WO2020063602A1 - 多通道波束赋形方法、装置及存储介质 - Google Patents

多通道波束赋形方法、装置及存储介质 Download PDF

Info

Publication number
WO2020063602A1
WO2020063602A1 PCT/CN2019/107626 CN2019107626W WO2020063602A1 WO 2020063602 A1 WO2020063602 A1 WO 2020063602A1 CN 2019107626 W CN2019107626 W CN 2019107626W WO 2020063602 A1 WO2020063602 A1 WO 2020063602A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive
negative
target downlink
polarized
target
Prior art date
Application number
PCT/CN2019/107626
Other languages
English (en)
French (fr)
Inventor
王银波
黄忠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19865286.9A priority Critical patent/EP3846352A4/en
Publication of WO2020063602A1 publication Critical patent/WO2020063602A1/zh
Priority to US17/211,403 priority patent/US11962376B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • Embodiments of the present application relate to antenna technology, and in particular, to a multi-channel beamforming method, device, and storage medium.
  • phase calibration is required to achieve the desired beamforming effect, that is, to obtain the expected pattern.
  • phase alignment is performed on a transmission channel, and an optimal phase is selected based on machine learning and feedback from an existing network to obtain a beam matching the existing network, and to obtain capacity gain while ensuring network coverage.
  • phase calibration often requires a large price to achieve.
  • phase calibration can only be calibrated to the RF port, but not to the antenna port.
  • the RF port to the antenna port The path between them cannot be phase-calibrated, resulting in an uncertain pattern; for example, when performing phase calibration on an RF module without a calibration loop, a calibration loop needs to be constructed, which makes phase calibration more complicated.
  • Embodiments of the present application provide a multi-channel beamforming method, device, and storage medium, which ensure an overlay network in a multi-channel scenario without phase calibration.
  • an embodiment of the present application provides a multi-channel beamforming method, including: determining a target downlink positive beam and a target downlink negative beam according to a preset M weight set; and thereafter, according to the target downlink positive beam
  • the beam and the target downlink are negatively polarized to obtain the target downlink signal.
  • the weight set includes a phase weight set and an amplitude weight set. Different weight sets include the same amplitude weight set, different weight sets include different phase weight sets, and phase weights in the phase weight set. The number of and the number of amplitude weights in the set of amplitude weights are both determined according to the number of channels of the multi-channel, and M is an even number greater than 0.
  • the positive and negative polarized downlink beams are paired to achieve orthogonality between the negative and negative polarized downlink beams, so as to ensure the coverage network in a multi-channel scenario without phase calibration.
  • the foregoing determining the target downlink positive polarization beam and the target downlink negative polarization beam according to a preset M weight set may include the following sub-steps:
  • Sub-step 1 According to a preset M weight set, beam forming is performed on a signal to be transmitted to obtain M beams.
  • the preset M weight sets include N positive polarization weight sets and N negative polarization weight sets.
  • the positive polarization weight set includes a positive polarization phase weight set
  • the negative polarization weight set includes a negative polarization phase weight set.
  • Each positive polarization weight set corresponds to a positive polarization beam
  • each negative polarization weight set corresponds to a negative polarization beam.
  • M is equal to twice of N.
  • Sub-step 2 Calculate the sum of the DPCCH transmit powers of all users corresponding to the M beams.
  • the sum of the DPCCH transmission power of all users corresponding to the positive beam is the sum of the DPCCH transmission power of the positive beam
  • the sum of the DPCCH transmission power of all users corresponding to the negative beam is the sum of the negative DPCCH transmission power.
  • the beam corresponding to the smallest sum of the positively polarized DPCCH transmit powers among the sum of the N positively polarized DPCCH transmit powers is determined as the target downlink positively polarized beam.
  • Sub-step four Determine a target downlink negative polarized beam paired with the target downlink positive polarized beam according to the sum of the target downlink positive polarized beam and the N negative polarized DPCCH transmit power.
  • the foregoing determining the target downlink negative polarization beam paired with the target downlink positive polarization beam based on the sum of the target downlink positive polarization beam and the N negative polarization DPCCH transmit power may be specifically: determining N negative polarizations
  • the beam corresponding to the smallest sum of negatively polarized DPCCH transmit powers is the first beam;
  • the target downlink negative beam is determined according to the positive and negative polarized orthogonal requirements, the first beam, and the target downlink positive beam.
  • the foregoing determining the target downlink positive polarization beam and the target downlink negative polarization beam according to a preset M weight set may include: periodically scanning the uplink beam; determining all of the uplink beams in each cycle.
  • the energy value of the user which includes the uplink positive polarization energy value and the uplink negative polarization energy value; determine the target uplink positive polarization beam and the target uplink negative polarization beam according to the energy value and the positive and negative polarization orthogonal requirements; respectively, according to the target uplink
  • the positive polarized beam and the target uplink negative polarized beam determine the target downlink positive polarized beam and the target downlink negative polarized beam.
  • the determining the target uplink positive polarization beam and the target uplink negative polarization beam according to the energy value and the positive and negative polarization orthogonal requirements may include: determining the largest uplink positive energy among the N uplink positive polarization energy values.
  • the beam corresponding to the polarized energy value is the target uplink positive polarized beam; the beam corresponding to the largest uplink negative polarized energy value among the N uplink negative polarized energy values is determined to be the second beam; according to the target uplink positive polarized beam, positive and negative polarized orthogonal
  • the demand and the second beam determine the target uplink negative polarized beam.
  • the method may further include: dynamically selecting user scheduling through beam codeword multiplexing according to user scheduling priority.
  • the beam codeword multiplexing is used to indicate that the positive and negative polarized beams in the same cell use different codewords.
  • dynamically selecting a user schedule through beam codeword multiplexing according to the priority of the user schedule may include: determining the first user to be scheduled currently at the highest priority according to the user scheduling priority; and calculating a target uplink positive electrode
  • the energy value corresponding to the first user to be scheduled received on the beam is the first energy value
  • the energy value corresponding to the first user to be scheduled received on the target uplink negative beam is the second energy value
  • the difference between the value and the second energy value is greater than or equal to the first preset value
  • the second to-be-scheduled user currently at the next highest priority is determined; and the energy corresponding to the second to-be-scheduled user received on the target uplink positive beam is calculated.
  • the value is the third energy value; the energy value corresponding to the second to-be-scheduled user received on the target uplink negative polarized beam is calculated as the fourth energy value; the difference between the third energy value and the fourth energy value is less than or equal to the second energy value.
  • an embodiment of the present application provides a multi-channel beamforming apparatus, including:
  • a determining module configured to determine a target downlink positive beam and a target downlink negative beam according to a preset M weight set, wherein the weight set includes a phase weight set and an amplitude weight set, and different weight sets include The sets of amplitude weights are the same, and the different sets of phase weights are different in different weight sets.
  • the number of phase weights in the phase weight set and the number of amplitude weights in the amplitude weight set are based on the multi-channel channel. The number is determined, M is an even number greater than 0;
  • a beamforming module is configured to obtain a target downlink signal according to a target downlink positive beam and a target downlink negative beam.
  • the implementation of the device can refer to the implementation of the method, and duplicated details will not be repeated.
  • the multi-channel beamforming device may be a base station.
  • an embodiment of the present application provides a multi-channel beamforming apparatus, including: a memory and a processor.
  • the memory is used to store the program code; the processor is used to call the program code, and when the program code is executed, it is used to execute the method according to any one of the first aspects.
  • the multi-channel beamforming device may be a base station.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method according to any one of the first aspects is implemented.
  • the functions of the determining module and the beamforming module in the embodiments of the present application may be specifically implemented by a processor in a corresponding network device.
  • an embodiment of the present application provides a program for executing any method as described above when the program is executed by a computer.
  • the above-mentioned program may be stored in whole or in part on a storage medium packaged with the processor, or may be partially or entirely stored in a memory not packaged with the processor.
  • the processor may be a chip.
  • an embodiment of the present application provides a computer program product including program instructions, and the program instructions are used to implement any one of the methods described above.
  • an embodiment of the present application provides a chip, including: a processing module and a communication interface.
  • the processing module can execute any of the above methods.
  • the chip further includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored by the storage module, and execution of the instructions stored in the storage module causes the processing module to execute any of the above method.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored by the storage module
  • execution of the instructions stored in the storage module causes the processing module to execute any of the above method.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a beamforming system according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a multi-channel beamforming method according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a multi-channel beamforming method according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an antenna according to an embodiment of the present application.
  • FIG. 6A is a schematic diagram of a direction diagram provided by an embodiment of the present application.
  • FIG. 6B is a schematic diagram of a direction diagram provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a multi-channel beamforming method according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of still another direction diagram provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of a multi-channel beamforming method according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of still another direction diagram provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a multi-channel beamforming apparatus according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a multi-channel beamforming apparatus according to another embodiment of the present application.
  • Multi-channel beamforming means that when a multi-channel signal is transmitted, if the characteristic phase is set for the signal, the amplitude of the signal can form the expected coherent effect on the air interface, which is specifically manifested in the signal energy in some directions is stronger, The signal energy in these directions is weak, achieving the desired beam "distortion" effect.
  • the embodiments of the present application can be applied to various types of cellular mobile communication systems, including but not limited to: Global System (GSM) system, Code Division Multiple Access (CDMA) system, broadband Wideband Code Division Multiple Access Wireless (WCDMA) system, General Packet Radio Service (GPRS) system, Universal Mobile Telecommunications System (UMTS), Long-Term Evolution (UME) LTE) system and its evolution system, Universal Terrestrial Radio Access Network (UTRAN) system, New Radio (NR) system, etc.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • UMTS Universal Mobile Telecommunications System
