WO2021219013A1 - 确定车辆续航里程的方法和装置、设备、计算机程序和介质 - Google Patents

确定车辆续航里程的方法和装置、设备、计算机程序和介质 Download PDF

Info

Publication number
WO2021219013A1
WO2021219013A1 PCT/CN2021/090610 CN2021090610W WO2021219013A1 WO 2021219013 A1 WO2021219013 A1 WO 2021219013A1 CN 2021090610 W CN2021090610 W CN 2021090610W WO 2021219013 A1 WO2021219013 A1 WO 2021219013A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
energy
cruising range
power
average
Prior art date
Application number
PCT/CN2021/090610
Other languages
English (en)
French (fr)
Inventor
吴麦青
李雷
卢娜
郝阳
周明旺
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP21797165.4A priority Critical patent/EP4067153A4/en
Priority to US17/790,290 priority patent/US20230034887A1/en
Publication of WO2021219013A1 publication Critical patent/WO2021219013A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular to methods and devices, equipment, computer programs, and media for determining the cruising range of a vehicle.
  • Fuel cell vehicles refer to vehicles that use gasoline, natural gas, methanol, methane, liquefied petroleum gas and hydrogen as fuel. According to the characteristics of the fuel, fuel cell vehicles are divided into direct fuel cell vehicles that use hydrogen as fuel and gasoline, natural gas, and methanol. , Methane, liquefied petroleum gas, etc. as fuel for reforming fuel cell vehicles. In the field, it is customary to refer to direct fuel cell electric vehicles as fuel cell vehicles, namely FCEV (Fuel Cell Electric Vehicle, abbreviated as FCEV). Among them, FCEV can be divided into FCEV driven by pure fuel cell, FCEV driven by fuel cell and power battery, and FCEV driven by fuel cell and supercapacitor according to different configurations of "multi-power source”.
  • FCEV Fluel Cell Electric Vehicle
  • the cruising range is currently generally obtained by calculating the remaining mileage of pure electric driving.
  • this calculation method cannot accurately reflect the overall remaining mileage of the vehicle, which is not conducive to the user's itinerary planning.
  • the present disclosure aims to propose a method for determining the cruising range of a vehicle to accurately reflect the cruising range of the vehicle and to facilitate the user's driving arrangement.
  • a method for determining the cruising range of a vehicle comprises: obtaining the respective cruising range corresponding to the vehicle driving on the following energies: the current remaining energy of the power battery, the current remaining energy of the fuel cell, and the energy The energy recovered when the recovery function is activated; and the cruising range of the vehicle is determined based on the acquired cruising range.
  • said obtaining the cruising range corresponding to the vehicle relying on the current remaining energy of its power battery includes: obtaining the difference between the current remaining energy of the power battery of the vehicle and the reserved energy of the high-voltage accessories of the vehicle. Difference; obtain the first average vehicle speed and first average driving power at which the vehicle relies on the current remaining energy of the power battery to drive; obtain the current remaining energy of the vehicle's high-voltage accessories in the vehicle that relies on the power battery The first power consumption during driving; and based on the difference and the correspondingly acquired first average vehicle speed, the first average driving power, and the first power consumption of the high-voltage accessory, determine The cruising range of the vehicle depending on the current remaining energy of the power battery.
  • acquiring the first average vehicle speed, the first average driving power, and the first power consumption includes: according to the first average vehicle speed, the first average driving power, and the first average vehicle speed to be acquired.
  • Power consumption obtaining a preset number of first durations and any one or more of the following parameters in each first duration: vehicle driving distance, reflecting the power battery and fuel cell drive power distribution
  • the first scale factor of the situation, the energy consumption of the first drive motor of the vehicle and the energy consumption of the first high-voltage accessory and perform any one or more of the following: based on the first duration, the distance traveled by the vehicle, and all
  • the first scale factor determines the first average vehicle speed; the first average drive power is determined based on the first duration, the energy consumption of the first drive motor, and the first scale factor; and the first average drive power is determined based on the The first duration, the energy consumption of the first high-voltage accessory, and the first scale factor determine the first power consumption.
  • the determining the cruising range that the vehicle relies on the current remaining energy of the power battery to drive includes: obtaining a second scale factor that reflects the current distribution of the driving power of the power battery and the fuel cell; and The formula determines the cruising range that the vehicle relies on the current remaining energy of the power battery to drive:
  • the obtaining the cruising range corresponding to the vehicle relying on the current remaining energy of its fuel cell includes: obtaining the current remaining energy of the fuel cell, wherein the current remaining energy of the fuel cell is configured to be associated with the vehicle Obtain the average fuel loss of the vehicle; and, based on the current remaining energy and the average fuel loss, determine the cruising range of the vehicle relying on the current remaining energy of the fuel cell.
  • the obtaining the cruising range corresponding to the vehicle relied on the energy recovered when the vehicle energy recovery function is activated includes: obtaining the energy recovered when the vehicle energy recovery function is activated; obtaining the vehicle depends on the vehicle The second average vehicle speed and the second average driving power at which the energy recovered when the energy recovery function is activated; the process of obtaining the high-voltage accessories of the vehicle when the vehicle relies on the energy recovered when the vehicle energy recovery function is activated for driving And based on the energy recovered when the energy recovery function is activated and the corresponding second average vehicle speed, the second average driving power, and the second consumption of the high-voltage accessory Power, determining the cruising range corresponding to the vehicle relying on the energy recovered when the vehicle energy recovery function is activated.
  • obtaining the second average driving power and the second consumption power when the energy recovery function is activated includes: obtaining a preset according to the second average driving power and the second consumption power to be obtained The number of second durations and any one or more of the following parameters in each second duration: the third scale factor reflecting the distribution of the driving power of the power battery and the fuel cell, the vehicle’s first Two drive motor energy consumption and the second high voltage accessory energy consumption; and perform any one or more of the following: based on the second duration, the second drive motor energy consumption, and the third scale factor, determine The second average driving power; and determining the second power consumption based on the second duration, the energy consumption of the second high-voltage accessory, and the third scale factor.
  • the method for determining the cruising range of a vehicle further includes: obtaining performance-related parameters of the power battery and/or the fuel cell; the performance-related parameters indicate the power battery and/or the fuel cell When the performance of the vehicle decreases, the attenuation rate of the power battery and/or the fuel cell is obtained; and the cruising range of the vehicle is determined based on the determined cruising range and the attenuation rate.
  • the method for determining the cruising range of a vehicle described in the present disclosure has the following advantages:
  • the present disclosure has more reference factors and higher accuracy.
  • the present disclosure also provides a device for determining the cruising range of a vehicle, the device comprising:
  • the acquisition module is used to acquire the respective cruising range for the vehicle to rely on the following energies for driving: the current remaining energy of the power battery, the current remaining energy of the fuel cell, and the energy recovered when the energy recovery function is activated; and
  • the determining module is used to determine the cruising range of the vehicle based on the acquired cruising range.
  • the present disclosure also provides a computing processing device, including:
  • a memory in which computer readable codes are stored
  • One or more processors when the computer-readable code is executed by the one or more processors, the computing processing device executes the method for determining the cruising range of a vehicle provided in the present disclosure.
  • the present disclosure also provides a computer program, including computer-readable code, which when the computer-readable code runs on a computing processing device, causes the computing processing device to execute the method for determining the mileage of a vehicle provided in the present disclosure.
  • the present disclosure also provides a computer-readable storage medium in which the computer program provided by the present disclosure is stored.
  • FIG. 1 is a block diagram of a model of FCEV jointly driven by a fuel cell and a power battery according to an embodiment of the disclosure
  • FIG. 2 is a flowchart of the method for determining the cruising range of a vehicle according to an embodiment of the disclosure
  • FIG. 3 is a flow chart of obtaining the cruising range corresponding to the vehicle relying on the current remaining energy of the power battery according to the embodiment of the disclosure;
  • FIG. 5 is a flowchart of the method for obtaining the cruising range corresponding to the vehicle driving by relying on the energy recovered when the vehicle energy recovery function is activated according to the embodiment of the disclosure;
  • FIG. 6 is a flowchart of another implementation manner of the method for determining the cruising range of a vehicle according to the embodiments of the disclosure.
  • FIG. 7 is a block diagram of the device for determining the cruising range of a vehicle according to an embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of a computing processing device provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a storage unit of program code for portable or fixed implementation of the method according to the present disclosure provided by an embodiment of the present disclosure.
  • the cruising range of the vehicle is used to reflect the distance that the vehicle can continue to travel in the current state.
  • the cruising range of a vehicle is to determine the remaining range of pure electric driving.
  • the remaining range of pure electric driving does not accurately reflect the range that the vehicle can travel.
