the positive electrode and the negative electrode.
  • At least one selected from the group consisting of a positive electrode, an electrolyte layer, and a negative electrode contains the solid electrolyte material according to the first embodiment.
  • the battery according to the second embodiment contains the solid electrolyte material according to the first embodiment, it has excellent charge / discharge characteristics.
  • FIG. 1 shows a cross-sectional view of the battery 1000 according to the second embodiment.
  • the battery 1000 includes a positive electrode 201, an electrolyte layer 202, and a negative electrode 203.
  • the electrolyte layer 202 is arranged between the positive electrode 201 and the negative electrode 203.
  • the positive electrode 201 contains the positive electrode active material particles 204 and the solid electrolyte particles 100.
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material.
  • the negative electrode 203 contains negative electrode active material particles 205 and solid electrolyte particles 100.
  • the solid electrolyte particle 100 is a particle containing the solid electrolyte material according to the first embodiment.
  • the solid electrolyte particles 100 may be particles containing the solid electrolyte material according to the first embodiment as a main component.
  • the particles containing the solid electrolyte material according to the first embodiment as a main component mean the particles in which the component contained most in the molar ratio is the solid electrolyte material according to the first embodiment.
  • the solid electrolyte particles 100 may be particles made of the solid electrolyte material according to the first embodiment.
  • the positive electrode 201 contains a material capable of occluding and releasing metal ions such as lithium ions.
  • the material is, for example, a positive electrode active material (for example, positive electrode active material particles 204).
  • positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanionic materials, fluorinated polyanionic materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxynitrides.
  • Examples of the lithium-containing transition metal oxide Li (Ni, Co, Al ) O 2, Li (Ni, Co, Mn) O 2, or LiCoO 2. From the viewpoint of battery cost and safety, lithium phosphate may be used as the positive electrode active material.
  • (A, B, C) means "at least one selected from the group consisting of A, B, and C”.
  • the positive electrode 201 may contain not only the solid electrolyte material according to the first embodiment but also a transition metal oxyfluoride as the positive electrode active material. Even if the solid electrolyte material according to the first embodiment is fluorinated by a transition metal fluoride, a resistance layer is unlikely to be formed. As a result, the battery has high charge / discharge efficiency.
  • Transition metal oxyfluorines contain oxygen and fluorine.
  • transition metal oxyfluoride may be a compound represented by the composition formula Li p Me q O m F n .
  • Me is Mn, Co, Ni, Fe, Al, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W, At least one selected from the group consisting of B, Si, and P, and the following formula: 0.5 ⁇ p ⁇ 1.5, 0.5 ⁇ q ⁇ 1.0, 1 ⁇ m ⁇ 2, And 0 ⁇ n ⁇ 1 are satisfied.
  • An example of such a transition metal oxyfluoride is Li 1.05 (Ni 0.35 Co 0.35 Mn 0.3 ) 0.95 O 1.9 F 0.1 .
  • the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. When the positive electrode active material particles 204 have a median diameter of 0.1 ⁇ m or more, the positive electrode active material particles 204 and the solid electrolyte particles 100 can be satisfactorily dispersed in the positive electrode 201. This improves the charge / discharge characteristics of the battery. When the positive electrode active material particles 204 have a median diameter of 100 ⁇ m or less, the lithium diffusion rate in the positive electrode active material particles 204 is improved. This allows the battery to operate at high output.
  • the positive electrode active material particles 204 may have a median diameter larger than that of the solid electrolyte particles 100. As a result, the positive electrode active material particles 204 and the solid electrolyte particles 100 can be well dispersed.
  • the ratio of the volume of the positive electrode active material particles 204 to the total volume of the positive electrode active material particles 204 and the volume of the solid electrolyte particles 100 is 0.30 or more and 0. It may be 95 or less.
  • FIG. 2 shows a cross-sectional view of the electrode material 1100 according to the second embodiment.
  • the electrode material 1100 is included in, for example, the positive electrode 201.
  • a coating layer 216 may be formed on the surface of the electrode active material particles 206 in order to prevent the electrode active material particles 206 (that is, the positive electrode active material) from reacting with the solid electrolyte particles 100. As a result, it is possible to suppress an increase in the reaction overvoltage of the battery.
  • the coating material contained in the coating layer 216 are a sulfide solid electrolyte, an oxide solid electrolyte, or a halide solid electrolyte.
  • the coating material may be the solid electrolyte material according to the first embodiment. Since the solid electrolyte material according to the first embodiment is less likely to be oxidized than the sulfide solid electrolyte, it is possible to suppress an increase in the reaction overvoltage of the battery.
  • the positive electrode 201 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material.
  • the electrolyte layer 202 may be a solid electrolyte layer.
  • the electrolyte layer 202 may contain the solid electrolyte material according to the first embodiment.
  • the electrolyte layer 202 may consist only of the solid electrolyte material according to the first embodiment.
  • the solid electrolyte material contained in the electrolyte layer 202 may be composed only of a solid electrolyte material different from the solid electrolyte material according to the first embodiment.
  • a solid electrolyte material different from the solid electrolyte material according to the first embodiment.
  • different solid electrolyte material and the solid electrolyte material according to the first embodiment Li 2 MgX '4, Li 2 FeX' 4, Li (Al, Ga, In) X '4, Li 3 (Al, Ga, In ) X '6, or LiI.
  • X' is at least one selected from the group consisting of F, Cl, Br, and I.
  • the solid electrolyte material according to the first embodiment is referred to as the first solid electrolyte material.
  • a solid electrolyte material different from the solid electrolyte material according to the first embodiment is called a second solid electrolyte material.
  • the electrolyte layer 202 may contain not only the first solid electrolyte material but also the second solid electrolyte material.
  • the first solid electrolyte material and the second solid electrolyte material may be uniformly dispersed.
  • the layer made of the first solid electrolyte material and the layer made of the second solid electrolyte material may be laminated along the stacking direction of the battery 1000.
  • the electrolyte layer 202 may have a thickness of 1 ⁇ m or more and 100 ⁇ m or less. When the electrolyte layer 202 has a thickness of 1 ⁇ m or more, the positive electrode 201 and the negative electrode 203 are less likely to be short-circuited. When the electrolyte layer 202 has a thickness of 100 ⁇ m or less, the battery can operate at high output.
  • Another electrolyte layer may be further provided between the electrolyte layer 202 and the negative electrode 203. That is, a second electrolyte layer may be further provided between the electrolyte layer 202 and the negative electrode 203.
  • the second electrolyte layer may be composed of another solid electrolyte material that is electrochemically more stable than the first solid electrolyte material.
  • the reduction potential of the solid electrolyte material constituting the second electrolyte layer may be lower than the reduction potential of the first solid electrolyte material.
  • the first solid electrolyte material can be used without being reduced, and the high ionic conductivity of the first solid electrolyte material can be maintained more stably. As a result, the charging / discharging efficiency of the battery can be improved.
  • the negative electrode 203 contains a material capable of occluding and releasing metal ions (for example, lithium ions).
  • the material is, for example, a negative electrode active material (for example, negative electrode active material particles 205).
  • Examples of negative electrode active materials are metal materials, carbon materials, oxides, nitrides, tin compounds, or silicon compounds.
  • the metal material may be a simple substance metal or an alloy.
  • Examples of metallic materials are lithium metals, or lithium alloys.
