WO2015018062A1 - 一种波束成形的方法及装置 - Google Patents

一种波束成形的方法及装置 Download PDF

Info

Publication number
WO2015018062A1
WO2015018062A1 PCT/CN2013/081173 CN2013081173W WO2015018062A1 WO 2015018062 A1 WO2015018062 A1 WO 2015018062A1 CN 2013081173 W CN2013081173 W CN 2013081173W WO 2015018062 A1 WO2015018062 A1 WO 2015018062A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna array
shaping
positive integer
antenna
Prior art date
Application number
PCT/CN2013/081173
Other languages
English (en)
French (fr)
Inventor
张鹏程
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/081173 priority Critical patent/WO2015018062A1/zh
Priority to CN201380001057.7A priority patent/CN103650370B/zh
Publication of WO2015018062A1 publication Critical patent/WO2015018062A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to the field of communications, and in particular, to a beamforming method and apparatus.
  • a typical multi-beam design is shown in Figure 1.
  • the first beam and the second are formed on both sides of the antenna's normal (ie, 0° in the figure).
  • Beam (or called the first polarized beam and the second polarized beam).
  • a common way to implement such a multi-beam is to connect a beamforming circuit (or a beamforming network) to the antenna array.
  • a typical beamforming circuit is implemented by a Butler matrix.
  • the equivalent column spacing of a conventional array antenna is below 0.6 ⁇ (wavelength), for example, 0.5 ⁇ .
  • the equivalent column spacing of antenna arrays has also increased.
  • the equivalent column spacing is increased above 0.65 ⁇ , the existing beam design scheme will introduce some neighbor interference.
  • FIG. 2 is a schematic diagram of a beam obtained when an existing beam design scheme is applied to an array antenna with an equivalent column spacing of 0.65 to 0.75 ⁇ .
  • this form of beam has better isolation in some areas, but at +/-60.
  • the beam gains of the sector boundary regions overlap, and the grating lobes are not well converged, and the neighboring regions have large interference.
  • Embodiments of the present invention provide a beamforming method and apparatus, which can reduce neighboring interference.
  • an embodiment of the present invention provides a beamforming method, including: receiving a chopping signal, where ⁇ is a positive integer;
  • the M is 4 and the N is 8.
  • the performing the shaping processing on the M-channel signal includes:
  • an embodiment of the present invention provides a beamforming apparatus, including: an interface unit, configured to receive a chirp signal, where ⁇ is a positive integer;
  • a shaping unit configured to perform shaping processing on the crotch signal to obtain a crotch signal, wherein ⁇ is a positive integer greater than ⁇ ;
  • An antenna array configured to radiate the chirp signal to form a first beam and a second beam, where the first beam is located in a normal direction of the antenna array, and the second beam is located in the antenna array Both sides of the normal.
  • the ⁇ is 4 and the ⁇ is 8.
  • the shaping unit is further configured to perform processing on the M-channel signal by using a weight matrix, where the weight matrix is:
  • B is the weight matrix
  • ⁇ and ⁇ are the amplitude coefficients, L "-".
  • an embodiment of the present invention provides a beamforming apparatus, including: a signal source, configured to provide a chirp signal, where ⁇ is a positive integer;
  • a shaping circuit connected to the signal source for shaping the chirp signal to obtain a crotch signal, wherein ⁇ is a positive integer greater than ⁇ ;
  • An antenna array is coupled to the shaping circuit, configured to radiate the chirp signal into a first beam and a second beam, where the first beam is located in a normal direction of the antenna array, The two beams are located on both sides of the normal of the antenna array.
  • the shaping circuit includes: a weight circuit connected to the signal source, configured to perform weighting processing on the routing signal provided by the signal source Obtaining an initial chirp signal, wherein the weight matrix of the weight circuit is a Butler matrix;
  • phase shifting circuit connected to the weight circuit and the antenna array, configured to perform phase shift processing on the initial chopping signal weighted by the weight circuit by an equal phase of ⁇ /2 phase difference, to obtain The chirp signal to the antenna array.
  • the ⁇ is 4 and the ⁇ is 8.
  • the Butler Matrix of the Butler Matrix is:
  • phase shifting matrix of the phase shifting circuit is
  • PS is a phase shifting matrix
  • ⁇ , ⁇ are amplitude coefficients
  • the ⁇ is 4 and the ⁇ is 8.