  • UAE Long-Term Evolution
  • UTRAN Universal Terrestrial Radio Access Network
  • NR New Radio
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a network device 11 and at least one terminal device.
  • two terminal devices are used as an example for description.
  • the two terminal devices are a terminal device 12 and a terminal device 13, respectively.
  • the terminal device 12 The terminal device 13 is located within the coverage of the network device 11 and communicates with the network device 11 to implement the technical solutions provided by the embodiments of the present application described below.
  • Terminal equipment can also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user Agent or user device.
  • UE User Equipment
  • Terminal equipment can be stations (STATION, ST) in Wireless Local Area Networks (WLAN), cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop (WLL) stations, Personal Digital Processing (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, For example, terminal equipment in a fifth-generation (5G) network or terminal equipment in a future evolved Public Land Mobile Network (PLMN) network, terminal equipment in an NR system, and the like.
  • 5G fifth-generation
  • PLMN Public Land Mobile Network
  • the network device 11 may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a base station (NodeB, NB) in WCDMA, or it may be in LTE Evolution base station (Evolutionary NodeB, eNB or eNodeB), or relay station or access point, base station controller (Radio Network Controller, RNC) in UTRAN, or in-vehicle equipment, wearable equipment and network equipment in future 5G networks Or network equipment in a future evolved PLMN network, or a new generation base station (gNodeB) in an NR system.
  • Access Point Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • RNC Radio Network Controller
  • FIG. 2 is a schematic diagram of a beamforming system according to an embodiment of the present application.
  • the beam forming system 20 includes an antenna radio frequency module 21 and a beam forming module 22 coupled to the antenna radio frequency module 21.
  • the antenna radio frequency module 21 is configured to generate a signal to be transmitted, and sends the signal to be transmitted to a beamforming module 22; the beamforming module 22 is configured to perform beamforming on a signal to be transmitted according to a preset M weight set To get the target downlink signal.
  • the antenna radio frequency module 21 is configured to scan an uplink beam and send the scanned uplink beam to a beamforming module 22; the beamforming module 22 is configured to determine a target downlink beam through uplink and downlink beam pairing according to the uplink beam to obtain a target Downward signal.
  • the beamforming system 20 can be implemented by the network device 11 shown in FIG. 1. It can be understood that the beamforming system 20 is built in the network device 11 or the beamforming system 20 is the network device 11. And, the beamforming system 20 may be implemented by software and / or hardware.
  • FIG. 3 is a flowchart of a multi-channel beamforming method according to an embodiment of the present application.
  • the multi-channel beamforming method may be performed by the beamforming system 20 shown in FIG. 2.
  • the multi-channel beamforming method includes:
  • the weight set includes a phase weight set and an amplitude weight set.
  • Different weight sets include the same amplitude weight set, different weight sets include different phase weight sets, and phase weights in the phase weight set.
  • the number of and the number of amplitude weights in the set of amplitude weights are both determined according to the number of channels of the multi-channel, and M is an even number greater than 0.
  • M takes a value of 2, and the two weight sets are respectively represented as a weight set A1 and a weight set A2.
  • the weight set A1 includes the amplitude weight set ⁇ X11, X12, X13, X14 ⁇ and the phase weight set ⁇ Y11, Y12, Y13, Y14 ⁇ ;
  • the weight set A2 includes the amplitude weight set ⁇ X21, X22, X23 , X24 ⁇ and phase weight set ⁇ Y21, Y22, Y23, Y24 ⁇ .
  • the amplitude weight set ⁇ X11, X12, X13, X14 ⁇ is the same as the amplitude weight set ⁇ X21, X22, X23, X24 ⁇ , but the phase weight set ⁇ Y11, Y12, Y13, Y14 ⁇ and the phase weight The set ⁇ Y21, Y22, Y23, Y24 ⁇ is different.
  • the beamforming system 20 when multi-channel beamforming of the downlink signal to be transmitted is needed, the beamforming system 20 generates a signal to be transmitted through the antenna radio frequency module 21, and executes S301 to perform positive and negative polarized downlink through the beamforming module 22 Orthogonal beam pairing.
  • the target downlink positive polarized beam and the target downlink negative polarized beam both perform positive and negative polarized downlink beam pairing, and the two are orthogonal.
  • the beamforming system 20 performs S302 through the beamforming module 22 to obtain a target downlink signal.
  • the synthetic beam is basically consistent with the coverage of an ordinary antenna, which can ensure that the network coverage is not damaged.
  • a target downlink positive polarization beam and a target downlink negative polarization beam are first determined according to a preset M weight set, and then a target downlink signal is obtained according to the target downlink positive polarization beam and the target downlink negative polarization beam, where
  • the weight set includes the phase weight set and the amplitude weight set.
  • Different weight sets contain the same amplitude weight set.
  • Different weight sets contain different phase weight sets.
  • the phase weights in the phase weight set Both the number and the number of amplitude weights in the set of amplitude weights are determined according to the number of multi-channel channels, and M is an even number greater than 0.
  • determining a target downlink positive beam and a target downlink negative beam can include the following: Sub-steps:
  • the preset M weight sets include N positive polarization weight sets and N negative polarization weight sets.
  • the positive polarization weight set includes a positive polarization phase weight set, and each positive polarization weight set corresponds to a positive polarization beam.
  • the negative polarization weight set includes a negative polarization phase weight set, and each negative polarization weight set corresponds to a negative polarization beam.
  • M is equal to twice of N.
  • the sum of the DPCCH transmission power of all users corresponding to the positive beam is the sum of the DPCCH transmission power of the positive beam
  • the sum of the DPCCH transmission power of all users corresponding to the negative beam is the sum of the negative DPCCH transmission power.
  • S404 Determine a target downlink negative polarized beam paired with the target downlink positive polarized beam according to the sum of the target downlink positive polarized beam and the N negative polarized DPCCH transmit power.
  • this step may be specifically: determining the beam corresponding to the smallest sum of negatively polarized DPCCH transmit powers among the sum of N negatively polarized DPCCH transmit powers as the first beam; according to the positive and negative polarized orthogonal requirements, the first beam And the target downlink positive beam, and determine the target downlink negative beam.
  • FIG. 5 A schematic diagram of the two-row 4-port antenna is shown in FIG. 5.
  • n 8
  • the antenna pattern is strongly related to the phase.
  • the pattern is uniquely determined by the phase.
  • radio remote units Remote Radio Units, RRUs
  • feeders feeders
  • jumpers antennas
  • etc. all introduce phase.
  • RRU is an active device, and the phase changes in the time dimension.
  • the others are passive devices and are relatively stable in the time dimension. Therefore, in a short time (depending on the phase drift speed of the RRU), the antenna pattern is stationary. The extra phase can be superimposed through the baseband to change the phase difference within the polarization to achieve the purpose of adjusting the pattern.
  • phase difference between the positive and negative polarizations is adjusted respectively.
  • the adjustment values are 8 phase values of 0, 45, 90, 135, 180, 225, 270, 315, and then every Each pattern is used to measure the DPCCH transmit power of all users, and it is sorted according to the sum of the DPCCH transmit power of all users, as shown in Table 1.
  • the target downlink positive polarization beam selects this phase difference. Further, it is necessary to select the negative polarization phase difference to be paired with the positive polarization.
  • FIGS. 6A and 6B show that the positive and negative polarizations are completely orthogonal and complementary.
  • the positive and negative polarizations may have a certain degree of deviation. This deviation is related to a circle of equal 360 degrees. If it is divided into 8 equal parts, the maximum deviation is 22.5 degrees. Refer to Figure 6B. If the deviation is smaller, the 360-degree circle can be divided into more equal parts.
  • the solid line is a positive polarization pattern
  • the dotted line is a negative polarization pattern.
  • determining a target downlink positive beam and a target downlink negative beam may include the following sub-steps:
  • the energy value includes an uplink positive polarization energy value and an uplink negative polarization energy value.
  • S703 Determine a target uplink positive polarization beam and a target uplink negative polarization beam according to the energy value and the positive and negative polarization requirements.
  • the uplink beam is only used to measure the uplink energy value (Eb value).
  • Eb value the uplink energy value
  • the uplink positive polarized beam and the target uplink negative polarized beam after that, the downlink beam (including the target downlink positive polarized beam and the target downlink negative polarized beam) can be determined by pairing with the downlink beam without the need for frequent downlink beam DPCCH measurement, which affects Downward coverage.
  • beam selection is performed through uplink and downlink beam pairing.
  • the downlink beam selection can be achieved without relying on phase calibration.
  • S703, determining the target uplink positive polarization beam and the target uplink negative polarization beam according to the energy value and the positive and negative polarization orthogonal requirements may include: determining the largest uplink positive polarization among the N uplink positive polarization energy values.
  • the beam corresponding to the energy value is the target uplink positive polarized beam; it is determined that the beam corresponding to the largest uplink negative polarized energy value among the N uplink negative polarized energy values is the second beam; according to the target uplink positive polarized beam and positive and negative polarized orthogonal requirements And a second beam to determine a target uplink negative polarized beam.
  • the uplink and downlink beams are paired, the uplink beams are sorted according to a certain measurement value (such as the Eb value), and the downlink beams are sorted according to a certain measurement value (such as the sum of the DPCCH transmit power); then, the results are sorted according to the uplink and downlink respectively.
  • a certain measurement value such as the Eb value
  • a certain measurement value such as the sum of the DPCCH transmit power
  • n 8
  • Eight phase values are equivalent to presetting eight beams.
  • the uplink beam is only used for measurement, and each polarization is scanned dynamically in 8 beams, as shown in Figure 8. Among them, the measurement period is 2s, and the energy values of all users on the uplink beam, such as the Eb value, are counted within 2s. A total of 32s is completed for all uplink beam measurements. Then, uplink and downlink beam pairing is performed.
  • the target uplink positive polarized beam selects beam 5.
  • the downlink beam is subsequently selected according to the uplink beam change.
  • the equivalent here is that the phase difference between the uplink and downlink channels is stable. Therefore, the following description is made in conjunction with Table 4:
  • FIG. 9 is a flowchart of a multi-channel beamforming method according to another embodiment of the present application. As shown in FIG. 9, the multi-channel beamforming method in this embodiment may include the following steps:
  • S901. Periodically scan an uplink beam.
  • the energy value includes an uplink positive polarization energy value and an uplink negative polarization energy value.
  • S901 to S905 are the same as S701 to S705, respectively, and will not be repeated here.
  • beam codeword multiplexing is used to indicate that the positive and negative polarized beams in the same cell use different codewords.
