WO2021218745A1 - 网络编码方法和装置 - Google Patents

网络编码方法和装置 Download PDF

Info

Publication number
WO2021218745A1
WO2021218745A1 PCT/CN2021/088804 CN2021088804W WO2021218745A1 WO 2021218745 A1 WO2021218745 A1 WO 2021218745A1 CN 2021088804 W CN2021088804 W CN 2021088804W WO 2021218745 A1 WO2021218745 A1 WO 2021218745A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
data
indication information
information
encoded
Prior art date
Application number
PCT/CN2021/088804
Other languages
English (en)
French (fr)
Inventor
孙欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21795538.4A priority Critical patent/EP4135239A4/en
Publication of WO2021218745A1 publication Critical patent/WO2021218745A1/zh
Priority to US17/976,012 priority patent/US20230067470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This application relates to the field of communications, and in particular to a network coding method and device.
  • Network coding (NC) technology is an information exchange technology that integrates routing and coding. Through network coding, the maximum flow of routing transmission can be reached, and data transmission efficiency is improved.
  • 5G 5th generation
  • network coding technology has begun to be used in the data transmission of the physical layer, and the network coding of the physical layer is realized through the air interface channel.
  • Indirect data transmission can be realized between two terminal devices through the forwarding of the relay node. After the relay node receives the data, it first performs network coding, and then sends the network-coded data.
  • the current method is due to the relay It will take a certain amount of time for nodes to perform network coding, so the data transmission efficiency is low.
  • the embodiments of the present application provide a network coding method and device, which are used to improve the efficiency of indirect data transmission between two terminal devices.
  • a network encoding method including: a first terminal device determines first indication information, where the first indication information is used to indicate whether to perform a phase of the first data to be encoded to be sent by the first terminal device. Preprocessing; the first terminal device and the second terminal device transmit data through the electromagnetic supersurface array antenna in the same time slot of the same transmission resource, including: the first terminal device transmits data to the electromagnetic super surface in the first time slot of the second transmission resource.
  • the surface array antenna sends the third data to be encoded, and receives the first network encoded data from the electromagnetic metasurface array antenna in the first time slot; wherein the third data to be encoded is obtained according to the first indication information and the first data to be encoded;
  • the first terminal device obtains the second data to be encoded from the second terminal device according to the third data to be encoded and the first network encoded data.
  • one of the two terminal devices preprocesses the phase of the data to be encoded, and sends the data to be encoded to the electromagnetic supersurface array antenna in the same transmission resource and the same time slot.
  • the surface array antenna realizes network coding and distribution in the time domain, that is, superimposes and reflects the signal in the time domain. Data transmission, network coding and reception are completed in the same time slot, thereby improving the indirect data transmission between two terminal devices. efficient.
  • the first terminal device determining the first indication information includes: the first terminal device receives the first indication information from the network device.
  • the network device configures the first indication information, and the first terminal device and the second terminal device do not need to negotiate again, and no additional transmission resources are occupied.
  • the method further includes: the first terminal device sends the first information to the network device, and the first information includes at least one of the following information: The first request information, the interference level of the first terminal device, and the processing capability of the first terminal device; wherein the first request information is used to request whether to preprocess the phase of the first data to be encoded, and the first information is used to determine the One instruction information.
  • the interference level of the terminal equipment includes the self-interference between the transmitting and receiving antennas of the terminal equipment, or the interference of other terminal equipment to the terminal equipment, or the sum of the above two kinds of interference.
  • the processing capability of the terminal device refers to the ability of the terminal device to preprocess the phase of the data to be encoded.
  • the network equipment can select the terminal equipment with low interference level and strong processing ability to preprocess the phase of the data to be encoded. Or, the terminal device actively requests the preprocessing of the phase of the data to be encoded.
  • the first terminal device determining the first indication information includes: the first terminal device receives the third indication information from the network device, where the third indication information is used to indicate the first terminal device and the second The terminal device negotiates the first transmission resource of the first indication information; the first terminal device determines the first indication information according to the negotiation result with the second terminal device on the first transmission resource.
  • the first terminal device and the second terminal device may negotiate by themselves as needed (for example, when transmitting data), so as to determine the first indication information.
  • the method further includes: the first terminal device receives fourth instruction information from the network device, where the fourth instruction information is used to indicate that the electromagnetic supersurface is passed between the first terminal device and the second terminal device.
  • the network device may first send the first instruction information and the second instruction information, and when the first terminal device and the second terminal device transmit data, then send the fourth instruction information. If there is no need to transmit data, the fourth instruction information may not be sent. Instruction information; or, the network device may first send the fourth instruction information, and when data is transmitted between the first terminal device and the second terminal device, then send the first instruction information and the second instruction information, if there is no need to send data, Then, the first instruction information and the second instruction information may not be sent.
  • the network device may first send the third instruction information, and when the first terminal device and the second terminal device transmit data, then send the fourth instruction information, if there is no need to transmit data, the fourth instruction may not be sent Information; or, the network device may send the fourth instruction information first, and then send the third instruction information when data is transmitted between the first terminal device and the second terminal device. If there is no need to transmit data, it may not send the third instruction information. Instructions.
  • the method before the first terminal device receives the fourth indication information from the network device, the method further includes: the first terminal device sends to the network device the network device, the electromagnetic metasurface array antenna, and the communication between the first terminal device The first communication quality of the downlink data channel, and the first communication quality is used to determine the second transmission resource.
  • the network device can select the transmission resource with the least interference for the data transmission of the two terminal devices according to the communication quality.
  • the first terminal device obtains the second data to be encoded from the second terminal device according to the third data to be encoded and the first network encoded data, including: the first terminal device performs the encoding on the third data to be encoded
  • the data and the first network coded data are XORed to obtain the second data to be coded.
  • the receiving end can use the exclusive OR operation to obtain the data to be encoded sent by the sending end, which is simple and efficient.
  • a network coding method including: a network device sends first indication information to a first terminal device; or, the network device sends third indication information to the first terminal device and the second terminal device, where the first 3.
  • the indication information is used to instruct the first terminal device to negotiate the first transmission resource of the first indication information or the second indication information with the second terminal device; wherein the first indication information is used to indicate the first transmission resource to be sent to the first terminal device.
  • the phase of the data to be encoded is preprocessed, and the second indication information is used to indicate that the phase of the second data to be encoded to be sent by the second terminal device is not to be preprocessed; or, the first indication information is used to indicate that the first terminal device is not to be processed.
  • the phase of the transmitted first data to be encoded is preprocessed, and the second indication information is used to instruct to preprocess the phase of the second data to be encoded to be transmitted by the second terminal device.
  • the network device instructs one of the two terminal devices communicating through the electromagnetic metasurface array antenna to preprocess the phase of the data to be encoded to be sent, or the network device instructs the two The transmission resources negotiated by the terminal equipment.
  • the two terminal equipments negotiate to determine who will pre-process the phase of the data to be encoded.
  • the electromagnetic metasurface array antenna realizes the network encoding and distribution in the time domain, that is, the signal is processed. Time domain superimposition and reflection, data transmission, network coding and reception are completed in the same time slot, thereby improving the efficiency of indirect data transmission between two terminal devices.
  • the network device for the network device to send the first indication information to the first terminal device, it further includes: the network device sends the second indication information to the second terminal device.
  • the network device sends the first instruction information to the first terminal device, and the network device sends the second instruction information to the second terminal device, and only one of the two can be executed. For example, only the network device is executed to send the first instruction information to the first terminal device, or the network device is only executed to send the second instruction information to the second terminal device.
  • the first terminal device does not receive the first indication information from the network device, the first terminal device determines that the first indication information indicates that the phase of the first data to be encoded to be sent by the first terminal device is not to be preprocessed.
  • the second terminal device does not receive the second indication information from the network device, the second terminal device determines that the second indication information indicates that the phase of the second to-be-encoded data to be sent by the second terminal device is not to be preprocessed.
  • the method further includes: the network device sends fourth instruction information to the first terminal device and the second terminal device, where the fourth instruction information is used to instruct to carry the difference between the first terminal device and the second terminal device.
  • the second transmission resource for transmitting data through the electromagnetic metasurface array antenna.
  • the network device may first send the first instruction information and the second instruction information, and when the first terminal device and the second terminal device transmit data, then send the fourth instruction information. If there is no need to transmit data, the fourth instruction information may not be sent.
  • the network device may first send the fourth instruction information, and when data is transmitted between the first terminal device and the second terminal device, then send the first instruction information and the second instruction information, if there is no need to send data, Then, the first instruction information and the second instruction information may not be sent.
  • the network device may first send the third instruction information, and when the first terminal device and the second terminal device transmit data, then send the fourth instruction information, if there is no need to transmit data, the fourth instruction may not be sent Information; or, the network device may send the fourth instruction information first, and then send the third instruction information when data is transmitted between the first terminal device and the second terminal device. If there is no need to transmit data, it may not send the third instruction information. Instructions.
  • the method further includes: obtaining the first communication quality of the data channel between the electromagnetic metasurface array antenna and the first terminal device by the network device, and between the electromagnetic metasurface array antenna and the second terminal device The second communication quality of the data channel.
  • the network device may select the transmission resource with the least interference for the data transmission of the two terminal devices according to the first communication quality and the second communication quality.
  • the network device obtains the first communication quality of the data channel between the electromagnetic metasurface array antenna and the first terminal device, and the data channel between the electromagnetic metasurface array antenna and the second terminal device
  • the second communication quality includes: the network device obtains the first communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the first terminal device from the electromagnetic metasurface array antenna; the network device obtains the electromagnetic supersurface array antenna from the electromagnetic metasurface array antenna.
  • the electromagnetic metasurface array antenna can measure the communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the first terminal device through at least one antenna unit to obtain the first communication quality.
  • the electromagnetic metasurface array antenna can also measure the communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the second terminal device through at least one antenna unit to obtain the second communication quality.
  • the network device obtains the first communication quality of the data channel between the electromagnetic metasurface array antenna and the first terminal device, and the data channel between the electromagnetic metasurface array antenna and the second terminal device
  • the second communication quality includes: the network device obtains the first communication quality of the downlink data channel between the network device, the electromagnetic metasurface array antenna, and the first terminal device from the first terminal device; the network device obtains the network from the second terminal device The second communication quality of the downlink data channel between the device, the electromagnetic metasurface array antenna, and the second terminal device.
  • the network device sends configuration parameters to the electromagnetic metasurface array antenna according to the first communication quality and the second communication quality, and the configuration parameters are used to adjust the phase of each antenna element in the electromagnetic metasurface array antenna.
  • the phase of the electromagnetic metasurface array antenna such as the phase distribution or the phase gradient, the network coding function can be realized.
  • the network device sending the fourth indication information to the first terminal device and the second terminal device includes: the network device sends the fourth indication information to the first terminal device and the second terminal device according to the first communication quality and the second communication quality.
  • the terminal device sends fourth instruction information.
  • the network device may select the transmission resource with the least interference for the data transmission of the two terminal devices according to the first communication quality and the second communication quality.
  • the first communication quality and the second communication quality are also used to determine a second transmission resource for data transmission between the first terminal device and the second device.
  • the method further includes: the network device receives the first information from the first terminal device,
  • the first information includes at least one of the following information: the first request information, the interference level of the first terminal device, and the processing capability of the first terminal device; where the first request information is used to request whether to change the phase of the first data to be encoded.
  • the network device receives second information from the second terminal device, the second information includes at least one of the following information: second request information, the interference level of the second terminal device, and the processing capability of the second terminal device; where, The second request information is used to request whether to preprocess the phase of the second data to be encoded; the network device determines the first indication information and the second indication information according to the first information and the second information.
  • the interference level of the terminal equipment includes the self-interference between the transmitting and receiving antennas of the terminal equipment, or the interference of other terminal equipment to the terminal equipment, or the sum of the above two kinds of interference.
  • the processing capability of the terminal device refers to the ability of the terminal device to preprocess the phase of the data to be encoded.
  • the network equipment can select the terminal equipment with low interference level and strong processing ability to preprocess the phase of the data to be encoded. Or, the terminal device actively requests the preprocessing of the phase of the data to be encoded.
  • a communication device including: a processing module configured to determine first indication information, wherein the first indication information is used to indicate whether to preprocess the phase of the first to-be-encoded data to be transmitted by the communication device
  • the communication device and the second terminal device transmit data through the electromagnetic metasurface array antenna in the same time slot of the same transmission resource, including: a transceiver module, used to transmit data to the electromagnetic metasurface array in the first time slot of the second transmission resource
  • the antenna transmits the third data to be encoded, and receives the first network encoded data from the electromagnetic metasurface array antenna in the first time slot; wherein the third data to be encoded is obtained according to the first indication information and the first data to be encoded; processing module , Used to obtain the second data to be encoded from the second terminal device according to the third data to be encoded and the first network encoded data.
  • the transceiver module is specifically configured to: receive the first indication information from the network device.
  • the transceiver module is further configured to send first information to the network device before receiving the first indication information from the network device, and the first information includes at least one of the following information: first request information, The interference level of the communication device and the processing capability of the communication device; wherein the first request information is used to request whether to preprocess the phase of the first to-be-encoded data, and the first information is used to determine the first indication information.
  • the transceiver module is specifically configured to receive the third indication information from the network device, where the third indication information is used to instruct the communication device to negotiate the first transmission resource of the first indication information with the second terminal device
  • the communication device and the second terminal device transmit data through the electromagnetic metasurface array antenna in the same time slot of the same transmission resource; the processing module is specifically used to determine the first transmission resource based on the negotiation result with the second terminal device One instruction information.
  • the transceiver module is further configured to receive fourth indication information from the network device, where the fourth indication information is used to indicate transmission between the carrier communication device and the second terminal device through an electromagnetic metasurface array antenna.
  • the second transmission resource for data is further configured to indicate transmission between the carrier communication device and the second terminal device through an electromagnetic metasurface array antenna.
  • the transceiver module before receiving the fourth indication information from the network device, is also used to send the network device, the electromagnetic metasurface array antenna, and the first downlink data channel between the communication device to the network device. Communication quality. The first communication quality is used to determine the second transmission resource.
  • the processing module is specifically configured to: perform an exclusive OR operation on the third data to be encoded and the first network encoded data to obtain the second data to be encoded.
  • a communication device including: a transceiver module, configured to send first instruction information to a first terminal device; or, a transceiver module, configured to send third instruction information to the first terminal device and the second terminal device Information, where the third indication information is used to instruct the first terminal device to negotiate the first transmission resource of the first indication information or the second indication information with the second terminal device; wherein, the first indication information is used to indicate to the first terminal device
  • the phase of the first data to be encoded to be sent is preprocessed, and the second indication information is used to indicate that the phase of the second data to be encoded to be sent by the second terminal device is not to be preprocessed; or the first indication information is used to indicate that the phase of the second data to be encoded is not correct.
  • the phase of the first data to be encoded to be sent by the first terminal device is preprocessed, and the second indication information is used to instruct to preprocess the phase of the second data to be encoded to be sent by the second terminal device.
  • the transceiver module is further configured to: send the second indication information to the second terminal device.
  • the transceiver module is further configured to send fourth indication information to the first terminal device and the second terminal device, where the fourth indication information is used to indicate to carry the first terminal device and the second terminal device
  • the second transmission resource for transmitting data between the electromagnetic metasurface array antennas.
  • the transceiver module is also used to obtain the first communication quality of the data channel between the electromagnetic metasurface array antenna and the first terminal device, and the relationship between the electromagnetic metasurface array antenna and the second terminal device The second communication quality between the data channels.
  • the transceiver module is specifically used to: obtain the first communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the first terminal device from the electromagnetic metasurface array antenna;
  • the antenna acquires the second communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the second terminal device.
  • the transceiver module is specifically configured to: obtain the first communication quality of the downlink data channel between the communication device, the electromagnetic metasurface array antenna, and the first terminal device from the first terminal device; and from the second terminal device; The terminal device obtains the second communication quality of the downlink data channel between the communication device, the electromagnetic metasurface array antenna, and the second terminal device.
  • the transceiver module is further used to send configuration parameters to the electromagnetic metasurface array antenna according to the first communication quality and the second communication quality, and the configuration parameters are used to adjust each antenna in the electromagnetic metasurface array antenna.
  • the phase of the unit is further used to send configuration parameters to the electromagnetic metasurface array antenna according to the first communication quality and the second communication quality, and the configuration parameters are used to adjust each antenna in the electromagnetic metasurface array antenna.
  • the transceiver module Before the transceiver module sends the first indication information to the first terminal device, the transceiver module is further configured to receive first information from the first terminal device.
  • the first information includes the following At least one of the information: the first request information, the interference level of the first terminal device, and the processing capability of the first terminal device; wherein the first request information is used to request whether to preprocess the phase of the first data to be encoded;
  • the module is also used to receive second information from the second terminal device, the second information includes at least one of the following information: the second request information, the interference level of the second terminal device, and the processing capability of the second terminal device;
  • the second request information is used to request whether to preprocess the phase of the second data to be encoded;
  • the processing module is used to determine the first indication information and the second indication information according to the first information and the second information.
  • a communication device including a processor, the processor is coupled with a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the communication device executes the same as the first aspect and its The method of any one of the embodiments.
  • a communication device including a processor, the processor is coupled with a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the communication device executes the second aspect and its The method of any one of the embodiments.
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium. When it runs on a computer, the method described in the first aspect and any one of the implementations thereof is executed .
  • a computer-readable storage medium stores a computer program. When it runs on a computer, the method described in the second aspect and any one of its implementations is executed .
  • a computer program product containing instructions is provided. When the instructions are executed on a computer or a processor, the method described in the first aspect and any one of the embodiments is executed.
  • a computer program product containing instructions is provided.
  • the instructions are executed on a computer or a processor, the method described in the second aspect and any one of the implementations thereof is executed.
  • a communication system including the communication device according to the third aspect or any one of the communication devices, and the communication device according to the fourth aspect or any one of the communication devices. Or, the communication device according to the fifth aspect and the communication device according to the sixth aspect are included.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of the architecture of another communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of an electromagnetic metasurface array antenna provided by an embodiment of the application.
  • FIG. 4A is a schematic flowchart of a network coding method provided by an embodiment of this application.
  • 4B is a schematic flowchart of another network coding method provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of another electromagnetic metasurface array antenna provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of two terminal devices communicating through electromagnetic metasurface array antennas according to an embodiment of the application
  • FIG. 7A is a schematic diagram without preprocessing provided by an embodiment of the application.
  • FIG. 7B is a schematic diagram of a preprocessing finger inverting phase according to an embodiment of this application.
  • FIG. 8 is a first structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a second structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a third structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is a fourth structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of an apparatus provided by an embodiment of this application.
  • a component may be, but is not limited to: a process running on a processor, a processor, an object, an executable file, an executing thread, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may exist in an executing process and/or thread, and the components may be located in one computer and/or distributed between two or more computers. In addition, these components can execute from various computer-readable media having various data structures thereon.
  • These components can be based on, for example, having one or more data packets (for example, data from a component that interacts with another component in a local system, a distributed system, and/or via signals such as the Internet).
  • the network interacts with other systems) signals to communicate in a local and/or remote process.
  • first and second in the specification and claims of this application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first indication information and the second indication information are used to distinguish different indication information, rather than to describe a specific order of the indication information.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • the embodiments of this application rely on the scenario of the 5th generation (5G) network in the wireless communication network. It should be noted that the solutions in the embodiments of this application can also be applied to other wireless communication networks, such as narrowband objects.