  • the shaping circuit is a weight circuit
  • the weight matrix of the weight circuit is:
  • B is a weight matrix
  • ⁇ and ⁇ are amplitude coefficients.
  • an embodiment of the present invention provides a beamforming apparatus, including: a signal source, configured to provide a chirp signal, where ⁇ is a positive integer;
  • a processor coupled to the signal source, configured to perform shaping processing on the routing signal provided by the signal source, so that the processed ⁇ signal is radiated through the antenna array to form a first beam and a second beam
  • is a positive integer greater than ⁇
  • the second beam is located on opposite sides of the normal of the antenna array in a normal direction of the antenna array.
  • the M is 4 and the N is 8.
  • the processor is further configured to perform shaping processing on the M-channel signal by using a weight matrix, where the weight matrix is:
  • B is a weight matrix
  • ⁇ and ⁇ are amplitude coefficients.
  • an embodiment of the present invention provides a computer program product, including a computer readable medium,
  • the computer readable medium includes: a set of program codes, configured to perform a shaping process on the routing signal, so that the processed ⁇ signal is radiated by the antenna array to form a first beam and a second beam, where A positive integer, ⁇ is a positive integer greater than ⁇ , and the first beam is located in a normal direction of the antenna array, and the second beam is located on two sides of a normal line of the antenna array.
  • a multi-beam technology provided by an embodiment of the present invention performs shaping processing on a received crotch signal, so that the crotch signal obtained by the shaping process is radiated and formed on both sides of the normal and the normal of the antenna.
  • the first beam and the second beam, this new beam design scheme is especially suitable for wideband antennas, which reduces the overlapping area of beam gains and solves the problem of large area interference.
  • FIG. 1 is a schematic diagram of a beam provided by the prior art
  • FIG. 3 is a schematic diagram of a beam according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a beamforming method according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a beamforming device according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a beamforming device according to still another embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a beamforming device according to still another embodiment of the present invention.
  • the present invention considers that the transmission multi-beam design scheme is difficult to meet the requirement of increasing the bandwidth of the antenna, and therefore provides a multi-beam design scheme, which respectively forms a first beam and a second beam on both sides of the normal and the normal of the antenna, wherein the antenna The normal is the reference line that is perpendicular to the entire antenna array face.
  • the antenna beam includes a first beam 310 and a second beam 320, wherein the first beam 310 is located in the normal of the antenna (i.e., the direction of 0 in the figure), and the second beam is located on both sides of the normal of the antenna.
  • the above beam design is applied to an array antenna with an equivalent column spacing of 0.65 to 0.75 ⁇ , which can solve the problem that the conventional beam design has an increase in the equivalent column spacing.
  • the above beam design can also be used for conventional array antennas below 0.6 ⁇ .
  • the embodiment of the present invention does not impose any limitation.
  • a conventional array antenna a person skilled in the art can select a conventional beam design or the above beam design as needed.
  • Embodiments of the present invention provide a method of beamforming. Referring to FIG. 4, the method includes the following steps:
  • M is a positive integer.
  • N is a positive integer greater than M.
  • the first N beam is radiated by the antenna array to form a first beam and a second beam.
  • the first beam is located in a normal direction of the antenna array, and the second beam is located on opposite sides of the normal line of the antenna array.
  • the weight matrix can be used to shape the M-channel signal, and the weight matrix B
  • the beamforming method provided by the embodiment of the present invention obtains an N-channel signal by performing a shaping process on the received M-path signal, and the obtained N-channel signal is radiated through the antenna array to form a first beam and a second beam.
  • the first beam is located in the normal direction of the antenna array, and the second beam is located on both sides of the normal line of the antenna array, which reduces the overlapping area of the beam gain, and solves the problem of large interference in the area.
  • the equivalent column spacing of the array antenna is 0.65 ⁇ ⁇ 0.75 ⁇ , the effect is very obvious.
  • the embodiment of the present invention further provides a beamforming device, the structure of which is shown in FIG. 5.
  • the beamforming device 50 includes: an interface unit 501, a shaping unit 502, and an antenna array 503.
  • the interface unit 501 is configured to receive a loop signal, where ⁇ is a positive integer.