  • Examples of carbon materials are natural graphite, coke, developing carbon, carbon fibers, spheroidal carbon, artificial graphite, or amorphous carbon. From the viewpoint of capacitance density, a preferable example of the negative electrode active material is silicon (Si), tin (Sn), a silicon compound, or a tin compound.
  • the negative electrode active material may be selected based on the reduction resistance of the solid electrolyte material contained in the negative electrode 203.
  • a material capable of occluding and releasing lithium ions at 0.27 V or more with respect to lithium may be used as the negative electrode active material. If the negative electrode active material is such a material, it is possible to suppress the reduction of the first solid electrolyte material contained in the negative electrode 203. As a result, the battery has high charge / discharge efficiency.
  • the negative electrode active material are titanium oxide, indium metal, or lithium alloy. Examples of titanium oxides are Li 4 Ti 5 O 12 , Li Ti 2 O 4 , or Ti O 2 .
  • the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. When the negative electrode active material particles 205 have a median diameter of 0.1 ⁇ m or more, the negative electrode active material particles 205 and the solid electrolyte particles 100 can be satisfactorily dispersed in the negative electrode 203. This improves the charge / discharge characteristics of the battery. When the negative electrode active material particles 205 have a median diameter of 100 ⁇ m or less, the lithium diffusion rate in the negative electrode active material particles 205 is improved. This allows the battery to operate at high output.
  • the negative electrode active material particles 205 may have a median diameter larger than that of the solid electrolyte particles 100. As a result, the negative electrode active material particles 205 and the solid electrolyte particles 100 can be well dispersed.
  • the ratio of the volume of the negative electrode active material particles 205 to the total volume of the negative electrode active material particles 205 and the volume of the solid electrolyte particles 100 is 0.30 or more and 0. It may be 95 or less.
  • the electrode material 1100 shown in FIG. 2 is included in, for example, the negative electrode 203.
  • a coating layer 216 may be formed on the surface of the electrode active material particles 206 in order to prevent the electrode active material particles 206 (that is, the negative electrode active material) from reacting with the solid electrolyte particles 100.
  • the battery has high charge / discharge efficiency.
  • the coating material contained in the coating layer 216 are a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a halide solid electrolyte.
  • the coating material may contain a sulfide solid electrolyte, an oxide solid electrolyte, or a polymer solid electrolyte.
  • a sulfide solid electrolyte is Li 2 SP 2 S 5 .
  • An example of an oxide solid electrolyte is trilithium phosphate.
  • An example of a polymer solid electrolyte is a composite compound of polyethylene oxide and a lithium salt.
  • An example of such a polymer solid electrolyte is lithium bis (trifluoromethanesulfonyl) imide.
  • the negative electrode 203 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a second solid electrolyte material for the purpose of enhancing ionic conductivity.
  • the second solid electrolyte material are a sulfide solid electrolyte, an oxide solid electrolyte, a halide solid electrolyte, or an organic polymer solid electrolyte.
  • sulfide solid electrolyte means a solid electrolyte containing sulfur.
  • Oxide solid electrolyte means a solid electrolyte containing oxygen.
  • the oxide solid electrolyte may contain anions other than oxygen (excluding sulfur anions and halogen anions).
  • Oxide solid electrolyte means a solid electrolyte containing a halogen element and substantially free of sulfur.
  • the halide solid electrolyte may contain oxygen as well as the halogen element.
  • Examples of sulfide solid electrolytes are Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 SB 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , or It is Li 10 GeP 2 S 12 .
  • a solid oxide electrolyte is (I) NASICON type solid electrolytes such as LiTi 2 (PO 4 ) 3 or elemental substituents thereof, (Ii) Perovskite-type solid electrolytes such as (LaLi) TiO 3, (Iii) LISION type solid electrolytes such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 or elemental substituents thereof, (Iv) a garnet-type solid electrolyte such as Li 7 La 3 Zr 2 O 12 or an elemental substituent thereof, or (v) Li 3 PO 4 or an N-substituted product thereof.
  • NASICON type solid electrolytes such as LiTi 2 (PO 4 ) 3 or elemental substituents thereof
  • Perovskite-type solid electrolytes such as (LaLi) TiO 3
  • Iii) LISION type solid electrolytes such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , Li
  • halide solid electrolyte is a compound represented by Li a Me 'b Y c Z 6.
  • Me' is at least one selected from the group consisting of metal elements other than Li and Y and metalloid elements.
  • Z is at least one selected from the group consisting of F, Cl, Br, and I.
  • the value of m represents the valence of Me'.
  • Metalloid elements are B, Si, Ge, As, Sb, and Te.
  • Metallic elements are all elements contained in groups 1 to 12 of the periodic table (excluding hydrogen) and all elements contained in groups 13 to 16 of the periodic table (however, however). B, Si, Ge, As, Sb, Te, C, N, P, O, S, and Se).
  • Me' is a group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb. It may be at least one more selected.
  • halide solid electrolytes are Li 3 YCl 6 or Li 3 YBr 6 .
  • the negative electrode 203 may contain the sulfide solid electrolyte.
  • the sulfide solid electrolyte that is electrochemically stable with respect to the negative electrode active material suppresses the contact between the first solid electrolyte material and the negative electrode active material.
  • the battery has low internal resistance.
  • organic polymer solid electrolytes examples include polymer compounds and lithium salt compounds.
  • the polymer compound may have an ethylene oxide structure.
  • a polymer compound having an ethylene oxide structure has a higher ionic conductivity because it can contain a large amount of lithium salt.
  • lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 is a non-aqueous electrolyte, a gel electrolyte, or ions for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery. It may contain a liquid.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents are cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, or fluorine solvents.
  • cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
  • Examples of chain carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • Examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • Examples of chain ether solvents are 1,2-dimethoxyethane, or 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • An example of a chain ester solvent is methyl acetate.
  • fluorine solvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • One kind of non-aqueous solvent selected from these may be used alone. Alternatively, a mixture of two or more non-aqueous solvents selected from these may be used.
  • lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
  • One lithium salt selected from these may be used alone.
  • a mixture of two or more lithium salts selected from these may be used.
  • the concentration of the lithium salt is, for example, in the range of 0.5 mol / liter or more and 2 mol / liter or less.
  • a polymer material impregnated with a non-aqueous electrolyte solution can be used.
  • polymer materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethylmethacrylate, or polymers with ethylene oxide bonds.
  • cations contained in ionic liquids are (I) Aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium, (Ii) Aliphatic cyclic ammonium such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums, or (iii) nitrogen-containing heteros such as pyridiniums or imidazoliums. It is a ring aromatic cation.
  • anion contained in the ionic liquid PF 6 -, BF 4 - , SbF 6 -, AsF 6 -, SO 3 CF 3 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5 ) 2 -, N (SO 2 CF 3) (SO 2 C 4 F 9) -, or C (SO 2 CF 3) 3 - a.
  • the ionic liquid may contain a lithium salt.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder in order to enhance the adhesion between the particles.
  • binders are polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylic nitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, Polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene butadiene rubber , Or carboxymethyl cellulose.
  • a copolymer may be used as the binder.
  • binders are tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and It is a copolymer of two or more materials selected from the group consisting of hexadiene. A mixture of two or more selected from the above materials may be used.