  • Networking system narrow band-internet of things, NB-IoT
  • LTE long term evolution
  • 6G 6th generation
  • the corresponding name can also be the name of the corresponding function in other wireless communication networks Make substitutions.
  • an embodiment of the present application provides a communication system, including: a relay station 11, a first terminal device 12 and a second terminal device 13.
  • the first terminal device 12 and the second terminal device 13 that perform indirect data transmission can transmit data through the relay station 11.
  • the relay station 11 performs network coding on the data from the first terminal device 12 and the second terminal device 13 and sends it to the first terminal device 12 and the second terminal device 13 A terminal device 12 and a second terminal device 13.
  • the entire data transmission and network coding require two time slots to complete.
  • the first terminal device 12 and the second terminal device 13 simultaneously send data to the relay station 11 on the same transmission resource, the first terminal device 12 sends data S 1 , and the second terminal device 13 sends data S 2 .
  • the relay station 11 performs network coding on the data S 1 and the data S 2 to obtain in, Represents the logical XOR operation between data.
  • the relay station 11 sends the network-encoded data to the first terminal device 12 and the second terminal device 13
  • the first terminal device 12 or the second terminal device 13 performs an exclusive OR operation on the data it sends and the data it receives to obtain the data sent by the other party.
  • the data S 1 sent by the first terminal device 12 and the data received XOR operation The data S 2 sent by the second terminal device 13 can be obtained, namely The data S 2 sent by the second terminal device 13 and the data received XOR operation
  • the data S 1 sent by the first terminal device 12 can be obtained, namely
  • the data interaction between the first terminal device 12 and the second terminal device 13 is completed through the above two time slots.
  • the data state transition corresponding to the above-mentioned network coding is shown in Table 1.
  • the relay station 11 needs to receive and demodulate the data from the two terminal devices in the frequency domain in the first time slot, and perform network coding, and in the second time slot, the network-coded data is from The frequency domain is transferred to the time domain and then sent to two terminal devices.
  • the algorithm implementation of the relay station 11 is relatively complicated.
  • the relay station 11 needs to implement a complex communication protocol, and install active devices, which consumes relatively large power, has relatively high energy supply requirements and high costs.
  • a single data transmission between two terminal devices still requires two time slots to complete, and there is still room for improvement in transmission efficiency.
  • the embodiment of the present application provides another communication system, which is also suitable for indirect data transmission between two terminal devices.
  • the communication system includes a network device 21, an electromagnetic metasurface array antenna 22, and a first terminal.
  • the first terminal device 23 and the second terminal device 24 transmit data through the electromagnetic metasurface array antenna 22, between the first terminal device 23 and the electromagnetic metasurface array antenna 22, and, Between the two terminal devices 24 and the electromagnetic metasurface array antenna 22 is a data channel.
  • the network device 21 configures resources and transmission modes for data transmission of the first terminal device 23 and the second terminal device 24, and the network device 21 also controls the working mode of the electromagnetic metasurface array antenna participating in the data transmission. Between the network device 21 and the first terminal device 23, between the network device 21 and the second terminal device 24, and between the network device 21 and the electromagnetic metasurface array antenna 22 are control channels.
  • the terminal equipment involved in the embodiments of this application also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., refers to providing voice and/or Data connectivity equipment.
  • handheld devices with wireless connectivity vehicle-mounted devices, etc.
  • some examples of terminal devices include: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • the network device involved in the embodiments of the present application refers to a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network, and may also be referred to as a base station.
  • RAN nodes include: next generation nodeB (gNB) in 5G system, evolved base station (evolutional node B, eNB or eNodeB) in LTE system, transmission reception point (TRP) ), radio network controller (RNC), node B (NodeB, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home node B, HNB, baseband unit (BBU), or wireless fidelity (Wi-Fi) access point (AP), etc.
  • gNB next generation nodeB
  • evolutional node B, eNB or eNodeB in LTE system
  • TRP transmission reception point
  • RNC radio network controller
  • NodeB, NB
  • the network device may include a centralized unit (CU), or a distributed unit (DU), or a RAN device including a CU and a DU.
  • the RAN equipment including CU and DU separates the protocol layer from the perspective of logical functions. Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the electromagnetic metasurface array antenna involved in the embodiments of the present application is an artificial composite material and includes a plurality of antenna elements with sub-wavelength dimensions. These antenna elements interact with electromagnetic waves in a specific way, have unique electromagnetic properties different from natural materials, and can produce unconventional physical phenomena such as negative refraction, perfect lens, and electromagnetic stealth.
  • the electromagnetic metasurface array antenna can be installed with or without active devices. When the active device is installed, the electromagnetic metasurface array antenna can measure the communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the terminal device. . If no active devices are installed, the electromagnetic metasurface array antenna is equivalent to an omnidirectional reflection antenna.
  • each antenna unit 30 may have a specific circuit structure, for example, equivalent to a varactor circuit, which includes a variable capacitor C, a resistor R, an inductor L1, and an inductor L2. , The variable capacitor C, the resistor R, and the inductor L1 are connected in series and then connected in parallel with the inductor L2.
  • Each antenna unit can resonate at a specific frequency, thereby changing the properties of electromagnetic waves.
  • Combining antenna elements of different metamaterials in various ways can achieve multi-functional control of electromagnetic waves, so that the electromagnetic metasurface array antenna can obtain the discrete nature of the digital domain.
  • the digital programmable electromagnetic characteristics enable the electromagnetic metasurface array antenna to dynamically change the electromagnetic parameters of each antenna unit, such as the reflection coefficient or the transmission coefficient, under the control of the program (for example, changing the capacitance value of the variable capacitor C in Figure 3). Amplitude and phase information, so as to achieve various functions of electromagnetic wave parameter modulation by encoding.
  • the embodiment of the present application provides a network coding method.
  • One of the two terminal devices communicating through an electromagnetic metasurface array antenna performs preprocessing on the phase of the data to be coded to be sent. It will change the energy of the data to be encoded, so as to realize the network encoding and distribution in the time domain on the electromagnetic metasurface array antenna, and the encoding efficiency is higher. Since the reflection principle of the electromagnetic metasurface array antenna is adopted for network encoding and distribution, it has a simple structure, fewer active devices, low energy consumption, low dependence on external energy sources, and low cost, and can be used in more complex communication scenarios. In addition, data transmission, network coding, and reception are completed in the same time slot, realizing real-time data interaction between two users, and higher transmission efficiency.
  • an embodiment of the present application provides a network coding method, including S401-S409, where, as shown in FIG. 4B, step S403 includes S4031-S4037, and steps S4031-S4034 and S4035-S4037 are If one is executed, S4031-S4034 can be executed.
  • the network device configures the first instruction information and the second instruction information. Or, execute S4035-S4037, and at this time, the two communicating terminal devices negotiate the first indication information and the second indication information by themselves.
  • the network device obtains the first communication quality of the data channel between the electromagnetic metasurface array antenna and the first terminal device, and the second communication quality of the data channel between the electromagnetic metasurface array antenna and the second terminal device.
  • the communication quality involved in the embodiments of the present application may include channel gain, received signal-to-noise ratio, and the like.
  • the first terminal device and the second terminal device transmit data through the electromagnetic metasurface array antenna in the same time slot of the same transmission resource.
  • the electromagnetic metasurface array antenna can pass through at least one antenna unit to connect the uplink data channel between the electromagnetic metasurface array antenna and the first terminal device.
  • the communication quality is measured to obtain the first communication quality.
  • the electromagnetic metasurface array antenna transmits the first communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the first terminal device to the network device.
  • the network device obtains the first communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the first terminal device from the electromagnetic metasurface array antenna.
  • the electromagnetic metasurface array antenna can also measure the communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the second terminal device through at least one antenna unit , Get the second communication quality.
  • the electromagnetic metasurface array antenna transmits the second communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the second terminal device to the network device.
  • the network device obtains the second communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the second terminal device from the electromagnetic metasurface array antenna.
  • the first terminal device may measure the downlink data channel between the network device, the electromagnetic metasurface array antenna, and the first terminal device to obtain the first communication quality.
  • the first terminal device sends to the network device the first communication quality of the downlink data channel between the network device, the electromagnetic metasurface array antenna, and the first terminal device.
  • the network device obtains the first communication quality of the downlink data channel between the network device, the electromagnetic metasurface array antenna, and the first terminal device from the first terminal device.
  • the second terminal device can measure the downlink data channel between the network device, the electromagnetic metasurface array antenna, and the second terminal device to obtain the second communication quality.
  • the second terminal device sends to the network device the second communication quality of the downlink data channel between the network device, the electromagnetic metasurface array antenna, and the second terminal device.
  • the network device obtains the second communication quality of the downlink data channel between the network device, the electromagnetic metasurface array antenna, and the second terminal device from the second terminal device.
  • Step S401 is optional and may be performed periodically, or may be performed before the first terminal device communicates with the second terminal device.
  • the network device sends configuration parameters to the electromagnetic metasurface array antenna according to the first communication quality and the second communication quality.
  • the configuration parameters are used to adjust the phase of each antenna element in the electromagnetic metasurface array antenna.
  • the configuration parameter may include the phase value of at least one antenna element, and the electromagnetic metasurface array antenna adjusts the phase of the corresponding antenna element according to the configuration parameter, which can achieve precise control of the phase of each antenna element.
  • the same index table is stored in the network device and the electromagnetic metasurface array antenna, and different index values of the index table correspond to different phase matrices, and each phase value in the phase matrix corresponds to the electromagnetic metasurface array antenna.
  • the configuration parameters can include the index value of the index table.
  • the electromagnetic metasurface array antenna searches for the corresponding phase matrix according to the index value, and adjusts the phases of all antenna elements according to the phase matrix, which can realize the control of all antenna elements of the entire electromagnetic metasurface array antenna. Quick adjustment of phase.
  • the electromagnetic metasurface array antenna may include N sub-arrays, and each sub-array may provide services for different terminal devices.
  • the nth (1 ⁇ n ⁇ N) sub-array includes K n antenna elements, and the number of antenna elements included in each sub-array may be the same or different.
  • Each antenna unit can independently control the phase and amplitude of the incident electromagnetic wave, and the reflection coefficient of the antenna unit k n is in Is the magnitude of the reflection coefficient, Is the phase of the reflection coefficient, the reflected signal of the electromagnetic metasurface array antenna can be expressed as:
  • C n represents the equivalent aperture of the nth sub-array
  • C represents the equivalent aperture of the electromagnetic metasurface array antenna.
  • the resolution of the sub-array or electromagnetic metasurface array antenna is equal to the reciprocal of the equivalent aperture.
  • the larger the equivalent aperture the higher the angular resolution and the higher the antenna gain.
  • the optimal coverage of the electromagnetic metasurface array antenna to different transmission environments can be achieved.
  • the phase of the electromagnetic metasurface array antenna such as the phase distribution or the phase gradient
  • the network coding function can be realized.
  • the phase distribution may include a Gaussian phase distribution to achieve omnidirectional radiation.
  • the phase gradient refers to the phase difference between adjacent antenna elements.
  • Step S402 is optional and can be performed after step S401, or can be performed before the first terminal device communicates with the second terminal device.
  • S403 The first terminal device determines the first indication information, and the second terminal device determines the second indication information.
  • step S403 includes steps S4031-S4034.
  • step S403 includes steps S4035-S4037.
  • the first terminal device sends first information to the network device.
  • the network device receives the first information from the first terminal device.
  • the first information includes at least one of the following information: the first request information, the interference level of the first terminal device, and the processing capability of the first terminal device.
  • the first request information is used to request whether to preprocess the phase of the first data to be encoded to be sent by the first terminal device.
  • the interference level of the terminal equipment includes the self-interference between the transmitting and receiving antennas of the terminal equipment, or the interference of other terminal equipment to the terminal equipment, or the sum of the above two kinds of interference.
  • the terminal equipment can measure the level of mutual interference between the transmitting and receiving antennas (ie, self-interference) under the condition of simultaneous transmission and reception.
  • the self-interference level between the transmitting and receiving antennas of the terminal device is available in the factory parameters, and the self-interference level may be directly sent to the network device without measurement.
  • the processing capability of the terminal device refers to the ability of the terminal device to preprocess the phase of the data to be encoded. Possibly, the network device can instruct the terminal device to solve a complex mathematical proposition. For example, the network device dynamically configures an initialization parameter for the terminal device. According to the initialization parameters, a set of data is generated to solve the predefined equations (or equations), or the terminal device performs CRC check on a sequence according to the initialization parameters, and the terminal device sends the calculation time to the network device, which is equivalent Yu reported the processing capabilities of the terminal device.
  • the range of preprocessing the phase of the data to be encoded involved in the embodiment of the present application is [ ⁇ - ⁇ , ⁇ + ⁇ ], where 0 ⁇ , ⁇ /4. That is, the phase of the analog signal of the data to be encoded is shifted by a certain angle, which belongs to [ ⁇ - ⁇ , ⁇ + ⁇ ].
  • preprocessing the phase of the data to be coded refers to inverting the phase of the data to be coded.
  • Step S4031 is optional and can be performed when the first terminal device is initially connected, or, because the communication quality of the first terminal device is changed, it can also be performed before the first terminal device communicates with the second terminal device .
  • the second terminal device sends second information to the network device.
  • the network device receives the second information from the second terminal device.
  • the second information includes at least one of the following information: the second request information, the interference level of the second terminal device, and the processing capability of the second terminal device; where the second request information is used to request whether to send a message to the second terminal device.
  • the phase of the second data to be encoded is preprocessed.
  • This application does not limit the specific naming method of the first information or the second information.
  • Step S4032 is optional and can be performed when the second terminal device is initially connected; since the communication quality of the second terminal device changes, it can also be performed before the second terminal device communicates with the first terminal device.
  • Step S4031 and step S4032 are executed in no order.
  • the network device determines the first indication information and the second indication information according to the first information and the second information.
  • the first indication information is used to indicate the preprocessing of the phase of the first data to be encoded to be sent by the first terminal device
  • the second indication information is used to indicate that the phase of the second data to be encoded to be sent by the second terminal device is not to be sent.
  • the first indication information is used to indicate that the phase of the first data to be encoded to be sent by the first terminal device is not to be preprocessed
  • the second indication information is used to indicate the phase of the second data to be encoded to be sent by the second terminal device. Perform pretreatment.
  • the network device instructs one of the first terminal device or the second terminal device to preprocess the phase of the data to be encoded to be sent, and the other does not preprocess the phase of the data to be encoded to be sent.
  • the first request information requests to preprocess the phase of the first data to be encoded
  • the second request information requests not to preprocess the phase of the second data to be encoded.
  • the first indication information indicates that the phase of the first data to be encoded to be sent by the first terminal device is to be preprocessed
  • the second indication information indicates that the phase of the second data to be encoded to be sent by the second terminal device is not to be preprocessed.
  • the first indication information indicates that the phase of the first data to be encoded to be sent by the first terminal device is not to be preprocessed
  • the second indication information indicates that the phase of the second data to be encoded to be sent by the second terminal device is to be preprocessed.
  • the first request information requests the preprocessing of the phase of the first data to be encoded
  • the second request information requests the preprocessing of the phase of the second data to be encoded.
  • the network device determines the first indication information and the second indication information by itself, for example, optionally one of the first terminal device or the second terminal device can process the phase of the data to be encoded.
  • the first indication information indicates that the phase of the first data to be encoded to be sent by the first terminal device is not to be preprocessed
  • the second indication information indicates that the phase of the second data to be encoded to be sent by the second terminal device is to be preprocessed
  • the first indication information indicates that the phase of the first data to be encoded to be sent by the first terminal device is to be preprocessed
  • the second indication information indicates that the phase of the second data to be encoded to be sent by the second terminal device is not to be preprocessed .
  • the first indication information indicates that the phase of the first to-be-encoded data to be sent by the first terminal device should be preprocessed
  • the second indication The information indicates that the phase of the second to-be-encoded data to be sent by the second terminal device is not to be pre-processed.
  • the first indication information indicates that the phase of the first to-be-encoded data to be sent by the first terminal device is not to be preprocessed
  • the second indication information indicates that the 2. The phase of the second to-be-encoded data to be sent by the terminal device is preprocessed.
  • the network device determines the first indication information and the second indication information by itself, for example, optionally one of the first terminal device or the second terminal device can process the phase of the data to be encoded.
  • the first indication information indicates that the phase of the first data to be encoded to be sent by the first terminal device is not to be preprocessed
  • the second indication information indicates that the phase of the second data to be encoded to be sent by the second terminal device is to be preprocessed
  • the first indication information indicates that the phase of the first data to be encoded to be sent by the first terminal device is to be preprocessed
  • the second indication information indicates that the phase of the second data to be encoded to be sent by the second terminal device is not to be preprocessed .
  • the first indication information indicates to preprocess the phase of the first to-be-encoded data to be sent by the first terminal device
  • the second indication The information indicates that the phase of the second to-be-encoded data to be sent by the second terminal device is not to be pre-processed.
  • the first indication information indicates that the phase of the first to-be-encoded data to be sent by the first terminal device is not to be preprocessed
  • the second indication information indicates that the 2. The phase of the second to-be-encoded data to be sent by the terminal device is preprocessed.
  • the network device determines the first indication information and the second indication information by itself, for example, optionally one of the first terminal device or the second terminal device can process the phase of the data to be encoded.
  • the second indication information indicates that the phase of the second to-be-encoded data to be sent by the second terminal device is preprocessed; or, the first indication information indicates that the phase of the first to-be-encoded data to be sent by the first terminal device is to be preprocessed.
  • the second indication information indicates that the phase of the second data to be encoded to be sent by the second terminal device is not to be preprocessed.
  • the network device may further determine the first indication information and the second indication information in the foregoing manner according to the interference level or processing capabilities of the two terminal devices.
  • the request information, interference level, and processing capability from the terminal device may have priority.
  • the network device may determine the first indication information and the second indication information according to the priority of the same type of information in the first information or the second information.
  • the interference level of the first terminal device is higher than the interference level of the second terminal device
  • the processing capability of the first terminal device is higher than the processing capability of the second terminal device
  • the priority of the interference level is higher than that of the processing capability Priority
  • the first indication information indicates not to preprocess the phase of the first data to be encoded to be sent by the first terminal device
  • the second indication information indicates to preprocess the phase of the second data to be encoded to be sent by the second terminal device deal with.
  • Step S4033 is optional, and can be performed after step S4031 and step S4032, or can be performed before the first terminal device communicates with the second terminal device.
  • the network device sends the first indication information to the first terminal device, and sends the second indication information to the second terminal device.
  • the first terminal device receives the first indication information from the network device
  • the second terminal device receives the second indication information from the network device.
  • the bits occupied by the first indication information or the second indication information are different:
  • the first indication information or the second indication information may occupy one bit.
  • the value of the first indication information is 1, it indicates that the first terminal device is to send the first data to be encoded.
  • the phase is preprocessed; when the value is 0, it means that the phase of the first data to be encoded to be sent by the first terminal device is not preprocessed.
  • the value of the second indication information is 1, it indicates that the phase of the second data to be encoded to be sent by the second terminal device is preprocessed; when the value is 0, it indicates that the second data to be encoded to be sent by the second terminal device is not processed.
  • the phase is preprocessed.
  • ⁇ and ⁇ may be predefined discrete value pairs, and the first indication information or the second indication information may occupy multiple bits.
  • the network device sends the first instruction information to the first terminal device, and the network device sends the second instruction information to the second terminal device, and only one of the two can be executed. For example, only the network device is executed to send the first instruction information to the first terminal device, or the network device is only executed to send the second instruction information to the second terminal device.
  • the first terminal device determines that the first indication information indicates that the phase of the first data to be encoded to be sent by the first terminal device is not to be preprocessed. If the second terminal device does not receive the second indication information from the network device, the second terminal device determines that the second indication information indicates that the phase of the second to-be-encoded data to be sent by the second terminal device is not to be preprocessed.
  • the first terminal device and the second terminal device may respectively send an indication message to the network device to indicate that the negotiation between the two is not successful; or the first terminal device and the second terminal device may subsequently negotiate on the first transmission resource.
  • the network device sends third indication information to the first terminal device and the second terminal device.
  • the first terminal device and the second terminal device receive the third indication information from the network device.
  • the third indication information is used to instruct the first terminal device and the second terminal device to negotiate the first transmission resource of the first indication information or the second indication information.
  • the first terminal device determines the first indication information according to the negotiation result with the second terminal device on the first transmission resource.
  • the first terminal device and the second terminal device may negotiate the first indication information or the second indication information on the first transmission resource through signaling interaction.
  • the first terminal device requests the second terminal device to preprocess the phase of the first to-be-encoded data to be sent by the first terminal device on the first transmission resource, and the second terminal device sends the data to the second terminal device on the first transmission resource.
  • the first terminal device requests not to preprocess the phase of the second to-be-encoded data sent by the second terminal device and the like. Then the first terminal device may determine that the first indication information indicates to preprocess the phase of the first to-be-encoded data to be sent by the first terminal device, and follow the negotiation result in the subsequent data transmission process.
  • the second terminal device determines second indication information according to the negotiation result with the first terminal device on the first transmission resource.
  • the second terminal device may determine that the second indication information indicates that the phase of the second to-be-encoded data to be sent by the second terminal device is not to be preprocessed, and follow the negotiation result in the subsequent data transmission process.