  • the shaping unit 502 is configured to perform a shaping process on the kneading signal to obtain a crotch signal, wherein ⁇ is a positive integer greater than ⁇ .
  • the antenna array 503 is configured to radiate the chirp signal to form a first beam and a second beam, wherein the first beam is located in a normal direction of the antenna array, and the second beam is located on two sides of the normal of the antenna array.
  • is 4 and ⁇ is 8.
  • the shaping unit 502 is further configured to perform a shaping process on the routing signal by using a weight matrix, where the weight matrix ⁇ is:
  • ⁇ and ⁇ are amplitude coefficients, .
  • the beamforming device obtained by the embodiment of the present invention obtains an N-channel signal by performing a shaping process on the received M-channel signal, and the obtained N-channel signal is radiated through the antenna array to form a first beam and a second beam, wherein The first beam is located in the normal direction of the antenna array, and the second beam is located on both sides of the normal line of the antenna array, which reduces the overlapping area of the beam gain, and solves the problem of large interference in the area.
  • the equivalent column spacing is 0.65 ⁇ ⁇ 0.75 ⁇ aging It is very obvious.
  • the above beamforming method is implemented in the analog domain and can also be implemented in the digital domain. The details will be described below in conjunction with the embodiments.
  • the above beamforming device can be implemented directly as an antenna system.
  • the advantage of this scheme is that it is simple to implement and does not require changing the number of channels between the baseband and the radio frequency.
  • FIG. 6 another embodiment of the present invention provides a beamforming apparatus.
  • the beam shaping device includes a signal source 61, a shaping circuit 62, and an antenna array 63.
  • the signal source 61 is configured to provide an M-channel signal, where M is a positive integer.
  • the shaping circuit 62 is connected to the signal source 61 for shaping the M-channel signal to obtain an N-channel signal, where N is a positive integer greater than M.
  • the antenna array 63 is connected to the shaping circuit 62 for radiating the N signals to form a first beam and a second beam, wherein the first beam is located in a normal direction of the antenna array, and the second beam is located at a normal of the antenna array On both sides.
  • M is 4, N is 8, the shaping circuit 62 is a weight circuit, and the weight matrix B of the weight circuit is:
  • TRX2 TRX3] [A4 A5 A6 Al] B H
  • the beamforming device obtained by the embodiment of the present invention obtains an N-channel signal by performing a shaping process on the received M-channel signal, and the obtained N-channel signal is radiated through the antenna array to form a first beam and a second beam, wherein The first beam is located in the normal direction of the antenna array, and the second beam is located on both sides of the normal line of the antenna array, which reduces the overlapping area of the beam gain, and solves the problem of large interference in the area. Especially when the equivalent column spacing of the array antenna is 0.65 ⁇ 0.75 ⁇ , the effect is very obvious.
  • the apparatus includes a signal source 71, a shaping circuit 72, and an antenna array 73, and the shaping circuit 72 includes a weight circuit 721 and phase shifting. Circuit 722.
  • the signal source 71 is configured to provide a chirp signal, where ⁇ is a positive integer.
  • the shaping circuit 72 is connected to the signal source 71 for shaping the loop signal to obtain a loop signal, where ⁇ is a positive integer greater than ⁇ .
  • the antenna array 73 is connected to the shaping circuit 72 for radiating the crotch signal to form a first beam and a second beam, wherein the first beam is located in a normal direction of the antenna array, and the second beam is located at a normal of the antenna array On both sides.
  • the weight circuit 721 is connected to the signal source 71 for weighting the loop signal provided by the signal source to obtain an initial loop signal, wherein the weight matrix of the weight circuit is a Butler matrix.
  • the phase shifting circuit 722 is connected to the weight circuit 721 and the antenna array 73, and the initial loop signal weighted by the weight circuit 721 is phase-shifted by an equal phase of ⁇ /2 phase difference to obtain an antenna.
  • the ramp signal of array 73 is connected to the weight circuit 721 and the antenna array 73, and the initial loop signal weighted by the weight circuit 721 is phase-shifted by an equal phase of ⁇ /2 phase difference to obtain an antenna.
  • the ramp signal of array 73 is connected to the weight circuit 721 and the antenna array 73, and the initial loop signal weighted by the weight circuit 721 is phase-shifted by an equal phase of ⁇ /2 phase difference to obtain an antenna.