  • At least one selected from the group consisting of the positive electrode 201 and the negative electrode 203 may contain a conductive auxiliary agent in order to enhance electron conductivity.
  • a conductive aid is (I) Graphites such as natural graphite or artificial graphite, (Ii) Carbon blacks such as acetylene black or ketjen black, (Iii) Conductive fibers such as carbon fibers or metal fibers, (Iv) Carbon fluoride, (V) Metal powders such as aluminum, (Vi) Conductive whiskers, such as zinc oxide or potassium titanate, It is a conductive metal oxide such as (vii) titanium oxide, or a conductive polymer compound such as (vii) polyaniline, polypyrrole, or polythiophene. In order to reduce the cost, the conductive auxiliary agent (i) or (ii) described above may be used.
  • Examples of the shape of the battery according to the second embodiment are coin type, cylindrical type, square type, sheet type, button type, flat type, or laminated type.
  • a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. It may be manufactured by producing the laminated body.
  • Example 1 Preparation of solid electrolyte material
  • dry atmosphere Li 2 O 2, TaCl 5 as raw powder, and AlCl 3, 1: 1.8: 0.2 in Li 2 It was prepared so as to have an O 2 : TaCl 5 : AlCl 3 molar ratio. These materials were ground and mixed in a mortar to give a mixture. The obtained mixture was milled at 600 rpm for 24 hours using a planetary ball mill (Fritsch, P-7 type). In this way, the powder of the solid electrolyte material according to Example 1 was obtained.
  • FIG. 3 shows a schematic view of a pressure forming die 300 used for evaluating the ionic conductivity of a solid electrolyte material.
  • the pressure forming die 300 included a punch upper part 301, a frame type 302, and a punch lower part 303.
  • the frame 302 was made of insulating polycarbonate.
  • Both the upper punch 301 and the lower punch 303 were made of electron-conducting stainless steel.
  • the ionic conductivity of the solid electrolyte material according to Example 1 was measured by the following method.
  • the powder of the solid electrolyte material according to Example 1 was filled inside the pressure molding die 300. Inside the pressure forming die 300, a pressure of 300 MPa was applied to the solid electrolyte material according to Example 1 (that is, the powder 101 of the solid electrolyte material in FIG. 3) using the punch upper part 301 and the punch lower part 303.
  • the upper punch 301 and the lower punch 303 were connected to a potentiostat (Princeton Applied Research, VersaSTAT4) equipped with a frequency response analyzer.
  • the upper part 301 of the punch was connected to the working electrode and the terminal for measuring the potential.
  • the lower part of the punch 303 was connected to the counter electrode and the reference electrode.
  • the ionic conductivity of the solid electrolyte material according to Example 1 was measured at room temperature by an electrochemical impedance measurement method. As a result, the ionic conductivity measured at 22 ° C. was 4.2 mS / cm.
  • FIG. 4A is a graph showing the X-ray diffraction pattern of the solid electrolyte material according to Examples 1 to 7. The X-ray diffraction pattern was measured by the following method.
  • the X-ray diffraction pattern of the solid electrolyte material according to Example 1 was measured using an X-ray diffractometer (manufactured by RIGAKU, MiniFlex 600) in a dry atmosphere having a dew point of ⁇ 45 ° C. or lower.
  • Cu-K ⁇ rays (wavelengths 1.5405 ⁇ and 1.5444 ⁇ ) were used as the X-ray source.
  • the solid electrolyte material according to Example 1 had a peak at 12.50 °.
  • the solid electrolyte material and the positive electrode active material LiCoO 2 according to Example 1 were prepared so as to have a volume ratio of 50:50 in an argon atmosphere having a dew point of ⁇ 60 ° C. or lower. These materials were mixed in a mortar to give a positive electrode mixture.
  • the solid electrolyte material (120 mg) according to Example 1 and the above-mentioned positive electrode mixture (10.6 mg) were laminated in an insulating cylinder having an inner diameter of 9.5 mm to obtain a laminate.
  • a pressure of 360 MPa was applied to this laminate to form a solid electrolyte layer and a positive electrode.
  • the solid electrolyte layer had a thickness of 500 ⁇ m.
  • Li-In alloy having a thickness of 200 ⁇ m was laminated on the solid electrolyte layer.
  • a current collector made of stainless steel was attached to the positive electrode and the negative electrode, and a current collector lead was attached to the current collector.
  • FIG. 6 is a graph showing the initial discharge characteristics of the battery according to the first embodiment. The initial discharge characteristics were measured by the following method.
  • the battery according to Example 1 was placed in a constant temperature bath at 25 ° C.
  • the battery according to Example 1 was charged until a voltage of 3.6 V was reached with a current value of 56 ⁇ A.
  • the current density corresponds to a 0.05 C rate.
  • the battery was discharged until it reached a voltage of 1.9 V with a current value of 56 ⁇ A.
  • the battery according to Example 1 was charged and discharged at room temperature.
  • the battery according to Example 1 had an initial discharge capacity of 1.06 mAh.
  • Example 2 Li 2 O 2 , TaCl 5 and AlCl 3 were prepared as raw material powders so as to have a Li 2 O 2 : TaCl 5 : AlCl 3 molar ratio of 1: 1.8: 0.2. The mixture was milled and then calcined at 200 ° C. for 3 hours.
  • Example 3 Li 2 O 2 , TaCl 5 and AlCl 3 were prepared as raw material powders so as to have a Li 2 O 2 : TaCl 5 : AlCl 3 molar ratio of 1: 1.2: 0.8.
  • Example 4 Li 2 O 2 , TaCl 5 and AlCl 3 were prepared as raw material powders so as to have a Li 2 O 2 : TaCl 5 : AlCl 3 molar ratio of 1: 1.2: 0.8. The mixture was milled and then calcined at 200 ° C. for 3 hours.
  • Example 5 Li 2 O 2 , TaCl 5 and AlCl 3 were prepared as raw material powders so as to have a Li 2 O 2 : TaCl 5 : AlCl 3 molar ratio of 1: 0.8: 1.2.
  • Example 6 Li 2 O 2 , TaCl 5 and AlCl 3 were prepared as raw material powders so as to have a Li 2 O 2 : TaCl 5 : AlCl 3 molar ratio of 1: 0.8: 1.2. The mixture was milled and then calcined at 200 ° C. for 3 hours.
  • Li 2 O 2 , TaCl 5 , AlCl 3 and TaF 5 as raw material powders are 1: 1.7: 0.2: 0.1 Li 2 O 2 : TaCl 5 : AlCl 3 : TaF 5 It was prepared to have a molar ratio. The mixture was milled and then calcined at 200 ° C. for 3 hours.
  • Example 8 Li 2 O 2 , NbCl 5 and AlCl 3 were prepared as raw material powders so as to have a Li 2 O 2 : NbCl 5 : AlCl 3 molar ratio of 1: 1.2: 0.8.
  • Example 9 Li 2 O 2 , NbCl 5 and AlCl 3 were prepared as raw material powders so as to have a Li 2 O 2 : NbCl 5 : AlCl 3 molar ratio of 1: 1.2: 0.8. The mixture was milled and then calcined at 80 ° C. for 3 hours.
  • Li 2 O 2 and Li Cl were prepared as raw material powders so as to have a 1: 1 Li 2 O 2 : LiCl molar ratio.
  • LiCl and TaCl 5 were prepared as raw material powders so as to have a LiCl: TaCl 5 molar ratio of 1: 1.
  • FIG. 4A is a graph showing the X-ray diffraction pattern of the solid electrolyte material according to Examples 1 to 7.
  • FIG. 4B is a graph showing the X-ray diffraction pattern of the solid electrolyte material according to Examples 8 and 9.
  • FIG. 5 is a graph showing the X-ray diffraction pattern of the solid electrolyte material according to Comparative Examples 1 and 2.
  • the solid electrolyte material according to Example 2 had a peak at 11.13 °.
  • the solid electrolyte material according to Example 3 had a peak at 12.52 °.
  • the solid electrolyte material according to Example 4 had a peak at 15.53 °.
  • the solid electrolyte material according to Example 5 did not have a peak in the first range.
  • the solid electrolyte material according to Example 6 had a peak at 15.55 °.
  • the solid electrolyte material according to Example 7 had a peak at 11.15 °.
  • the solid electrolyte material according to Example 8 had a peak at 14.29 °.
  • the solid electrolyte material according to Example 9 had a peak at 13.84 °.
  • Comparative Example 1 and Comparative Example 2 did not have a peak in the first range.
  • the solid electrolyte materials according to Examples 1 to 9 have a high ionic conductivity of 1 ⁇ 10 -3 mS / cm or more in the vicinity of room temperature. Furthermore, having a 1 ⁇ 10 -2 mS / cm or more high ionic conductivity.
  • Examples 1 to 4 are compared with Examples 5 and 6, if the ratio of the amount of substance of Al to the total amount of substance of M and Al is 10% or more and 40% or less, the solid electrolyte material.
  • the ionic conductivity of is even higher.
  • the solid electrolyte material according to the present disclosure has practical lithium ion conductivity, and is therefore suitable for providing a battery having excellent charge / discharge characteristics.
  • the battery of the present disclosure is used, for example, in an all-solid-state lithium-ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