  • Step S4036 and step S4037 are executed in no order. In a possible implementation, step S4036 and step S4037 can be performed at the same time.
  • the first terminal device determines the first The indication information indicates that the phase of the first to-be-encoded data to be sent by the first terminal device is not to be preprocessed.
  • step S4037 if the second terminal device does not negotiate with the first terminal device on the first transmission resource to obtain a result (step S4037 is unsuccessful or not performed), it is determined that the second indication information indicates that the second terminal device is not required to send the second terminal device.
  • the phase of the data to be encoded is preprocessed.
  • the first terminal device and the second terminal device may respectively send an indication message to the network device to indicate that the negotiation between the two is not successful Or, the first terminal device and the second terminal device negotiate again on the first transmission resource.
  • S404 The network device sends fourth indication information to the first terminal device and the second terminal device.
  • the first terminal device and the second terminal device receive the fourth indication information from the network device.
  • the fourth indication information is used to indicate a second transmission resource that carries data between the first terminal device and the second terminal device through the electromagnetic metasurface array antenna.
  • the method described in steps S4035-S4037 based on the negotiation of the first indication information and the second indication information between the terminal devices will not significantly reduce the transmission efficiency.
  • the network device may send the fourth indication information to the first terminal device and the second terminal device according to the first communication quality and the second communication quality. For example, a transmission resource with less interference to the first terminal device and the second terminal device may be selected as the second transmission resource.
  • step S404 is optional, step S404 and steps S4031-S4034 have no order of execution, and step S404 and steps S4035-S4037 have no order of execution. Or, it can be executed before the first terminal device communicates with the second terminal device.
  • the network device may first send the first instruction information and the second instruction information, and when the first terminal device and the second terminal device transmit data, then send the fourth instruction information, if there is no need to transmit data, it may not Send the fourth instruction information; or, the network device may send the fourth instruction information first, and then send the first instruction information and the second instruction information when the first terminal device and the second terminal device want to transmit data between them, if not needed When transmitting data, the first instruction information and the second instruction information may not be sent.
  • the network device may first send the third instruction information, and when the first terminal device and the second terminal device transmit data, then send the fourth instruction information, if there is no need to transmit data, the fourth instruction may not be sent Information; or, the network device may first send the fourth instruction information, and when the first terminal device and the second terminal device transmit data, then send the third instruction information, if there is no need to transmit data, the third instruction information may not be sent Instructions.
  • the first indication information and the fourth indication information may be transmitted in one configuration message, or may also be transmitted in different configuration messages.
  • the first indication information (or the second indication information) may be transmitted in the downlink control information (downlink control information).
  • DCI downlink control information
  • the fourth indication information may be transmitted in other types of messages, such as radio resource control (RRC) messages, media access control control element (MAC CE) messages.
  • RRC radio resource control
  • MAC CE media access control control element
  • the second indication information and the fourth indication information may be transmitted in one configuration message, or may also be transmitted in different configuration messages.
  • the third instruction information and the fourth instruction information may be transmitted in one configuration message, or may also be transmitted in different configuration messages.
  • This application does not limit the form of the message carrying the above indication information, for example, it may be DCI, RRC message, MAC CE message, etc.
  • the first terminal device sends the third data to be encoded to the electromagnetic metasurface array antenna in the first time slot of the second transmission resource.
  • the third data to be encoded is obtained according to the first indication information and the first data to be encoded.
  • the first data to be encoded to be sent by the first terminal device 23 is S 1
  • the first indication information indicates that the phase of the first data to be encoded S 1 to be sent by the first terminal device is not adjusted.
  • the third data to be encoded sent by the first terminal device Same as the first data to be encoded S 1 , namely
  • the second terminal device sends the fourth data to be encoded to the electromagnetic metasurface array antenna in the first time slot of the second transmission resource.
  • the fourth data to be encoded is obtained according to the second indication information and the second data to be encoded.
  • the second to-be-encoded data to be sent by the second terminal device 24 is S 2
  • the second indication information indicates the phase of the second to-be-encoded data S 2 to be sent by the second terminal device.
  • the fourth data to be encoded sent by the second terminal device For data to be encoded after the second phase of the pre-S 2 of the data to be encoded.
  • the second terminal device and the second terminal device receive the first network coded data from the electromagnetic metasurface array antenna in the first time slot.
  • the first terminal device 23 and the second terminal device 24 transmit the standby to the electromagnetic metasurface array antenna 22 in the same time slot (first time slot) of the same transmission resource (second transmission resource).
  • Encoded data The two data to be encoded arrive at the electromagnetic metasurface array antenna 22 at the same time and perform network encoding (time-domain superposition) in the time domain to obtain the first network encoded data
  • the electromagnetic metasurface array antenna 22 does not need to actively process the coded data or network coded data, that is, it can directly encode the first network coded data after the network code in the first time slot. Reflected to the first terminal device 23 and the second terminal device 24.
  • the first terminal device obtains second data to be encoded from the second terminal device according to the third data to be encoded and the first network encoded data.
  • the third data to be encoded sent by the first terminal device And the received first network coded data Perform an exclusive OR operation to obtain the fourth data to be encoded from the second terminal device which is
  • the principle that the terminal device obtains the corresponding digital signal according to the received analog signal is as follows: the terminal device integrates the energy of the received analog signal to obtain the integral value, and then compares the integral value with the threshold. If it is greater than the threshold, the corresponding digital signal is 1. , Otherwise the corresponding digital signal is 0.
  • the fourth data to be encoded The energy integration of the analog signal of the second to-be-encoded data S 2 is the same, so the identified corresponding digital signal is the same, so the fourth to-be-encoded data is obtained That is equivalent to obtaining the second to-be-encoded data S 2 .
  • the second terminal device obtains the first data to be encoded from the first terminal device according to the fourth data to be encoded and the first network encoded data.
  • the fourth to-be-encoded data sent by the second terminal device And the received first network coded data Perform an exclusive OR operation to obtain the third data to be encoded from the first terminal device which is Similarly, the fourth data to be encoded
  • the analog signal of is the same as the digital signal corresponding to the second data to be encoded S 2, so the third data to be encoded is obtained That is equivalent to obtaining the first to-be-encoded data S 1 .
  • the first terminal device and the second terminal device still perform an exclusive OR operation on the transmitted data to be encoded and the received network encoded data, and both will incorrectly identify the data to be encoded "1" sent by the other party Is "0".
  • phase of the to-be-encoded data to be sent by one of the terminal devices is preprocessed, so that the analog signals corresponding to the two "1"s are shifted in phase, the energy will be offset during time-domain superposition.
  • This offset effect is related to the phase offset angle when the phase is preprocessed. The closer the phase offset angle of the analog signal corresponding to the two "1" is to ⁇ , the more obvious the offset effect, and the greater the energy after time domain superposition. It may be smaller than the threshold, that is, the more likely it is to be recognized as "0".
  • the offset angle is ⁇ , that is, the phase of the to-be-encoded data to be sent by one of the terminal devices is inverted, the energy after time-domain superposition is zero, and the probability of misjudgment is the lowest at this time.
  • the second encoded data to be transmitted from the second terminal S is inverted phase 2 to obtain a fourth data to be encoded Do not invert the phase of the first to-be-encoded data S 1 to be sent by the first terminal device to obtain the third to-be-encoded data
  • the third data to be encoded and the fourth data to be encoded and the electromagnetic metasurface array antenna are superimposed in the time domain to obtain the first network encoded data S 1 -S 2.
  • the analog signals corresponding to the two "1"s have the same energy and opposite phases. After time domain superposition, the energy is zero, which is less than the threshold, and the obtained first network coded data is "0".
  • the data interaction between the first terminal device and the second terminal device is completed in only one time slot. Compared with two time slots, the transmission efficiency is higher.
  • the network device needs to perform steps S402, S4033, S4034, S4035, and S404 again.
  • the two terminal devices can directly execute steps S405-S409.
  • the above embodiments assume that the self-interference level of the transceiver antenna of the terminal device is very small, but in practical applications, the transceiver antenna of the terminal device has various forms. If the terminal equipment uses different directional antennas for transmission and reception, the interference between the transmitting and receiving antennas is relatively small, and the above scheme can be directly adopted. If the terminal device uses an omni-directional antenna for transmission and reception, the terminal device first uses a serial interference cancellation (SIC) receiver to perform self-interference cancellation at the receiving end, and then demodulates the received data. If it is necessary to increase the received signal strength, the network device can configure beamforming commands on the electromagnetic metasurface array antenna to form beams in the direction of the two terminal devices for sending network coded data.
  • SIC serial interference cancellation
  • one of the two terminal devices preprocesses the phase of the data to be encoded, and sends the data to be encoded to the electromagnetic supersurface array antenna in the same transmission resource and the same time slot.
  • the surface array antenna realizes network coding and distribution in the time domain, that is, superimposes and reflects the signal in the time domain. Data transmission, network coding and reception are completed in the same time slot, thereby improving the indirect data transmission between two terminal devices. efficient.
  • the methods and/or steps implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and/or steps implemented by the network device can also be implemented by the terminal device. It can also be implemented by components that can be used in network devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a chip or functional module in the terminal device.
  • the communication device may be the network device in the foregoing method embodiment, or a device including the foregoing network device, or a chip or functional module in the network device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 8 shows a schematic structural diagram of a communication device 80.
  • the communication device 80 includes a processing module 801 and a transceiver module 802.
  • the communication device 80 may be the first terminal device or the second terminal device in FIG. 2.
  • the processing module 801 may also be referred to as a processing unit, and is used to implement the processing function of the first terminal device or the second terminal device in the foregoing method embodiment. For example, steps S403, S408, and S409 in FIG. 4A are executed, or steps S4036, S4037, S408, and S409 in FIG. 4B are executed.
  • the transceiver module 802 which may also be referred to as a transceiver unit, is used to implement the transceiver function of the terminal device in the foregoing method embodiment. For example, steps S404, S405, S406, and S407 in FIG. 4A are executed to execute steps S4031, S4032, S4034, S4035, S404, S405, S406, and S407 in FIG. 4B.
  • the transceiver module 802 may be referred to as a transceiver circuit, a transceiver, a transceiver, or a communication interface.
  • the processing module 801 is configured to determine first indication information, where the first indication information is used to indicate whether to preprocess the phase of the first to-be-encoded data to be sent by the communication device.
  • the communication device 800 and the second terminal device transmit data through the electromagnetic metasurface array antenna in the same time slot of the same transmission resource, including:
  • the transceiver module 802 is configured to send the third data to be encoded to the electromagnetic metasurface array antenna in the first time slot of the second transmission resource, and receive the first network encoded data from the electromagnetic metasurface array antenna in the first time slot; wherein, The third data to be encoded is obtained according to the first indication information and the first data to be encoded.
  • the processing module 801 is configured to obtain the second data to be encoded from the second terminal device according to the third data to be encoded and the first network encoded data.
  • the transceiver module 802 is configured to receive the first indication information from the network device.
  • the transceiver module 802 is configured to receive third indication information from the network device, where the third indication information is used to instruct the communication device to negotiate the first transmission resource of the first indication information with the second terminal device ;
  • the communication device and the second terminal device transmit data through the electromagnetic metasurface array antenna in the same time slot of the same transmission resource.
  • the processing module 801 is configured to determine the first indication information according to the negotiation result with the second terminal device on the first transmission resource.
  • the transceiver module 802 is further configured to receive fourth indication information from the network device, where the fourth indication information is used to indicate that the electromagnetic metasurface array antenna is used between the carrier communication device and the second terminal device.
  • the second transmission resource for transmitting data is further configured to transmit fourth indication information from the network device, where the fourth indication information is used to indicate that the electromagnetic metasurface array antenna is used between the carrier communication device and the second terminal device.
  • the transceiver module 802 is further configured to send the third data to be encoded to the electromagnetic metasurface array antenna in the first time slot of the second transmission resource, and send the third data to be encoded from the electromagnetic metasurface array in the first time slot.
  • the antenna receives the first network coded data; wherein, the third to-be-coded data is obtained according to the first indication information and the first to-be-coded data; the processing module 801 is further configured to obtain the third data to be coded and the first network coded data The second data to be encoded from the second terminal device.
  • the processing module 801 is specifically configured to perform an exclusive OR operation on the third data to be encoded and the first network encoded data to obtain the second data to be encoded.
  • the transceiver module 802 is further configured to send first information to the network device before receiving the first indication information from the network device, and the first information includes at least one of the following information: first request information The interference level of the communication device and the processing capability of the communication device; wherein the first request information is used to request whether to preprocess the phase of the first to-be-encoded data, and the first information is used to determine the first indication information.
  • the transceiver module 802 before receiving the fourth indication information from the network device, is also used to send to the network device the first downlink data channel between the network device, the electromagnetic metasurface array antenna, and the communication device.
  • the processing module 801 is specifically configured to perform an exclusive OR operation on the third data to be encoded and the first network encoded data to obtain the second data to be encoded.
  • the communication device 80 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the function/implementation process of the processing module 801 in FIG. 8 can be implemented by a processor in the terminal device calling a computer execution instruction stored in a memory.
  • the function/implementation process of the transceiver module 802 in FIG. 8 can be implemented by a radio frequency (RF) circuit in the terminal device.
  • RF radio frequency
  • the communication device 80 provided in this embodiment can perform the above-mentioned method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 9 shows a schematic structural diagram of a communication device 90.
  • the communication device 90 includes a processing module 901 and a transceiver module 902.
  • the communication device 90 may be the network device in FIG. 2.
  • the processing module 901 may also be referred to as a processing unit, and is used to implement the processing function of the network device in the foregoing method embodiment.
  • step S4033 in FIG. 4B is executed.
  • the transceiver module 902 which may also be referred to as a transceiver unit, is used to implement the transceiver function of the network device in the foregoing method embodiment. For example, steps S401, S402, and S404 in FIG.
  • the transceiver module 902 may be referred to as a transceiver circuit, a transceiver, a transceiver, or a communication interface.
  • the transceiver module 902 is configured to send first instruction information to the first terminal device, or the transceiver module 902 is configured to send third instruction information to the first terminal device and the second terminal device, where the third instruction
  • the information is used to instruct the first terminal device and the second terminal device to negotiate the first transmission resource of the first indication information or the second indication information.
  • the first indication information is used to indicate the preprocessing of the phase of the first data to be encoded to be sent by the first terminal device
  • the second indication information is used to indicate that the phase of the second data to be encoded to be sent by the second terminal device is not to be sent.
  • the first indication information is used to indicate that the phase of the first to-be-encoded data to be sent by the first terminal device is not to be preprocessed
  • the second indication information is used to indicate that the second terminal device is to be sent The phase of the encoded data is preprocessed.
  • the transceiver module 902 is further configured to: send the second indication information to the second terminal device.
  • the transceiver module 902 is further configured to send fourth indication information to the first terminal device and the second terminal device, where the fourth indication information is used to indicate to carry the first terminal device and the second terminal device.
  • the second transmission resource for transmitting data between devices through the electromagnetic metasurface array antenna.
  • the transceiver module 902 is also used to obtain the first communication quality of the data channel between the electromagnetic metasurface array antenna and the first terminal device, and the electromagnetic metasurface array antenna and the second terminal device The second communication quality between the data channels.
  • the transceiver module 902 is specifically configured to: obtain the first communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the first terminal device from the electromagnetic metasurface array antenna;
  • the array antenna acquires the second communication quality of the uplink data channel between the electromagnetic metasurface array antenna and the second terminal device.
  • the transceiver module 902 is specifically configured to: obtain the first communication quality of the downlink data channel between the communication device, the electromagnetic metasurface array antenna, and the first terminal device from the first terminal device; The second terminal device acquires the second communication quality of the downlink data channel between the communication device, the electromagnetic metasurface array antenna, and the second terminal device.
  • the transceiver module 902 is further configured to: according to the first communication quality and the second communication quality, send configuration parameters to the electromagnetic metasurface array antenna, and the configuration parameters are used to adjust each of the electromagnetic metasurface array antennas.
  • the phase of the antenna unit is further configured to: according to the first communication quality and the second communication quality, send configuration parameters to the electromagnetic metasurface array antenna, and the configuration parameters are used to adjust each of the electromagnetic metasurface array antennas. The phase of the antenna unit.
  • the transceiver module 902 before the transceiver module 902 sends the first indication information to the first terminal device, the transceiver module 902 is further configured to receive first information from the first terminal device, and the first information includes the following information: At least one: the first request information, the interference level of the first terminal device, and the processing capability of the first terminal device; where the first request information is used to request whether to preprocess the phase of the first to-be-encoded data; the transceiver module 902, It is also used to receive second information from the second terminal device, the second information includes at least one of the following information: the second request information, the interference level of the second terminal device, and the processing capability of the second terminal device; wherein, the second request The information is used to request whether to preprocess the phase of the second data to be encoded; the processing module 901 is used to determine the first indication information and the second indication information according to the first information and the second information.
  • the communication device 90 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the function/implementation process of the processing module 901 in FIG. 9 may be implemented by a processor in the network device calling a computer execution instruction stored in a memory.
  • the function/implementation process of the transceiver module 902 in FIG. 9 may be implemented by an RF circuit in the network device.
  • the communication device 90 provided in this embodiment can perform the above-mentioned method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • an embodiment of the present application also provides a communication device.
  • the communication device 100 includes a processor 1001, a memory 1002, and a transceiver 1003.
  • the processor 1001 is coupled with the memory 1002.
  • the processor 1001 executes the memory 1002
  • the computer program or instruction is executed, the method corresponding to the first terminal device or the second terminal device in FIG. 4A or FIG. 4B is executed.
  • an embodiment of the present application also provides a communication device.
  • the communication device 110 includes a processor 1101, a memory 1102, and a transceiver 1103.
  • the processor 1101 is coupled with the memory 1102. When the processor 1101 executes the memory 1102 When the computer program or instruction is executed, the method corresponding to the network device in FIG. 4A or FIG. 4B is executed.
  • an embodiment of the present application further provides an apparatus 1200, which may be used to execute the method executed by the above-mentioned terminal device or network device.
  • the apparatus 1200 may be a communication device or a chip in a communication device.
  • the device 1200 includes: at least one input interface (input(s)) 1201, a logic circuit 1202, and at least one output interface (output(s)) 1203.
  • the aforementioned logic circuit 1202 may be a chip or other integrated circuits that can implement the method of the present application.
  • the logic circuit 1202 can implement the methods executed by the terminal device or the network device in each of the foregoing embodiments;
  • the input interface 1201 is used to receive data; the output interface 1203 is used to send data.
  • the input interface 1201 can be used to receive the first instruction information, the second instruction information, the third instruction information, and the fourth instruction information sent by the network device, and can also be used to receive
  • the first network coded data sent by the electromagnetic metasurface array antenna; the output interface 1203 can be used to send the first communication quality, the second communication quality, the first information and the second information to the network device, and can also be used to send the electromagnetic metasurface
  • the array antenna transmits the first data to be coded and the second data to be coded.
  • the input interface 1201 can be used to receive the first information and the second information from the terminal device, and can also be used to receive the first communication quality and the second communication quality from the terminal device or the electromagnetic metasurface array antenna.
  • the output interface 1203 can be used to send first instruction information, second instruction information, third instruction information, and fourth instruction information to the terminal device, and can also be used to send configuration parameters to the electromagnetic metasurface array antenna.
  • the functions of the input interface 1201, the logic circuit 1202, or the output interface 1203 can refer to the method executed by the terminal device or the network device in the foregoing embodiments, which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium in which a computer program is stored. When it runs on a computer or a processor, the first terminal device or the first terminal device in FIG. 4A or FIG. 4B The method corresponding to the second terminal device is executed.
  • the embodiment of the present application also provides a computer-readable storage medium in which a computer program is stored. When it runs on a computer or a processor, the method corresponding to the network device in FIG. 4A or FIG. 4B is implement.
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the instructions run on a computer or a processor, the method corresponding to the first terminal device or the second terminal device in FIG. 4A or FIG. 4B is executed.
  • the embodiment of the present application also provides a computer program product containing instructions.
  • the instructions run on a computer or a processor, the method corresponding to the network device in FIG. 4A or FIG. 4B is executed.
  • the embodiment of the present application provides a chip system that includes a processor for a communication device to execute the method corresponding to the first terminal device or the second terminal device in FIG. 4A or FIG. 4B, or execute FIG. 4A or FIG. 4B The corresponding method of the network equipment.
  • the chip system also includes a memory for storing necessary program instructions and data.
  • the chip system may include a chip, an integrated circuit, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the communication device, chip, computer storage medium, computer program product, or chip system provided in the present application are all used to execute the method described above. Therefore, the beneficial effects that can be achieved can refer to the implementation manner provided above The beneficial effects in the process will not be repeated here.
  • the processor involved in the embodiment of the present application may be a chip.
  • it can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a central processing unit.
  • the central processor unit (CPU) can also be a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller unit, MCU) It can also be a programmable logic device (PLD) or other integrated chips.
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller unit
  • PLD programmable logic device
  • the memory involved in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种网络编码方法和装置,涉及通信领域。网络编码方法包括:第一终端设备确定第一指示信息,其中,第一指示信息用于指示是否对第一终端设备待发送的第一待编码数据的相位进行预处理;第一终端设备和第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据,包括:第一终端设备在第二传输资源的第一时隙向电磁超表面阵列天线发送第三待编码数据,并在第一时隙从电磁超表面阵列天线接收第一网络编码数据;其中,第三待编码数据为根据第一指示信息和第一待编码数据得到;第一终端设备根据第三待编码数据和第一网络编码数据,得到来自第二终端设备的第二待编码数据。