  • the cruising range of the remaining energy of the fuel cell system when driving and the activation of the energy recovery function Existing technologies have not taken into consideration the cruising range when the energy is recovered during driving. The present disclosure will consider various factors influencing the cruising range to obtain the cruising range of the vehicle more accurately.
  • the fuel cell system includes a fuel cell body, a fuel storage and supply system, a fuel cell controller, etc.
  • the fuel cell system is simply referred to as a fuel cell below for detailed description.
  • Fig. 1 is a block diagram of a FCEV model driven by a fuel cell and a power battery.
  • the FCEV model jointly driven by the fuel cell and the power battery is mainly composed of a fuel cell 11, a power battery 14, a battery management system 16, a motor controller 13, a DC/DC converter 12, a drive motor 15 and a whole The car controller 17 and other components.
  • the power battery and the fuel cell are electrically connected to the motor controller to control the operation of the driving motor, and then drive the vehicle to travel.
  • Fig. 2 is a flowchart of a method for determining the cruising range of a vehicle according to the present disclosure. As shown in Fig. 2, the method for determining a cruising range of a vehicle includes:
  • S201 Obtain the respective cruising range for the vehicle to rely on the following energies: the current remaining energy of the power battery, the current remaining energy of the fuel cell, and the energy recovered when the energy recovery function is activated.
  • the current remaining energy of the power battery may be obtained through a battery management system, and the battery management system communicates with the power battery to obtain the current remaining energy of the power battery.
  • the current remaining energy of the fuel cell is obtained by a fuel cell controller, wherein the fuel cell controller is used to manage the energy of the fuel cell and control the use of the fuel cell. Since the vehicle will charge the power battery when the energy recovery function is activated, the energy recovered when the vehicle energy recovery function is activated can also be obtained through the battery management system.
  • S202 Determine the cruising range of the vehicle based on the acquired cruising range.
  • the cruising range of the vehicle is related to the three energy parameters obtained in S201. Specifically, the cruising range of the vehicle is the sum of the various cruising ranges obtained in S201.
  • Fig. 3 is a flowchart for obtaining the cruising range corresponding to the vehicle relying on the current remaining energy of the power battery to drive.
  • the reserved energy refers to the unavailable energy of the power battery, and the reserved energy is used to make the power battery perform self-heating and make the high-voltage electric device of the vehicle work, the high-voltage electric device It can be an air compressor.
  • the first average vehicle speed And/or the first average driving power P drv_avg (Batt) can be obtained directly from historical data of vehicle driving, or can be calculated in the following further preferred manner:
  • First average speed The method of determining is as follows: obtain the latest preset number of first durations T and the following parameters in each first duration, where the latest preset number is based on the current to get the closest time forward Three preset numbers of durations: the vehicle travel distance R and the first scale factor K reflecting the distribution of the driving power of the power battery and the fuel cell; and based on the first duration T, in each first The vehicle travel distance R within the duration and the first scale factor K within each first duration determine the first average vehicle speed The following will take the preset number 3 as an example, that is, the latest first durations obtained are three stages of T1, T2, and T3 respectively.
  • T1, T2, and T3 can be calibrated to 1 minute, and T1, T2, and T3
  • the vehicle travel distances of the three stages are R1, R2, and R3, respectively.
  • the first scale factors of the three stages of T1, T2, and T3 are K1, K2, and K3, respectively.
  • the formula for determining the first average vehicle speed is as follows:
  • the vehicle travel distance can be calculated by the following formula:
  • v represents the speed at which the vehicle travels in one direction
  • Rx represents the distance traveled by the vehicle R1, R2, or R3.
  • the method for determining the first average driving power P drv_avg (Batt) is as follows: acquiring the last preset number of first durations T and the following parameters in each first duration: the energy consumption E of the driving motor and The first scale factor K reflecting the distribution of the driving power of the power battery and the fuel cell; and based on the first duration T, the energy consumption E of the driving motor in each first duration and the first
  • the scale factor K determines the first average driving power P drv_avg (Batt) of the vehicle.
  • the same determination method is, taking the preset number 3 as an example, that is, the latest first duration obtained is three stages T1, T2, and T3 respectively.
  • T1, T2, and T3 can be calibrated as 1 minute, and T1
  • the energy consumption of the drive motors in the three stages of, T2 and T3 are E1, E2 and E3, respectively.
  • the first scale factors of the three stages of T1, T2 and T3 are K1, K2 and K3 respectively, and the first average drive power is determined.
  • the formula is as follows:
  • the energy consumption of the drive motor can be calculated by the following formula:
  • I refers to the driving current of the T1, T2 or T3 stage of the driving motor
  • V refers to the driving voltage of the T1, T2 or T3 stage of the driving motor
  • the obtaining of the first power consumption P Aux of the air conditioner during the process that the vehicle relies on the current remaining energy of the power battery to drive includes:
  • the energy consumption of the air conditioner in the stages are E ac1 , E ac2 and E ac2 , and the first scale factors of the three stages of T1, T2 and T3 are K1, K2 and K3 respectively .
  • the formula for determining the first power consumption P AC_avg is as follows Said:
  • the P AC_avg is the average power consumption of the air conditioner.
  • E ACX ⁇ (E AC_input_current )dt*E AC_input_voltage ;
  • E AC_input_current represents the current of the air conditioner
  • E AC_input_voltage represents the voltage of the air conditioner
  • the high-voltage accessories of the vehicle may include: an air conditioner, a direct current converter (DC/DC), a boost direct current converter, and an air compressor.
  • the calculation method of the first power consumption P Aux is determined.
  • P Aux P LV_avg +P FCS_avg ;
  • P Aux P LV_avg +P FCS_avg +P AC_avg .
  • the P FCS_avg represents the power consumption of the boost DC converter and the air compressor
  • the P LV_avg represents the power consumption of the DC converter.
  • the power consumption of the boost DC converter and the air compressor and the calculation method of the DC converter are the same as the calculation method of the power consumption of the air conditioner, as follows:
  • E DC1 , E DC2 and E DC3 are the energy consumption of the three-stage DC converters of T1, T2 and T3;
  • E FCS1 , E FCS2 and E FCS3 are the three-stage boost DC converters of T1, T2 and T3 And the energy consumption of the air compressor.
  • the first power consumption P Aux can be calculated by adding them.
  • S304 Based on the difference and the correspondingly acquired first average vehicle speed, the first average driving power, and the first power consumption of the high-voltage accessory, determine that the vehicle depends on the power battery. The current cruising range for driving with remaining energy.
  • the difference is the difference between the current remaining energy of the power battery of the vehicle and the reserved energy of the high-voltage electrical device of the vehicle.
  • the method for determining the cruising range of the vehicle relying on the current remaining energy of the power battery may include:
  • the Remaining Range (Batt) is the cruising range corresponding to the current remaining energy of the vehicle power battery; the RemainEnergy (Batt) is obtained through S301, and the P drv_avg is acquired through S302, the N 1 is the second scale factor, and the P Aux is acquired through S303.
  • Fig. 4 is a flow chart of the method for obtaining the cruising range corresponding to the vehicle relying on the current remaining energy of its fuel cell according to the present disclosure. As shown in Fig. 4, the method includes:
  • this embodiment will take hydrogen as an example, and the current remaining energy of the fuel cell is configured to be related to the weight of hydrogen.
  • the current remaining energy of the fuel cell is proportional to the weight of the hydrogen, that is, the heavier the weight of hydrogen, the more the current remaining energy.
  • the average fuel consumption of the vehicle can be obtained directly from the fuel cell controller. It is actually the fuel consumption of the vehicle within the most recent duration, for example, the average value of the fuel consumption per 100 kilometers or the fuel consumption per thousand kilometers.
  • S403 Determine, based on the current remaining energy and the fuel loss of one hundred kilometers, the cruising range that the vehicle depends on the current remaining energy of the fuel cell to travel.
  • the cruising range that the vehicle relies on the current remaining energy of the fuel cell to travel is determined in the following manner:
  • FIG. 5 is a flowchart of the method for obtaining the cruising range corresponding to the vehicle driving relying on the energy recovered when the vehicle energy recovery function is activated according to the present disclosure. As shown in FIG. 5, the method includes:
  • the RecuperationEnergy can be obtained directly from the battery management system.
  • the second average vehicle speed And/or the second average driving power P drv_avg (ER) can be obtained by analyzing the latest vehicle driving history data, or can be estimated according to the situation.
  • further explanation will be made by adopting the method obtained by analyzing the historical data of vehicle driving.
  • the second average vehicle speed The method of obtaining is the same as the above-mentioned first average vehicle speed.
  • the second duration is different from the first duration because the working timings of the two are different.
  • the second duration is obtained when the vehicle is in the activation of the energy recovery function, and the preset number 3 is used as For example, the last obtained second duration is t1, t2, and t3 respectively.
  • t1, t2, and t3 can be calibrated to 1 minute, and the energy consumption of the drive motors in the three stages of t1, t2, and t3 are respectively for with
  • the third scale factors of the three stages t1, t2, and t3 are k1, k2, and k3, respectively, and the formula for determining the second average driving power is as follows:
  • the energy consumption of the drive motor can be calculated by the following formula:
  • the I(ER) refers to the drive currents of the three stages t1, t2, and t3 of the drive motor
  • V(ER) refers to the drive voltages of the three stages t1, t2, and t3 of the drive motor.
  • the second power consumption can be estimated based on historical data.
  • a DC converter will be used as an example to determine the second power consumption P Aux (ER) in the following manner:
  • the It is the average power consumption of the DC converter when the energy recovery function is activated.
  • E DCx ⁇ (E DC_input_current )dt*E DC_input_voltage ;
  • the E DC_input_current represents the current of the DC converter
  • the E DC_input_voltage represents the voltage of the DC converter
  • the high-voltage accessories of the vehicle may include: air conditioners, direct current converters (DC/DC), boost direct current converters, and air compressors.
  • the P Aux (ER) represents the second power consumption P Aux (ER)
  • the P FCS_avg (ER) represents the power consumption of the boost DC converter and the air compressor when the energy recovery function is activated
  • the P AC_avg (ER) represents the power consumption when the energy recovery function is activated when the air conditioner is turned on.
  • the calculation method of the power consumption of the boost DC converter and the air compressor and the power consumption of the air conditioner is basically the same as the calculation method of the power consumption of the DC converter, and the specific calculation is as follows:
  • E ac1 (ER), E ac2 (ER) and E ac3 (ER) are the energy consumption of air-conditioning in the three stages of t1, t2 and t3;
  • E FCS1 (ER), E FCS2 (ER) and E FCS3 (ER) ) Is the energy consumption of the boost DC converter and the air compressor in the three stages of t1, t2 and t3 when the energy recovery function is activated.
  • the second power consumption P Aux (ER) can be calculated by adding the three.
  • S504 Determine the vehicle based on the energy recovered when the energy recovery function is activated and the corresponding second average vehicle speed, the second average driving power, and the second power consumption of the high-voltage accessory.
  • the cruising range that depends on the energy recovered when the vehicle energy recovery function is activated for driving.
  • the Remaining Range (ER) is the energy recovered by the vehicle when the energy recovery function is activated; the RecuperationEnergy is the energy used for electric drive of the power battery when the energy recovery function is activated; Is the second average vehicle speed when the energy recovery function is activated; the P drv_avg (ER) is the second average driving power when the energy recovery function is activated; the P Aux (ER) is the second consumption of the high-voltage accessory when the energy recovery function is activated power.
  • the vehicle cruising range can be calculated. It is composed of the three parts mentioned above, including the mileage of the power battery part, the mileage of the fuel cell part, and the increased mileage of the energy recovery part. The remaining mileage of the vehicle is superimposed.
  • This determination method not only brings an intuitive mileage experience to the user's travel, but also reminds the user to refuel or charge in time.
  • the fuel may be hydrogen or the like.
  • Fig. 6 is a flowchart of another embodiment of the present disclosure. As shown in Fig. 6, the vehicle relies on the following energies for driving the respective cruising range: the current remaining energy of the power battery, the fuel cell’s After the current remaining energy and the energy recovered when the energy recovery function is activated, the method for determining the cruising range of the vehicle further includes:
  • S601 Obtain performance-related parameters of the power battery and/or the fuel cell.
  • the performance-related parameters may include changes in the output power of the power battery and/or the fuel cell.
  • the attenuation rate can be determined according to actual conditions, and changes in proportion to the performance-related parameters. The greater the percentage of performance degradation, the greater the attenuation rate. For example, taking the output power as an example, if the output power is 50% of the target power, the attenuation rate can be set to a corresponding 50%.
  • S603 Determine the cruising range of the vehicle based on the determined cruising range and the attenuation rate.
  • the cruising range of the vehicle is multiplied by the attenuation rate to obtain the cruising range of the vehicle to ensure the accuracy of the entire calculation process.
  • Fig. 7 is a block diagram of a device for determining a vehicle's cruising range according to an embodiment of the present disclosure.
  • the device 700 for determining the cruising range of a vehicle includes an acquiring module 701 and a determining module 702.
  • the obtaining module 701 is used to obtain the respective cruising range for the vehicle to rely on the following energies: the current remaining energy of the power battery, the current remaining energy of the fuel cell, and the energy recovered when the energy recovery function is activated.
  • the determining module 702 is used to determine the cruising range of the vehicle based on the acquired cruising range.
  • the obtaining module 701 is also used for: obtaining the difference between the current remaining energy of the power battery of the vehicle and the reserved energy of the high-voltage accessory of the vehicle; obtaining the first average value of the vehicle driving dependent on the current remaining energy of the power battery The vehicle speed and the first average driving power; obtaining the first power consumption of the high-voltage accessories of the vehicle during the process of driving the vehicle relying on the current remaining energy of the power battery; and based on the difference and the corresponding obtained first average vehicle speed, first The average driving power and the first power consumption of the high-voltage accessories determine the cruising range of the vehicle relying on the current remaining energy of the power battery.
  • the acquiring module 701 is further configured to: acquire a preset number of first durations and the next time in each first duration according to the first average vehicle speed, first average driving power, and first power consumption to be acquired.
  • the distance traveled by the vehicle, the first scale factor reflecting the distribution of the driving power of the power battery and the fuel cell, the energy consumption of the first drive motor of the vehicle and the energy consumption of the first high-voltage accessory and execution Any one or more of the following:
  • the acquisition module 701 is further configured to: acquire a second scale factor that reflects the current distribution of the driving power of the power battery and the fuel cell; and determine the cruising range of the vehicle relying on the current remaining energy of the power battery through the following formula:
  • the obtaining module is further used for: obtaining the current remaining energy of the fuel cell, wherein the current remaining energy of the fuel cell is configured to be associated with the weight of the fuel of the vehicle; obtaining the average fuel loss of the vehicle; and based on the current remaining energy and the average fuel The loss determines the cruising range that the vehicle relies on the current remaining energy of the fuel cell to travel.
  • the acquisition module 701 is further configured to: acquire the energy recovered when the vehicle energy recovery function is activated; acquire the second average vehicle speed and the second average driving power at which the vehicle relies on the energy recovered when the vehicle energy recovery function is activated; Obtain the second power consumption of the vehicle's high-voltage accessories when the vehicle relies on the energy recovered when the vehicle energy recovery function is activated; and based on the energy recovered when the energy recovery function is activated and the corresponding second average vehicle speed obtained , The second average driving power and the second power consumption of the high-voltage accessories determine the cruising range corresponding to the vehicle relying on the energy recovered when the vehicle energy recovery function is activated.
  • the acquiring module 701 is further configured to acquire a preset number of second durations and any of the following parameters in each second duration according to the second average driving power and second power consumption to be acquired
  • the third scale factor reflecting the distribution of the driving power of the power battery and the fuel cell, the energy consumption of the second drive motor of the vehicle and the energy consumption of the second high-voltage accessory; and perform any one or more of the following :
  • the obtaining module 701 is also used to: obtain performance-related parameters of the power battery and/or fuel cell; when the performance-related parameters show that the performance of the power battery and/or fuel cell has decreased, obtain the power battery and/or fuel cell The decay rate.
  • the determining module 702 is also used to determine the cruising range of the vehicle based on the determined cruising range and attenuation rate.
  • the present disclosure also proposes a computing processing device including a memory and one or more processors.
  • Computer-readable codes are stored in the memory; when the computer-readable codes are executed by one or more processors, the computing processing device executes the aforementioned method for determining the mileage of the vehicle.
  • the present disclosure also proposes a computer program, including computer-readable code, which when the computer-readable code runs on a computing processing device, causes the computing processing device to execute the aforementioned method for determining the mileage of a vehicle.
  • the present disclosure also proposes a computer-readable storage medium in which the aforementioned computer program is stored.
  • FIG. 8 is a schematic structural diagram of a computing processing device provided by an embodiment of the present disclosure.
  • the computing processing device generally includes a processor 810 and a computer program product in the form of a memory 830 or a computer readable medium.
  • the memory 830 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 830 has a storage space 850 for executing the program code 851 of any method step in the above method.
  • the storage space 850 for program codes may include various program codes 851 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as shown in FIG. 9.
  • the storage unit may have storage segments, storage space, etc. arranged similarly to the storage 830 in the server of FIG. 8.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes 851', that is, codes that can be read by a processor such as 810, which, when run by a server, cause the server to perform the steps in the method described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