  • the step may include: determining a first to-be-scheduled user currently at the highest priority according to the scheduling priority of the user; and calculating an energy value corresponding to the first to-be-scheduled user received on the target uplink positive polarized beam as An energy value; calculating the energy value corresponding to the first scheduled user received on the target uplink negative polarized beam is the second energy value; when the difference between the first energy value and the second energy value is greater than or equal to the first preset value To determine the second to-be-scheduled user currently at the next highest priority; calculate the energy value corresponding to the second to-be-scheduled user received on the target uplink positive polarized beam as the third energy value; calculate the received energy on the target uplink negative-polarized beam
  • the energy value corresponding to the second to-be-scheduled user is the fourth energy value; when the difference between the third energy value and the fourth energy value is less than or equal to the second preset value, the target downlink positive beam and the target downlink negative beam are determined.
  • This step is the same as S302.
  • codeword multiplexing dynamic scheduling is performed for the user. Specifically: According to the normal scheduling of the cell, the current user to be scheduled is selected. After determining the current high-priority to-be-scheduled user (that is, the first to-be-scheduled user), calculate the Eb value of the user received by the uplink positive and negative polarized beams.
  • xdB for example, 10dB
  • a user that is, the second user to be scheduled
  • the uplink positive and negative polarization Eb value is less than -xdB (for example, 10dB).
  • the capacity code is improved by dynamically selecting users to be scheduled through beam codeword multiplexing.
  • beam codeword multiplexing can achieve a 20% to 30% capacity gain, thereby improving the capacity gain while ensuring network coverage.
  • the first preset value is set to 10 dB, and the proportion of beam codeword multiplexing scheduling is 61.9%. Under Volcano transfer mode, through 3D electronic map simulation, the capacity gain is about 20% to 30%.
  • FIG. 11 is a schematic structural diagram of a multi-channel beamforming apparatus according to an embodiment of the present application.
  • the multi-channel beamforming device 110 in this embodiment includes a determining module 111 and a beamforming module 112. among them,
  • a determining module 111 is configured to determine a target downlink positive polarization beam and a target downlink negative polarization beam according to a preset M weight set.
  • the weight set includes a phase weight set and an amplitude weight set. Different weight sets contain the same amplitude weight set, and different weight sets contain different phase weight sets. The number of phase weights in the phase weight set and the number of amplitude weights in the amplitude weight set are determined according to the number of channels of the multi-channel. M is an even number greater than 0.
  • the beam forming module 112 is configured to obtain a target downlink signal according to the target downlink positive beam and the target downlink negative beam.
  • the determining module 111 may be specifically configured to perform the following sub-steps:
  • Sub-step 1 According to a preset M weight set, beam forming is performed on a signal to be transmitted to obtain M beams.
  • the preset M weight sets include N positive polarization weight sets and N negative polarization weight sets.
  • the positive polarization weight set includes a positive polarization phase weight set
  • the negative polarization weight set includes a negative polarization phase weight set.
  • Each positive polarization weight set corresponds to a positive polarization beam
  • each negative polarization weight set corresponds to a negative polarization beam.
  • M is equal to twice of N.
  • Sub-step 2 Calculate the sum of the DPCCH transmit powers of all users corresponding to the M beams.
  • the sum of the DPCCH transmission power of all users corresponding to the positive beam is the sum of the DPCCH transmission power of the positive beam
  • the sum of the DPCCH transmission power of all users corresponding to the negative beam is the sum of the negative DPCCH transmission power.
  • the beam corresponding to the smallest sum of the positively polarized DPCCH transmit powers among the sum of the N positively polarized DPCCH transmit powers is determined as the target downlink positively polarized beam.
  • Sub-step four Determine a target downlink negative polarized beam paired with the target downlink positive polarized beam according to the sum of the target downlink positive polarized beam and the N negative polarized DPCCH transmit power.
  • the determining module 111 executes the sub-step "determine a target downlink negative polarized beam paired with the target downlink positive polarized beam based on the sum of the target downlink positive polarized beam and the N negative polarized DPCCH transmit power"
  • It can be specifically used to determine the beam corresponding to the smallest sum of the negatively polarized DPCCH transmit powers among the N negatively polarized DPCCH transmit powers as the first beam; according to the positive and negative polarized orthogonal requirements, the first beam and the target downlink positive polarity Beam, to determine the target downlink negative polarized beam.
  • the determining module 111 may be specifically configured to: periodically scan the uplink beam; determine the energy values of all users on the uplink beam in each cycle, the energy values including the uplink positive polarization energy value and the uplink negative polarization energy value; according to the energy value And positive and negative polarization requirements, determine the target uplink positive polarization beam and target uplink negative polarization beam; determine the target downlink positive polarization beam and target downlink negative polarization beam according to the target uplink positive polarization beam and target uplink negative polarization beam, respectively.
  • the determination module 111 may be specifically used to determine the N uplink positive polarization energy values.
  • the beam corresponding to the largest uplink positive polarized energy value is the target uplink positive polarized beam; it is determined that the beam corresponding to the largest uplink negative polarized energy value among the N uplink negative polarized energy values is the second beam; according to the target uplink positive polarized beam, positive and negative Polarize the orthogonal requirements and the second beam to determine the target uplink negative polarized beam.
  • the multi-channel beamforming device 110 may further include a selection module (not shown).
  • the selection module is used to dynamically select user scheduling through beam codeword multiplexing according to the priority of the user scheduling before the beamforming module 112 obtains the target downlink signal according to the target downlink positive polarization beam and the target downlink negative polarization beam.
  • the beam codeword multiplexing is used to indicate that the positive and negative polarized beams in the same cell use different codewords.
  • the selection module may be specifically configured to: determine the first user to be scheduled currently at the highest priority according to the user scheduling priority; and calculate the energy corresponding to the first user to be scheduled received on the target uplink positive beam
  • the value is the first energy value; the energy value corresponding to the first scheduled user received on the target uplink negative polarized beam is calculated as the second energy value; the difference between the first energy value and the second energy value is greater than or equal to the first energy value;
  • the second user to be scheduled that is currently at the next highest priority is determined; the energy value corresponding to the second user to be scheduled received on the target uplink positive polarization beam is calculated as the third energy value; the target uplink negative polarization beam is calculated
  • the received energy value corresponding to the second scheduled user is the fourth energy value; when the difference between the third energy value and the fourth energy value is less than or equal to the second preset value, it is determined that the target downlink positive beam and the target downlink On the negatively polarized beam, the first to-be-scheduled user and
  • the multi-channel beamforming device described in this embodiment can be used to implement the technical solutions in the foregoing method embodiments.
  • the implementation requirements and technical effects are similar.
  • FIG. 12 is a schematic structural diagram of a multi-channel beamforming apparatus according to another embodiment of the present application.
  • the multi-channel beamforming apparatus 120 in this embodiment includes a memory 121 and a processor 122. among them:
  • the memory 121 is configured to store a program code.
  • the processor 122 is configured to call the program code, and when the program code is executed, the processor 122 is configured to execute the method according to any one of the foregoing embodiments.
  • the multi-channel beamforming device 120 may be specifically a base station.
  • the multi-channel beamforming device 120 may further include a transceiver 123 (which may include a receiver and a transmitter) for supporting communication between the multi-channel beamforming device 120 and a terminal device, and receiving and transmitting the foregoing method.
  • a transceiver 123 which may include a receiver and a transmitter
  • An embodiment of the present application provides a multi-channel beamforming device, and the multi-channel beamforming device has a function of realizing the behavior in any one of the foregoing method embodiments.
  • the functions may be implemented by hardware, and may also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to respective sub-functions in the above functions.
  • the multi-channel beamforming device 120 may be a network device or a chip that can be used in the network device.
  • An embodiment of the present application provides a multi-channel beamforming apparatus, which includes at least one processing element (or chip) for executing a method flow in any one of the foregoing method embodiments.
  • An embodiment of the present application further provides a chip, which includes a processing module and a communication interface.
  • the processing module can execute the method flow in any one of the method embodiments described above.
  • the chip may further include a storage module (such as a memory), the storage module is configured to store instructions, the processing module is configured to execute the instructions stored in the storage module, and execution of the instructions stored in the storage module causes the processing module to perform any of the foregoing Method flow in a method embodiment.
  • An embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program includes at least one piece of code.
  • the processor implements any of the foregoing. Method flow in method embodiments.
  • the embodiments of the present application provide a program or a computer program product including program instructions.
  • the program instructions When the program instructions are executed by a processor, the processor will implement the method flow in any one of the foregoing method embodiments.
  • the above program instructions may be stored in whole or in part on a storage medium packaged with the processor, or may be stored in part or all on a memory not packaged with the processor.
  • the processor may be a chip.
  • the program instructions can be implemented in the form of software functional units and can be sold or used as independent products, and the memory can be any form of computer-readable storage medium.
  • all or part of the technical solution of the present application may be embodied in the form of a software product, including a number of instructions for making a computer device, specifically a processor, execute all of the embodiments of the present application. Or some steps.
  • the aforementioned computer-readable storage media include: U disks, mobile hard disks, Read-Only Memory (ROM), Random Access Memory (RAM), magnetic disks or optical disks, and various other programs that can be stored The medium of the code.
  • the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one processing module, or each module may exist separately physically, or two or more modules may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules.
  • the integrated module When the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium. , Including a number of instructions to cause a computer device (which may be a personal computer, a server, or a network device) or a processor to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a DVD
  • a semiconductor medium e.g., a solid state disk (Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种多通道波束赋形方法、装置及存储介质。该方法包括:根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,其中,权值集合包括相位权值集合和幅度权值集合,不同权值集合所包含的幅度权值集合相同,不同权值集合所包含的相位权值集合不同,相位权值集合中相位权值的个数与幅度权值集合中幅度权值的个数均是根据多通道的通道个数确定的,M为大于0的偶数;根据目标下行正极化波束及目标下行负极化波束,得到目标下行信号。本申请实施例可以在无相位校准情况下,保证多通道场景下的覆盖网络。