  • the ramp signal of array 73 is connected to the weight circuit 721 and the antenna array 73, and the initial loop signal weighted by the weight circuit 721 is phase-shifted by an equal phase of ⁇ /2 phase difference to obtain an antenna.
  • the ramp signal of array 73 is connected to the weight circuit 721 and the antenna array 73, and the initial loop signal
  • 4
  • 8
  • the Butler matrix of the weight circuit 721 is Butler Matrix:
  • phase shifting matrix PS of the phase shifting circuit 722 is: 1 0 0 0
  • [TRX2 TRX3] [A4 A5 A6 Al]xPS H B H
  • the beamforming device obtained by the embodiment of the present invention obtains an N-channel signal by performing a shaping process on the received M-channel signal, and the obtained N-channel signal is radiated through the antenna array to form a first beam and a second beam, wherein The first beam is located in the normal direction of the antenna array, and the second beam is located on both sides of the normal line of the antenna array, which reduces the overlapping area of the beam gain, and solves the problem of large interference in the area. Especially when the equivalent column spacing of the array antenna is 0.65 ⁇ 0.75 ⁇ , the effect is very obvious.
  • the baseband can be implemented by using software and a processor in combination, and can also be implemented by using one chip.
  • the advantage of this scheme is that the modification flexibility is relatively high, but the number of channels between the baseband and the radio frequency needs to be changed.
  • a further embodiment of the present invention provides a beamforming apparatus.
  • the apparatus includes a signal source 8011 and a processor 8012.
  • the memory 8013 and the bus 8014 are also shown.
  • the signal source 8011 is shown.
  • the processor 8012 and the memory 8013 are connected by a bus 8014 and complete communication with each other.
  • the bus 8014 can be an ISA (Industry Standard Architecture) System) bus, PCI (Peripheral Component) bus or EISA (Extended Industry Standard Architecture) bus.
  • the bus 8014 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus. among them:
  • Memory 8013 is for storing executable program code, the program code including computer operating instructions.
  • the memory 8013 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 8012 may be a central processing unit (CPU), or an application specific integrated circuit (ASIC), or one or more configured to implement the embodiments of the present invention. Integrated circuits.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the signal source 8011 is configured to provide an M-channel signal, where M is a positive integer.
  • the processor 8012 is connected to the signal source 8011, and configured to perform shaping processing on the M channel signal provided by the signal source, so that the processed N signals are radiated by the antenna array to form a first beam and a second beam, where, N A positive integer greater than M is located in the normal direction of the antenna array, and a second beam is located on both sides of the normal of the antenna array.
  • M is 4 and N is 8.
  • the processor 8012 is further configured to perform a shaping process on the M-channel signal by using a weight matrix, where the weight matrix B is:
  • the beamforming device obtained by the embodiment of the present invention obtains an N-channel signal by performing a shaping process on the received M-channel signal, and the obtained N-channel signal is radiated through the antenna array to form a first beam and a second beam, wherein The first beam is located in the normal direction of the antenna array, and the second beam is located on both sides of the normal line of the antenna array, which reduces the overlapping area of the beam gain, and solves the problem of large interference in the area.
  • the equivalent column spacing of the array antenna is 0.65 ⁇ ⁇ 0.75 ⁇ , the effect is very obvious.
  • Embodiments of the present invention also provide a computer program product, comprising a computer readable medium, the computer readable medium comprising a set of program codes for shaping a loop signal, such that the processed loop signal is processed After the antenna array is radiated, a first beam and a second beam are formed, where ⁇ is a positive integer, ⁇ is a positive integer greater than ⁇ , and the first beam is located in a normal direction of the antenna array, and the second beam is located at a normal of the antenna array. side.
  • the computer program product provided by the embodiment of the present invention obtains a chopping signal by shaping a received crotch signal, and the obtained crotch signal is radiated through the antenna array to form a first beam and a second beam, wherein The first beam is located in the normal direction of the antenna array, and the second beam is located on both sides of the normal line of the antenna array, which reduces the overlapping area of the beam gain, and solves the problem of large interference in the area.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • the desired program code and any other medium that can be accessed by the computer may suitably be a computer readable medium.