本開示による固体電解質材料は、Li、M、Al、O、およびXを含み、Mは、TaおよびNbからなる群より選択される少なくとも1つであり、Xは、F、Cl、およびBrからなる群より選択される少なくとも1つである。

Description

固体電解質材料およびそれを用いた電池
 本開示は、固体電解質材料およびそれを用いた電池に関する。
 特許文献1は、硫化物固体電解質材料を用いた全固体電池を開示している。
特開2011-129312号公報
 本開示の目的は、有用性が高い新たな固体電解質材料を提供することにある。
 本開示の固体電解質材料は、Li、M、Al、O、およびXを含み、Mは、TaおよびNbからなる群より選択される少なくとも1つであり、Xは、F、Cl、およびBrからなる群より選択される少なくとも1つである。
 本開示は、有用性が高い新たな固体電解質材料を提供する。
図1は、第2実施形態による電池1000の断面図を示す。 図2は、第2実施形態による電極材料1100の断面図を示す。 図3は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。 図4Aは、実施例1から7による固体電解質材料のX線回折パターンを示すグラフである。 図4Bは、実施例8および9による固体電解質材料のX線回折パターンを示すグラフである。 図5は、比較例1および2による固体電解質材料のX線回折パターンを示すグラフである。 図6は、実施例1による電池の初期放電特性を示すグラフである。
 以下、本開示の実施形態が、図面を参照しながら説明される。本開示は、以下の実施形態に限定されない。
 (第1実施形態)
 第1実施形態による固体電解質材料は、Li、M、Al、O、およびXを含み、Mは、TaおよびNbからなる群より選択される少なくとも1つであり、Xは、F、Cl、およびBrからなる群より選択される少なくとも1つである。
 第1実施形態による固体電解質材料は、例えば実用的なリチウムイオン伝導度を有することができ、例えば高いリチウムイオン伝導度を有することができる。ここで、高いリチウムイオン伝導度とは、例えば1×10-3mS/cm以上である。すなわち、第1実施形態による固体電解質材料は、例えば1×10-3mS/cm以上のイオン伝導度を有し得る。
 第1実施形態による固体電解質材料は、優れた充放電特性を有する電池を得るために用いられ得る。当該電池の例は、全固体電池である。全固体電池は、一次電池でもよく、あるいは二次電池でもよい。
 第1実施形態による固体電解質材料は、想定される電池の使用温度範囲において、高いリチウムイオン伝導度を維持できる。したがって、第1実施形態による固体電解質材料を用いた電池は、温度変化がある環境においても安定して動作することができる。電池の使用温度範囲は、例えば、-30℃から80℃である。
 第1実施形態による固体電解質材料には、実質的に硫黄が含まれないことが望ましい。第1実施形態による固体電解質材料に実質的に硫黄が含まれないとは、当該固体電解質材料が、不純物として不可避に混入した硫黄を除き、構成元素として硫黄を含まないことを意味する。この場合、固体電解質材料に不純物として混入される硫黄は、例えば、1モル%以下である。第1実施形態による固体電解質材料には、硫黄が含まれないことが望ましい。硫黄を含有しない固体電解質材料は、大気に曝露されても、硫化水素が発生しないので、安全性に優れる。特許文献1に開示された硫化物固体電解質材料は、大気中に曝露されると、硫化水素が発生し得る。
 固体電解質材料のイオン伝導性を高めるために、第1実施形態による固体電解質材料は実質的に、Li、M、Al、O、およびXからなっていてもよい。ここで、「第1実施形態による固体電解質材料は、実質的に、Li、M、Al、O、およびXからなる」とは、第1実施形態による固体電解質材料を構成する全元素の物質量の合計に対する、Li、M、Al、O、およびXの物質量の合計の比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該比は、95%以上であってもよい。第1実施形態による固体電解質材料は、Li、M、Al、O、およびXのみからなっていてもよい。
 第1実施形態による固体電解質材料は、X線回折パターンにおいて、11.08°以上かつ15.63°以下の回折角2θの範囲(以下、「第1範囲」と呼ばれる)に回折ピークを有していてもよい。このような固体電解質材料では、リチウムイオンが拡散するための経路が形成されやすくなる。その結果、第1実施形態による固体電解質材料は、高いリチウムイオン伝導度を有する。
 X線回折パターンにおける回折ピークは、単に「ピーク」とも呼ばれる。
 第1実施形態による固体電解質材料のX線回折パターンは、Cu-Kα線(波長1.5405Åおよび1.5444Å、すなわち、波長0.15405nmおよび0.15444nm)を用いて、θ-2θ法によるX線回折測定によって取得され得る。
 ピークの角度とは、SN比の値が3以上で、かつ半値幅が10°以下である山状の部分の最大強度を示す角度である。半値幅とは、ピークの最大強度をIMAXとしたとき、強度がIMAXの半分の値となる2つの回折角の差で表される幅である。SN比は、バックグラウンドノイズNに対する信号Sの比である。
 固体電解質材料のイオン伝導度を高めるために、Xは、ClおよびBrからなる群より選択される少なくとも1つであってもよい。
 固体電解質のイオン伝導度を高めるために、Mは、Taであってもよい。
 固体電解質材料のイオン伝導度を高めるために、MおよびAlの物質量の合計に対するAlの物質量の比は、5%以上かつ70%以下であってもよい。MおよびAlの物質量の合計に対するAlの物質量の比は、数式:{(Alの物質量)/(Mの物質量+Alの物質量)}×100によって算出される。以下、MおよびAlの物質量の合計に対するAlの物質量の比が、「Al/(M+Al)モル比」とも呼ばれる。
 固体電解質材料のイオン伝導度を高めるために、Al/(M+Al)モル比は、10%以上かつ70%以下であってもよい。
 固体電解質材料のイオン伝導度を高めるために、Al/(M+Al)モル比は、10%以上かつ60%以下であってもよい。
 固体電解質材料のイオン伝導度をさらに高めるために、Al/(M+Al)モル比は、10%以上かつ40%以下であってもよい。
 第1実施形態による固体電解質材料の形状は、限定されない。当該形状の例は、針状、球状、および楕円球状である。第1実施形態による固体電解質材料は、粒子であってもよい。第1実施形態による固体電解質材料は、ペレットまたは板の形状を有するように形成されてもよい。
 第1実施形態による固体電解質材料の形状が粒子状(例えば、球状)である場合、当該固体電解質材料は、0.1μm以上かつ100μm以下のメジアン径を有していてもよいし、0.5μm以上かつ10μm以下のメジアン径を有していてもよい。これにより、第1実施形態による固体電解質材料および他の材料が良好に分散し得る。粒子のメジアン径は、体積基準の粒度分布における体積累積50%に相当する粒径(d50)を意味する。体積基準の粒度分布は、レーザー回折測定装置または画像解析装置により測定され得る。
 <固体電解質材料の製造方法>
 第1実施形態による固体電解質材料は、下記の方法により製造され得る。
 目的の組成を有するように、原料粉が用意され、混合される。原料粉の例は、酸化物、水酸化物、ハロゲン化物、または酸ハロゲン化物である。
 一例として、固体電解質材料が、Li、Ta、Al、O、およびClからなり、原料混合時のAl/(M+Al)モル比が、10%である場合、すなわち、MがTaであり、XがClであり、原料混合時のAl/(M+Al)モル比が、10%である場合、原料粉としてLi22、TaCl5、およびAlCl3が、1:1.8:0.2のLi22:TaCl5:AlCl3モル比で混合される。原料粉の選択により、MおよびXが決定される。原料粉のモル比を選択することにより、Al/(M+Al)モル比が決定される。原料粉は、合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で混合されてもよい。
 原料粉の混合物を遊星型ボールミルのような混合装置内でメカノケミカル的に互いに反応させ、反応物が得られる。この方法は、しばしば、メカノケミカルミリングと呼ばれる。反応物は、真空中または不活性雰囲気中で焼成されてもよい。あるいは、混合物が真空中または不活性ガス雰囲気中で焼成され、反応物が得られてもよい。これらの方法により、第1実施形態による固体電解質材料が得られる。不活性雰囲気は、例えば、アルゴン雰囲気または窒素雰囲気である。
 原料粉、原料粉の混合比、および反応条件の選択により、第1実施形態による固体電解質材料のピークの位置、すなわち結晶相の構成を、目的のものに調整し得る。
 固体電解質材料の組成は、例えば、誘導結合プラズマ発光分光分析法またはイオンクロマトグラフィー法により決定することができる。例えば、Li、M、およびAlの組成は誘導結合プラズマ発光分光分析法により決定され、Xの組成はイオンクロマトグラフィー法により決定され得る。