Description

多通道波束赋形方法、装置及存储介质
本申请要求于2018年09月25日提交中国专利局、申请号为201811117083.7、申请名称为《多通道波束赋形方法、装置及存储介质》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及天线技术,尤其涉及一种多通道波束赋形方法、装置及存储介质。
背景技术
在多通道场景下,同极化通道间信号相干会导致波束赋形,若波束赋形不加以控制,会影响网络覆盖和网络容量。而实际波束赋形效果同相位强相关,一般需要进行相位校准来达成预期的波束赋形效果,即得到预期的方向图。
现有技术通过对发通道进行相位校准,基于机器学习并利用现网反馈选择最优相位,获得匹配现网的波束,在保障网络覆盖的同时获得容量增益。
但上述方法中,相位校准往往需要付出较大代价来实现,例如,在普通多天线加射频模块场景下,相位校准只能校准到射频口,无法校准到天线口,这样,射频口至天线口之间的路径就无法进行相位校准,导致方向图不确定;又例如,在无校准回路的射频模块上进行相位校准时,需构建校准回路,这使得相位校准更加复杂。
发明内容
本申请实施例提供一种多通道波束赋形方法、装置及存储介质,在无相位校准情况下,保证多通道场景下的覆盖网络。
第一方面,本申请实施例提供一种多通道波束赋形方法,包括:根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束;之后,根据目标下行正极化波束及目标下行负极化波束,得到目标下行信号。其中,权值集合包括相位权值集合和幅度权值集合,不同权值集合所包含的幅度权值集合相同,不同权值集合所包含的相位权值集合不同,相位权值集合中相位权值的个数与幅度权值集合中幅度权值的个数均是根据多通道的通道个数确定的,M为大于0的偶数。
上述实施例,通过上述正负极化的下行波束配对,达到正负极化间下行波束正交,以在无相位校准情况下,保证多通道场景下的覆盖网络。
一种可能的实现方式中,上述根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,可以包括以下子步骤:
子步骤一,根据预设的M个权值集合,对待发射信号进行波束赋形,得到M个波束。其中,预设的M个权值集合包括N个正极化权值集合和N个负极化权值集合。正极化权值集合包括正极化相位权值集合,负极化权值集合包括负极化相位权值集合。每个正极化 权值集合对应一个正极化波束,每个负极化权值集合对应一个负极化波束。其中,M等于N的2倍。
子步骤二,分别计算M个波束对应的所有用户的DPCCH发射功率之和。其中,正极化波束对应的所有用户的DPCCH发射功率之和为正极化DPCCH发射功率之和,负极化波束对应的所有用户的DPCCH发射功率之和为负极化DPCCH发射功率之和。
子步骤三,确定N个正极化DPCCH发射功率之和中最小的正极化DPCCH发射功率之和对应的波束为目标下行正极化波束。
子步骤四,根据目标下行正极化波束及N个负极化DPCCH发射功率之和,确定与目标下行正极化波束配对的目标下行负极化波束。
一种可能的实现方式中,上述根据目标下行正极化波束及N个负极化DPCCH发射功率之和,确定与目标下行正极化波束配对的目标下行负极化波束,可以具体为:确定N个负极化DPCCH发射功率之和中最小的负极化DPCCH发射功率之和对应的波束为第一波束;根据正负极化正交需求、第一波束及目标下行正极化波束,确定目标下行负极化波束。
一种可能的实现方式中,上述根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,可以包括:周期性扫描上行波束;确定每一周期内上行波束上所有用户的能量值,该能量值包括上行正极化能量值和上行负极化能量值;根据能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束;分别根据目标上行正极化波束和目标上行负极化波束,确定目标下行正极化波束和目标下行负极化波束。
一种可能的实现方式中,上述根据能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束,可以包括:确定N个上行正极化能量值中最大的上行正极化能量值对应的波束为目标上行正极化波束;确定N个上行负极化能量值中最大的上行负极化能量值对应的波束为第二波束;根据目标上行正极化波束、正负极化正交需求及第二波束,确定目标上行负极化波束。
进一步地,上述根据目标下行正极化波束及目标下行负极化波束,得到目标下行信号之前,还可以包括:根据用户调度的优先级,通过波束码字复用动态选择用户调度。其中,该波束码字复用用于表示相同小区下正负极化波束采用不同码字。
一些实施例中,根据用户调度的优先级,通过波束码字复用动态选择用户调度,可以包括:根据用户调度的优先级,确定当前处于最高优先级的第一待调度用户;计算目标上行正极化波束上接收到的第一待调度用户对应的能量值为第一能量值;计算目标上行负极化波束上接收到的第一待调度用户对应的能量值为第二能量值;在第一能量值与第二能量值之差大于或等于第一预设值时,确定当前处于次高优先级的第二待调度用户;计算目标上行正极化波束上接收到的第二待调度用户对应的能量值为第三能量值;计算目标上行负极化波束上接收到的第二待调度用户对应的能量值为第四能量值;在第三能量值与第四能量值之差小于或等于第二预设值时,确定在目标下行正极化波束及目标下行负极化波束上,同时调度第一待调度用户和第二待调度用户。
第二方面,本申请实施例提供一种多通道波束赋形装置,包括:
确定模块,用于根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,其中,权值集合包括相位权值集合和幅度权值集合,不同权值集合所包含的幅度权值集合相同,不同权值集合所包含的相位权值集合不同,相位权值集合中相位权值的个 数与幅度权值集合中幅度权值的个数均是根据多通道的通道个数确定的,M为大于0的偶数;
波束赋形模块,用于根据目标下行正极化波束及目标下行负极化波束,得到目标下行信号。
基于同一发明构思,由于该装置解决问题的需求与第一方面的方法设计中的方案对应,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
该多通道波束赋形装置可以为基站。
第三方面,本申请实施例提供一种多通道波束赋形装置,包括:存储器和处理器。其中,存储器,用于存储程序代码;处理器,调用程序代码,当程序代码被执行时,用于执行如第一方面中任一所述的方法。
该多通道波束赋形装置可以为基站。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序由处理器执行时实现如第一方面中任一所述的方法。
一种可能的设计中,本申请实施例中的确定模块和波束赋形模块的功能具体可以由对应的网络设备中的处理器实现。
第五方面,本申请实施例提供一种程序,当该程序被计算机执行时,用于执行如上所述的任一项方法。
其中,上述程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
可选地,上述处理器可以为芯片。
第六方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现如上所述的任一项方法。
第七方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口。该处理模块能执行以上任一方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行上述任一方法。
本申请的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的通信系统的示意图;
图2为本申请一实施例提供的波束赋形系统的示意图;
图3为本申请一实施例提供的多通道波束赋形方法的流程图;
图4为本申请另一实施例提供的多通道波束赋形方法的流程图;
图5为本申请实施例提供的一天线的结构示意图;
图6A为本申请实施例提供的一方向图的示意图;
图6B为本申请实施例提供的一方向图的示意图;
图7为本申请又一实施例提供的多通道波束赋形方法的流程图;
图8为本申请实施例提供的又一方向图的示意图;
图9为本申请又一实施例提供的多通道波束赋形方法的流程图;
图10为本申请实施例提供的又一方向图的示意图;
图11为本申请一实施例提供的多通道波束赋形装置的结构示意图;
图12为本申请另一实施例提供的多通道波束赋形装置的结构示意图。
具体实施方式
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
多通道波束赋形,是指多通道发射信号时,如果对该信号设置特性相位,信号的幅度可以在空口上形成预期的相干效果,具体表现为在某些方向上信号能量更强,在某些方向上信号能量弱,达到预期波束“变形”效果。
本申请实施例可应用于各种制式的蜂窝移动通信系统,包括但不限于:全球移动通信(Global System of Mobile communication,GSM)系统,码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),长期演进(Long Term Evolution,LTE)系统及其演进系统,通用地面无线接入网(Universal Terrestrial Radio Access Network,UTRAN)系统,新无线(New Radio,NR)系统等。另外,本申请实施例还可应用于其他由多个信号源为终端设备提供无线服务的通信系统。
图1为本申请实施例提供的通信系统的示意图。如图1所示,该通信系统包括网络设备11和至少一个终端设备,这里以两个终端设备为例进行说明,该两个终端设备分别为终端设备12和终端设备13,其中,终端设备12和终端设备13处在网络设备11覆盖范围内并与网络设备11进行通信,以实施下述各本申请实施例提供的技术方案。
对于终端设备12和终端设备13,这里统称为终端设备。终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(the fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,NR系统中的终端设备等。