  • the software is using coaxial cable, fiber optic light Cable, twisted pair, digital subscriber line (DSL) or wireless technology such as infrared, radio and microwave transmission from a website, server or other remote source, then coaxial cable, fiber optic cable, twisted pair, DSL or such as Wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated medium.
  • a disk and a disc include a compact disc (CD), a laser disc, a disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例公开了一种波束成形的方法及装置,涉及通信领域,降低了波束临区之间的干扰。具体方案为:对接收到的M路信号进行赋形处理,得到N路信号,将得到的N路信号经天线阵列辐射后形成第一波束和第二波束,其中第一波束位于天线阵列的法线方向,第二波束位于天线阵列的法线两侧。

Description

一种波束成形的方法及装置 技术领域
本发明涉及通信领域, 尤其涉及一种波束成形的方法及装置。
背景技术
随着移动通信的发展, 用户对通信系统的容量提出了越来越高的要 求。 提升系统容量的有效方法是釆用多波束技术, 一种典型的多波束设 计如图 1所示, 在天线的法线 (即图中 0° 的方向) 两侧分别形成第一波 束和第二波束(或称之为第一种极化波束和第二种极化波束)。 实现这种 多波束的常见方式是将波束成形电路(或称之为波束成形网络)与天线阵 列连接, 典型的波束成形电路是通过巴特勒 (Butler ) 矩阵实现的。
传统的阵列天线的等效列间距在 0.6 λ (波长) 以下, 例如, 0.5 λ 。 而随着应用场景的增加, 对宽带天线的需求逐渐增加, 天线阵列的等效 列间距也随之变大。 当等效列间距增加到 0.65 λ以上时, 现有的波束设 计方案将引入一定的邻区干扰。
例如, 请参考图 2 , 其为现有的波束设计方案应用到等效列间距为 0.65〜0.75 λ的阵列天线时, 所得到的波束示意图。
如图 2 所示, 这种形态的波束虽然部分区域的隔离度较好, 但在 +/-60。 的扇区边界区域波束增益出现交叠, 且栅瓣的收敛不佳, 邻区干 扰较大。
发明内容
本发明实施例提供了一种波束成形的方法及装置, 能够降低邻区干 扰。
为达到上述目的, 本发明实施例釆用的技术方案是:
第一方面, 本发明的实施例提供一种波束成形的方法, 包括: 接收 Μ路信号, 其中 Μ为正整数;
对所述 Μ路信号进行赋形处理, 得到 Ν路信号, 其中, Ν为大于 Μ 的正整数; 将所述 N 路信号经天线阵列辐射后形成第一波束和第二波束, 其 中, 所述第一波束位于所述天线阵列的法线方向, 所述第二波束位于所 述天线阵列的法线两侧。
结合第一方面, 在第一种可能的实现方式中,
所述 M为 4 , 所述 N为 8。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式 中, 所述对所述 M路信号进行赋形处理, 包括:
利用权值矩阵对所述 M 路信号进行赋形处理, 其中所述权值矩阵
Figure imgf000004_0001
2.0 <^ < 2.5
a
其中, B为权值矩阵, α、 β为幅度系数, L«2 + 2 = 0'5
结合第一方面、 第一方面的第一种可能的实现方式或第一方面的第 二种可能的实现方式, 在第三种可能的实现方式中,
所述阵列天线的等效列间距为 0.65 λ 〜0.75 λ , 其中, λ为波长。 第二方面, 本发明的实施例提供一种波束成形装置, 包括: 接口单元, 用于接收 Μ路信号, 其中 Μ为正整数;
赋形单元, 用于对所述 Μ路信号进行赋形处理, 得到 Ν路信号, 其 中, Ν为大于 Μ的正整数;