Description

网络编码方法和装置
本申请要求于2020年4月30日提交国家知识产权局、申请号为202010364804.5、申请名称为“网络编码方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种网络编码方法和装置。
背景技术
网络编码(network coding,NC)技术是一种融合了路由和编码的信息交换技术,通过网络编码,可以达到路由传输的最大流量,提高了数据的传输效率。在第五代(5th generation,5G)大连接系统中,为了提高终端设备间数据的传输效率,网路编码技术开始被用于物理层的数据传输中,物理层的网络编码通过空口信道来实现,两个终端设备之间可以通过中继节点的转发实现间接的数据传输,中继节点接收数据后,先进行网络编码,然后把网络编码后的数据发送出去,但是目前这种方式由于中继节点进行网络编码会耗费一定时间,所以数据传输效率低。
发明内容
本申请实施例提供一种网络编码方法和装置,用于提高两个终端设备之间进行间接数据传输的效率。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种网络编码方法,包括:第一终端设备确定第一指示信息,其中,第一指示信息用于指示是否对第一终端设备待发送的第一待编码数据的相位进行预处理;第一终端设备和第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据,包括:第一终端设备在第二传输资源的第一时隙向电磁超表面阵列天线发送第三待编码数据,并在第一时隙从电磁超表面阵列天线接收第一网络编码数据;其中,第三待编码数据为根据第一指示信息和第一待编码数据得到;第一终端设备根据第三待编码数据和第一网络编码数据,得到来自第二终端设备的第二待编码数据。
本申请实施例提供的网络编码方法,由两个终端设备中的一个对待编码数据的相位进行预处理,并在相同传输资源、相同时隙向电磁超表面阵列天线发送待编码数据,在电磁超表面阵列天线实现时域的网络编码和分发,即对信号进行时域叠加并反射,数据的发送、网络编码和接收在同一时隙内完成,从而提高两个终端设备之间进行间接数据传输的效率。
在一种可能的实施方式中,第一终端设备确定第一指示信息,包括:第一终端设备从网络设备接收第一指示信息。该实施方式中,由网络设备配置第一指示信息,不必由第一终端设备和第二终端设备再进行协商,不会额外占用传输资源。
在一种可能的实施方式中,在第一终端设备从网络设备接收第一指示信息之前,还包括:第一终端设备向网络设备发送第一信息,第一信息包括以下信息中的至少一 个:第一请求信息、第一终端设备的干扰水平、第一终端设备的处理能力;其中,第一请求信息用于请求是否对第一待编码数据的相位进行预处理,第一信息用于确定第一指示信息。终端设备的干扰水平包括本终端设备的收发天线之间的自干扰,或者,其他终端设备对本终端设备的干扰,或者,上述这两种干扰之和。终端设备的处理能力指终端设备对待编码数据的相位进行预处理的能力。网络设备可以选择干扰水平较低的、处理能力强的终端设备对待编码数据的相位进行预处理。或者,由终端设备主动请求对待编码数据的相位进行预处理。
在一种可能的实施方式中,第一终端设备确定第一指示信息,包括:第一终端设备从网络设备接收第三指示信息,其中,第三指示信息用于指示第一终端设备与第二终端设备协商第一指示信息的第一传输资源;第一终端设备根据在第一传输资源上与第二终端设备的协商结果确定第一指示信息。第一终端设备和第二终端设备可以根据需要自行协商(例如在传输数据时),从而确定第一指示信息。
在一种可能的实施方式中,还包括:第一终端设备从网络设备接收第四指示信息,其中,第四指示信息用于指示承载第一终端设备和第二终端设备之间通过电磁超表面阵列天线传输数据的第二传输资源。网络设备可以先发送第一指示信息和第二指示信息,当第一终端设备和第二终端设备之间传输数据时,再发送第四指示信息,如果不需要传输数据,则可以不发送第四指示信息;或者,网络设备可以先发送第四指示信息,当第一终端设备和第二终端设备之间传输数据时,再发送第一指示信息和第二指示信息,如果不需要发送数据时,则可以不发送第一指示信息和第二指示信息。同理,网络设备可以先发送第三指示信息,当第一终端设备和第二终端设备之间传输数据时,再发送第四指示信息,如果不需要传输数据时,则可以不发送第四指示信息;或者,网络设备可以先发送第四指示信息,等第一终端设备和第二终端设备之间传输数据时,再发送第三指示信息,如果不需要传输数据时,则可以不发送第三指示信息。
在一种可能的实施方式中,在第一终端设备从网络设备接收第四指示信息之前,还包括:第一终端设备向网络设备发送网络设备、电磁超表面阵列天线、第一终端设备之间的下行数据信道的第一通信质量,第一通信质量用于确定第二传输资源。网络设备可以根据该通信质量为两个终端设备的数据传输选择干扰最小的传输资源。
在一种可能的实施方式中,第一终端设备根据第三待编码数据和第一网络编码数据,得到来自第二终端设备的第二待编码数据,包括:第一终端设备对第三待编码数据和第一网络编码数据进行异或操作,得到第二待编码数据。接收端采用异或操作即可得到发送端发送的待编码数据,简单高效。
第二方面,提供了一种网络编码方法,包括:网络设备向第一终端设备发送第一指示信息;或者,网络设备向第一终端设备和第二终端设备发送第三指示信息,其中,第三指示信息用于指示第一终端设备与第二终端设备协商第一指示信息或第二指示信息的第一传输资源;其中,第一指示信息用于指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息用于指示不对第二终端设备待发送的第二待编码数据的相位进行预处理;或者,第一指示信息用于指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息用于指示对第二终端设备待发送的第二待编码数据的相位进行预处理。
本申请实施例提供的网络编码方法,由网络设备指示通过电磁超表面阵列天线通信的两个终端设备中的一个对待发送的待编码数据的相位进行预处理,或者,由网络设备指示这两个终端设备进行协商的传输资源,由这两个终端设备自行协商确定谁来对待发送的待编码数据的相位进行预处理,在电磁超表面阵列天线实现时域的网络编码和分发,即对信号进行时域叠加并反射,数据的发送、网络编码和接收在同一时隙内完成,从而提高两个终端设备之间进行间接数据传输的效率。
在一种可能的实施方式中,对于网络设备向第一终端设备发送第一指示信息,还包括:网络设备向第二终端设备发送第二指示信息。网络设备向第一终端设备发送第一指示信息,网络设备向第二终端设备发送第二指示信息,这二者可以只执行一个。例如,只执行网络设备向第一终端设备发送第一指示信息,或者,只执行网络设备向第二终端设备发送第二指示信息。如果第一终端设备没有从网络设备接收第一指示信息,则第一终端设备确定第一指示信息指示不对第一终端设备待发送的第一待编码数据的相位进行预处理。如果第二终端设备没有从网络设备接收第二指示信息,则第二终端设备确定第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
在一种可能的实施方式中,还包括:网络设备向第一终端设备和第二终端设备发送第四指示信息,其中,第四指示信息用于指示承载第一终端设备和第二终端设备之间通过电磁超表面阵列天线传输数据的第二传输资源。网络设备可以先发送第一指示信息和第二指示信息,当第一终端设备和第二终端设备之间传输数据时,再发送第四指示信息,如果不需要传输数据,则可以不发送第四指示信息;或者,网络设备可以先发送第四指示信息,当第一终端设备和第二终端设备之间传输数据时,再发送第一指示信息和第二指示信息,如果不需要发送数据时,则可以不发送第一指示信息和第二指示信息。同理,网络设备可以先发送第三指示信息,当第一终端设备和第二终端设备之间传输数据时,再发送第四指示信息,如果不需要传输数据时,则可以不发送第四指示信息;或者,网络设备可以先发送第四指示信息,等第一终端设备和第二终端设备之间传输数据时,再发送第三指示信息,如果不需要传输数据时,则可以不发送第三指示信息。
在一种可能的实施方式中,还包括:网络设备获取电磁超表面阵列天线与第一终端设备之间的数据信道的第一通信质量,以及,电磁超表面阵列天线与第二终端设备之间的数据信道的第二通信质量。网络设备可以根据第一通信质量和第二通信质量为两个终端设备的数据传输选择干扰最小的传输资源。
在一种可能的实施方式中,网络设备获取电磁超表面阵列天线与第一终端设备之间的数据信道的第一通信质量,以及,电磁超表面阵列天线与第二终端设备之间的数据信道的第二通信质量,包括:网络设备从电磁超表面阵列天线获取电磁超表面阵列天线与第一终端设备之间的上行数据信道的第一通信质量;网络设备从电磁超表面阵列天线获取电磁超表面阵列天线与第二终端设备之间的上行数据信道的第二通信质量。电磁超表面阵列天线安装有源器件时,电磁超表面阵列天线可以通过至少一个天线单元,对电磁超表面阵列天线与第一终端设备之间的上行数据信道的通信质量进行测量,得到第一通信质量。电磁超表面阵列天线还可以通过至少一个天线单元,对电磁超表 面阵列天线与第二终端设备之间的上行数据信道的通信质量进行测量,得到第二通信质量。
在一种可能的实施方式中,网络设备获取电磁超表面阵列天线与第一终端设备之间的数据信道的第一通信质量,以及,电磁超表面阵列天线与第二终端设备之间的数据信道的第二通信质量,包括:网络设备从第一终端设备获取网络设备、电磁超表面阵列天线、第一终端设备之间的下行数据信道的第一通信质量;网络设备从第二终端设备获取网络设备、电磁超表面阵列天线、第二终端设备之间的下行数据信道的第二通信质量。该实施方式可以应用于电磁超表面阵列天线未安装有源器件的场景。
在一种可能的实施方式中,网络设备根据第一通信质量和第二通信质量,向电磁超表面阵列天线发送配置参数,配置参数用于调节电磁超表面阵列天线中各天线单元的相位。通过配置电磁超表面阵列天线的相位,例如相位分布或相位梯度,可以实现网络编码功能。
在一种可能的实施方式中,网络设备向第一终端设备和第二终端设备发送第四指示信息,包括:网络设备根据第一通信质量和第二通信质量,向第一终端设备和第二终端设备发送第四指示信息。网络设备可以根据第一通信质量和第二通信质量为两个终端设备的数据传输选择干扰最小的传输资源。
在一种可能的实现方式中,第一通信质量和第二通信质量还用于确定第一终端设备与第二设备之间传输数据的第二传输资源。
在一种可能的实施方式中,在网络设备向第一终端设备发送第一指示信息,向第二终端设备发送第二指示信息之前,还包括:网络设备从第一终端设备接收第一信息,第一信息包括以下信息中的至少一个:第一请求信息、第一终端设备的干扰水平、第一终端设备的处理能力;其中,第一请求信息用于请求是否对第一待编码数据的相位进行预处理;网络设备从第二终端设备接收第二信息,第二信息包括以下信息中的至少一个:第二请求信息、第二终端设备的干扰水平、第二终端设备的处理能力;其中,第二请求信息用于请求是否对第二待编码数据的相位进行预处理;网络设备根据第一信息和第二信息,确定第一指示信息和第二指示信息。终端设备的干扰水平包括本终端设备的收发天线之间的自干扰,或者,其他终端设备对本终端设备的干扰,或者,上述这两种干扰之和。终端设备的处理能力指终端设备对待编码数据的相位进行预处理的能力。网络设备可以选择干扰水平较低的、处理能力强的终端设备对待编码数据的相位进行预处理。或者,由终端设备主动请求对待编码数据的相位进行预处理。
第三方面,提供了一种通信装置,包括:处理模块,用于确定第一指示信息,其中,第一指示信息用于指示是否对通信装置待发送的第一待编码数据的相位进行预处理;该通信装置和第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据,包括:收发模块,用于在第二传输资源的第一时隙向电磁超表面阵列天线发送第三待编码数据,并在第一时隙从电磁超表面阵列天线接收第一网络编码数据;其中,第三待编码数据为根据第一指示信息和第一待编码数据得到;处理模块,用于根据第三待编码数据和第一网络编码数据,得到来自第二终端设备的第二待编码数据。
在一种可能的实施方式中,收发模块,具体用于:从网络设备接收第一指示信息。
在一种可能的实施方式中,收发模块,在从网络设备接收第一指示信息之前,还用于向网络设备发送第一信息,第一信息包括以下信息中的至少一个:第一请求信息、通信装置的干扰水平、通信装置的处理能力;其中,第一请求信息用于请求是否对第一待编码数据的相位进行预处理,第一信息用于确定第一指示信息。
在一种可能的实施方式中,收发模块,具体用于从网络设备接收第三指示信息,其中,第三指示信息用于指示通信装置与第二终端设备协商第一指示信息的第一传输资源;通信装置和第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据;处理模块,具体用于根据在第一传输资源上与第二终端设备的协商结果确定第一指示信息。
在一种可能的实施方式中,收发模块,还用于从网络设备接收第四指示信息,其中,第四指示信息用于指示承载通信装置和第二终端设备之间通过电磁超表面阵列天线传输数据的第二传输资源。
在一种可能的实施方式中,收发模块,在从网络设备接收第四指示信息之前,还用于向网络设备发送网络设备、电磁超表面阵列天线、通信装置之间的下行数据信道的第一通信质量,第一通信质量用于确定第二传输资源。
在一种可能的实施方式中,处理模块,具体用于:对第三待编码数据和第一网络编码数据进行异或操作,得到第二待编码数据。
第四方面,提供了一种通信装置,包括:收发模块,用于向第一终端设备发送第一指示信息;或者,收发模块,用于向第一终端设备和第二终端设备发送第三指示信息,其中,第三指示信息用于指示第一终端设备与第二终端设备协商第一指示信息或第二指示信息的第一传输资源;其中,第一指示信息用于指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息用于指示不对第二终端设备待发送的第二待编码数据的相位进行预处理;或者,第一指示信息用于指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息用于指示对第二终端设备待发送的第二待编码数据的相位进行预处理。
在一种可能的实施方式中,对于向第一终端设备发送第一指示信息,收发模块,还用于:向第二终端设备发送第二指示信息。
在一种可能的实施方式中,收发模块,还用于向第一终端设备和第二终端设备发送第四指示信息,其中,第四指示信息用于指示承载第一终端设备和第二终端设备之间通过电磁超表面阵列天线传输数据的第二传输资源。
在一种可能的实施方式中,收发模块,还用于获取电磁超表面阵列天线与第一终端设备之间的数据信道的第一通信质量,以及,电磁超表面阵列天线与第二终端设备之间的数据信道的第二通信质量。
在一种可能的实施方式中,收发模块,具体用于:从电磁超表面阵列天线获取电磁超表面阵列天线与第一终端设备之间的上行数据信道的第一通信质量;从电磁超表面阵列天线获取电磁超表面阵列天线与第二终端设备之间的上行数据信道的第二通信质量。
在一种可能的实施方式中,收发模块,具体用于:从第一终端设备获取通信装置、电磁超表面阵列天线、第一终端设备之间的下行数据信道的第一通信质量;从第二终 端设备获取通信装置、电磁超表面阵列天线、第二终端设备之间的下行数据信道的第二通信质量。
在一种可能的实施方式中,收发模块,还用于:根据第一通信质量和第二通信质量,向电磁超表面阵列天线发送配置参数,配置参数用于调节电磁超表面阵列天线中各天线单元的相位。
在一种可能的实施方式中,还包括处理模块,在收发模块向第一终端设备发送第一指示信息之前,收发模块,还用于从第一终端设备接收第一信息,第一信息包括以下信息中的至少一个:第一请求信息、第一终端设备的干扰水平、第一终端设备的处理能力;其中,第一请求信息用于请求是否对第一待编码数据的相位进行预处理;收发模块,还用于从第二终端设备接收第二信息,第二信息包括以下信息中的至少一个:第二请求信息、第二终端设备的干扰水平、第二终端设备的处理能力;其中,第二请求信息用于请求是否对第二待编码数据的相位进行预处理;处理模块,用于根据第一信息和第二信息,确定第一指示信息和第二指示信息。
第五方面,提供了一种通信装置,包括处理器,处理器与存储器耦合,存储器用于存储计算机程序,处理器用于执行存储器中存储的计算机程序,以使得通信装置执行如第一方面及其任一项实施方式的方法。
第六方面,提供了一种通信装置,包括处理器,处理器与存储器耦合,存储器用于存储计算机程序,处理器用于执行存储器中存储的计算机程序,以使得通信装置执行如第二方面及其任一项实施方式所述的方法。
第七方面,提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,如第一方面及其任一项实施方式所述的方法被执行。
第八方面,提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,如第二方面及其任一项实施方式所述的方法被执行。
第九方面,提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,如第一方面及任一项实施方式所述的方法被执行。
第十方面,提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,如第二方面及其任一项实施方式所述的方法被执行。
第十一方面,提供了一种通信系统,包括如第三方面及其任一项所述的通信装置,以及,如第四方面及其任一项所述的通信装置。或者,包括如第五方面所述的通信装置,以及,如第六方面所述的通信装置。
第三方面到第十一方面的技术效果参照第一方面至第二方面的内容,在此不再重复。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的另一种通信系统的架构示意图;
图3为本申请实施例提供的一种电磁超表面阵列天线的结构示意图;
图4A为本申请实施例提供的一种网络编码方法的流程示意图;
图4B为本申请实施例提供的另一种网络编码方法的流程示意图;
图5为本申请实施例提供的另一种电磁超表面阵列天线的结构示意图;
图6为本申请实施例提供的一种两个终端设备通过电磁超表面阵列天线通信的示意图;
图7A为本申请实施例提供的一种不进行预处理的示意图;
图7B为本申请实施例提供的一种预处理指对相位取反的示意图;
图8为本申请实施例提供的一种通信装置的结构示意图一;
图9为本申请实施例提供的一种通信装置的结构示意图二;
图10为本申请实施例提供的一种通信装置的结构示意图三;
图11为本申请实施例提供的一种通信装置的结构示意图四;
图12为本申请实施例提供的一种装置的结构示意图。
具体实施方式
如本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
本申请的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一指示信息和第二指示信息等是用于区别不同的指示信息,而不是用于描述指示信息的特定顺序。
本申请实施例既可以应用于时分双工(time division duplexing,TDD)的场景,也可以适用于频分双工(frequency division duplexing,FDD)的场景。
本申请实施例依托无线通信网络中第五代(5th generation,5G)网络的场景进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,例如:窄带物联网系统(narrow band-internet of things,NB-IoT),长期演进系统(long term evolution,LTE),或者6G等新的通信系统,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
如图1所示,本申请实施例提供了一种通信系统,包括:中继站11、第一终端设备12和第二终端设备13。