一种确定车辆续航里程的方法,包括:S201、获取车辆依赖于以下各能量进行行驶所各自对应的续航里程:动力电池的当前剩余能量、燃料电池的当前剩余能量以及能量回收功能激活时所回收的能量; S202、基于所获取的各续航里程确定所述车辆的续航里程。还公开了一种确定车辆续航里程的装置、一种计算机处理设备、一种计算机程序和一种计算机可读存储介质。该方法可以准确反映车辆的续航里程,方便用户的行车安排。

Description

确定车辆续航里程的方法和装置、设备、计算机程序和介质
相关申请的交叉引用
本公开要求在2020年04月30日提交中国专利局、申请号为202010367987.6、名称为“确定车辆续航里程的方法、系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,特别涉及确定车辆续航里程的方法和装置、设备、计算机程序和介质。
背景技术
燃料电池车是指以汽油、天然气、甲醇、甲烷、液化石油气和氢气为燃料的车辆,按照燃料特点,将燃料电池车分为以氢气为燃料的直接燃料电池车和以汽油、天然气、甲醇、甲烷、液化石油气等为燃料的重整燃料电池车。本领域中,习惯将直接燃料电池电动汽车称为燃料电池车,即FCEV(Fuel Cell Electric Vehicle,缩写为FCEV)。其中,FCEV根据“多电源”的不同配置可以分为纯燃料电池驱动的FCEV、燃料电池与动力电池联合驱动的FCEV、燃料电池与超级电容联合驱动的FCEV。
针对燃料电池与动力电池联合驱动的FCEV,其续航里程目前一般通过计算纯电行驶的剩余里程而得到,但是,该计算方式无法准确反映车辆整体的剩余里程,不利于用户进行行程安排。
发明内容
有鉴于此,本公开旨在提出一种确定车辆续航里程的方法,以准确反映 车辆的续航里程,方便用户的行车安排。
为达到上述目的,本公开的技术方案是这样实现的:
一种确定车辆续航里程的方法,所述车辆续航里程的确定方法包括:获取车辆依赖于以下各能量进行行驶所各自对应的续航里程:动力电池的当前剩余能量、燃料电池的当前剩余能量以及能量回收功能激活时所回收的能量;以及基于所获取的各续航里程确定所述车辆的续航里程。
优选地,所述获取车辆依赖于其动力电池的当前剩余能量进行行驶所对应的续航里程包括:获取所述车辆的动力电池的当前剩余能量与所述车辆的高压附件的预留能量之间的差值;获取所述车辆依赖于所述动力电池的当前剩余能量进行行驶的第一平均车速以及第一平均驱动功率;获取车辆的高压附件在所述车辆依赖于所述动力电池的当前剩余能量进行行驶的过程中的第一消耗功率;以及基于所述差值以及所对应获取的所述第一平均车速、所述第一平均驱动功率及所述高压附件的所述第一消耗功率,确定所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程。
优选地,获取所述第一平均车速、所述第一平均驱动功率和所述第一消耗功率包括:根据待获取的所述第一平均车速、所述第一平均驱动功率和所述第一消耗功率,获取预设数量的第一持续时间以及在每一第一持续时间内的下述参数中的任意一者或多者:车辆行驶距离、反映所述动力电池和燃料电池的驱动功率分配情况的第一比例因子、车辆的第一驱动电机耗能以及第一高压附件耗能;以及执行以下中的任意一者或多者:基于所述第一持续时间、所述车辆行驶距离以及所述第一比例因子,确定所述第一平均车速;基于所述第一持续时间、所述第一驱动电机耗能和所述第一比例因子,确定所述第一平均驱动功率;以及基于所述第一持续时间、所述第一高压附件耗能和所述第一比例因子,确定所述第一消耗功率。
优选地,所述确定所述车辆依赖于所述动力电池的当前剩余能量进行行 驶的续航里程包括:获取当前反映所述动力电池和燃料电池的驱动功率分配情况的第二比例因子;以及通过下述公式确定所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程:
Figure PCTCN2021090610-appb-000001
优选地,所述获取车辆依赖于其燃料电池的当前剩余能量进行行驶所对应的续航里程包括:获取燃料电池的当前剩余能量,其中所述燃料电池的当前剩余能量被配置为关联于所述车辆的燃料的重量;获取所述车辆的平均燃料损耗;以及基于所述当前剩余能量以及所述平均燃料损耗确定所述车辆依赖于所述燃料电池的当前剩余能量进行行驶的续航里程。
优选地,所述获取车辆依赖于其车辆能量回收功能激活时所回收的能量进行行驶所对应的续航里程包括:获取车辆能量回收功能激活时所回收的能量;获取所述车辆依赖于所述车辆能量回收功能激活时所回收的能量进行行驶的第二平均车速以及第二平均驱动功率;获取车辆的高压附件在所述车辆依赖于所述车辆能量回收功能激活时所回收的能量进行行驶的过程中的第二消耗功率;以及基于所述能量回收功能激活时所回收的能量以及所对应获取的所述第二平均车速、所述第二平均驱动功率及所述高压附件的所述第二消耗功率,确定所述车辆依赖于其车辆能量回收功能激活时所回收的能量进行行驶所对应的续航里程。
优选地,获取所述能量回收功能激活时的所述第二平均驱动功率以及所述第二消耗功率包括:根据待获取的所述第二平均驱动功率和所述第二消耗功率,获取预设数量的第二持续时间以及在每一第二持续时间内的下述参数中的任意一者或多者:反映所述动力电池和燃料电池的驱动功率分配情况的第三比例因子、车辆的第二驱动电机耗能以及第二高压附件耗能;以及执行 以下中的任意一者或多者:基于所述第二持续时间、所述第二驱动电机耗能和所述第三比例因子,确定所述第二平均驱动功率;以及基于所述第二持续时间、所述第二高压附件耗能和所述第三比例因子,确定所述第二消耗功率。
优选地,所述确定车辆续航里程的方法还包括:获取所述动力电池和/或所述燃料电池的性能相关参数;在所述性能相关参数示出所述动力电池和/或所述燃料电池的性能出现下降时,获取所述动力电池和/或所述燃料电池的衰减率;以及基于所确定的各续航里程和所述衰减率确定车辆的续航里程。
相对于现有技术,本公开所述的确定车辆续航里程的方法具有以下优势:
获取动力电池的当前剩余能量进行行驶所对应的续航里程,燃料电池的当前剩余能量进行行驶所对应的续航里程以及所述车辆能量回收功能激活时所回收的能量。基于上述三个能量,确定车辆的总续航里程,相比于现有技术中的续航里程确定方式,本公开参考因素更多,精确度更高。
本公开还提供一种确定车辆续航里程的装置,所述装置包括:
获取模块,用于获取车辆依赖于以下各能量进行行驶所各自对应的续航里程:动力电池的当前剩余能量、燃料电池的当前剩余能量以及能量回收功能激活时所回收的能量;以及
确定模块,用于基于所获取的各续航里程确定所述车辆的续航里程。
本公开还提供一种计算处理设备,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行本公开提供的确定车辆续航里程的方法。
本公开还提供一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行本公开提供的确定车辆续航里程的方法。
本公开还提供一种计算机可读存储介质,其中存储了本公开提供的计算 机程序。
本公开的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施方式及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施方式所述的燃料电池和动力电池联合驱动的FCEV的车型的模块框图;
图2为本公开实施方式所述的确定车辆续航里程的方法的流程图;
图3为本公开实施方式所述的获取车辆依赖于动力电池的当前剩余能量进行行驶所对应的续航里程的流程图;
图4为本公开实施方式所述的获取车辆依赖于其燃料电池的当前剩余能量进行行驶所对应的续航里程的方法流程图;
图5为本公开实施方式所述的获取车辆依赖于其车辆能量回收功能激活时所回收的能量进行行驶所对应的续航里程方法的流程图;
图6为本公开实施方式所述的确定车辆续航里程的方法的另一种实施方式的流程图;
图7为本公开实施方式所述的确定车辆续航里程的装置的框图;
图8为本公开实施例提供的一种计算处理设备的结构示意图;以及
图9为本公开实施例提供的一种用于便携式或者固定实现根据本公开的方法的程序代码的存储单元的示意图。
附图标记说明
11、燃料电池;12、DC/DC转换器;13、电机控制器;14、动力电池; 15、驱动电机;16、电池管理系统;17、整车控制器。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。
车辆续航里程用于反映车辆在当前状态下可以继续行驶的距离。目前,车辆续航里程为确定纯电行驶的剩余里程,该纯电行驶的剩余里程不能准确反映车辆可以续航行驶的里程,例如,燃料电池系统的剩余能量进行行驶时的续航里程以及能量回收功能激活时所回收的能量进行行驶时的续航里程现有技术都没有考虑在内,本公开将考虑多种续航里程的影响因子,更加准确的得到车辆的续航里程。其中,所述燃料电池系统包括燃料电池本体、储燃料供燃料系统、燃料电池控制器等,下面将所述燃料电池系统简称为燃料电池来进行详细的说明。
本公开主要针对燃料电池和动力电池联合驱动的FCEV的车型。图1是燃料电池和动力电池联合驱动的FCEV的车型的模块框图。如图1所述,所述燃料电池与动力电池联合驱动的FCEV车型主要由燃料电池11、动力电池14、电池管理系统16、电机控制器13、DC/DC转换器12、驱动电机15和整车控制器17等组成。其中,主要通过动力电池和燃料电池电气连接于电机控制器以控制驱动电机的工作,进而驱动车辆行驶。
图2是本公开的一种确定车辆续航里程的方法的流程图,如图2所示,所述确定车辆续航里程的方法包括:
S201,获取车辆依赖于以下各能量进行行驶所各自对应的续航里程:动力电池的当前剩余能量、燃料电池的当前剩余能量以及能量回收功能激活时所回收的能量。
其中,所述动力电池的当前剩余能量可以通过电池管理系统获取,所述 电池管理系统和所述动力电池通信获取所述动力电池的当前剩余能量。所述燃料电池的当前剩余能量通过燃料电池控制器获取,其中所述燃料电池控制器用于管理燃料电池的能量并控制所述燃料电池的使用。由于在所述能量回收功能激活时车辆会给动力电池充电,因此,所述车辆能量回收功能激活时所回收的能量也可以通过所述电池管理系统获取。