 (第2実施形態)
 以下、第2実施形態が説明される。第1実施形態において説明された事項は、適宜、省略される。
 第2実施形態による電池は、正極、電解質層、および負極を備える。電解質層は、正極および負極の間に配置されている。正極、電解質層、および負極からなる群より選択される少なくとも1つは、第1実施形態による固体電解質材料を含有する。
 第2実施形態による電池は、第1実施形態による固体電解質材料を含有するため、優れた充放電特性を有する。
 図1は、第2実施形態による電池1000の断面図を示す。
 電池1000は、正極201、電解質層202、および負極203を備える。電解質層202は、正極201および負極203の間に配置されている。
 正極201は、正極活物質粒子204および固体電解質粒子100を含有する。
 電解質層202は、電解質材料を含有する。電解質材料は、例えば、固体電解質材料である。
 負極203は、負極活物質粒子205および固体電解質粒子100を含有する。
 固体電解質粒子100は、第1実施形態による固体電解質材料を含む粒子である。固体電解質粒子100は、第1実施形態による固体電解質材料を主たる成分として含む粒子であってもよい。第1実施形態による固体電解質材料を主たる成分として含む粒子とは、モル比で最も多く含まれる成分が第1実施形態による固体電解質材料である粒子を意味する。固体電解質粒子100は、第1実施形態による固体電解質材料からなる粒子であってもよい。
 正極201は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料を含有する。当該材料は、例えば、正極活物質(例えば、正極活物質粒子204)である。
 正極活物質の例は、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物である。リチウム含有遷移金属酸化物の例は、Li(Ni,Co,Al)O2、Li(Ni,Co,Mn)O2、またはLiCoO2である。電池のコストおよび安全性の観点から、正極活物質としてリン酸リチウムが用いられてもよい。
 本開示において、「(A,B,C)」は、「A、B、およびCからなる群より選択される少なくとも1つ」を意味する。
 正極201は、第1実施形態による固体電解質材料だけでなく、正極活物質として遷移金属オキシフッ化物をも含有していてもよい。第1実施形態による固体電解質材料は遷移金属フッ化物によりフッ化されても、抵抗層が形成されにくい。その結果、電池が高い充放電効率を有する。
 遷移金属オキシフッ化物は、酸素およびフッ素を含有する。一例として、遷移金属オキシフッ化物は、組成式LipMeqmnにより表される化合物であってもよい。ここで、Meは、Mn、Co、Ni、Fe、Al、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、およびPからなる群より選択される少なくとも1つであり、かつ以下の数式:0.5≦p≦1.5、0.5≦q≦1.0、1≦m<2、および0<n≦1が充足される。このような遷移金属オキシフッ化物の例は、Li1.05(Ni0.35Co0.35Mn0.30.951.90.1である。
 正極活物質粒子204は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。正極活物質粒子204が0.1μm以上のメジアン径を有する場合、正極201において、正極活物質粒子204および固体電解質粒子100が良好に分散し得る。これにより、電池の充放電特性が向上する。正極活物質粒子204が100μm以下のメジアン径を有する場合、正極活物質粒子204内のリチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 正極活物質粒子204は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。これにより、正極活物質粒子204および固体電解質粒子100が良好に分散し得る。
 電池のエネルギー密度および出力を高めるために、正極201において、正極活物質粒子204の体積および固体電解質粒子100の体積の合計に対する正極活物質粒子204の体積の比は、0.30以上かつ0.95以下であってもよい。
 図2は、第2実施形態による電極材料1100の断面図を示す。電極材料1100は、例えば、正極201に含まれる。電極活物質粒子206(すなわち、正極活物質)が固体電解質粒子100と反応するのを防ぐために、電極活物質粒子206の表面には、被覆層216が形成されてもよい。これにより、電池の反応過電圧の上昇を抑制できる。被覆層216に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、またはハロゲン化物固体電解質である。
 固体電解質粒子100が硫化物固体電解質である場合、被覆材料は、第1実施形態による固体電解質材料であってもよい。第1実施形態による固体電解質材料は、硫化物固体電解質よりも酸化されにくいため、電池の反応過電圧の上昇を抑制できる。
 電池のエネルギー密度および出力を高めるために、正極201は、10μm以上かつ500μm以下の厚みを有していてもよい。
 電解質層202は、電解質材料を含有する。当該電解質材料は、例えば、固体電解質材料である。電解質層202は、固体電解質層であってもよい。
 電解質層202は、第1実施形態による固体電解質材料を含有していてもよい。電解質層202は、第1実施形態による固体電解質材料のみからなっていてもよい。
 電解質層202に含まれる固体電解質材料は、第1実施形態による固体電解質材料とは異なる固体電解質材料のみから構成されていてもよい。第1実施形態による固体電解質材料とは異なる固体電解質材料の例は、Li2MgX’4、Li2FeX’4、Li(Al,Ga,In)X’4、Li3(Al,Ga,In)X’6、またはLiIである。ここで、X’は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 以下、第1実施形態による固体電解質材料は、第1固体電解質材料と呼ばれる。第1実施形態による固体電解質材料とは異なる固体電解質材料は、第2固体電解質材料と呼ばれる。
 電解質層202は、第1固体電解質材料だけでなく、第2固体電解質材料をも含有していてもよい。第1固体電解質材料および第2固体電解質材料は、均一に分散していてもよい。第1固体電解質材料からなる層および第2固体電解質材料からなる層が、電池1000の積層方向に沿って積層されていてもよい。
 電解質層202は、1μm以上かつ100μm以下の厚みを有していてもよい。電解質層202が1μm以上の厚みを有する場合、正極201および負極203が短絡しにくくなる。電解質層202が100μm以下の厚みを有する場合、電池が高出力で動作し得る。
 電解質層202および負極203の間に、別の電解質層がさらに設けられてもよい。すなわち、電解質層202および負極203の間に、第2電解質層がさらに設けられてもよい。例えば、電解質層202が第1固体電解質材料を含有する場合、第2電解質層は、第1固体電解質材料よりも電気化学的に安定な別の固体電解質材料から構成されていてもよい。具体的には、第2電解質層を構成する固体電解質材料の還元電位は、第1固体電解質材料の還元電位より低くてもよい。これにより、第1固体電解質材料を還元させずに使用することができ、第1固体電解質材料の高いイオン伝導性をより安定して維持することができる。その結果、電池の充放電効率を向上させることができる。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な材料を含有する。当該材料は、例えば、負極活物質(例えば、負極活物質粒子205)である。
 負極活物質の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物である。金属材料は、単体の金属であってもよいし、あるいは合金であってもよい。金属材料の例は、リチウム金属、またはリチウム合金である。炭素材料の例は、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素である。容量密度の観点から、負極活物質の好適な例は、珪素(Si)、錫(Sn)、珪素化合物、または錫化合物である。
 負極活物質は、負極203に含まれる固体電解質材料の耐還元性をもとに選択されてもよい。負極203が第1固体電解質材料を含有する場合、負極活物質として、リチウムに対して0.27V以上でリチウムイオンを吸蔵かつ放出可能な材料が使用されてもよい。負極活物質がこのような材料であれば、負極203に含まれる第1固体電解質材料が還元されるのを抑制できる。その結果、電池が高い充放電効率を有する。当該負極活物質の例は、チタン酸化物、インジウム金属、またはリチウム合金である。チタン酸化物の例は、Li4Ti512、LiTi24、またはTiO2である。