进行间接的数据传输的第一终端设备12和第二终端设备13可以通过中继站11传输数据,由中继站11对来自第一终端设备12和第二终端设备13的数据进行网络编码后,发送给第一终端设备12和第二终端设备13。整个数据的传输和网络编码需要两个时隙来完成。
在第一个时隙,第一终端设备12和第二终端设备13在相同传输资源上同时向中继站11发送数据,第一终端设备12发送数据S 1,第二终端设备13发送数据S 2。中继站11对数据S 1和数据S 2进行网络编码得到
Figure PCTCN2021088804-appb-000001
其中,
Figure PCTCN2021088804-appb-000002
表示数据间的逻辑异或 运算。
在第二个时隙,中继站11向第一终端设备12和第二终端设备13发送网络编码后的数据
Figure PCTCN2021088804-appb-000003
第一终端设备12或第二终端设备13对其发送的数据和接收的数据进行异或操作即可得到对方发送的数据。例如,第一终端设备12对其发送的数据S 1和接收的数据
Figure PCTCN2021088804-appb-000004
进行异或操作
Figure PCTCN2021088804-appb-000005
可以得到第二终端设备13发送的数据S 2,即
Figure PCTCN2021088804-appb-000006
第二终端设备13对其发送的数据S 2和接收的数据
Figure PCTCN2021088804-appb-000007
进行异或操作
Figure PCTCN2021088804-appb-000008
可以得到第一终端设备12发送的数据S 1,即
Figure PCTCN2021088804-appb-000009
通过上述两个时隙即完成了第一终端设备12与第二终端设备13之间的数据交互。上述网络编码对应的数据状态转换如表1所示。
表1
Figure PCTCN2021088804-appb-000010
上述网络编码方法中,中继站11需要在第一个时隙对来自两个终端设备的数据在频域进行接收和解调,并进行网络编码,在第二个时隙把网络编码后的数据从频域转到时域后再发送给两个终端设备,中继站11的算法实现比较复杂。
中继站11需要实现复杂的通信协议,并且安装有源器件,功耗比较大,对能源供给要求比较高,成本也高。
两个终端设备之间的单次数据传输仍然需要两个时隙来完成,传输效率仍有提升空间。
本申请实施例提供了另一种通信系统,同样适用于两个终端设备之间的间接数据传输,如图2所示,该通信系统包括网络设备21、电磁超表面阵列天线22、第一终端设备23和第二终端设备24。
在网络设备21的覆盖范围内,第一终端设备23和第二终端设备24之间通过电磁超表面阵列天线22传输数据,第一终端设备23与电磁超表面阵列天线22之间,以及,第二终端设备24与电磁超表面阵列天线22之间是数据信道。
网络设备21为第一终端设备23和第二终端设备24的数据传输配置资源及传输方式,网络设备21还对参与数据传输的电磁超表面阵列天线的工作模式进行控制。网络设备21与第一终端设备23之间、网络设备21与第二终端设备24之间以及网络设备21与电磁超表面阵列天线22之间是控制信道。
本申请实施例中涉及的终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例包括:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery) 中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
本申请实施例中涉及的网络设备,是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例包括:5G系统中的下一代基站(next generation nodeB,gNB)、LTE系统中的演进型基站(evolutional node B,eNB或eNodeB)、传输接收点(transmission reception point,TRP)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)、或分布单元(distributed unit,DU)、或包括CU和DU的RAN设备。其中包括CU和DU的RAN设备从逻辑功能角度将协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中涉及的电磁超表面阵列天线是一种人工复合材料,包括多个亚波长尺寸的天线单元。这些天线单元以特定的方式与电磁波相互作用,具有不同于天然材料的独特电磁性质,可以产生例如负折射、完美透镜以及电磁隐身等非常规物理现象。电磁超表面阵列天线可以安装有源器件或不安装有源器件,当安装有源器件时,电磁超表面阵列天线可以对电磁超表面阵列天线与终端设备之间的上行数据信道的通信质量进行测量。如果不安装有源器件,电磁超表面阵列天线相当于全方向反射天线。
示例性的,如图3所示,每个天线单元30可以具有特定的电路结构,例如,等效于变容二极管电路,变容二极管电路包括可变电容C、电阻R、电感L1和电感L2,可变电容C、电阻R、电感L1串联后再与电感L2并联。
各个天线单元在特定频率下可产生谐振,从而使电磁波性质发生变化。对不同超材料的天线单元进行各种方式的组合,可实现对电磁波的多功能调控,使得电磁超表面阵列天线获得数字域的离散化性质。数字化的可编程电磁特性使电磁超表面阵列天线在程序的控制下(例如改变图3中的可变电容C的电容值),可以动态改变各天线单元的电磁参数,例如反射系数或透射系数的幅度及相位信息,从而以编码方式实现各类功能的电磁波参数调制。
基于图2所示的通信系统,本申请实施例提供了一种网络编码方法,由通过电磁超表面阵列天线通信的两个终端设备中的一个对待发送的待编码数据的相位进行预处理,不会改变待编码数据的能量,从而在电磁超表面阵列天线实现时域的网络编码和分发,编码效率更高。由于采用电磁超表面阵列天线的反射原理进行网络编码和分发,因此结构简单、有源器件更少、能耗低、对外部能源依懒性低、成本也低,可用于更复杂的通信场景。并且,数据的发送、网络编码和接收在同一时隙内完成,实现两个用户间的数据的实时交互,传输效率更高。
具体的,如图4A所示,本申请实施例提供了一种网络编码方法,包括S401-S409,其中,如图4B所示,步骤S403包括S4031-S4037,步骤S4031-S4034与S4035-S4037 是择一执行的,即可以执行S4031-S4034,此时由网络设备配置第一指示信息和第二指示信息。或者,执行S4035-S4037,此时由通信的两个终端设备自行协商第一指示信息和第二指示信息。
S401、网络设备获取电磁超表面阵列天线与第一终端设备之间的数据信道的第一通信质量,以及,电磁超表面阵列天线与第二终端设备之间的数据信道的第二通信质量。
本申请实施例涉及的通信质量可以包括信道增益、接收信噪比等。
第一终端设备和第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据。在一种可能的实施方式中,如果电磁超表面阵列天线安装有源器件,则电磁超表面阵列天线可以通过至少一个天线单元,对电磁超表面阵列天线与第一终端设备之间的上行数据信道的通信质量进行测量,得到第一通信质量。电磁超表面阵列天线向网络设备发送电磁超表面阵列天线与第一终端设备之间的上行数据信道的第一通信质量。相应地,网络设备从电磁超表面阵列天线获取电磁超表面阵列天线与第一终端设备之间的上行数据信道的第一通信质量。
同理,如果电磁超表面阵列天线安装有源器件,则电磁超表面阵列天线还可以通过至少一个天线单元,对电磁超表面阵列天线与第二终端设备之间的上行数据信道的通信质量进行测量,得到第二通信质量。电磁超表面阵列天线向网络设备发送电磁超表面阵列天线与第二终端设备之间的上行数据信道的第二通信质量。相应地,网络设备从电磁超表面阵列天线获取电磁超表面阵列天线与第二终端设备之间的上行数据信道的第二通信质量。
在另一种可能的实施方式中,第一终端设备可以对网络设备、电磁超表面阵列天线、第一终端设备之间的下行数据信道进行测量,得到第一通信质量。第一终端设备向网络设备发送网络设备、电磁超表面阵列天线、第一终端设备之间的下行数据信道的第一通信质量。相应地,网络设备从第一终端设备获取网络设备、电磁超表面阵列天线、第一终端设备之间的下行数据信道的第一通信质量。
同理,第二终端设备可以对网络设备、电磁超表面阵列天线、第二终端设备之间的下行数据信道进行测量,得到第二通信质量。第二终端设备向网络设备发送网络设备、电磁超表面阵列天线、第二终端设备之间的下行数据信道的第二通信质量。相应地,网络设备从第二终端设备获取网络设备、电磁超表面阵列天线、第二终端设备之间的下行数据信道的第二通信质量。
步骤S401是可选的,可以周期性执行,或者,可以在第一终端设备与第二终端设备通信前执行。
S402、网络设备根据第一通信质量和第二通信质量,向电磁超表面阵列天线发送配置参数。
其中,配置参数用于调节电磁超表面阵列天线中各天线单元的相位。
在一种可能的实施方式中,配置参数可以包括至少一个天线单元的相位值,电磁超表面阵列天线根据该配置参数调节对应的天线单元的相位,可以实现对各个天线单元的相位的精确控制。
在另一种可能的实施方式中,网络设备和电磁超表面阵列天线中存储相同的索引 表,索引表的不同索引值对应不同的相位矩阵,相位矩阵中每一个相位值与电磁超表面阵列天线的一个天线单元的相位对应。配置参数可以包括索引表的索引值,电磁超表面阵列天线根据索引值查找对应的相位矩阵,根据相位矩阵对所有天线单元的相位进行调节,可以实现对整个电磁超表面阵列天线的所有天线单元的相位的快速调节。
如图5所示,电磁超表面阵列天线可以包括N个子阵列,每个子阵列可以为不同终端设备提供服务。第n(1≤n≤N)个子阵列中包括K n个天线单元,各个子阵列中包括的天线单元的数量可以相同或不同。每个天线单元对入射电磁波的相位和幅度均可实现独立控制,天线单元k n的反射系数为
Figure PCTCN2021088804-appb-000011
其中
Figure PCTCN2021088804-appb-000012
为反射系数的幅度,
Figure PCTCN2021088804-appb-000013
为反射系数的相位,则电磁超表面阵列天线的反射信号可以表示为:
Figure PCTCN2021088804-appb-000014
其中,C n表示第n个子阵列的等效孔径,C表示该电磁超表面阵列天线的等效孔径。子阵列或电磁超表面阵列天线的分辨率等于等效孔径的倒数,等效孔径越大,角度分辨率越高,天线增益越高。通过配置这些参数,可实现电磁超表面阵列天线对不同传输环境的最优覆盖。通过控制等效孔径C,可以控制终端设备之间进行数据交互的时隙和频率,实现收发数据在时隙上的对齐。通过配置电磁超表面阵列天线的相位,例如相位分布或相位梯度,可以实现网络编码功能。相位分布可以包括高斯相位分布,用于实现全方向辐射。相位梯度指相邻天线单元的相位差。
步骤S402是可选的,可以在步骤S401后执行,或者,可以在第一终端设备与第二终端设备进行通信之前执行。
S403、第一终端设备确定第一指示信息,第二终端设备确定第二指示信息。
在一种可能的实施方式中,可以由网络设备配置第一指示信息和第二指示信息。此时,如图4B所示,步骤S403包括步骤S4031-S4034。
在另一种可能的实施方式中,由通信的第一终端设备和第二终端设备自行协商第一指示信息和第二指示信息。此时,如图4B所示,步骤S403包括步骤S4035-S4037。
S4031、第一终端设备向网络设备发送第一信息。
相应地,网络设备从第一终端设备接收第一信息。第一信息包括以下信息中的至少一个:第一请求信息、第一终端设备的干扰水平、第一终端设备的处理能力。其中,第一请求信息用于请求是否对第一终端设备待发送的第一待编码数据的相位进行预处理。
终端设备的干扰水平包括本终端设备的收发天线之间的自干扰,或者,其他终端设备对本终端设备的干扰,或者,上述这两种干扰之和。对于收发天线之间的自干扰来说,终端设备可以测量在同时收发条件下收发天线之间的互干扰水平(即自干扰)。一种可能的实施方式中,终端设备的收发天线之间的自干扰水平在出厂参数中有表可查,则可以不必测量,直接向网络设备发送其自干扰水平。
终端设备的处理能力指终端设备对待编码数据的相位进行预处理的能力,可能的,网络设备可以指示终端设备解算一复杂数学命题,例如,网络设备为终端设备动态配 置一个初始化参数,终端设备根据该初始化参数生成一组数据来求解预定义的方程(或方程组),或者,终端设备根据该初始化参数对某序列进行CRC校验,终端设备向网络设备发送计算所耗费的时间,即相当于上报了该终端设备的处理能力。
本申请实施例涉及的对待编码数据的相位进行预处理的范围为[π-α,π+β],其中0≤α,β≤π/4。即对待编码数据的模拟信号的相位偏移一定角度,该角度属于[π-α,π+β]。示例性的,α=β=0时,即对待编码数据的相位进行预处理指对待编码数据的相位取反。
需要说明的是,对待编码数据的相位进行预处理的范围[π-α,π+β],可以包括α=β=π/4的情况,也可以不包括α=β=π/4的情况。
下文中将对两个终端设备中的一个终端设备待发送的待编码数据的相位进行预处理进行详细说明。
步骤S4031是可选的,可以在第一终端设备在初始接入时执行,或者,由于第一终端设备的通信质量是变化的,也可以在第一终端设备与第二终端设备进行通信之前执行。
S4032、第二终端设备向网络设备发送第二信息。
相应地,网络设备从第二终端设备接收第二信息。第二信息包括以下信息中的至少一个:第二请求信息、第二终端设备的干扰水平、第二终端设备的处理能力;其中,第二请求信息用于请求是否对第二终端设备待发送的第二待编码数据的相位进行预处理。
本申请不限定第一信息或第二信息的具体命名方式。
步骤S4032是可选的,可以在第二终端设备在初始接入时执行;由于第二终端设备的通信质量是变化的,也可以在第二终端设备与第一终端设备通信前执行。
步骤S4031和步骤S4032无先后执行顺序。
S4033、网络设备根据第一信息和第二信息,确定第一指示信息和第二指示信息。
其中,第一指示信息用于指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息用于指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。或者,第一指示信息用于指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息用于指示对第二终端设备待发送的第二待编码数据的相位进行预处理。
也就是说,网络设备指示第一终端设备或者第二终端设备中的一个对待发送的待编码数据的相位进行预处理,另一个不对待发送的待编码数据的相位进行预处理。
示例性的,假设第一请求信息请求对第一待编码数据的相位进行预处理,第二请求信息请求不对第二待编码数据的相位进行预处理。则第一指示信息指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
假设第一请求信息请求不对第一待编码数据的相位进行预处理,第二请求信息请求对第二待编码数据的相位进行预处理。则第一指示信息指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示对第二终端设备待发送的第二待编码数据的相位进行预处理。
假设第一请求信息请求对第一待编码数据的相位进行预处理,第二请求信息请求对第二待编码数据的相位进行预处理。则由网络设备自行决定第一指示信息和第二指示信息,例如,任选第一终端设备或第二终端设备中的一个对待编码数据的相位进行处理。此时,第一指示信息指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示对第二终端设备待发送的第二待编码数据的相位进行预处理;或者,第一指示信息指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
示例性的,假设第一终端设备的干扰水平低于第二终端设备的干扰水平,则第一指示信息指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
假设第一终端设备的干扰水平高于第二终端设备的干扰水平,则第一指示信息指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示对第二终端设备待发送的第二待编码数据的相位进行预处理。
假设第一终端设备的干扰水平与第二终端设备的干扰水平相同。则由网络设备自行决定第一指示信息和第二指示信息,例如,任选第一终端设备或第二终端设备中的一个对待编码数据的相位进行处理。此时,第一指示信息指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示对第二终端设备待发送的第二待编码数据的相位进行预处理;或者,第一指示信息指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
示例性的,假设第一终端设备的处理能力高于第二终端设备的处理能力,则第一指示信息指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
假设第一终端设备的处理能力低于第二终端设备的处理能力,则第一指示信息指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示对第二终端设备待发送的第二待编码数据的相位进行预处理。
假设第一终端设备的处理能力与第二终端设备的处理能力相同。则由网络设备自行决定第一指示信息和第二指示信息,例如,任选第一终端设备或第二终端设备中的一个对待编码数据的相位进行处理。此时,第二指示信息指示对第二终端设备待发送的第二待编码数据的相位进行预处理;或者,第一指示信息指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
示例性的,假设第一请求信息请求对第一待编码数据进行预处理,第二请求信息请求对第二待编码数据的相位进行预处理。则网络设备可以进一步根据两个终端设备的干扰水平或处理能力按照上述方式来确定第一指示信息和第二指示信息。
需要说明的是,来自终端设备的请求信息、干扰水平、处理能力可以具有优先级。网络设备可以根据第一信息或第二信息中同一类型信息的优先级,确定第一指示信息和第二指示信息。
示例性的,假设第一终端设备的干扰水平高于第二终端设备的干扰水平,第一终端设备的处理能力高于第二终端设备的处理能力,如果干扰水平的优先级高于处理能力的优先级,则第一指示信息指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息指示对第二终端设备待发送的第二待编码数据的相位进行预处理。
步骤S4033是可选的,可以在步骤S4031和步骤S4032后执行,或者,可以在第一终端设备与第二终端设备通信前执行。
S4034、网络设备向第一终端设备发送第一指示信息,向第二终端设备发送第二指示信息。
相应地,第一终端设备从网络设备接收第一指示信息,第二终端设备从网络设备接收第二指示信息。
针对对相位进行预处理时α和β的不同取值,第一指示信息或第二指示信息占用的比特位是不同的:
如果α=β=0,则第一指示信息或第二指示信息可以占一比特位,例如,第一指示信息取值为1时,表示对第一终端设备待发送的第一待编码数据的相位进行预处理;取值为0时,表示不对第一终端设备待发送的第一待编码数据的相位进行预处理。第二指示信息取值为1时,表示对第二终端设备待发送的第二待编码数据的相位进行预处理;取值为0时,表示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
如果α和β不为0,α和β可以是预定义的离散数值对,则第一指示信息或第二指示信息可以占多个比特位。
需要说明的是,网络设备向第一终端设备发送第一指示信息,网络设备向第二终端设备发送第二指示信息,这二者可以只执行一个。例如,只执行网络设备向第一终端设备发送第一指示信息,或者,只执行网络设备向第二终端设备发送第二指示信息。