S202,基于所获取的各续航里程确定所述车辆的续航里程。
所述车辆的续航里程与S201得到的三种能量参数相关,具体地,所述车辆的续航里程为上述S201得到的各续航里程的和值。
下面将结合多个附图分别描述获取车辆依赖于动力电池的当前剩余能量、燃料电池的当前剩余能量以及车辆能量回收功能激活时所回收的能量进行行驶所各自对应的续航里程。
图3是获取车辆依赖于动力电池的当前剩余能量进行行驶所对应的续航里程的流程图。
S301,获取所述车辆的动力电池的当前剩余能量与所述车辆的高压用电器件的预留能量的差值RemainEnergy(Batt)。
其中,所述预留能量是指所述动力电池不可用的能量,该预留能量用于使得所述动力电池执行自加热以及使得所述车辆的高压用电器件工作,所述高压用电器件可以是空压机。
S302,获取所述车辆依赖于所述动力电池的当前剩余能量进行行驶的第一平均车速
Figure PCTCN2021090610-appb-000002
以及第一平均驱动功率P drv_avg(Batt);
其中,所述第一平均车速
Figure PCTCN2021090610-appb-000003
和/或第一平均驱动功率P drv_avg(Batt)可以直接从车辆行驶的历史数据中获取得到,也可以通过下述进一步优选的方式计算得到:
第一平均车速
Figure PCTCN2021090610-appb-000004
的确定方式如下所述:获取最近预设数量个第一持续时间T以及在每一第一持续时间内的下述参数,其中所述最近预设 数量是以当前为基准往前获取最接近时间的三个预设数量的持续时间:车辆行驶距离R和反映所述动力电池和燃料电池的驱动功率分配情况的第一比例因子K;以及基于所述第一持续时间T、在每一第一持续时间内的车辆行驶距离R以及在每一第一持续时间内的第一比例因子K,确定所述第一平均车速
Figure PCTCN2021090610-appb-000005
下面将以所述预设数量3为例,即获取到的最近第一持续时间分别为T1、T2和T3三个阶段,其中,T1、T2、T3可以标定为1分钟,T1、T2和T3三个阶段的车辆行驶距离分别为R1、R2和R3,T1、T2和T3三个阶段的第一比例因子分别为K1、K2和K3,确定所述第一平均车速的公式如下所述:
Figure PCTCN2021090610-appb-000006
其中,所述车辆行驶距离可以通过下述的公式计算得到:
Rx=∫vdt,
其中,所述v表示车辆朝一个方向行驶的速度,Rx表示车辆行驶距离R1、R2或R3。
第一平均驱动功率P drv_avg(Batt)确定方式如下所述:获取最近预设数量个第一持续时间T以及在每一第一持续时间内的下述参数:所述驱动电机的耗能E和反映所述动力电池和燃料电池的驱动功率分配情况的第一比例因子K;以及基于所述第一持续时间T、所述在每一第一持续时间内的驱动电机的耗能E和第一比例因子K,确定所述车辆的第一平均驱动功率P drv_avg(Batt)。与所述第一平均车速
Figure PCTCN2021090610-appb-000007
确定方式相同的是,以所述预设数量3为例,即获取到的最近第一持续时间分别为T1、T2和T3三个阶段,其中,T1、T2、T3可以标定为1分钟,T1、T2和T3三个阶段的驱动电机的耗能分别为E1、E2和E3,T1、T2和T3三个阶段的第一比例因子分别为K1、K2和K3,确定所述第一平均驱动功率的公式如下所述:
Figure PCTCN2021090610-appb-000008
其中,驱动电机的耗能可以通过下述的公式计算得到:
Ex=∫Idt*V;
其中,所述I指驱动电机的T1、T2或T3阶段的驱动电流,V指驱动电机的T1、T2或T3阶段的驱动电压。
S303,获取车辆的高压附件在所述车辆依赖于所述动力电池的当前剩余能量进行行驶的过程中的第一消耗功率P Aux
进一步优选地,以所述高压附件为空调举例,所述获取所述空调在所述车辆依赖于所述动力电池的当前剩余能量进行行驶的过程中的第一消耗功率P Aux包括:
获取最近预设数量个第一持续时间、在每一第一持续时间内所述空调的耗能以及在每一第一持续时间内反映所述动力电池和燃料电池的驱动功率分配情况的第一比例因子;以及基于所述第一持续时间、所述在每一第一持续时间内的空调的耗能和在每一第一持续时间内的第一比例因子,确定所述车辆的高压附件的第一消耗功率。以所述预设数量3为例,即获取到的最近第一持续时间分别为T1、T2和T3三个阶段,其中,T1、T2、T3可以标定为1分钟,T1、T2和T3三个阶段的空调的耗能分别为E ac1、E ac2和E ac2,T1、T2和T3三个阶段的第一比例因子分别为K1、K2和K3,确定所述第一消耗功率P AC_avg的公式如下所述:
Figure PCTCN2021090610-appb-000009
其中,所述P AC_avg为空调的平均消耗功率。另外,
E ACX=∫(E AC_input_current)dt*E AC_input_voltage
其中,所述E AC_input_current表示空调的电流,E AC_input_voltage表示空调的电压。
另外,所述车辆的高压附件可以包括:空调、直流变换器(DC/DC)、升压直流变换器和空压机。根据所述空调的开关,确定所述第一消耗功率P Aux的计算方式。在所述空调关闭的情况下,P Aux=P LV_avg+P FCS_avg;在所述空调打开的情况下,P Aux=P LV_avg+P FCS_avg+P AC_avg
其中,所述P FCS_avg表示升压直流变换器和空压机的消耗功率,所述P LV_avg表示直流变换器的消耗功率。其中,所述升压直流变换器和空压机的消耗功率以及所述直流变换器的计算方式与所述空调的消耗功率的计算方式相同,如下所述:
Figure PCTCN2021090610-appb-000010
Figure PCTCN2021090610-appb-000011
其中,E DC1、E DC2和E DC3为T1、T2和T3三个阶段的直流变换器的耗能;E FCS1、E FCS2和E FCS3为T1、T2和T3三个阶段的升压直流变换器和空压机的耗能。
在获取了P LV_avg、P FCS_avg以及P AC_avg之后,通过三者的相加可以计算得到所述第一消耗功率P Aux
S304,基于所述差值以及所对应获取的所述第一平均车速、所述第一平均驱动功率及所述高压附件的所述第一消耗功率,确定所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程。
其中,所述差值为所述车辆的动力电池的当前剩余能量与所述车辆的高压用电器件的预留能量的差值。
进一步优选地,所述确定所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程的方法可以包括:
获取当前反映所述动力电池和燃料电池的驱动功率分配情况的第二比例因子N 1,所述第二比例因子N 1的获取时间与第一比例因子的时间不同。
通过下述公式确定所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程:
Figure PCTCN2021090610-appb-000012
其中,所述Remaining Range(Batt)为所述车辆动力电池的当前剩余能量对应的续航里程;所述RemainEnergy(Batt)通过S301获取,所述
Figure PCTCN2021090610-appb-000013
P drv_avg通过S302获取,所述N 1为第二比例因子,所述P Aux通过S303获取。
通过上述的所有步骤,可以确定得到本公开的所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程。
图4是本公开获取车辆依赖于其燃料电池的当前剩余能量进行行驶所对应的续航里程的方法流程图,如图4所示,该方法包括:
S401,获取燃料电池的当前剩余能量。
其中,本实施例将以氢气的为例,所述燃料电池的当前剩余能量被配置为关联于氢气的重量。所述燃料电池的当前剩余能量与所述氢气的重量成正比,即氢气的重量越重,所述当前剩余能量越多。
S402,获取所述车辆的平均燃料损耗。
其中,所述车辆的平均燃料损耗可以从燃料电池控制器直接获取。其实际为车辆最近持续时间内的燃料耗损情况,例如最近百公里油耗或千公里油耗的百公里均值。
S403,基于所述当前剩余能量以及所述百公里燃料损耗确定所述车辆依赖于所述燃料电池的当前剩余能量进行行驶的续航里程。
其中,通过下述方式确定所述车辆依赖于所述燃料电池的当前剩余能量进行行驶的续航里程:
Figure PCTCN2021090610-appb-000014
图5是本公开所述获取车辆依赖于其车辆能量回收功能激活时所回收的能量进行行驶所对应的续航里程方法的流程图,如图5所示,该方法包括:
S501,获取车辆能量回收功能激活时所回收的能量RecuperationEnergy;
其中,所述RecuperationEnergy可以直接从电池管理系统中获取。
S502,获取所述车辆依赖于所述车辆能量回收功能激活时所回收的能量进行行驶的第二平均车速
Figure PCTCN2021090610-appb-000015
以及第二平均驱动功率P drv_avg(ER);
其中,第二平均车速
Figure PCTCN2021090610-appb-000016
和/或第二平均驱动功率P drv_avg(ER)可以基于最近的车辆行驶历史数据来分析得到,也可以根据情况进行预估得到。本实施例将采用根据车辆行驶的历史数据来分析得到的方式进行进一步的说明。
其中,所述第二平均车速
Figure PCTCN2021090610-appb-000017
的获取方式,与上述第一平均车速相同,区别点在于所述
Figure PCTCN2021090610-appb-000018