 負極活物質粒子205は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。負極活物質粒子205が0.1μm以上のメジアン径を有する場合、負極203において、負極活物質粒子205および固体電解質粒子100が良好に分散し得る。これにより、電池の充放電特性が向上する。負極活物質粒子205が100μm以下のメジアン径を有する場合、負極活物質粒子205内のリチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 負極活物質粒子205は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。これにより、負極活物質粒子205および固体電解質粒子100が良好に分散し得る。
 電池のエネルギー密度および出力を高めるために、負極203において、負極活物質粒子205の体積および固体電解質粒子100の体積の合計に対する負極活物質粒子205の体積の比は、0.30以上かつ0.95以下であってもよい。
 図2に示される電極材料1100は、例えば、負極203に含まれる。電極活物質粒子206(すなわち、負極活物質)が固体電解質粒子100と反応するのを防ぐために、電極活物質粒子206の表面には、被覆層216が形成されてもよい。これにより、電池が高い充放電効率を有する。被覆層216に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、またはハロゲン化物固体電解質である。
 固体電解質粒子100が第1固体電解質材料である場合、被覆材料は硫化物固体電解質、酸化物固体電解質、または高分子固体電解質を含んでいてもよい。硫化物固体電解質の例は、Li2S-P25である。酸化物固体電解質の例は、リン酸三リチウムである。高分子固体電解質の例は、ポリエチレンオキシドおよびリチウム塩の複合化合物である。このような高分子固体電解質の例は、リチウムビス(トリフルオロメタンスルホニル)イミドである。
 電池のエネルギー密度および出力を高めるために、負極203は、10μm以上かつ500μm以下の厚みを有していてもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、イオン伝導性を高める目的で、第2固体電解質材料を含有していてもよい。第2固体電解質材料の例は、硫化物固体電解質、酸化物固体電解質、ハロゲン化物固体電解質、または有機ポリマー固体電解質である。
 本開示において、「硫化物固体電解質」は、硫黄を含有する固体電解質を意味する。「酸化物固体電解質」は、酸素を含有する固体電解質を意味する。酸化物固体電解質は、酸素以外のアニオン(ただし、硫黄アニオンおよびハロゲンアニオンは除く)を含有していてもよい。「ハロゲン化物固体電解質」は、ハロゲン元素を含有し、かつ、実質的に硫黄を含有しない固体電解質を意味する。ハロゲン化物固体電解質は、ハロゲン元素だけでなく、酸素を含有していてもよい。
 硫化物固体電解質の例は、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、またはLi10GeP212である。
 酸化物固体電解質の例は、
(i)LiTi2(PO43またはその元素置換体のようなNASICON型固体電解質、
(ii)(LaLi)TiO3のようなペロブスカイト型固体電解質、
(iii)Li14ZnGe416、Li4SiO4、LiGeO4またはその元素置換体のようなLISICON型固体電解質、
(iv)Li7La3Zr212またはその元素置換体のようなガーネット型固体電解質、または
(v)Li3PO4またはそのN置換体
である。
 ハロゲン化物固体電解質の例は、LiaMe’bc6により表される化合物である。ここで、数式:a+mb+3c=6、およびc>0が充足される。Me’は、LiおよびY以外の金属元素と半金属元素とからなる群より選択される少なくとも1つである。Zは、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。mの値は、Me’の価数を表す。
 「半金属元素」は、B、Si、Ge、As、Sb、およびTeである。
 「金属元素」は、周期表第1族から第12族中に含まれるすべての元素(ただし、水素を除く)、および、周期表第13族から第16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く)である。
 ハロゲン化物固体電解質のイオン伝導度を高めるために、Me’は、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択される少なくとも1つであってもよい。
 ハロゲン化物固体電解質の例は、Li3YCl6またはLi3YBr6である。
 電解質層202が第1固体電解質材料を含有する場合、負極203は、硫化物固体電解質を含有していてもよい。これにより、負極活物質に対して電気化学的に安定な硫化物固体電解質が、第1固体電解質材料および負極活物質が互いに接触することを抑制する。その結果、電池が低い内部抵抗を有する。
 有機ポリマー固体電解質の例は、高分子化合物およびリチウム塩の化合物である。高分子化合物は、エチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができるため、より高いイオン導電率を有する。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解液、ゲル電解質、またはイオン液体を含有していてもよい。
 非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含む。非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタン、または1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。これらから選択される1種の非水溶媒が単独で使用されてもよい。あるいは、これらから選択される2種以上の非水溶媒の混合物が使用されてもよい。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。リチウム塩の濃度は、例えば、0.5mol/リットル以上2mol/リットル以下の範囲にある。
 ゲル電解質として、非水電解液を含浸させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒ヘテロ環芳香族カチオン
である。
 イオン液体に含まれるアニオンの例は、PF6 -、BF4 -、SbF6 -、AsF6 -、SO3CF3 -、N(SO2CF32 -、N(SO2252 -、N(SO2CF3)(SO249-、またはC(SO2CF33 -である。
 イオン液体はリチウム塩を含有してもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、粒子同士の密着性を高めるために、結着剤を含有していてもよい。
 結着剤の例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、またはカルボキシメチルセルロースである。結着剤として、共重合体が使用されてもよい。当該結着剤の例は、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体である。上記の材料から選択された2種以上の混合物が使用されてもよい。
 正極201および負極203からなる群より選択される少なくとも1つは、電子伝導性を高めるために、導電助剤を含有していてもよい。
 導電助剤の例は、
(i)天然黒鉛または人造黒鉛のようなグラファイト類、
(ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック類、
(iii)炭素繊維または金属繊維のような導電性繊維類、
(iv)フッ化カーボン、
(v)アルミニウムのような金属粉末類、
(vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー類、
(vii)酸化チタンのような導電性金属酸化物、または
(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
である。低コスト化のために、上記(i)または(ii)の導電助剤が使用されてもよい。
 第2実施形態による電池の形状の例は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、または積層型である。
 第2実施形態による電池は、例えば、正極形成用の材料、電解質層形成用の材料、および負極形成用の材料を準備し、公知の方法で、正極、電解質層、および負極がこの順で配置された積層体を作製することによって製造してもよい。
 以下、実施例を用いて、本開示がより詳細に説明される。