网络设备11可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,UTRAN中的基站控制器(Radio Network Controller,RNC),或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,或NR系 统中的新一代基站(new generation Node B,gNodeB)等。
图2为本申请一实施例提供的波束赋形系统的示意图。如图2所示,该波束赋形系统20包括天线射频模块21和与该天线射频模块21耦接的波束赋形模块22。
其中,天线射频模块21用于生成待发射信号,并将该待发射信号发送给波束赋形模块22;波束赋形模块22用于对待发射信号按照预设的M个权值集合进行波束赋形,得到目标下行信号。或者,天线射频模块21用于扫描上行波束,并将扫描到的上行波束发送给波束赋形模块22;波束赋形模块22用于根据上行波束,通过上下行波束配对确定目标下行波束,得到目标下行信号。
该该波束赋形系统20可以通过图1所示的网络设备11实现,可以理解,该波束赋形系统20内置于网络设备11或该波束赋形系统20为网络设备11。且,该波束赋形系统20可通过软件和/或硬件的方式实现。
接下来结合附图说明本申请实施例提供的多通道波束赋形方法。
图3为本申请一实施例提供的多通道波束赋形方法的流程图。示例性地,该多通道波束赋形方法可由图2所示的波束赋形系统20执行。参考图3,该多通道波束赋形方法包括:
S301、根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束。
其中,权值集合包括相位权值集合和幅度权值集合,不同权值集合所包含的幅度权值集合相同,不同权值集合所包含的相位权值集合不同,相位权值集合中相位权值的个数与幅度权值集合中幅度权值的个数均是根据多通道的通道个数确定的,M为大于0的偶数。
例如,M取值为2,2个权值集合分别表示为权值集合A1和权值集合A2。其中,权值集合A1包括幅度权值集合{X11,X12,X13,X14}和相位权值集合{Y11,Y12,Y13,Y14};权值集合A2包括幅度权值集合{X21,X22,X23,X24}和相位权值集合{Y21,Y22,Y23,Y24}。可以理解,幅度权值集合{X11,X12,X13,X14}与幅度权值集合{X21,X22,X23,X24}相同,但相位权值集合{Y11,Y12,Y13,Y14}和相位权值集合{Y21,Y22,Y23,Y24}不同。
实际应用中,当需要对待发送的下行信号进行多通道波束赋形时,波束赋形系统20通过天线射频模块21生成待发射信号,并通过波束赋形模块22执行S301进行正负极化的下行正交波束配对。其中,目标下行正极化波束和目标下行负极化波束二者进行正负极化的下行波束配对,且二者正交。
S302、根据目标下行正极化波束及目标下行负极化波束,得到目标下行信号。
例如,波束赋形系统20通过波束赋形模块22执行S302,得到目标下行信号。
通过上述正负极化的下行波束配对,达到正负极化间下行波束正交,合成波束就同普通天线覆盖基本一致,可以保证网络覆盖不受损。
本申请实施例,首先根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,之后,根据目标下行正极化波束及目标下行负极化波束,得到目标下行信号,其中,权值集合包括相位权值集合和幅度权值集合,不同权值集合所包含的幅度权值集合相同,不同权值集合所包含的相位权值集合不同,相位权值集合中相位权值的个数与幅度权值集合中幅度权值的个数均是根据多通道的通道个数确定的,M为大于0的偶数。通过上述正负极化的下行波束配对,达到正负极化间下行波束正交,以在无相位校准情况下,保证多通道场景下的覆盖网络。
在上述实施例的基础上,一种可能的实现方式中,如图4所示,S301、根据预设的M 个权值集合,确定目标下行正极化波束和目标下行负极化波束,可以包括以下子步骤:
S401、根据预设的M个权值集合,对待发射信号进行波束赋形,得到M个波束。
其中,预设的M个权值集合包括N个正极化权值集合和N个负极化权值集合。正极化权值集合包括正极化相位权值集合,每个正极化权值集合对应一个正极化波束。负极化权值集合包括负极化相位权值集合,每个负极化权值集合对应一个负极化波束。其中,M等于N的2倍。
S402、分别计算M个波束对应的所有用户的专用物理控制信道(Dedicated Physical Control Channel,DPCCH)发射功率之和。
其中,正极化波束对应的所有用户的DPCCH发射功率之和为正极化DPCCH发射功率之和,负极化波束对应的所有用户的DPCCH发射功率之和为负极化DPCCH发射功率之和。
S403、确定N个正极化DPCCH发射功率之和中最小的正极化DPCCH发射功率之和对应的波束为目标下行正极化波束。
S404、根据目标下行正极化波束及N个负极化DPCCH发射功率之和,确定与目标下行正极化波束配对的目标下行负极化波束。
可选地,该步骤可以具体为:确定N个负极化DPCCH发射功率之和中最小的负极化DPCCH发射功率之和对应的波束为第一波束;根据正负极化正交需求、第一波束及目标下行正极化波束,确定目标下行负极化波束。
以下通过具体实例说明上述实施例中的多通道波束赋形方法。
为方便描述,采用2列4端口天线举例说明,其中,2列4端口天线的示意图如图5所示。
将360度圆周等分成n份(为方便描述,n=8),给出0,45,90,135,180,225,270,315这8个相位值。
其中,天线的方向图和相位强相关,在幅度不变情况下,方向图由相位唯一决定。在单个通道上,射频拉远单元(Remote Radio Unit,RRU),馈线,跳线,天线等都会引入相位。其中,RRU是有源器件,相位在时间维度上变化。其他都是无源器件,在时间维度上较为稳定。因此,在短时间内(取决于RRU的相位漂移速度),天线方向图是平稳态。可以通过基带叠加额外相位,改变极化内相位差,达到调整方向图目的。
在一定时间周期(比如1小时)内,分别对正负极化之间相位差进行调整,调整值为0,45,90,135,180,225,270,315这8个相位值,然后每个方向图进行所有用户的DPCCH发射功率测量,根据所有用户的DPCCH发射功率之和进行排序,如表1所示。
参考表1,正极化相位差45度时,其DPCCH发射功率之和最小,因此,目标下行正极化波束就选择该相位差,进一步,需要再选择负极化相位差同正极化进行配对。
可以看出:负极化相位差在90度时,DPCCH发射功率之和最小。可以等效认为在相同扇区下,达到DPCCH发射功率之和都最小时的方向图基本相当。因此,在负极化中,选择相位差:(90+180)=270,可以达到和相位差90度最为正交,同时和正极化相位差45度方向图最为正交,如此就达到了下行正负极化间波束配对目的(正极化选择波束2,负极化选择波束7)。配对后,正负极化方向图如图6A和图6B所示。图6A为正负极化完全正交互补,实际应用中正负极化可存在一定度数的偏差。该偏差与等分360度圆周相 关,如等分成8份,最大偏差为22.5度,参考图6B。如需偏差更小,可以将360度圆周等分成更多份。在图6A和图6B中,实线为正极化方向图,虚线为负极化方向图。
表1
Figure PCTCN2019107626-appb-000001
另一种可能的实现方式中,如图7所示,S301、根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,可以包括以下子步骤:
S701、周期性扫描上行波束。
S702、确定每一周期内上行波束上所有用户的能量值。
该能量值包括上行正极化能量值和上行负极化能量值。
S703、根据能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束。
S704、根据目标上行正极化波束,确定目标下行正极化波束。
S705、根据目标上行负极化波束,确定目标下行负极化波束。
其中,上行波束只用于测量上行能量值(Eb值),通过周期性扫描上行波束,得到周期内上行波束上所有用户的能量值,进而根据能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束;之后,和下行波束进行配对,即可确定下行波束(包括目标下行正极化波束和目标下行负极化波束),而不需要频繁进行下行波束DPCCH测量,影响下行覆盖。
该实施例通过上下行波束配对进行波束选择,相比现有技术,无需依赖相位校准即可实现下行波束的选择。
在一些实施例中,S703、根据能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束,可以包括:确定N个上行正极化能量值中最大的上行正极化能量值对应的波束为目标上行正极化波束;确定N个上行负极化能量值中最大的上行负极化能量值对应的波束为第二波束;根据目标上行正极化波束、正负极化正交需求及第二波束,确定目标上行负极化波束。
可以理解,上下行波束配对,对上行波束根据某测量值(例如Eb值)进行排序,对下行波束根据某测量值(例如DPCCH发射功率之和)进行排序;然后,根据上下行分别排序的结果,进行上下行两两波束组合配对。
仍以将360度圆周等分成n份(为方便描述,n=8),给出0,45,90,135,180,225,270,315这8个相位值,为例进行说明。8个相位值相当于预置了8个波束。
上行波束只用于测量,每个极化分别在8个波束中做动态扫描,如图8所示。其中,测量周期2s,统计2s内该上行波束上所有用户的能量值,例如Eb值,一共32s完成正负极化所有上行波束测量。然后,进行上下行波束配对。
假设当前测量到上行波束上所有用户的Eb值和下行DPCCH发射功率之和为:
表2
Figure PCTCN2019107626-appb-000002
表3
Figure PCTCN2019107626-appb-000003
参考表2和表3,目标上行正极化波束选择波束5,负极化由于波束4的Eb值最大,而由于要达到正负极化正交覆盖,因此,负极化选择和波束4正交波束,故选择波束4相位差再增加180度相位差对应的波束:mod(135+180,360)=315,即目标上行负极化波束选择波束8。
由此完成上下波束配对,见表4。
表4
  目标上行波束 目标下行波束
正极化 波束5 波束2
负极化 波束8 波束7