是在所述车辆能量回收功能激活时所采集的数据,所述获取所述车辆依赖于所述车辆能量回收功能激活时所回收的能量进行行驶的第二平均驱动功率包括:获取最近预设数量的第二持续时间t以及在每一第二持续时间内的下述参数:所述驱动电机的耗能(实际为第二驱动电机的耗能)和反映所述动力电池和所述燃料电池的驱动功率分配情况的第三比例因子;以及基于所述第二持续时间、所述在每一第二持续时间内的驱动电机的耗能和第三比例因子,确定能量回收功能激活时所述车辆的第二平均驱动功率。其中所述第二持续时间不同于所述第一持续时间,因为两者的工作时机不同,第二持续时间是所述车辆处于能量回收功能激活时所获取的,以所述预设数量3为例,即获取到的最近第二持续时间分别为t1、t2和t3三个阶段,其中,t1、t2和t3可以标定为1分钟,t1、t2和t3三个阶段的驱动电机的耗能分别为
Figure PCTCN2021090610-appb-000019
Figure PCTCN2021090610-appb-000020
t1、t2和t3三个阶段的第三比例因子分别为k1、k2和k3,确定所述第二平均驱动功率的公式如下所述:
Figure PCTCN2021090610-appb-000021
其中,驱动电机的耗能可以通过下述的公式计算得到:
E ERx=∫I(ER)dt*V(ER);
其中,所述I(ER)指驱动电机的t1、t2和t3三个阶段的驱动电流,V(ER)指驱动电机的t1、t2和t3三个阶段的驱动电压。
S503,获取车辆的高压附件在所述车辆依赖于所述车辆能量回收功能激活时所回收的能量进行行驶的过程中的第二消耗功率P Aux(ER)。
其中,所述第二消耗功率可以根据历史数据来估算得到,本实施例将以直流变换器为例,采用下述方式来确定所述第二消耗功率P Aux(ER):
获取最近预设数量个第二持续时间以及在每一第二持续时间内的下述参数:所述直流变换器的耗能和反映所述动力电池和燃料电池的驱动功率分配情况的第三比例因子;以及基于所述第二持续时间、所述在每一第二持续时间内的直流变换器的耗能和第三比例因子,确定能量回收功能激活时所述直流变换器的第二消耗功率。以所述预设数量3为例,即获取到的最近第二持续时间分别为t1、t2和t3三个阶段,其中,t1、t2和t3可以标定为1分钟,t1、t2和t3三个阶段的直流变换器的耗能分别为
Figure PCTCN2021090610-appb-000022
Figure PCTCN2021090610-appb-000023
t1、t2和t3三个阶段的第三比例因子分别为k1、k2和k3,确定所述直流变换器的消耗功率的公式如下所述:
Figure PCTCN2021090610-appb-000024
其中,所述
Figure PCTCN2021090610-appb-000025
为直流变换器在能量回收功能激活时的平均消耗功率。另外,
E DCx=∫(E DC_input_current)dt*E DC_input_voltage
其中,所述E DC_input_current表示直流变换器的电流,E DC_input_voltage表示 直流变换器的电压。
另外,与非能量回收情况相同的是,所述车辆的高压附件可以包括:空调、直流变换器(DC/DC)、升压直流变换器和空压机。需要根据所述空调的开关,确定所述第二消耗功率P Aux(ER)的计算方式。在所述空调关闭的情况下,P Aux(ER)=P LV_avg(ER)+P FCS_avg(ER);在所述空调打开的情况下,P Aux(ER)=P LV_avg(ER)+P FCS_avg(ER)+P AC_avg(ER)。其中,所述P Aux(ER)表示第二消耗功率P Aux(ER),所述P FCS_avg(ER)表示升压直流变换器和空压机的在能量回收功能激活时的消耗功率,所述P AC_avg(ER)表示空调打开状态下在能量回收功能激活时的消耗功率。其中,所述升压直流变换器和空压机的消耗功率以及所述空调的消耗功率的计算方式与所述直流变换器的消耗功率的计算方式基本相同,具体计算如下所述:
Figure PCTCN2021090610-appb-000026
Figure PCTCN2021090610-appb-000027
其中,E ac1(ER)、E ac2(ER)和E ac3(ER)为t1、t2和t3三个阶段的空调的耗能;E FCS1(ER)、E FCS2(ER)和E FCS3(ER)为t1、t2和t3三个阶段的在能量回收功能激活时升压直流变换器和空压机的耗能。
在获得了所述
Figure PCTCN2021090610-appb-000028
以及P AC_avg(ER)之后,通过三者的相加可以计算得到所述第二消耗功率P Aux(ER)。
S504,基于所述能量回收功能激活时所回收的能量以及所对应获取的所述第二平均车速、所述第二平均驱动功率及所述高压附件的所述第二消耗功率,确定所述车辆依赖于其车辆能量回收功能激活时所回收的能量进行行驶所对应的续航里程。
具体地,通过下述公式来计算:
Figure PCTCN2021090610-appb-000029
其中,所述Remaining Range(ER)为能量回收功能激活时车辆所回收的能量;所述RecuperationEnergy为能量回收功能激活时动力电池的用于电驱动的能量;所述
Figure PCTCN2021090610-appb-000030
为能量回收功能激活时的第二平均车速;所述P drv_avg(ER)为能量回收功能激活时第二平均驱动功率;所述P Aux(ER)为能量回收功能激活时高压附件的第二消耗功率。
通过上述的方式,可以计算得到车辆续航里程,其总共由上述所述的三部分构成,包括动力电池部分的里程、燃料电池部分的里程以及能量回收部分增加的里程,通过上述三部分的里程的叠加得到车辆的剩余里程,该确定方式不仅给用户的出行带来了直观的里程感受,也能给用户及时加注燃料或充电做出提醒,所述燃料可以是氢气等。
图6是本公开的另一种实施方式的流程图,如图6所示,在所述获取车辆依赖于以下各能量进行行驶所各自对应的续航里程:动力电池的当前剩余能量、燃料电池的当前剩余能量以及能量回收功能激活时所回收的能量之后,所述确定车辆续航里程的方法还包括:
S601,获取所述动力电池和/或所述燃料电池的性能相关参数。
其中,所述性能相关参数可以包括动力电池和/或燃料电池的输出功率的变化。
S602,在所述性能相关参数示出所述动力电池和/或所述燃料电池的性能出现下降时,获取所述动力电池和/或所述燃料电池的衰减率。
其中,所述衰减率可以根据实际情况确定,与性能相关参数等比变化,性能出现下降比例越大,衰减率越大。例如,以输出功率为例,如果其输出功率为目标功率的50%,所述衰减率可以设定为与之对应的50%。
S603,基于所确定的各续航里程和所述衰减率确定车辆的续航里程。
其中,在实际确定车辆的续航里程的过程中,将所述各续航里程与所述衰减率相乘以得到所述车辆的续航里程,确保整个计算过程的精确性。
图7为本公开实施方式的确定车辆续航里程的装置的框图。如图7所示,确定车辆续航里程的装置700包括获取模块701和确定模块702。获取模块701用于获取车辆依赖于以下各能量进行行驶所各自对应的续航里程:动力电池的当前剩余能量、燃料电池的当前剩余能量以及能量回收功能激活时所回收的能量。
确定模块702用于基于所获取的各续航里程确定车辆的续航里程。
优选地,获取模块701还用于:获取车辆的动力电池的当前剩余能量与车辆的高压附件的预留能量之间的差值;获取车辆依赖于动力电池的当前剩余能量进行行驶的第一平均车速以及第一平均驱动功率;获取车辆的高压附件在车辆依赖于动力电池的当前剩余能量进行行驶的过程中的第一消耗功率;以及基于差值以及所对应获取的第一平均车速、第一平均驱动功率及高压附件的第一消耗功率,确定车辆依赖于动力电池的当前剩余能量进行行驶的续航里程。
优选地,获取模块701还用于:根据待获取的第一平均车速、第一平均驱动功率和第一消耗功率,获取预设数量的第一持续时间以及在每一第一持续时间内的下述参数中的任意一者或多者:车辆行驶距离、反映动力电池和燃料电池的驱动功率分配情况的第一比例因子、车辆的第一驱动电机耗能以及第一高压附件耗能;以及执行以下中的任意一者或多者:
基于第一持续时间、车辆行驶距离以及第一比例因子,确定第一平均车速;基于第一持续时间、第一驱动电机耗能和第一比例因子,确定第一平均驱动功率;以及基于第一持续时间、第一高压附件耗能和第一比例因子,确定第一消耗功率。
优选地,获取模块701还用于:获取当前反映动力电池和燃料电池的驱 动功率分配情况的第二比例因子;以及通过下述公式确定车辆依赖于动力电池的当前剩余能量进行行驶的续航里程:
Figure PCTCN2021090610-appb-000031
优选地,获取模块还用于:获取燃料电池的当前剩余能量,其中燃料电池的当前剩余能量被配置为关联于车辆的燃料的重量;获取车辆的平均燃料损耗;以及基于当前剩余能量以及平均燃料损耗确定车辆依赖于燃料电池的当前剩余能量进行行驶的续航里程。
优选地,获取模块701还用于:获取车辆能量回收功能激活时所回收的能量;获取车辆依赖于车辆能量回收功能激活时所回收的能量进行行驶的第二平均车速以及第二平均驱动功率;获取车辆的高压附件在车辆依赖于车辆能量回收功能激活时所回收的能量进行行驶的过程中的第二消耗功率;以及基于能量回收功能激活时所回收的能量以及所对应获取的第二平均车速、第二平均驱动功率及高压附件的第二消耗功率,确定车辆依赖于其车辆能量回收功能激活时所回收的能量进行行驶所对应的续航里程。
优选地,获取模块701还用于:根据待获取的第二平均驱动功率和第二消耗功率,获取预设数量的第二持续时间以及在每一第二持续时间内的下述参数中的任意一者或多者:反映动力电池和燃料电池的驱动功率分配情况的第三比例因子、车辆的第二驱动电机耗能以及第二高压附件耗能;以及执行以下中的任意一者或多者:
基于所述第二持续时间、所述第二驱动电机耗能和所述第三比例因子,确定所述第二平均驱动功率;以及基于所述第二持续时间、所述第二高压附件耗能和所述第三比例因子,确定所述第二消耗功率。
优选地,获取模块701还用于:获取动力电池和/或燃料电池的性能相 关参数;在性能相关参数示出动力电池和/或燃料电池的性能出现下降时,获取动力电池和/或燃料电池的衰减率。确定模块702还用于基于所确定的各续航里程和衰减率确定车辆的续航里程。
为了实现上述实施例,本公开还提出了一种计算处理设备,包括存储器和一个或多个处理器。
存储器中存储有计算机可读代码;当计算机可读代码被一个或多个处理器执行时,计算处理设备执行前述的确定车辆续航里程的方法。