 (実施例1)
 [固体電解質材料の作製]
 -30℃以下の露点を有するドライ雰囲気(以下、「ドライ雰囲気」という)中で、原料粉としてLi22、TaCl5、およびAlCl3が、1:1.8:0.2のLi22:TaCl5:AlCl3モル比となるように用意された。これらの材料が乳鉢中で粉砕および混合され、混合物が得られた。得られた混合物は、遊星型ボールミル(フリッチュ製、P-7型)を用い、24時間、600rpmでミリング処理された。このようにして、実施例1による固体電解質材料の粉末が得られた。
 [イオン伝導度の評価]
 図3は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。
 加圧成形ダイス300は、パンチ上部301、枠型302、およびパンチ下部303を具備していた。枠型302は、絶縁性のポリカーボネートから形成されていた。パンチ上部301およびパンチ下部303は、いずれも電子伝導性のステンレスから形成されていた。
 図3に示される加圧成形ダイス300を用いて、下記の方法により、実施例1による固体電解質材料のイオン伝導度が測定された。
 ドライ雰囲気中で、実施例1による固体電解質材料の粉末が加圧成形ダイス300の内部に充填された。加圧成形ダイス300の内部で、実施例1による固体電解質材料(すなわち、図3において固体電解質材料の粉末101)に、パンチ上部301およびパンチ下部303を用いて、300MPaの圧力が印加された。
 圧力が印加されたまま、パンチ上部301およびパンチ下部303は、周波数応答アナライザを搭載したポテンショスタット(Princeton Applied Research製、VersaSTAT4)に接続された。パンチ上部301は、作用極および電位測定用端子に接続された。パンチ下部303は、対極および参照極に接続された。電気化学的インピーダンス測定法により、室温において、実施例1による固体電解質材料のイオン伝導度が測定された。その結果、22℃で測定されたイオン伝導度は、4.2mS/cmであった。
 [X線回折測定]
 図4Aは、実施例1から7による固体電解質材料のX線回折パターンを示すグラフである。X線回折パターンは、下記の方法により測定された。
 -45℃以下の露点を有するドライ雰囲気中で、X線回折装置(RIGAKU製、MiniFlex600)を用いて、実施例1による固体電解質材料のX線回折パターンが測定された。X線源として、Cu-Kα線(波長1.5405Åおよび1.5444Å)が用いられた。
 実施例1による固体電解質材料は、12.50°にピークを有していた。
 [電池の作製]
 -60℃以下の露点を有するアルゴン雰囲気中で、実施例1による固体電解質材料および正極活物質であるLiCoO2が、50:50の体積比率となるように用意された。これらの材料が乳鉢中で混合され、正極混合物が得られた。
 9.5mmの内径を有する絶縁性の筒の中で、実施例1による固体電解質材料(120mg)および上記の正極混合物(10.6mg)が積層され、積層体が得られた。この積層体に360MPaの圧力が印加され、固体電解質層および正極が形成された。固体電解質層は500μmの厚みを有していた。
 次に、固体電解質層に、200μmの厚みを有するLi-In合金が積層された。この積層体に80MPaの圧力が印加され、負極が形成された。
 ステンレス鋼から形成された集電体が、正極および負極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性の筒の内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 このようにして、実施例1による電池が得られた。
 [充放電試験]
 図6は、実施例1による電池の初期放電特性を示すグラフである。初期放電特性は、下記の方法により測定された。
 実施例1による電池は、25℃の恒温槽に配置された。
 56μAの電流値で3.6Vの電圧に達するまで、実施例1による電池が充電された。当該電流密度は0.05Cレートに相当する。
 次に、56μAの電流値で1.9Vの電圧に達するまで、当該電池が放電された。
 実施例1による電池は、室温において、充電および放電された。
 充放電試験の結果、実施例1による電池は、1.06mAhの初期放電容量を有していた。
 (実施例2から9、および比較例1から2)
 [固体電解質材料の作製]
 実施例2では、原料粉としてLi22、TaCl5およびAlCl3が、1:1.8:0.2のLi22:TaCl5:AlCl3モル比となるように用意された。混合物はミリング処理された後、200℃で3時間、焼成された。
 実施例3では、原料粉としてLi22、TaCl5およびAlCl3が、1:1.2:0.8のLi22:TaCl5:AlCl3モル比となるように用意された。
 実施例4では、原料粉としてLi22、TaCl5およびAlCl3が、1:1.2:0.8のLi22:TaCl5:AlCl3モル比となるように用意された。混合物はミリング処理された後、200℃で3時間、焼成された。
 実施例5では、原料粉としてLi22、TaCl5およびAlCl3が、1:0.8:1.2のLi22:TaCl5:AlCl3モル比となるように用意された。
 実施例6では、原料粉としてLi22、TaCl5およびAlCl3が、1:0.8:1.2のLi22:TaCl5:AlCl3モル比となるように用意された。混合物はミリング処理された後、200℃で3時間、焼成された。
 実施例7では、原料粉としてLi22、TaCl5、AlCl3およびTaF5が、1:1.7:0.2:0.1のLi22:TaCl5:AlCl3:TaF5モル比となるように用意された。混合物はミリング処理された後、200℃で3時間、焼成された。
 実施例8では、原料粉としてLi22、NbCl5およびAlCl3が、1:1.2:0.8のLi22:NbCl5:AlCl3モル比となるように用意された。
 実施例9では、原料粉としてLi22、NbCl5およびAlCl3が、1:1.2:0.8のLi22:NbCl5:AlCl3モル比となるように用意された。混合物はミリング処理された後、80℃で3時間、焼成された。
 比較例1では、原料粉としてLi22およびLiClが、1:1のLi22:LiClモル比となるように用意された。
 比較例2では、原料粉としてLiClおよびTaCl5が、1:1のLiCl:TaCl5モル比となるように用意された。
 上記の事項以外は、実施例1と同様にして、実施例2から9、比較例1、および比較例2による固体電解質材料が得られた。
 [イオン伝導度の評価]
 実施例2から9、比較例1、および比較例2による固体電解質材料のイオン伝導度が、実施例1と同様に測定された。測定結果は、表1に示される。
 [X線回折]
 実施例2から9、比較例1、および比較例2による固体電解質材料のX線回折パターンが、実施例1と同様に測定された。図4Aは、実施例1から7による固体電解質材料のX線回折パターンを示すグラフである。図4Bは、実施例8および9による固体電解質材料のX線回折パターンを示すグラフである。図5は、比較例1および2による固体電解質材料のX線回折パターンを示すグラフである。
 実施例2による固体電解質材料は、11.13°にピークを有していた。
 実施例3による固体電解質材料は、12.52°にピークを有していた。
 実施例4による固体電解質材料は、15.53°にピークを有していた。
 実施例5による固体電解質材料は、第1範囲にピークを有していなかった。
 実施例6による固体電解質材料は、15.55°にピークを有していた。
 実施例7による固体電解質材料は、11.15°にピークを有していた。
 実施例8による固体電解質材料は、14.29°にピークを有していた。
 実施例9による固体電解質材料は、13.84°にピークを有していた。
 比較例1および比較例2は、第1範囲にピークを有していなかった。
Figure JPOXMLDOC01-appb-T000001
 (考察)
 表1から明らかなように、実施例1から9による固体電解質材料は、室温近傍において、1×10-3mS/cm以上の高いイオン伝導度を有する。さらに、1×10-2mS/cm以上の高いイオン伝導度を有する。
 実施例1から4を実施例5および6と比較すると明らかなように、MおよびAlの物質量の合計に対するAlの物質量の比が、10%以上かつ40%以下であれば、固体電解質材料のイオン伝導度がさらに高くなる。
 実施例3および4を実施例8および9と比較すると明らかなように、MはNbであるよりもTaである方が、固体電解質材料のイオン伝導度がより高くなる。
 実施例1から9による固体電解質材料は、硫黄を含有しないため、硫化水素が発生しない。
 以上のように、本開示による固体電解質材料は、実用的なリチウムイオン伝導度を有するため、優れた充放電特性を有する電池を提供するために適切である。
 本開示の電池は、例えば、全固体リチウムイオン二次電池において利用される。