天线阵列, 用于将所述 Ν 路信号进行辐射形成第一波束和第二波 束, 其中, 所述第一波束位于所述天线阵列的法线方向, 所述第二波束 位于所述天线阵列的法线两侧。
结合第二方面, 在第一种可能的实现方式中,
所述 Μ为 4 , 所述 Ν为 8。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式 中, 所述赋形单元, 进一步用于利用权值矩阵对所述 M路信号进行赋 处理, 其中所述权值矩阵为:
Figure imgf000005_0001
2.0 <^ < 2.5
a
其中, B为权值矩阵, α、 β为幅度系数, L" —―。
结合第二方面、 第二方面的第一种可能的实现方式或第二方面的第 二种可能的实现方式, 在第三种可能的实现方式中,
所述阵列天线的等效列间距为 0.65 λ 〜0.75 λ , 其中, λ为波长。 第三方面, 本发明的实施例提供一种波束成形装置, 包括: 信号源, 用于提供 Μ路信号, 其中 Μ为正整数;
赋形电路, 连接于所述信号源, 用于对所述 Μ 路信号进行赋形处 理, 得到 Ν路信号, 其中, Ν为大于 Μ的正整数;
天线阵列, 连接于所述赋形电路, 用于将所述 Ν 路信号进行辐射 成第一波束和第二波束, 其中, 所述第一波束位于所述天线阵列的法线 方向, 所述第二波束位于所述天线阵列的法线两侧。
结合第三方面, 在第一种可能的实现方式中, 所述赋形电路包括: 权值电路, 连接于所述信号源, 用于对所述信号源提供的所述 Μ路 信号进行加权处理得到初始 Ν 路信号, 其中, 所述权值电路的权值矩阵 为巴特勒矩阵;
移相电路, 连接于所述权值电路和所述天线阵列, 用于对所述权值 电路加权处理后的初始 Ν路信号以 π/2相位差的等差相位进行移相处理, 得到提供给所述天线阵列的所述 Ν路信号。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式 中,
所述 Μ为 4 , 所述 Ν为 8。
结合第三方面的第二种可能的实现方式, 在第三种可能的实现方式 所述巴特勒矩阵 Butler Matrix为:
α,βϊ-β-aj
Butler Matrix
α -βϊ,-β,αϊ ,
并且, 所述移相电路的移相矩阵为
1 0 0 0
0 ew 0 0
PS
0 0 eiW 0
0 0 0 eiW
Figure imgf000006_0001
a
其中, PS为移相矩阵, α、 β为幅度系数, 且 L 2=0.5, θ=π/2或—π/ 结合第三方面, 在第四种可能的实现方式中,
所述 Μ为 4, 所述 Ν为 8。
结合第三方面的第四种可能的实现方式, 在第五种可能的实现方式 所述赋形电路为权值电路, 且所述权值电路的权值矩阵为:
α β β a
a -β β -a
B =
a a
其中, B为权值矩阵, α、 β为幅度系数,
Figure imgf000006_0002
结合第三方面或第三方面的第一种到第五种可能的实现方式中的任 意一种可能的实现方式, 在第六种可能的实现方式中,
所述阵列天线的等效列间距为 0.65λ〜0.75λ , 其中, λ为波长。 第四方面, 本发明的实施例提供一种波束成形装置, 包括: 信号源, 用于提供 Μ路信号, 其中, Μ为正整数;
处理器, 连接于所述信号源, 用于对所述信号源提供的所述 Μ路信 号进行赋形处理, 使得处理后得到的 Ν 路信号经过天线阵列辐射后形成 第一波束和第二波束, 其中, Ν为大于 Μ的正整数, 且所述第一波束位 于所述天线阵列的法线方向, 所述第二波束位于所述天线阵列的法线两 侧。
结合第四方面, 在第一种可能的实现方式中,
所述 M为 4 , 所述 N为 8。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式 中,
所述处理器, 进一步用于利用权值矩阵对所述 M路信号进行赋形处 理, 其中所述权值矩阵为:
Figure imgf000007_0001
中, B为权值矩阵, α、 β为幅度系数, 。
结合第四方面、 第四方面的第一种可能的实现方式或第四方面的第 二种可能的实现方式, 在第三种可能的实现方式中,