如果第一终端设备没有从网络设备接收第一指示信息,则第一终端设备确定第一指示信息指示不对第一终端设备待发送的第一待编码数据的相位进行预处理。如果第二终端设备没有从网络设备接收第二指示信息,则第二终端设备确定第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
第一终端设备和第二终端设备可以分别向网络设备发送一个指示信息,来指示二者未协商成功;或者,第一终端设备和第二终端设备后续可以再在第一传输资源上进行协商。
S4035、网络设备向第一终端设备和第二终端设备发送第三指示信息。
相应地,第一终端设备和第二终端设备从网络设备接收第三指示信息。
其中,第三指示信息用于指示第一终端设备与第二终端设备协商第一指示信息或第二指示信息的第一传输资源。
S4036、第一终端设备根据在第一传输资源上与第二终端设备的协商结果确定第一指示信息。
第一终端设备和第二终端设备可以在第一传输资源上通过信令交互自行协商第一指示信息或第二指示信息。
示例性的,第一终端设备在第一传输资源上向第二终端设备请求对第一终端设备待发送的第一待编码数据的相位进行预处理,第二终端设备在第一传输资源上向第一终端设备请求不对第二终端设备等发送的第二待编码数据的相位进行预处理。则第一终端设备可以确定第一指示信息指示对第一终端设备待发送的第一待编码数据的相位进行预处理,并在后续的数据传输过程中遵循协商结果。
S4037、第二终端设备根据在第一传输资源上与第一终端设备的协商结果确定第二指示信息。
接续步骤S4036中的示例,则第二终端设备可以确定第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理,并在后续的数据传输过程中遵循协商结果。
步骤S4036和步骤S4037无先后执行顺序。一种可能的实现中,步骤S4036和步骤S4037可以同时执行。
需要说明的是,如果第一终端设备未在第一传输资源上与第二终端设备协商得到结果(步骤S4036不成功或未执行),一种可能的实现中,该第一终端设备确定第一指示信息指示不对第一终端设备待发送的第一待编码数据的相位进行预处理。
同理,如果第二终端设备未在第一传输资源上与第一终端设备协商得到结果(步骤S4037不成功或未执行),则确定第二指示信息指示不对第二终端设备待发送的第二待编码数据的相位进行预处理。
在一种可能的实现中,当第一终端设备和第二终端设备未得到协商结果,第一终端设备和第二终端设备可以分别向网络设备发送一个指示信息,用于指示二者未协商成功;或者,第一终端设备和第二终端设备在第一传输资源上进行再次协商。
S404、网络设备向第一终端设备和第二终端设备发送第四指示信息。
相应地,第一终端设备和第二终端设备从网络设备接收第四指示信息。
第四指示信息用于指示承载第一终端设备和第二终端设备之间通过电磁超表面阵列天线传输数据的第二传输资源。
如果第二传输资源远大于第一传输资源,则步骤S4035-S4037所描述的基于终端设备之间协商第一指示信息和第二指示信息的方式不会明显降低传输效率。
具体的,网络设备可以根据第一通信质量和第二通信质量,向第一终端设备和第二终端设备发送第四指示信息。例如,可以选择对第一终端设备和第二终端设备干扰均较小的传输资源作为第二传输资源。
需要说明的是,步骤S404是可选的,步骤S404与步骤S4031-S4034无先后执行顺序,步骤S404与步骤S4035-S4037无先后执行顺序。或者,可以在第一终端设备与第二终端设备通信前执行。
例如,网络设备可以先发送第一指示信息和第二指示信息,当第一终端设备和第二终端设备之间传输数据时,再发送第四指示信息,如果不需要传输数据时,则可以不发送第四指示信息;或者,网络设备可以先发送第四指示信息,当第一终端设备和第二终端设备要之间传输数据时,再发送第一指示信息和第二指示信息,如果不需要传输数据时,则可以不发送第一指示信息和第二指示信息。
同理,网络设备可以先发送第三指示信息,当第一终端设备和第二终端设备之间 传输数据时,再发送第四指示信息,如果不需要传输数据时,则可以不发送第四指示信息;或者,网络设备可以先发送第四指示信息,当第一终端设备和第二终端设备之间传输数据时,再发送第三指示信息,如果不需要传输数据时,则可以不发送第三指示信息。
第一指示信息和第四指示信息可以在一条配置消息中传输,或者,也可以在不同配置消息中传输,例如,第一指示信息(或第二指示信息)可以在下行控制信息(downlink control information,DCI)中传输,第四指示信息可以在其他类型的消息中传输,例如无线资源控制(radio resource control,RRC)消息、媒体访问控制控制信元(media access control control element,MAC CE)消息。同理,第二指示信息和第四指示信息可以在一条配置消息中传输,或者,也可以在不同配置消息中传输。第三指示信息和第四指示信息可以在一条配置消息中传输,或者,也可以在不同配置消息中传输。
本申请不限定承载上述指示信息的消息的形式,例如,可以是DCI、RRC消息、MAC CE消息等。
S405、第一终端设备在第二传输资源的第一时隙向电磁超表面阵列天线发送第三待编码数据。
其中,第三待编码数据为根据第一指示信息和第一待编码数据得到。
示例性的,如图6所示,假设第一终端设备23待发送的第一待编码数据为S 1,第一指示信息指示不对第一终端设备待发送的第一待编码数据S 1的相位进行预处理,则第一终端设备发送的第三待编码数据
Figure PCTCN2021088804-appb-000015
与第一待编码数据S 1相同,即
Figure PCTCN2021088804-appb-000016
S406、第二终端设备在第二传输资源的第一时隙向电磁超表面阵列天线发送第四待编码数据。
其中,第四待编码数据为根据第二指示信息和第二待编码数据得到。
示例性的,如图6所示,假设第二终端设备24待发送的第二待编码数据为S 2,第二指示信息指示对第二终端设备待发送的第二待编码数据S 2的相位进行预处理,则第二终端设备发送的第四待编码数据
Figure PCTCN2021088804-appb-000017
为对第二待编码数据S 2的相位进行预处理后的待编码数据。
S407、第二终端设备和第二终端设备在第一时隙从电磁超表面阵列天线接收第一网络编码数据。
示例性的,如图6所示,第一终端设备23和第二终端设备24在相同传输资源(第二传输资源)的同一时隙(第一时隙)向电磁超表面阵列天线22发送待编码数据,这两个待编码数据同时到达电磁超表面阵列天线22并在时域进行网络编码(时域叠加),得到第一网络编码数据
Figure PCTCN2021088804-appb-000018
电磁超表面阵列天线22无需对待编码数据或网络编码数据进行主动处理,即可以在第一时隙直接将网络编码后的第一网络编码数据
Figure PCTCN2021088804-appb-000019
反射给第一终端设备23和第二终端设备24。
S408、第一终端设备根据第三待编码数据和第一网络编码数据,得到来自第二终端设备的第二待编码数据。
第一终端设备对其发送的第三待编码数据
Figure PCTCN2021088804-appb-000020
和接收的第一网络编码数据
Figure PCTCN2021088804-appb-000021
进行异或操作,即可得到来自第二终端设备的第四待编码数据
Figure PCTCN2021088804-appb-000022
Figure PCTCN2021088804-appb-000023
终端设备根据接收的模拟信号得到对应的数字信号的原理如下:终端设备对接收的模拟信号的能量进行积分得到积分值,再将积分值与门限进行比较,如果大于门限则对应的数字信号为1,否则对应的数字信号为0。
由于对待编码数据的相位进行预处理,并不会改变待编码数据的模拟信号的能量,所以第四待编码数据
Figure PCTCN2021088804-appb-000024
的模拟信号与第二待编码数据S 2的模拟信号的能量积分是相同的,所以识别的对应的数字信号是相同的,因此得到第四待编码数据
Figure PCTCN2021088804-appb-000025
即相当于得到了第二待编码数据S 2
S409、第二终端设备根据第四待编码数据和第一网络编码数据,得到来自第一终端设备的第一待编码数据。
第二终端设备对其发送的第四待编码数据
Figure PCTCN2021088804-appb-000026
和接收的第一网络编码数据
Figure PCTCN2021088804-appb-000027
进行异或操作,即可得到来自第一终端设备的第三待编码数据
Figure PCTCN2021088804-appb-000028
Figure PCTCN2021088804-appb-000029
同理,第四待编码数据
Figure PCTCN2021088804-appb-000030
的模拟信号与第二待编码数据S 2对应的数字信号是相同的,因此得到第三待编码数据
Figure PCTCN2021088804-appb-000031
即相当于得到了第一待编码数据S 1
如图7A所示,如果不对第一网络编码数据S 1和第二网络编码数据S 2的相位进行预处理,在电磁超表面阵列天线处进行时域叠加得到S 1+S 2时,两个“1”对应的模拟信号由于能量进行时域叠加后大于门限,得到的第一网络编码数据仍为“1”。上述网络编码对应的数据状态转换如表2所示。
表2
Figure PCTCN2021088804-appb-000032
针对序号1对应这一行,第一终端设备和第二终端设备仍将发送的待编码数据和接收的网络编码数据进行异或操作,则均会将对方发送的待编码数据“1”错误地识别为“0”。
但是如果对其中一个终端设备待发送的待编码数据的相位进行预处理,使得两个“1”对应的模拟信号在相位上有偏移,那么进行时域叠加时会对能量有抵销作用。这个抵销作用与对相位进行预处理时相位的偏移角度相关,两个“1”对应的模拟信号的相位的偏移角度越接近π则抵销作用越明显,时域叠加后的能量越可能小于门限,即越可能被识别为“0”。当偏移角度为π时,即对其中一个终端设备待发送的待编码数据的相位进行取反,则时域叠加后的能量为零,此时发生误判的概率是最低的。
示例性的,如图7B所示,假设对第二终端设备待发送的第二待编码数据S 2的相位进行取反得到第四待编码数据
Figure PCTCN2021088804-appb-000033
不对第一终端设备待发送的第一待编码数据S 1的相位进行取反得到第三待编码数据
Figure PCTCN2021088804-appb-000034
第三待编码数据和第四待编码数据和电磁超表面阵列天线处进行时域叠加得到第一网络编码数据S 1-S 2,两个“1”对应的模拟信号由于能量相同相位相反,进行时域叠加后能量为零,小于门限,得到的第一网络编码数据为“0”。
上述网络编码对应的数据状态转换如表3所示。
表3
Figure PCTCN2021088804-appb-000035
从以上实施方式可以看出,只通过一个时隙即完成了第一终端设备与第二终端设备之间的数据交互,相比两个时隙,传输效率更高。
对于新配对的第一终端设备和第二终端设备,网络设备需要重新执行步骤S402、S4033、S4034、S4035、S404。对于不是新配对的第一终端设备和第二终端设备,则每次相互之间有数据传输时,则两个终端设备可以直接执行步骤S405-S409。
需要说明的是,以上实施例假设终端设备的收发天线的自干扰水平很小,但在实际应用中终端设备的收发天线有多种形式。如果终端设备使用不同的定向天线进行发送和接收,则收发天线间的干扰比较小,可以直接采用上述方案。如果终端设备使用全向天线进行收发,则终端设备在接收端先采用串行干扰消除(serial interference cancellation,SIC)接收机进行自干扰消除后,再解调接收到的数据。如果需要提高接收信号强度,网络设备可以对电磁超表面阵列天线配置波束赋形(beamforming)命令,针对两个终端设备的方向形成波束,用于发送网络编码数据。
本申请实施例提供的网络编码方法,由两个终端设备中的一个对待编码数据的相位进行预处理,并在相同传输资源、相同时隙向电磁超表面阵列天线发送待编码数据,在电磁超表面阵列天线实现时域的网络编码和分发,即对信号进行时域叠加并反射,数据的发送、网络编码和接收在同一时隙内完成,从而提高两个终端设备之间进行间接数据传输的效率。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为终端设备内的芯片或功能模块。或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为网络设备内的芯片或功能模块。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的第一终端设备或第二终端设备为例。图8示出了一种通信装置80的结构示意图。该通信装置80包括处理模块801和收发模块802。该通信装置80可以为图2中第一终端设备或第二终端设备。处理模块801也可以称为处理单元,用以实现上述方法实施例中第一终端设备或第二终端设备的处理功能。例如执行图4A中的步骤S403、S408、S409,或者,执行图4B中的步骤S4036、S4037、S408、S409。收发模块802,也可以称为收发单元,用以实现上述方法实施例中终端设备的收发功能。例如执行图4A中的步骤S404、S405、S406、S407执行图4B中的步骤S4031、S4032、S4034、S4035、S404、S405、S406、S407。收发模块802可以称为收发电路、收发机、收发器或者通信接口。
示例性的,处理模块801,用于确定第一指示信息,其中,第一指示信息用于指示是否对通信装置待发送的第一待编码数据的相位进行预处理。
该通信装置800和第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据,包括:
收发模块802,用于在第二传输资源的第一时隙向电磁超表面阵列天线发送第三待编码数据,并在第一时隙从电磁超表面阵列天线接收第一网络编码数据;其中,第三待编码数据为根据第一指示信息和第一待编码数据得到。
处理模块801,用于根据第三待编码数据和第一网络编码数据,得到来自第二终端设备的第二待编码数据。
在一种可能的实施方式中,收发模块802,用于从网络设备接收第一指示信息。
在一种可能的实施方式中,收发模块802,用于从网络设备接收第三指示信息,其中,第三指示信息用于指示通信装置与第二终端设备协商第一指示信息的第一传输资源;通信装置和第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据。处理模块801,用于根据在第一传输资源上与第二终端设备的协商结果确定第一指示信息。
在一种可能的实施方式中,收发模块802,还用于从网络设备接收第四指示信息,其中,第四指示信息用于指示承载通信装置和第二终端设备之间通过电磁超表面阵列天线传输数据的第二传输资源。
在一种可能的实施方式中,收发模块802,还用于在第二传输资源的第一时隙向电磁超表面阵列天线发送第三待编码数据,并在第一时隙从电磁超表面阵列天线接收第一网络编码数据;其中,第三待编码数据为根据第一指示信息和第一待编码数据得到;处理模块801,还用于根据第三待编码数据和第一网络编码数据,得到来自第二终端设备的第二待编码数据。
在一种可能的实施方式中,处理模块801,具体用于:对第三待编码数据和第一网络编码数据进行异或操作,得到第二待编码数据。
在一种可能的实施方式中,收发模块802,在从网络设备接收第一指示信息之前,还用于向网络设备发送第一信息,第一信息包括以下信息中的至少一个:第一请求信息、通信装置的干扰水平、通信装置的处理能力;其中,第一请求信息用于请求是否对第一待编码数据的相位进行预处理,第一信息用于确定第一指示信息。
在一种可能的实施方式中,收发模块802,在从网络设备接收第四指示信息之前,还用于向网络设备发送网络设备、电磁超表面阵列天线、通信装置之间的下行数据信道的第一通信质量,第一通信质量用于确定所述第二传输资源。
在一种可能的实施方式中,处理模块801,具体用于:对第三待编码数据和第一网络编码数据进行异或操作,得到第二待编码数据。
在本实施例中,该通信装置80以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
具体的,图8中的处理模块801的功能/实现过程可以通过终端设备中的处理器调用存储器中存储的计算机执行指令来实现。图8中的收发模块802的功能/实现过程可以通过终端设备中的无线射频(radio frequency,RF)电路来实现。
由于本实施例提供的通信装置80可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
以通信装置为上述方法实施例中的网络设备为例。图9示出了一种通信装置90的结构示意图。该通信装置90包括处理模块901和收发模块902。该通信装置90可以为图2中网络设备。处理模块901也可以称为处理单元,用以实现上述方法实施例中网络设备的处理功能。例如执行图4B中的步骤S4033。收发模块902,也可以称为收发单元,用以实现上述方法实施例中网络设备的收发功能。例如执行图4A中的步骤S401、S402、S404,或者,执行图4B中的步骤S401、S402、S4031、S4034、S4035、S404。收发模块902可以称为收发电路、收发机、收发器或者通信接口。
示例性的,收发模块902,用于向第一终端设备发送第一指示信息,或者,收发模块902,用于向第一终端设备和第二终端设备发送第三指示信息,其中,第三指示信息用于指示第一终端设备与第二终端设备协商第一指示信息或第二指示信息的第一传输资源。其中,第一指示信息用于指示对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息用于指示不对第二终端设备待发送的第二待编码数据的相位进行预处理;或者,第一指示信息用于指示不对第一终端设备待发送的第一待编码数据的相位进行预处理,第二指示信息用于指示对第二终端设备待发送的第二待编码数据的相位进行预处理。
在一种可能的实施方式中,对于向第一终端设备发送第一指示信息,收发模块902,还用于:向第二终端设备发送第二指示信息。
在一种可能的实施方式中,收发模块902,还用于向第一终端设备和第二终端设备发送第四指示信息,其中,第四指示信息用于指示承载第一终端设备和第二终端设备之间通过电磁超表面阵列天线传输数据的第二传输资源。
在一种可能的实施方式中,收发模块902,还用于获取电磁超表面阵列天线与第一终端设备之间的数据信道的第一通信质量,以及,电磁超表面阵列天线与第二终端 设备之间的数据信道的第二通信质量。
在一种可能的实施方式中,收发模块902,具体用于:从电磁超表面阵列天线获取电磁超表面阵列天线与第一终端设备之间的上行数据信道的第一通信质量;从电磁超表面阵列天线获取电磁超表面阵列天线与第二终端设备之间的上行数据信道的第二通信质量。
在一种可能的实施方式中,收发模块902,具体用于:从第一终端设备获取通信装置、电磁超表面阵列天线、第一终端设备之间的下行数据信道的第一通信质量;从第二终端设备获取通信装置、电磁超表面阵列天线、第二终端设备之间的下行数据信道的第二通信质量。
在一种可能的实施方式中,收发模块902,还用于:根据第一通信质量和第二通信质量,向电磁超表面阵列天线发送配置参数,配置参数用于调节电磁超表面阵列天线中各天线单元的相位。
在一种可能的实施方式中,在收发模块902向第一终端设备发送第一指示信息之前,收发模块902,还用于从第一终端设备接收第一信息,第一信息包括以下信息中的至少一个:第一请求信息、第一终端设备的干扰水平、第一终端设备的处理能力;其中,第一请求信息用于请求是否对第一待编码数据的相位进行预处理;收发模块902,还用于从第二终端设备接收第二信息,第二信息包括以下信息中的至少一个:第二请求信息、第二终端设备的干扰水平、第二终端设备的处理能力;其中,第二请求信息用于请求是否对第二待编码数据的相位进行预处理;处理模块901,用于根据第一信息和第二信息,确定第一指示信息和第二指示信息。