第一次上下行波束配对完成后,后续根据上行波束变化选择下行波束。该处等效认为上下行通道的相位差值为稳定值。因此,结合表4做以下说明:
当前正极化上行波束5(相位差180)对应下行波束2(相位差45)。如果其他周期扫描正极化上行选择波束3(相位差90度),那么认为相位偏移-90度,同步认为下行相位偏移-90度,故下行正极化应该选择:mod(45+(-90,360)=315度,选择下行波束8。按照相同方法更新负极化下行波束。
图9为本申请又一实施例提供的多通道波束赋形方法的流程图。如图9所示,本实施例中的多通道波束赋形方法可以包括以下步骤:
S901、周期性扫描上行波束。
S902、确定每一周期内上行波束上所有用户的能量值。
该能量值包括上行正极化能量值和上行负极化能量值。
S903、根据能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束。
S904、根据目标上行正极化波束,确定目标下行正极化波束。
S905、根据目标上行负极化波束,确定目标下行负极化波束。
其中,S901~S905分别与S701~S705相同,此处不再赘述。
S906、根据用户调度的优先级,通过波束码字复用动态选择用户调度。
其中,波束码字复用用于表示相同小区下正负极化波束采用不同码字。
可选地,该步骤可以包括:根据用户调度的优先级,确定当前处于最高优先级的第一待调度用户;计算目标上行正极化波束上接收到的第一待调度用户对应的能量值为第一能量值;计算目标上行负极化波束上接收到的第一待调度用户对应的能量值为第二能量值;在第一能量值与第二能量值之差大于或等于第一预设值时,确定当前处于次高优先级的第二待调度用户;计算目标上行正极化波束上接收到的第二待调度用户对应的能量值为第三能量值;计算目标上行负极化波束上接收到的第二待调度用户对应的能量值为第四能量值;在第三能量值与第四能量值之差小于或等于第二预设值时,确定在目标下行正极化波束及目标下行负极化波束上,同时调度第一待调度用户和第二待调度用户。
S907、根据目标下行正极化波束及目标下行负极化波束,得到目标下行信号。
该步骤同S302。
该实施例,在完成下行正交波束配对,上下行波束配对后,对用户进行码字复用动态调度。具体地:按照小区正常调度排序,选择当前待调度用户。确定当前的高优先级待调度用户(即第一待调度用户)后,计算上行正负极化波束接收到的该用户的Eb值,如果正负极化Eb值相差超过xdB(例如10dB),则再在小区正常调度排序中选择一个用户(即第二待调度用户),满足上行正负极化Eb值小于-xdB(例如10dB)。此时,可以认为两个待调度用户处在两个正交波束上,可以同时调度这两个用户,参考图10。
若不满足上述条件,则只调度第一待调度用户。
上述实施例通过波束码字复用动态选择待调度用户来提升容量增益。相比机器学习,波束码字复用可获得20%~30%容量增益,从而在保证网络覆盖的同时,提升容量增益。
仿真实验
设定第一预设值为10dB,可进行波束码字复用调度的占比为61.9%。在Volcano传模下,通过3D电子地图仿真,容量增益约20%~30%。
通过上述多通道波形赋形方法,一方面,保证网络覆盖;另一方面,提升容量增益。因此,可提高多通道场景解决方案竞争力。
图11为本申请一实施例提供的多通道波束赋形装置的结构示意图。如图11所示,本实施例的多通道波束赋形装置110包括:确定模块111和波束赋形模块112。其中,
确定模块111,用于根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束。其中,权值集合包括相位权值集合和幅度权值集合。不同权值集合所包含的幅度权值集合相同,不同权值集合所包含的相位权值集合不同。相位权值集合中相位权值的个数与幅度权值集合中幅度权值的个数均是根据多通道的通道个数确定的。M为大于0的偶数。
波束赋形模块112,用于根据目标下行正极化波束及目标下行负极化波束,得到目标下行信号。
在一种可行的实施方式中,确定模块111可以具体用于执行以下子步骤:
子步骤一,根据预设的M个权值集合,对待发射信号进行波束赋形,得到M个波束。其中,预设的M个权值集合包括N个正极化权值集合和N个负极化权值集合。正极化权值集合包括正极化相位权值集合,负极化权值集合包括负极化相位权值集合。每个正极化权值集合对应一个正极化波束,每个负极化权值集合对应一个负极化波束。其中,M等于N的2倍。
子步骤二,分别计算M个波束对应的所有用户的DPCCH发射功率之和。其中,正极化波束对应的所有用户的DPCCH发射功率之和为正极化DPCCH发射功率之和,负极化波束对应的所有用户的DPCCH发射功率之和为负极化DPCCH发射功率之和。
子步骤三,确定N个正极化DPCCH发射功率之和中最小的正极化DPCCH发射功率之和对应的波束为目标下行正极化波束。
子步骤四,根据目标下行正极化波束及N个负极化DPCCH发射功率之和,确定与目标下行正极化波束配对的目标下行负极化波束。
一种可能的实现方式中,确定模块111在执行子步骤“根据目标下行正极化波束及N个负极化DPCCH发射功率之和,确定与目标下行正极化波束配对的目标下行负极化波束”时,可以具体用于:确定N个负极化DPCCH发射功率之和中最小的负极化DPCCH发射功率之和对应的波束为第一波束;根据正负极化正交需求、第一波束及目标下行正极化波束,确定目标下行负极化波束。
进一步地,确定模块111可以具体用于:周期性扫描上行波束;确定每一周期内上行波束上所有用户的能量值,该能量值包括上行正极化能量值和上行负极化能量值;根据能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束;分别根据目标上行正极化波束和目标上行负极化波束,确定目标下行正极化波束和目标下行负极化波束。
可选地,确定模块111在用于根据能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束时,可以具体用于:确定N个上行正极化能量值中最大的上行 正极化能量值对应的波束为目标上行正极化波束;确定N个上行负极化能量值中最大的上行负极化能量值对应的波束为第二波束;根据目标上行正极化波束、正负极化正交需求及第二波束,确定目标上行负极化波束。
进一步地,多通道波束赋形装置110还可以包括:选择模块(未示出)。
该选择模块,用于在波束赋形模块112根据目标下行正极化波束及目标下行负极化波束,得到目标下行信号之前,根据用户调度的优先级,通过波束码字复用动态选择用户调度。其中,该波束码字复用用于表示相同小区下正负极化波束采用不同码字。
一些实施例中,选择模块可以具体用于:根据用户调度的优先级,确定当前处于最高优先级的第一待调度用户;计算目标上行正极化波束上接收到的第一待调度用户对应的能量值为第一能量值;计算目标上行负极化波束上接收到的第一待调度用户对应的能量值为第二能量值;在第一能量值与第二能量值之差大于或等于第一预设值时,确定当前处于次高优先级的第二待调度用户;计算目标上行正极化波束上接收到的第二待调度用户对应的能量值为第三能量值;计算目标上行负极化波束上接收到的第二待调度用户对应的能量值为第四能量值;在第三能量值与第四能量值之差小于或等于第二预设值时,确定在目标下行正极化波束及目标下行负极化波束上,同时调度第一待调度用户和第二待调度用户。
本实施例以上所述的多通道波束赋形装置,可以用于执行上述各方法实施例中的技术方案,其实现需求和技术效果类似,其中各个模块的功能可以参考方法实施例中相应的描述,此处不再赘述。
图12为本申请另一实施例提供的多通道波束赋形装置的结构示意图。如图12所示,本实施例的多通道波束赋形装置120包括:存储器121和处理器122。其中:
存储器121,用于存储程序代码。
处理器122,调用程序代码,当程序代码被执行时,用于执行如上任一实施例所述的方法。
该多通道波束赋形装置120可以具体为基站。
可选地,该多通道波束赋形装置120还可以包括收发器123(可以包括接收器和发射器),用于支持该多通道波束赋形装置120与终端设备之间的通信,收发上述方法中所涉及的信息或者指令。
其中,本申请实施例提供的多通道波束赋形装置120中各个模块或单元的详细描述,以及各个模块或单元执行本申请任一方法实施例中方法步骤后所带来的技术效果可以参考本申请方法实施例中的相关描述,此处不再赘述。
本申请实施例提供了一种多通道波束赋形装置,该多通道波束赋形装置具有实现上述任一方法实施例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能中各个子功能相对应的模块。
需要说明的是,多通道波束赋形装置120可以是网络设备,也可以是可用于网络设备内的芯片。
本申请实施例提供一种多通道波束赋形装置,包括用于执行上述任一方法实施例中方法流程的至少一个处理元件(或芯片)。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口。处理模块能执行上述 任一方法实施例中方法流程。进一步地,该芯片还可以包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行上述任一方法实施例中方法流程。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,计算机程序包含至少一段代码,当该至少一段代码由处理器执行时,使得该处理器实现上述任一方法实施例中的方法流程。
本申请实施例提供一种程序或包括程序指令的一种计算机程序产品,该程序指令在被处理器执行时,将会使该处理器实现上述任一方法实施例中的方法流程。
其中,上述程序指令可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
可选地,上述处理器可以为芯片。
所述程序指令可以以软件功能单元的形式实现并能够作为独立的产品销售或使用,存储器可以是任意形式的计算机可读取存储介质。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,包括若干指令用以使得一台计算机设备,具体可以是处理器,来执行本申请各个实施例中的全部或部分步骤。而前述的计算机可读存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介 质(例如固态硬盘Solid State Disk(SSD))等。