所述阵列天线的等效列间距为 0.65 λ〜0.75 λ , 其中, λ为波长。 第五方面, 本发明的实施例提供一种计算机程序产品, 包括计算机 可读介质,
所述计算机可读介质包括: 一组程序代码, 用于对 Μ路信号进行赋 形处理, 使得处理后得到的 Ν 路信号经天线阵列辐射后形成第一波束和 第二波束, 其中, Μ为正整数, Ν为大于 Μ的正整数, 且所述第一波束 位于所述天线阵列的法线方向, 所述第二波束位于所述天线阵列的法线 两侧。
本发明的实施例提供的一种多波束技术, 通过对接收到的 Μ路信号 进行赋形处理, 使得赋形处理得到的 Ν 路信号经辐射后分别在天线的法 线和法线两侧形成第一波束和第二波束, 这种新的波束设计方案,尤其适 用于宽带天线, 减少了波束增益的交叠区域, 解决了临区干扰较大的问 题。 附图说明
为了更清楚地说明本发明实施例和现有技术中的技术方案, 下面将 对实施例和现有技术描述中所需要使用的附图作简单地介绍。
图 1为现有技术提供的一种波束示意图;
图 2为现有技术提供的另一种波束示意图;
图 3为本发明的实施例提供的一种波束示意图;
图 4为本发明的实施例提供的一种波束成形方法的流程示意图; 图 5为本发明的实施例提供的一种波束成形装置结构示意图; 图 6为本发明的另一实施例提供的一种波束成形装置结构示意图; 图 7为本发明的又一实施例提供的一种波束成形装置结构示意图; 图 8为本发明的再一实施例提供的一种波束成形装置结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。
本发明考虑到传输多波束设计方案难以满足天线带宽增加的需求, 因此提供了一种多波束设计方案, 分别在天线的法线和法线两侧形成第 一波束和第二波束, 其中, 天线的法线是指垂直于整个天线阵列面的参 考线。
将以上波束设计方案, 应用到等效列间距为 0.65〜0.75λ ( λ为波长) 的阵列天线时, 所得到的波束示意图如图 3 所示。 该天线波束包括第一 波束 310和第二波束 320 , 其中第一波束 310位于天线的法线(即图中 0。 的方向) 方向, 第二波束位于天线的法线两侧。
从图 3 中可以看出, 边界区域波束增益的交叠区域得到了有效的抑 制, 且栅瓣收敛较好, 进而有利于降低邻区之间的干扰。 且相对于现有 技术, 波束在法线方向的相干增益的损失有效的减少。
需要说明的是, 以上波束设计应用在等效列间距为 0.65〜0.75 λ的阵 列天线时, 可以解决传统波束设计在等效列间距增加时所出现的问题。 此外, 以上波束设计还可以用于传统的 0.6 λ以下的阵列天线, 对此本发 明的实施例不做任何限制, 对于传统的阵列天线, 本领域技术人员可以 根据需要选择传统的波束设计或以上波束设计。
下面结合具体的实施例, 详细描述以上多波束的形成方法和装置, 当然以下仅为举例, 本领域技术人员可以釆用其它方法和装置实现以上 形态的多波束, 均在本发明的保护范围之内。
本发明的实施例提供一种波束成形的方法, 参照图 4 所示, 该方法 包括如下步骤:
401、 接收 M路信号。
其中, M为正整数。
402、 对接收到的 M路信号进行赋形处理, 得到 N路信号。
其中, N为大于 M的正整数。
403、 将以上 N路信号经天线阵列辐射后形成第一波束和第二波束, 其中, 第一波束位于天线阵列的法线方向, 第二波束位于天线阵列的法线 两侧。
具体的, 以最常用的 4列面阵天线为例, 即 M为 4 , N为 8时, 可选的, 可以利用权值矩阵对 M路信号进行赋形处理, 权值矩阵 B
Figure imgf000009_0001
2.0 <- < 2.5
a
.2 + , ο?2 = 0.5
其中, α、 β为幅度系数,
关于 α、 β的取值, 本实施例不做任何限制, 只要满足以上关于 α、 β的要 求即可, 一种取值举例为: α=0.2912、 β=0.6444。
釆用以上权值矩阵进行赋形处理的结果如下:
[TRXO TRX\ TRX2 TRX3] x B = [A0 A\ A2 A3 A4 A5 A6 Al] 其中, TRXO、 TRX 1、 TRX2、 TRX3、 TRX3分别为接收到的 M路信 号 (Μ=4 ) , 公式中等号右边 A0-A7分别为经过赋形处理后输出的 N路 信号 (N=8 ) 。