为了实现上述实施例,本公开还提出了一种计算机程序,包括计算机可读代码,当计算机可读代码在计算处理设备上运行时,导致计算处理设备执行前述的确定车辆续航里程的方法。
为了实现上述实施例,本公开还提出了一种计算机可读存储介质,其中存储了前述的计算机程序。
图8是本公开实施例提供的一种计算处理设备的结构示意图。该计算处理设备通常包括处理器810和以存储器830形式的计算机程序产品或者计算机可读介质。存储器830可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器830具有用于执行上述方法中的任何方法步骤的程序代码851的存储空间850。例如,用于程序代码的存储空间850可以包括分别用于实现上面的方法中的各种步骤的各个程序代码851。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如图9所示的便携式或者固定存储单元。该存储单元可以具有与图8的服务器中的存储器830类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码851′,即可以由例如810之类的处理器读取的代码,这些代码当由服务 器运行时,导致该服务器执行上面所描述的方法中的各个步骤。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上所述仅为本公开的较佳实施方式而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种确定车辆续航里程的方法,其特征在于,所述方法包括:
    获取车辆依赖于以下各能量进行行驶所各自对应的续航里程:动力电池的当前剩余能量、燃料电池的当前剩余能量以及能量回收功能激活时所回收的能量;以及
    基于所获取的各续航里程确定所述车辆的续航里程。
  2. 根据权利要求1所述的确定车辆续航里程的方法,其特征在于,所述获取车辆依赖于其动力电池的当前剩余能量进行行驶所对应的续航里程包括:
    获取所述车辆的动力电池的当前剩余能量与所述车辆的高压附件的预留能量之间的差值;
    获取所述车辆依赖于所述动力电池的当前剩余能量进行行驶的第一平均车速以及第一平均驱动功率;
    获取车辆的高压附件在所述车辆依赖于所述动力电池的当前剩余能量进行行驶的过程中的第一消耗功率;以及
    基于所述差值以及所对应获取的所述第一平均车速、所述第一平均驱动功率及所述高压附件的所述第一消耗功率,确定所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程。
  3. 根据权利要求2所述的确定车辆续航里程的方法,其特征在于,获取所述第一平均车速、所述第一平均驱动功率和所述第一消耗功率包括:
    根据待获取的所述第一平均车速、所述第一平均驱动功率和所述第一消耗功率,获取预设数量的第一持续时间以及在每一第一持续时间内的下述参数中的任意一者或多者:车辆行驶距离、反映所述动力电池和燃料电池的驱 动功率分配情况的第一比例因子、车辆的第一驱动电机耗能以及第一高压附件耗能;以及
    执行以下中的任意一者或多者:
    基于所述第一持续时间、所述车辆行驶距离以及所述第一比例因子,确定所述第一平均车速;
    基于所述第一持续时间、所述第一驱动电机耗能和所述第一比例因子,确定所述第一平均驱动功率;以及
    基于所述第一持续时间、所述第一高压附件耗能和所述第一比例因子,确定所述第一消耗功率。
  4. 根据权利要求2或3所述的确定车辆续航里程的方法,其特征在于,所述确定所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程包括:
    获取当前反映所述动力电池和燃料电池的驱动功率分配情况的第二比例因子;以及
    通过下述公式确定所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程:
    Figure PCTCN2021090610-appb-100001
  5. 根据权利要求1-4中任一权利要求所述的确定车辆续航里程的方法,其特征在于,所述获取车辆依赖于其燃料电池的当前剩余能量进行行驶所对应的续航里程包括:
    获取燃料电池的当前剩余能量,其中所述燃料电池的当前剩余能量被配 置为关联于所述车辆的燃料的重量;
    获取所述车辆的平均燃料损耗;以及
    基于所述当前剩余能量以及所述平均燃料损耗确定所述车辆依赖于所述燃料电池的当前剩余能量进行行驶的续航里程。
  6. 根据权利要求1-5中任一权利要求所述的确定车辆续航里程的方法,其特征在于,所述获取车辆依赖于其车辆能量回收功能激活时所回收的能量进行行驶所对应的续航里程包括:
    获取车辆能量回收功能激活时所回收的能量;
    获取所述车辆依赖于所述车辆能量回收功能激活时所回收的能量进行行驶的第二平均车速以及第二平均驱动功率;
    获取车辆的高压附件在所述车辆依赖于所述车辆能量回收功能激活时所回收的能量进行行驶的过程中的第二消耗功率;以及
    基于所述能量回收功能激活时所回收的能量以及所对应获取的所述第二平均车速、所述第二平均驱动功率及所述高压附件的所述第二消耗功率,确定所述车辆依赖于其车辆能量回收功能激活时所回收的能量进行行驶所对应的续航里程。
  7. 根据权利要求6所述的确定车辆续航里程的方法,其特征在于,获取所述能量回收功能激活时的所述第二平均驱动功率以及所述第二消耗功率包括:
    根据待获取的所述第二平均驱动功率和所述第二消耗功率,获取预设数量的第二持续时间以及在每一第二持续时间内的下述参数中的任意一者或多者:反映所述动力电池和燃料电池的驱动功率分配情况的第三比例因子、车辆的第二驱动电机耗能以及第二高压附件耗能;以及
    执行以下中的任意一者或多者:
    基于所述第二持续时间、所述第二驱动电机耗能和所述第三比例因子,确定所述第二平均驱动功率;以及
    基于所述第二持续时间、所述第二高压附件耗能和所述第三比例因子,确定所述第二消耗功率。
  8. 根据权利要求1-7中任一权利要求所述的确定车辆续航里程的方法,其特征在于,所述方法还包括:
    获取所述动力电池和/或所述燃料电池的性能相关参数;
    在所述性能相关参数示出所述动力电池和/或所述燃料电池的性能出现下降时,获取所述动力电池和/或所述燃料电池的衰减率;以及
    基于所确定的各续航里程和所述衰减率确定车辆的续航里程。
  9. 一种确定车辆续航里程的装置,其特征在于,所述装置包括:
    获取模块,用于获取车辆依赖于以下各能量进行行驶所各自对应的续航里程:动力电池的当前剩余能量、燃料电池的当前剩余能量以及能量回收功能激活时所回收的能量;以及
    确定模块,用于基于所获取的各续航里程确定所述车辆的续航里程。
  10. 根据权利要求9所述的确定车辆续航里程的装置,其特征在于,所述获取模块还用于:
    获取所述车辆的动力电池的当前剩余能量与所述车辆的高压附件的预留能量之间的差值;
    获取所述车辆依赖于所述动力电池的当前剩余能量进行行驶的第一平均车速以及第一平均驱动功率;以及
    获取车辆的高压附件在所述车辆依赖于所述动力电池的当前剩余能量进行行驶的过程中的第一消耗功率;
    所述确定模块还用于基于所述差值以及所对应获取的所述第一平均车速、所述第一平均驱动功率及所述高压附件的所述第一消耗功率,确定所述车辆依赖于所述动力电池的当前剩余能量进行行驶的续航里程。
  11. 根据权利要求9或10所述的确定车辆续航里程的装置,其特征在于,所述获取模块还用于:
    获取燃料电池的当前剩余能量,其中所述燃料电池的当前剩余能量被配置为关联于所述车辆的燃料的重量;以及
    获取所述车辆的平均燃料损耗;
    所述确定模块还用于基于所述当前剩余能量以及所述平均燃料损耗确定所述车辆依赖于所述燃料电池的当前剩余能量进行行驶的续航里程。
  12. 根据权利要求9所述的确定车辆续航里程的装置,其特征在于,所述获取模块还用于:
    获取所述动力电池和/或所述燃料电池的性能相关参数;
    在所述性能相关参数示出所述动力电池和/或所述燃料电池的性能出现下降时,获取所述动力电池和/或所述燃料电池的衰减率;
    所述确定模块还用于基于所确定的各续航里程和所述衰减率确定车辆的续航里程。
  13. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执 行时,所述计算处理设备执行如权利要求1-8中任一项所述的确定车辆续航里程的方法。
  14. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-8中任一项所述的确定车辆续航里程的方法。
  15. 一种计算机可读存储介质,其中存储了如权利要求14所述的计算机程序。
PCT/CN2021/090610 2020-04-30 2021-04-28 确定车辆续航里程的方法和装置、设备、计算机程序和介质 WO2021219013A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21797165.4A EP4067153A4 (en) 2020-04-30 2021-04-28 METHOD AND APPARATUS FOR VEHICLE RANGE DETERMINATION, AND DEVICE, COMPUTER PROGRAM AND MEDIA
US17/790,290 US20230034887A1 (en) 2020-04-30 2021-04-28 Method for determining remaining range of vehicle, computer device, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010367987.6 2020-04-30
CN202010367987.6A CN112744121B (zh) 2020-04-30 2020-04-30 确定车辆续航里程的方法、系统