Claims (10)

  1. 一种多通道波束赋形方法,其特征在于,包括:
    根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,其中,所述权值集合包括相位权值集合和幅度权值集合,不同所述权值集合所包含的幅度权值集合相同,不同所述权值集合所包含的相位权值集合不同,所述相位权值集合中相位权值的个数与所述幅度权值集合中幅度权值的个数均是根据所述多通道的通道个数确定的,M为大于0的偶数;
    根据所述目标下行正极化波束及所述目标下行负极化波束,得到目标下行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,包括:
    根据所述预设的M个权值集合,对待发射信号进行波束赋形,得到M个波束,其中,所述预设的M个权值集合包括N个正极化权值集合和N个负极化权值集合,所述正极化权值集合包括正极化相位权值集合,所述负极化权值集合包括负极化相位权值集合,每个所述正极化权值集合对应一个正极化波束,每个所述负极化权值集合对应一个负极化波束,其中,M等于N的2倍;
    分别计算M个所述波束对应的所有用户的专用物理控制信道DPCCH发射功率之和,其中,所述正极化波束对应的所有用户的DPCCH发射功率之和为正极化DPCCH发射功率之和,所述负极化波束对应的所有用户的DPCCH发射功率之和为负极化DPCCH发射功率之和;
    确定N个正极化DPCCH发射功率之和中最小的正极化DPCCH发射功率之和对应的波束为所述目标下行正极化波束;
    根据所述目标下行正极化波束及N个负极化DPCCH发射功率之和,确定与所述目标下行正极化波束配对的所述目标下行负极化波束。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述目标下行正极化波束及N个负极化DPCCH发射功率之和,确定与所述目标下行正极化波束配对的所述目标下行负极化波束,包括:
    确定N个负极化DPCCH发射功率之和中最小的负极化DPCCH发射功率之和对应的波束为第一波束;
    根据正负极化正交需求、所述第一波束及所述目标下行正极化波束,确定所述目标下行负极化波束。
  4. 根据权利要求1所述的方法,其特征在于,所述根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,包括:
    周期性扫描上行波束;
    确定每一周期内所述上行波束上所有用户的能量值,所述能量值包括上行正极化能量值和上行负极化能量值;
    根据所述能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束;
    根据所述目标上行正极化波束,确定所述目标下行正极化波束;
    根据所述目标上行负极化波束,确定所述目标下行负极化波束。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述能量值及正负极化正交需求,确定目标上行正极化波束和目标上行负极化波束,包括:
    确定N个上行正极化能量值中最大的上行正极化能量值对应的波束为所述目标上行正极化波束;
    确定N个上行负极化能量值中最大的上行负极化能量值对应的波束为第二波束;
    根据所述目标上行正极化波束、所述正负极化正交需求及所述第二波束,确定所述目标上行负极化波束。
  6. 根据权利要求4至5中任一所述的方法,其特征在于,所述根据所述目标下行正极化波束及所述目标下行负极化波束,得到目标下行信号之前,还包括:
    根据用户调度的优先级,通过波束码字复用动态选择用户调度,所述波束码字复用用于表示相同小区下正负极化波束采用不同码字。
  7. 根据权利要求6所述的方法,其特征在于,所述根据用户调度的优先级,通过波束码字复用动态选择用户调度,包括:
    根据用户调度的优先级,确定当前处于最高优先级的第一待调度用户;
    计算所述目标上行正极化波束上接收到的所述第一待调度用户对应的能量值为第一能量值;
    计算所述目标上行负极化波束上接收到的所述第一待调度用户对应的能量值为第二能量值;
    在所述第一能量值与所述第二能量值之差大于或等于第一预设值时,确定当前处于次高优先级的第二待调度用户;
    计算所述目标上行正极化波束上接收到的所述第二待调度用户对应的能量值为第三能量值;
    计算所述目标上行负极化波束上接收到的所述第二待调度用户对应的能量值为第四能量值;
    在所述第三能量值与所述第四能量值之差小于或等于第二预设值时,确定在所述目标下行正极化波束及所述目标下行负极化波束上,同时调度所述第一待调度用户和所述第二待调度用户。
  8. 一种多通道波束赋形装置,其特征在于,包括:
    确定模块,用于根据预设的M个权值集合,确定目标下行正极化波束和目标下行负极化波束,其中,所述权值集合包括相位权值集合和幅度权值集合,不同所述权值集合所包含的幅度权值集合相同,不同所述权值集合所包含的相位权值集合不同,所述相位权值集合中相位权值的个数与所述幅度权值集合中幅度权值的个数均是根据所述多通道的通道个数确定的,M为大于0的偶数;
    波束赋形模块,用于根据所述目标下行正极化波束及所述目标下行负极化波束,得到目标下行信号。
  9. 一种多通道波束赋形装置,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,调用所述程序代码,当所述程序代码被执行时,用于执行如权利要求1 至7中任一所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序由处理器执行时实现如权利要求1至7中任一所述的方法。
PCT/CN2019/107626 2018-09-25 2019-09-25 多通道波束赋形方法、装置及存储介质 WO2020063602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19865286.9A EP3846352A4 (en) 2018-09-25 2019-09-25 MULTI-CHANNEL BEAMFORMING METHOD AND DEVICE AND STORAGE MEDIUM
US17/211,403 US11962376B2 (en) 2018-09-25 2021-03-24 Multi-channel beamforming method and apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811117083.7 2018-09-25
CN201811117083.7A CN110943770B (zh) 2018-09-25 2018-09-25 多通道波束赋形方法、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/211,403 Continuation US11962376B2 (en) 2018-09-25 2021-03-24 Multi-channel beamforming method and apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2020063602A1 true WO2020063602A1 (zh) 2020-04-02