在本实施例中,该通信装置90以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
具体的,图9中的处理模块901的功能/实现过程可以通过网络设备中的处理器调用存储器中存储的计算机执行指令来实现。或者,图9中的收发模块902的功能/实现过程可以通过网络设备中的RF电路来实现。
由于本实施例提供的通信装置90可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
如图10所示,本申请实施例还提供了一种通信装置,该通信装置100包括处理器1001、存储器1002和收发器1003,处理器1001与存储器1002耦合,当处理器1001执行存储器1002中的计算机程序或指令时,图4A或图4B中第一终端设备或第二终端设备对应的方法被执行。
如图11所示,本申请实施例还提供了一种通信装置,该通信装置110包括处理器1101、存储器1102和收发器1103,处理器1101与存储器1102耦合,当处理器1101执行存储器1102中的计算机程序或指令时,图4A或图4B中网络设备对应的方法被执行。
如图12所示,本申请实施例还提供了一种装置1200,可以用于执行上述终端设备或网络设备所执行的方法,该装置1200可以是通信设备或者通信设备中的芯片。所述装置1200包括:至少一个输入接口(input(s))1201、逻辑电路1202、至少一个输 出接口(output(s))1203。可选的,上述的逻辑电路1202可以是芯片,或其他可以实现本申请方法的集成电路。
逻辑电路1202可以实现上述各个实施例中终端设备或网络设备所执行的方法;
输入接口1201用于接收数据;输出接口1203用于发送数据。举例来说,当该装置1200为终端设备时,输入接口1201可以用于接收由网络设备发送的第一指示信息、第二指示信息、第三指示信息和第四指示信息,还可以用于接收由电磁超表面阵列天线发送的第一网络编码数据;输出接口1203可以用于向网络设备发送第一通信质量、第二通信质量、第一信息和第二信息,还可以用于向电磁超表面阵列天线发送第一待编码数据和第二待编码数据。当该装置1200为网络设备时,输入接口1201可以用于从终端设备接收第一信息和第二信息,还可以用于从终端设备或电磁超表面阵列天线接收第一通信质量和第二通信质量;输出接口1203可以用于向终端设备发送第一指示信息、第二指示信息、第三指示信息和第四指示信息,还可以用于向电磁超表面阵列天线发送配置参数。
输入接口1201、逻辑电路1202或输出接口1203的功能可以参考上述各个实施例中终端设备或网络设备执行的方法,此处不再赘述。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机或处理器上运行时,图4A或图4B中第一终端设备或第二终端设备对应的方法被执行。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机或处理器上运行时,图4A或图4B中网络设备对应的方法被执行。
本申请实施例还提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,图4A或图4B中第一终端设备或第二终端设备对应的方法被执行。
本申请实施例还提供了一种包含指令的计算机程序产品,当指令在计算机或处理器上运行时,图4A或图4B中网络设备对应的方法被执行。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于通信装置执行图4A或图4B中第一终端设备或第二终端设备对应的方法,或者,执行图4A或图4B中网络设备对应的方法。
在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存必要的程序指令和数据。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的通信装置、芯片、计算机存储介质、计算机程序产品或芯片系统均用于执行上文所述的方法,因此,其所能达到的有益效果可参考上文所提供的实施方式中的有益效果,此处不再赘述。
本申请实施例涉及的处理器可以是一个芯片。例如,可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制 器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例涉及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该 计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种网络编码方法,其特征在于,包括:
    第一终端设备确定第一指示信息,其中,所述第一指示信息用于指示是否对所述第一终端设备待发送的第一待编码数据的相位进行预处理;
    所述第一终端设备和第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据,包括:
    所述第一终端设备在第二传输资源的第一时隙向所述电磁超表面阵列天线发送第三待编码数据,并在所述第一时隙从所述电磁超表面阵列天线接收第一网络编码数据;其中,所述第三待编码数据为根据所述第一指示信息和所述第一待编码数据得到;
    所述第一终端设备根据所述第三待编码数据和所述第一网络编码数据,得到来自第二终端设备的第二待编码数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备确定第一指示信息,包括:
    所述第一终端设备从网络设备接收所述第一指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述第一终端设备从网络设备接收所述第一指示信息之前,还包括:
    所述第一终端设备向所述网络设备发送第一信息,所述第一信息包括以下信息中的至少一个:第一请求信息、所述第一终端设备的干扰水平、所述第一终端设备的处理能力;其中,所述第一请求信息用于请求是否对所述第一待编码数据的相位进行预处理,所述第一信息用于确定所述第一指示信息。
  4. 根据权利要求1所述的方法,其特征在于,所述第一终端设备确定第一指示信息,包括:
    所述第一终端设备从网络设备接收第三指示信息,其中,所述第三指示信息用于指示所述第一终端设备与所述第二终端设备协商所述第一指示信息的第一传输资源;
    所述第一终端设备根据在所述第一传输资源上与所述第二终端设备的协商结果确定所述第一指示信息。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,还包括:
    所述第一终端设备从网络设备接收第四指示信息,其中,所述第四指示信息用于指示所述第二传输资源。
  6. 根据权利要求5所述的方法,其特征在于,在所述第一终端设备从所述网络设备接收第四指示信息之前,还包括:
    所述第一终端设备向所述网络设备发送所述网络设备、所述电磁超表面阵列天线、所述第一终端设备之间的下行数据信道的第一通信质量,所述第一通信质量用于确定所述第二传输资源。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一终端设备根据所述第三待编码数据和所述第一网络编码数据,得到来自第二终端设备的第二待编码数据,包括:
    所述第一终端设备对所述第三待编码数据和所述第一网络编码数据进行异或操作,得到所述第二待编码数据。
  8. 一种网络编码方法,其特征在于,包括:
    网络设备向第一终端设备发送第一指示信息;
    或者,
    所述网络设备向所述第一终端设备和第二终端设备发送第三指示信息,其中,所述第三指示信息用于指示所述第一终端设备与所述第二终端设备协商所述第一指示信息或第二指示信息的第一传输资源;
    其中,所述第一指示信息用于指示对所述第一终端设备待发送的第一待编码数据的相位进行预处理,所述第二指示信息用于指示不对所述第二终端设备待发送的第二待编码数据的相位进行预处理;或者,所述第一指示信息用于指示不对所述第一终端设备待发送的第一待编码数据的相位进行预处理,所述第二指示信息用于指示对所述第二终端设备待发送的第二待编码数据的相位进行预处理。
  9. 根据权利要求8所述的方法,其特征在于,对于所述网络设备向所述第一终端设备发送第一指示信息,还包括:
    所述网络设备向所述第二终端设备发送所述第二指示信息。
  10. 根据权利要求8或9所述的方法,其特征在于,还包括:
    所述网络设备向所述第一终端设备和所述第二终端设备发送第四指示信息,其中,所述第四指示信息用于指示承载所述第一终端设备和所述第二终端设备之间通过电磁超表面阵列天线传输数据的第二传输资源。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    所述网络设备获取所述电磁超表面阵列天线与所述第一终端设备之间的数据信道的第一通信质量,以及,所述电磁超表面阵列天线与所述第二终端设备之间的数据信道的第二通信质量。
  12. 根据权利要求11所述的方法,其特征在于,所述网络设备获取电磁超表面阵列天线与第一终端设备之间的数据信道的第一通信质量,以及,所述电磁超表面阵列天线与第二终端设备之间的数据信道的第二通信质量,包括:
    所述网络设备从所述电磁超表面阵列天线获取所述电磁超表面阵列天线与所述第一终端设备之间的上行数据信道的第一通信质量;
    所述网络设备从所述电磁超表面阵列天线获取所述电磁超表面阵列天线与所述第二终端设备之间的上行数据信道的第二通信质量。
  13. 根据权利要求11所述的方法,其特征在于,所述网络设备获取电磁超表面阵列天线与第一终端设备之间的数据信道的第一通信质量,以及,所述电磁超表面阵列天线与第二终端设备之间的数据信道的第二通信质量,包括:
    所述网络设备从所述第一终端设备获取所述网络设备、所述电磁超表面阵列天线、所述第一终端设备之间的下行数据信道的第一通信质量;
    所述网络设备从所述第二终端设备获取所述网络设备、所述电磁超表面阵列天线、所述第二终端设备之间的下行数据信道的第二通信质量。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,还包括:
    所述网络设备根据所述第一通信质量和所述第二通信质量,向所述电磁超表面阵列天线发送配置参数,所述配置参数用于调节所述电磁超表面阵列天线中各天线单元 的相位。
  15. 根据权利要求11-13任一项所述的方法,其特征在于,还包括:
    所述第一通信质量和所述第二通信质量还用于确定所述第二传输资源。
  16. 根据权利要求8-15任一项所述的方法,其特征在于,在所述网络设备向第一终端设备发送第一指示信息之前,还包括:
    所述网络设备从所述第一终端设备接收第一信息,所述第一信息包括以下信息中的至少一个:第一请求信息、所述第一终端设备的干扰水平、所述第一终端设备的处理能力;其中,所述第一请求信息用于请求是否对所述第一待编码数据的相位进行预处理;
    所述网络设备从所述第二终端设备接收第二信息,所述第二信息包括以下信息中的至少一个:第二请求信息、所述第二终端设备的干扰水平、所述第二终端设备的处理能力;其中,所述第二请求信息用于请求是否对所述第二待编码数据的相位进行预处理;
    所述网络设备根据所述第一信息以及所述第二信息,确定所述第一指示信息和所述第二指示信息。
  17. 一种通信装置,其特征在于,包括处理模块和收发模块:
    所述处理模块,用于确定第一指示信息,其中,所述第一指示信息用于指示是否对所述通信装置待发送的第一待编码数据的相位进行预处理;
    所述通信装置和第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据,包括:
    所述收发模块,用于在第二传输资源的第一时隙向电磁超表面阵列天线发送第三待编码数据,并在所述第一时隙从所述电磁超表面阵列天线接收第一网络编码数据;其中,所述第三待编码数据为根据所述第一指示信息和所述第一待编码数据得到;
    所述处理模块,用于根据所述第三待编码数据和所述第一网络编码数据,得到来自第二终端设备的第二待编码数据。
  18. 根据权利要求17所述的通信装置,其特征在于,所述收发模块,具体用于:
    从网络设备接收所述第一指示信息。
  19. 根据权利要求18所述的通信装置,其特征在于,所述收发模块,在从网络设备接收第一指示信息之前,还用于向所述网络设备发送第一信息,所述第一信息包括以下信息中的至少一个:第一请求信息、所述通信装置的干扰水平、所述通信装置的处理能力;其中,所述第一请求信息用于请求是否对所述第一待编码数据的相位进行预处理,所述第一信息用于确定所述第一指示信息。
  20. 根据权利要求17所述的通信装置,其特征在于,
    所述收发模块,具体用于从网络设备接收第三指示信息,其中,所述第三指示信息用于指示所述通信装置与所述第二终端设备协商所述第一指示信息的第一传输资源;
    所述通信装置和所述第二终端设备之间在同一传输资源的同一时隙通过电磁超表面阵列天线传输数据;
    所述处理模块,具体用于根据在所述第一传输资源上与所述第二终端设备的协商结果确定所述第一指示信息。
  21. 根据权利要求17-20任一项所述的通信装置,其特征在于,
    所述收发模块,还用于从网络设备接收第四指示信息,其中,所述第四指示信息用于指示承载所述通信装置和所述第二终端设备之间通过所述电磁超表面阵列天线传输数据的第二传输资源。
  22. 根据权利要求21所述的通信装置,其特征在于,所述收发模块,在从网络设备接收第四指示信息之前,还用于向所述网络设备发送所述网络设备、所述电磁超表面阵列天线、所述通信装置之间的下行数据信道的第一通信质量,所述第一通信质量用于确定所述第二传输资源。
  23. 根据权利要求17-22任一项所述的通信装置,其特征在于,所述处理模块,具体用于:
    对所述第三待编码数据和所述第一网络编码数据进行异或操作,得到所述第二待编码数据。
  24. 一种通信装置,其特征在于,包括:
    收发模块,用于向第一终端设备发送第一指示信息;
    或者,
    所述收发模块,用于向所述第一终端设备和第二终端设备发送第三指示信息,其中,所述第三指示信息用于指示所述第一终端设备与所述第二终端设备协商所述第一指示信息或第二指示信息的第一传输资源;
    其中,所述第一指示信息用于指示对所述第一终端设备待发送的第一待编码数据的相位进行预处理,所述第二指示信息用于指示不对所述第二终端设备待发送的第二待编码数据的相位进行预处理;或者,所述第一指示信息用于指示不对所述第一终端设备待发送的第一待编码数据的相位进行预处理,所述第二指示信息用于指示对所述第二终端设备待发送的第二待编码数据的相位进行预处理。
  25. 根据权利要求24所述的通信装置,其特征在于,对于所述向所述第一终端设备发送第一指示信息,所述收发模块,还用于:
    向所述第二终端设备发送所述第二指示信息。
  26. 根据权利要求24或25所述的通信装置,其特征在于,
    所述收发模块,还用于向所述第一终端设备和所述第二终端设备发送第四指示信息,其中,所述第四指示信息用于指示承载所述第一终端设备和所述第二终端设备之间通过电磁超表面阵列天线传输数据的第二传输资源。
  27. 根据权利要求26所述的通信装置,其特征在于,
    所述收发模块,还用于获取所述电磁超表面阵列天线与所述第一终端设备之间的数据信道的第一通信质量,以及,所述电磁超表面阵列天线与所述第二终端设备之间的数据信道的第二通信质量。
  28. 根据权利要求27所述的通信装置,其特征在于,所述收发模块,具体用于:
    从所述电磁超表面阵列天线获取所述电磁超表面阵列天线与所述第一终端设备之间的上行数据信道的第一通信质量;
    从所述电磁超表面阵列天线获取所述电磁超表面阵列天线与所述第二终端设备之间的上行数据信道的第二通信质量。
  29. 根据权利要求27所述的通信装置,其特征在于,所述收发模块,具体用于:
    从所述第一终端设备获取所述通信装置、所述电磁超表面阵列天线、所述第一终端设备之间的下行数据信道的第一通信质量;
    从所述第二终端设备获取所述通信装置、所述电磁超表面阵列天线、所述第二终端设备之间的下行数据信道的第二通信质量。
  30. 根据权利要求27-29任一项所述的通信装置,其特征在于,所述收发模块,还用于:
    根据所述第一通信质量和所述第二通信质量,向所述电磁超表面阵列天线发送配置参数,所述配置参数用于调节所述电磁超表面阵列天线中各天线单元的相位。
  31. 根据权利要求24-30任一项所述的通信装置,其特征在于,还包括处理模块,在所述收发模块向第一终端设备发送第一指示信息之前,
    所述收发模块,还用于从所述第一终端设备接收第一信息,所述第一信息包括以下信息中的至少一个:第一请求信息、所述第一终端设备的干扰水平、所述第一终端设备的处理能力;其中,所述第一请求信息用于请求是否对所述第一待编码数据的相位进行预处理;
    所述收发模块,还用于从所述第二终端设备接收第二信息,所述第二信息包括以下信息中的至少一个:第二请求信息、所述第二终端设备的干扰水平、所述第二终端设备的处理能力;其中,所述第二请求信息用于请求是否对所述第二待编码数据的相位进行预处理;
    所述处理模块,用于根据所述第一信息以及所述第二信息,确定所述第一指示信息和所述第二指示信息。
  32. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的所述计算机程序,以使得所述通信装置执行如权利要求1-7任一项所述的方法,或者,执行如权利要求8-16任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,如权利要求1-7任一项所述的方法被执行,或者,如权利要求8-16任一项所述的方法被执行。
  34. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得如权利要求1-7任一项所述的方法被执行,或者,如权利要求8-16任一项所述的方法被执行。
  35. 一种通信系统,其特征在于,包括如权利要求17-23任一项所述的通信装置和如权利要求24-31任一项所述的通信装置。
PCT/CN2021/088804 2020-04-30 2021-04-21 网络编码方法和装置 WO2021218745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21795538.4A EP4135239A4 (en) 2020-04-30 2021-04-21 NETWORK CODING METHOD AND APPARATUS
US17/976,012 US20230067470A1 (en) 2020-04-30 2022-10-28 Network coding method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010364804.5 2020-04-30
CN202010364804.5A CN113595678B (zh) 2020-04-30 2020-04-30 网络编码方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/976,012 Continuation US20230067470A1 (en) 2020-04-30 2022-10-28 Network coding method and apparatus