Claims (8)

  1.  Li、M、Al、O、およびXを含み、
     Mは、TaおよびNbからなる群より選択される少なくとも1つであり、
     Xは、F、Cl、およびBrからなる群より選択される少なくとも1つである、
    固体電解質材料。
  2.  Cu-Kα線を用いたX線回折測定によって得られるX線回折パターンにおいて、11.08°以上15.63°以下の回折角2θの範囲にピークを有する結晶相を含有する、
    請求項1に記載の固体電解質材料。
  3.  Xは、ClおよびBrからなる群より選択される少なくとも1つである、
    請求項1または2に記載の固体電解質材料。
  4.  Mは、Taである、
    請求項1から3のいずれか一項に記載の固体電解質材料。
  5.  MおよびAlの物質量の合計に対するAlの物質量の比は、5%以上かつ70%以下である、
    請求項1から4のいずれか一項に記載の固体電解質材料。
  6.  MおよびAlの物質量の合計に対するAlの物質量の比は、10%以上かつ70%以下である、
    請求項5に記載の固体電解質材料。
  7.  MおよびAlの物質量の合計に対するAlの物質量の比は、10%以上かつ60%以下である、
    請求項6に記載の固体電解質材料。
  8.  正極、
     負極、および
     前記正極および前記負極の間に配置されている電解質層、
    を備え、
     前記正極、前記負極、および前記電解質層からなる群より選択される少なくとも1つは、請求項1から7のいずれか一項に記載の固体電解質材料を含有する、
     電池。
     
PCT/JP2021/004838 2020-04-30 2021-02-09 固体電解質材料およびそれを用いた電池 WO2021220578A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180028957.5A CN115428217A (zh) 2020-04-30 2021-02-09 固体电解质材料及使用该固体电解质材料的电池
JP2022518613A JPWO2021220578A1 (ja) 2020-04-30 2021-02-09
EP21796463.4A EP4144700A1 (en) 2020-04-30 2021-02-09 Solid electrolyte material and battery using same
US18/049,194 US20230108478A1 (en) 2020-04-30 2022-10-24 Solid electrolyte material and battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020080659 2020-04-30
JP2020-080659 2020-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/049,194 Continuation US20230108478A1 (en) 2020-04-30 2022-10-24 Solid electrolyte material and battery using same

Publications (1)

Publication Number Publication Date
WO2021220578A1 true WO2021220578A1 (ja) 2021-11-04

Family

ID=78331914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004838 WO2021220578A1 (ja) 2020-04-30 2021-02-09 固体電解質材料およびそれを用いた電池

Country Status (5)

Country Link
US (1) US20230108478A1 (ja)
EP (1) EP4144700A1 (ja)
JP (1) JPWO2021220578A1 (ja)
CN (1) CN115428217A (ja)
WO (1) WO2021220578A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
CN102780031A (zh) * 2012-07-18 2012-11-14 宁波大学 一种Mg2+,Al3+,Zr4+,F-离子共掺杂石榴石型固体电解质
JP2017107665A (ja) * 2015-12-07 2017-06-15 トヨタ自動車株式会社 複合固体電解質
WO2020044897A1 (ja) * 2018-08-30 2020-03-05 株式会社カネカ ガーネット型複合金属酸化物粒子とその製造方法、及びガーネット型複合金属酸化物の圧縮成形物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
CN102780031A (zh) * 2012-07-18 2012-11-14 宁波大学 一种Mg2+,Al3+,Zr4+,F-离子共掺杂石榴石型固体电解质
JP2017107665A (ja) * 2015-12-07 2017-06-15 トヨタ自動車株式会社 複合固体電解質
WO2020044897A1 (ja) * 2018-08-30 2020-03-05 株式会社カネカ ガーネット型複合金属酸化物粒子とその製造方法、及びガーネット型複合金属酸化物の圧縮成形物

Also Published As

Publication number Publication date
JPWO2021220578A1 (ja) 2021-11-04
US20230108478A1 (en) 2023-04-06
EP4144700A1 (en) 2023-03-08
CN115428217A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
JP7432897B2 (ja) 固体電解質材料およびそれを用いた電池
WO2021070595A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021161604A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021075243A1 (ja) 固体電解質材料およびそれを用いた電池
US20210249683A1 (en) Solid electrolyte material and battery including the same
WO2021186809A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021186833A1 (ja) 固体電解質材料およびそれを用いた電池
WO2020188914A1 (ja) 固体電解質材料およびこれを用いた電池
US20230055771A1 (en) Solid electrolyte material and battery using same
JPWO2020137026A1 (ja) 固体電解質材料、およびそれを用いた電池
WO2020137043A1 (ja) リチウムイオン伝導性固体電解質材料、およびこれを用いた電池
WO2020188915A1 (ja) 固体電解質材料およびこれを用いた電池
US20230103996A1 (en) Solid electrolyte material, and battery in which same is used
WO2022091567A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021186845A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021161605A1 (ja) 固体電解質材料およびそれを用いた電池
WO2020137042A1 (ja) 固体電解質材料、およびこれを用いた電池
WO2021220578A1 (ja) 固体電解質材料およびそれを用いた電池
WO2022091566A1 (ja) 固体電解質材料およびそれを用いた電池
WO2022091565A1 (ja) 固体電解質材料およびそれを用いた電池
JPWO2020137154A1 (ja) 固体電解質材料およびそれを用いた電池
WO2022137758A1 (ja) 固体電解質材料および電池
WO2021241172A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021199676A1 (ja) 固体電解質材料およびそれを用いた電池
WO2021186832A1 (ja) 固体電解質材料およびそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021796463

Country of ref document: EP

Effective date: 20221130