Family

ID=69904866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107626 WO2020063602A1 (zh) 2018-09-25 2019-09-25 多通道波束赋形方法、装置及存储介质

Country Status (4)

Country Link
US (1) US11962376B2 (zh)
EP (1) EP3846352A4 (zh)
CN (1) CN110943770B (zh)
WO (1) WO2020063602A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867128B (zh) * 2021-01-15 2023-02-28 Oppo广东移动通信有限公司 信号调整方法、装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043795A1 (en) * 2002-03-13 2004-03-04 Gregory Zancewicz Genetic algorithm-based adaptive antenna array processing method and system
CN106712864A (zh) * 2017-01-20 2017-05-24 京信通信技术(广州)有限公司 一种智能天线性能测试及优化的方法及装置
CN106936479A (zh) * 2015-12-28 2017-07-07 电信科学技术研究院 一种广播信息传输方法及装置
CN107947842A (zh) * 2017-10-19 2018-04-20 成都华为技术有限公司 波束赋形方法、装置及计算机存储介质
CN108234037A (zh) * 2017-12-29 2018-06-29 鹤壁天海电子信息系统有限公司 一种相位的校准方法和电路

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274381A (en) * 1992-10-01 1993-12-28 General Electric Co. Optical controller with independent two-dimensional scanning
EP1182799A3 (en) * 2000-08-22 2002-06-26 Lucent Technologies Inc. Method for enhancing mobile cdma communications using space-time transmit diversity
US20070099578A1 (en) * 2005-10-28 2007-05-03 Kathryn Adeney Pre-coded diversity forward channel transmission system for wireless communications systems supporting multiple MIMO transmission modes
BR112012009896A2 (pt) * 2009-10-28 2016-11-29 Ericsson Telefon Ab L M método para gerar dois feixes, e, antena configurada para gerar dois feixes
US10511379B2 (en) * 2010-05-02 2019-12-17 Viasat, Inc. Flexible beamforming for satellite communications
EP2652885B1 (en) * 2010-12-17 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Beamforming method, apparatus for polarized antenna array and radio communication device and system thereof
CN103700952B (zh) * 2012-09-28 2016-08-31 中国电信股份有限公司 阵列天线和基站
WO2015018062A1 (zh) * 2013-08-09 2015-02-12 华为技术有限公司 一种波束成形的方法及装置
WO2016005003A1 (en) * 2014-07-11 2016-01-14 Huawei Technologies Co.,Ltd Methods and nodes in a wireless communication network
WO2016048231A1 (en) * 2014-09-26 2016-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Masked beamforming
US9825742B2 (en) * 2014-10-03 2017-11-21 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems
CA2978489C (en) * 2015-03-06 2021-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Beam forming using an antenna arrangement
KR102109918B1 (ko) * 2015-06-15 2020-05-12 삼성전자주식회사 무선 통신 시스템에서 안테나 어레이를 사용한 빔포밍 장치 및 방법
GB2543563B (en) * 2015-10-23 2020-02-12 Cambium Networks Ltd Method and Apparatus for Controlling Equivalent Isotropic Radiated Power
TW201728207A (zh) * 2015-11-10 2017-08-01 Idac控股公司 波束成形系統下行控制頻道設計及傳訊
WO2017153732A1 (en) * 2016-03-08 2017-09-14 Cambium Networks Ltd Method and apparatus for channel sounding for a mu-mimo wireless communication network
US10623075B2 (en) * 2016-04-02 2020-04-14 University Of Notre Dame Du Lac Linear combinations of transmit signals by a receiver
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10461836B2 (en) * 2017-01-12 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Dual-polarization beamforming
US10505609B2 (en) * 2017-06-14 2019-12-10 Commscope Technologies Llc Small cell beam-forming antennas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043795A1 (en) * 2002-03-13 2004-03-04 Gregory Zancewicz Genetic algorithm-based adaptive antenna array processing method and system
CN106936479A (zh) * 2015-12-28 2017-07-07 电信科学技术研究院 一种广播信息传输方法及装置
CN106712864A (zh) * 2017-01-20 2017-05-24 京信通信技术(广州)有限公司 一种智能天线性能测试及优化的方法及装置
CN107947842A (zh) * 2017-10-19 2018-04-20 成都华为技术有限公司 波束赋形方法、装置及计算机存储介质
CN108234037A (zh) * 2017-12-29 2018-06-29 鹤壁天海电子信息系统有限公司 一种相位的校准方法和电路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; E-UTRA and UTRA; Radio Frequency (RF) requirement background for Active Antenna System (AAS) Base Station (BS) (Release 13)", 3GPP R4-164272 TR 37.842 V1.11.0, 31 May 2016 (2016-05-31), XP051093580 *
See also references of EP3846352A4

Also Published As

Publication number Publication date
CN110943770B (zh) 2021-08-31
US11962376B2 (en) 2024-04-16
EP3846352A1 (en) 2021-07-07
CN110943770A (zh) 2020-03-31
EP3846352A4 (en) 2021-10-20
US20210211172A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
KR102308639B1 (ko) 신호 전송 방법 및 장치
US11064492B2 (en) Resource configuration method and apparatus
TWI680680B (zh) 波束管理方法及其使用者設備
KR20200047707A (ko) 어레이 안테나 교정 방법 및 장치
US11949621B2 (en) System and method for phase noise-based signal design for positioning in a communication system
US11411624B2 (en) Systems and methods for correction of beam direction due to self-coupling
WO2019062724A1 (zh) 一种确定波束互易性能力当前状态的方法及终端
US20220286867A1 (en) Network node, user equipment and methods performed therein
WO2021088989A1 (en) Communication method and device
WO2020001527A1 (zh) 波束的选择方法、装置和存储介质
WO2020029873A1 (zh) 通信方法、装置和通信系统
WO2020063602A1 (zh) 多通道波束赋形方法、装置及存储介质
WO2017173916A1 (zh) 一种波束训练阶段自动增益控制的方法及装置
US20230387981A1 (en) Technique for dual-polarized beamforming
CN112994761B (zh) 一种波束确定方法及装置
WO2020238922A1 (zh) 通信方法及装置
WO2018171647A1 (zh) 一种资源配置方法及其装置
WO2021063168A1 (en) Sinr estimation method and device
WO2023169459A1 (zh) 用于定位中的上行参考信号传输配置的设备和方法
WO2023185656A1 (zh) 一种信息传输方法和装置
WO2021027788A1 (en) Information reporting method and apparatus, and user equipment
JP2024511505A (ja) 位相補正方法および通信装置
CN117674930A (zh) 参考信号处理方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019865286

Country of ref document: EP

Effective date: 20210401