Publications (1)

Publication Number Publication Date
WO2021218745A1 true WO2021218745A1 (zh) 2021-11-04

Family

ID=78237252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088804 WO2021218745A1 (zh) 2020-04-30 2021-04-21 网络编码方法和装置

Country Status (4)

Country Link
US (1) US20230067470A1 (zh)
EP (1) EP4135239A4 (zh)
CN (1) CN113595678B (zh)
WO (1) WO2021218745A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184826A1 (en) * 2006-01-09 2007-08-09 Samsung Electronics Co., Ltd. Method for relaying in a cellular network and cellular mobile communication system supporting the same
CN108667559A (zh) * 2017-03-31 2018-10-16 华为技术有限公司 一种通信方法及设备
WO2019043098A1 (en) * 2017-08-31 2019-03-07 Eurecom G.I.E SYSTEM AND METHOD FOR MANAGING INFORMATION DISTRIBUTION IN MULTI-ANTENNA AND MULTI-TRANSMITTER ENVIRONMENTS
CN110855403A (zh) * 2019-11-12 2020-02-28 哈尔滨工业大学(深圳) 空间信息网的高能效网络编码arq双向中继传输机制

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026695A1 (en) * 2007-08-27 2009-03-05 Nortel Networks Limited Communication system using mimo based network coding
CN101800616B (zh) * 2009-02-10 2012-11-21 富士通株式会社 数据中继装置、通信装置和方法
CN102158891B (zh) * 2011-04-27 2013-11-20 北京邮电大学 一种网络编码的接收检测方法
CN102571274B (zh) * 2011-12-26 2014-08-06 东南大学 一种适用于无线双向中继系统预旋转相位的信号发送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184826A1 (en) * 2006-01-09 2007-08-09 Samsung Electronics Co., Ltd. Method for relaying in a cellular network and cellular mobile communication system supporting the same
CN108667559A (zh) * 2017-03-31 2018-10-16 华为技术有限公司 一种通信方法及设备
WO2019043098A1 (en) * 2017-08-31 2019-03-07 Eurecom G.I.E SYSTEM AND METHOD FOR MANAGING INFORMATION DISTRIBUTION IN MULTI-ANTENNA AND MULTI-TRANSMITTER ENVIRONMENTS
CN110855403A (zh) * 2019-11-12 2020-02-28 哈尔滨工业大学(深圳) 空间信息网的高能效网络编码arq双向中继传输机制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT SHANGHAI BELL, ALCATEL-LUCENT: "Applications of network coding in LTE-A", 3GPP TSG-RAN WG RAN1#55BIS; R1-090061, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Ljubljana, Slovenia; 20090112 - 20090116, 8 January 2009 (2009-01-08), Ljubljana, Slovenia; 20090112 - 20090116, XP050597194 *

Also Published As

Publication number Publication date
EP4135239A1 (en) 2023-02-15
CN113595678B (zh) 2022-11-08
CN113595678A (zh) 2021-11-02
US20230067470A1 (en) 2023-03-02
EP4135239A4 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
CN110972251B (zh) 信号传输方法、相关设备及系统
WO2020035069A1 (zh) 一种上行传输指示的方法、终端、基站及计算机存储介质
CN111867094B (zh) 数据接收和发送方法及装置
CN108809386B (zh) 传输预编码矩阵的指示方法和设备
CN110417449A (zh) 指示无线信道状态的系统和方法
US20190281571A1 (en) Wireless Communications Method and Apparatus
EP2614679B1 (en) Device, system and method of wireless communication
WO2018095305A1 (zh) 一种波束训练方法及装置
US20230199734A1 (en) Resource allocation method and apparatus
CN113055143A (zh) 用于多用户下行链路正交频分多址传输的资源单元分配的装置、系统和方法
US20220353793A1 (en) Method for transmitting system information block, apparatus, and storage medium
WO2018120156A1 (zh) 系统信息发送方法、系统信息接收方法及装置
WO2021218745A1 (zh) 网络编码方法和装置
WO2017214981A1 (zh) 通道校正方法、装置及通信系统
KR20210038141A (ko) 무선 통신 시스템에서 컴퓨팅 구조 및 무선 통신 프로토콜 구조의 결정을 위한 방법 및 장치
WO2022151494A1 (zh) 一种传输参数确定方法及装置
TW202241076A (zh) 複數個傳輸點的方法及使用者設備
WO2020238922A1 (zh) 通信方法及装置
WO2020199853A1 (zh) 数据接收和发送方法及装置
WO2020063602A1 (zh) 多通道波束赋形方法、装置及存储介质
WO2023165585A1 (zh) 通信方法和通信装置
WO2023201542A1 (zh) 一种传输参数的确定方法及装置、终端设备、网络设备
WO2023141897A1 (zh) 发送功率的确定方法及装置、终端设备、网络设备
WO2024044919A1 (zh) 一种通信方法及装置
US20220201658A1 (en) Configuration information determination method and apparatus, and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021795538

Country of ref document: EP

Effective date: 20221111

NENP Non-entry into the national phase

Ref country code: DE