Publications (1)

Publication Number Publication Date
WO2021219013A1 true WO2021219013A1 (zh) 2021-11-04

Family

ID=75645300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090610 WO2021219013A1 (zh) 2020-04-30 2021-04-28 确定车辆续航里程的方法和装置、设备、计算机程序和介质

Country Status (4)

Country Link
US (1) US20230034887A1 (zh)
EP (1) EP4067153A4 (zh)
CN (1) CN112744121B (zh)
WO (1) WO2021219013A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115171394A (zh) * 2022-09-08 2022-10-11 南京智慧交通信息股份有限公司 一种新能源公交车辆实时安全监控系统及其方法
WO2024021636A1 (zh) * 2022-07-28 2024-02-01 上汽通用五菱汽车股份有限公司 一种剩余续驶里程的确定方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022210297A1 (de) 2022-09-28 2024-03-28 Psa Automobiles Sa Verfahren zur Reichweitenvorhersage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120239283A1 (en) * 2011-03-14 2012-09-20 GM Global Technology Operations LLC Consistent range calculation in hybrid vehicles with hybrid and pure battery electric propulsion
CN109278562A (zh) * 2018-11-27 2019-01-29 安徽江淮汽车集团股份有限公司 一种电动汽车剩余里程的估算方法
CN109849676A (zh) * 2017-11-30 2019-06-07 长城汽车股份有限公司 一种续驶里程计算方法及系统
EP3575140A1 (en) * 2018-05-30 2019-12-04 Iveco S.p.A. Estimation method of the residual range of an electric vehicle
CN110549915A (zh) * 2019-08-08 2019-12-10 武汉格罗夫氢能汽车有限公司 一种氢燃料电池混合动力新能源车续驶里程估算方法
CN110861507A (zh) * 2018-08-10 2020-03-06 上海汽车集团股份有限公司 氢燃料电池车可续航里程的计算方法及装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230203A (ja) * 2002-02-01 2003-08-15 Toyota Motor Corp 車両に搭載された燃料電池システムの制御
US8712650B2 (en) * 2005-11-17 2014-04-29 Invent.Ly, Llc Power management systems and designs
JP5275529B1 (ja) * 2011-11-07 2013-08-28 本田技研工業株式会社 電動車両の表示装置
KR101956384B1 (ko) * 2012-05-21 2019-03-08 현대자동차주식회사 전기자동차의 주행가능거리 산출 방법
EP2931551B1 (en) * 2012-12-12 2021-07-14 Tevva Motors Limited Range extender control
KR101459464B1 (ko) * 2013-03-19 2014-11-10 현대자동차 주식회사 연료전지 차량의 전력 제어 방법 및 시스템
US9630504B2 (en) * 2014-07-24 2017-04-25 Ford Global Technologies, Llc Distance to empty prediction with kinetic energy change compensation
DE102016215003A1 (de) * 2016-08-11 2018-02-15 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Kraftfahrzeugs mit einem Brennstoffzellensystem und mit mindestens einer Energiespeichereinrichtung
KR20180025660A (ko) * 2016-09-01 2018-03-09 현대자동차주식회사 전기 모터를 구비한 자동차 및 그를 위한 회생 제동량 표시 방법
CN106740822A (zh) * 2017-02-14 2017-05-31 上汽大众汽车有限公司 混合动力系统及其能量管理方法
JP6922986B2 (ja) * 2017-08-10 2021-08-18 日産自動車株式会社 ハイブリッド車両の制御方法及び制御装置
CN108501750A (zh) * 2018-04-08 2018-09-07 江西优特汽车技术有限公司 一种动力电池续航里程管理系统及方法
CN109753697B (zh) * 2018-12-14 2023-03-03 中国汽车技术研究中心有限公司 一种用于可外接充电式混合动力燃料电池汽车的能耗计算方法
CN110154790A (zh) * 2018-12-27 2019-08-23 民航协发机场设备有限公司 车辆供电系统、车辆供电系统的控制方法及车辆
CN110341547B (zh) * 2019-07-22 2021-04-20 广汽蔚来新能源汽车科技有限公司 电动车辆充电方法、装置、系统和计算机设备
CN112389213B (zh) * 2020-11-25 2022-02-22 中国第一汽车股份有限公司 一种续驶里程预测方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120239283A1 (en) * 2011-03-14 2012-09-20 GM Global Technology Operations LLC Consistent range calculation in hybrid vehicles with hybrid and pure battery electric propulsion
CN109849676A (zh) * 2017-11-30 2019-06-07 长城汽车股份有限公司 一种续驶里程计算方法及系统
EP3575140A1 (en) * 2018-05-30 2019-12-04 Iveco S.p.A. Estimation method of the residual range of an electric vehicle
CN110861507A (zh) * 2018-08-10 2020-03-06 上海汽车集团股份有限公司 氢燃料电池车可续航里程的计算方法及装置
CN109278562A (zh) * 2018-11-27 2019-01-29 安徽江淮汽车集团股份有限公司 一种电动汽车剩余里程的估算方法
CN110549915A (zh) * 2019-08-08 2019-12-10 武汉格罗夫氢能汽车有限公司 一种氢燃料电池混合动力新能源车续驶里程估算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067153A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024021636A1 (zh) * 2022-07-28 2024-02-01 上汽通用五菱汽车股份有限公司 一种剩余续驶里程的确定方法和装置
CN115171394A (zh) * 2022-09-08 2022-10-11 南京智慧交通信息股份有限公司 一种新能源公交车辆实时安全监控系统及其方法
CN115171394B (zh) * 2022-09-08 2022-11-18 南京智慧交通信息股份有限公司 一种新能源公交车辆实时安全监控系统及其方法

Also Published As

Publication number Publication date
US20230034887A1 (en) 2023-02-02
CN112744121A (zh) 2021-05-04
CN112744121B (zh) 2022-03-01
EP4067153A1 (en) 2022-10-05
EP4067153A4 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
WO2021219013A1 (zh) 确定车辆续航里程的方法和装置、设备、计算机程序和介质
US10656211B2 (en) Method of predicting time for charging battery of eco-friendly vehicle
US9476719B2 (en) Route-based distance to empty calculation for a vehicle
EP2216199A2 (en) System for optimizing battery pack cut-off voltage
US20180079318A1 (en) System and method for charging battery
CN111469714A (zh) 增程式电动汽车的启动控制方法、装置、设备及存储介质
MX2013004808A (es) Aparato de diagnostico de la bateria del vehiculo.
CN104512265A (zh) 车辆电池充电设定点控制
US10351014B2 (en) Operation control device and method for fuel cell vehicle
CN106208178B (zh) 电动车辆的电池充电装置和方法
CN113978314A (zh) 一种车辆充电预警方法、装置、计算机设备和存储介质
US11285836B2 (en) Method and apparatus for controlling scheduled charging
WO2021179798A1 (zh) 一种能量协调控制方法、系统及车辆
EP4378742A1 (en) Vehicle range extender control method and apparatus, medium, and extended-range vehicle
KR102177723B1 (ko) 차량용 배터리의 가용 용량 연산 방법 및 컴퓨터 판독 가능한 기록 매체
KR102417889B1 (ko) 전기차량의 보조배터리 충전 제어장치 및 그 방법
CN107599844A (zh) 一种电动汽车剩余里程检测方法
CN115195529A (zh) 电池控制方法、电子设备及电池控制系统
CN114035064A (zh) 一种电池电荷状态校正方法、装置、车辆及存储介质
JP5709968B1 (ja) 充電装置および充電システム
US20240046299A1 (en) Point granting device and point granting method
CN113733919B (zh) 一种燃料电池汽车剩余续航里程计算方法
US11827208B2 (en) Driving guide setting system of electric operating vehicle and method of setting the driving guide
US10930956B2 (en) Low flow control method and system for fuel cell
US20240100997A1 (en) Fuel cell vehicle control system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021797165

Country of ref document: EP

Effective date: 20220628

NENP Non-entry into the national phase

Ref country code: DE