本发明的实施例提供的波束成形的方法, 通过对接收到的 M路信号 进行赋形处理, 得到 N路信号, 将得到的 N路信号经天线阵列辐射后形 成第一波束和第二波束, 其中第一波束位于天线阵列的法线方向, 第二 波束位于天线阵列的法线两侧, 减少了波束增益的交叠区域, 解决了临 区干扰较大的问题。 尤其用于阵列天线的等效列间距为 0.65 λ 〜0.75 λ时 效果非常明显。
本发明实施例还提供一种波束成形装置, 其结构参照图 5 所示, 该 波束成形装置 50包括: 接口单元 501 , 赋形单元 502以及天线阵列 503。
其中, 接口单元 501 , 用于接收 Μ路信号, 其中 Μ为正整数。
赋形单元 502 , 用于对 Μ路信号进行赋形处理, 得到 Ν路信号, 其 中, Ν为大于 Μ的正整数。
天线阵列 503 , 用于将 Ν路信号进行辐射形成第一波束和第二波束, 其中, 第一波束位于天线阵列的法线方向, 第二波束位于天线阵列的法 线两侧。
可选的, 在常用的 4列面阵天线中, Μ为 4 , Ν为 8。
具体可选的, 赋形单元 502 , 进一步用于利用权值矩阵对 Μ路信号 进行赋形处理, 其中权值矩阵 Β为:
Figure imgf000010_0001
中, α、 β为幅度系数, 。
本发明的实施例提供的波束成形装置, 通过对接收到的 M路信号进 行赋形处理, 得到 N路信号, 将得到的 N路信号经天线阵列辐射后形成 第一波束和第二波束, 其中第一波束位于天线阵列的法线方向, 第二波 束位于天线阵列的法线两侧, 减少了波束增益的交叠区域, 解决了临区 干扰较大的问题。 尤其用于阵列天线的等效列间距为 0.65 λ 〜0.75 λ时效 果非常明显。
以上波束成形方法在模拟域实现, 也可以在数字域实现。 下面分别 结合实施例进行详细说明。
在模拟域实现时, 以上波束成形装置可以直接作为天线系统实现。 这种方案的优势是实现简单, 且不需要改变基带与射频之间的通道数 参照图 6 所示, 本发明的另一实施例提供一种波束成形装置。 该波 束成形装置包括信号源 61, 赋形电路 62以及天线阵列 63。
其中, 信号源 61, 用于提供 M路信号, 其中 M为正整数。
赋形电路 62, 连接于信号源 61, 用于对 M路信号进行赋形处理, 得 到 N路信号, 其中, N为大于 M的正整数。
天线阵列 63, 连接于赋形电路 62, 用于将 N路信号进行辐射形成第 一波束和第二波束, 其中, 第一波束位于天线阵列的法线方向, 第二波 束位于天线阵列的法线两侧。
具体的, 在常见的 4列面阵天线中, M为 4, N为 8, 该赋形电路 62 为权值电路, 且权值电路的权值矩阵 B为:
α β β a
0
α -β β -a
B =
a
0
a
2.0<^<2.5
a
其中, α、 β为幅度系数, 2+ = 5
釆用以上权值矩阵进行赋形处理的结果如下:
[TRXO TRX\]xB = [A0 A\ A2 A3];
[TRX2 TRX3]xB = [A4 A5 A6 ΑΊ]
或者,
[TRXO TRXl] = [AO A\ A2 A3]xBH;
[TRX2 TRX3] = [A4 A5 A6 Al] BH 其中, TRXO、 TRX 1、 TRX2、 TRX3、 TRX3分别为接收到的 M路信 号 (Μ=4) , 公式中等号右边 A0-A7分别为经过赋形处理后输出的 N路 信号 (N=8) , 为权值矩阵 B的逆矩阵。
本发明的实施例提供的波束成形装置, 通过对接收到的 M路信号进 行赋形处理, 得到 N路信号, 将得到的 N路信号经天线阵列辐射后形成 第一波束和第二波束, 其中第一波束位于天线阵列的法线方向, 第二波 束位于天线阵列的法线两侧, 减少了波束增益的交叠区域, 解决了临区 干扰较大的问题。 尤其用于阵列天线的等效列间距为 0.65λ〜0.75λ时效 果非常明显。
本发明的又一实施例提供一种波束成形装置, 参照图 7 所示, 该装 置包括信号源 71, 赋形电路 72以及天线阵列 73, 且该赋形电路 72包括 权值电路 721及移相电路 722。
其中, 信号源 71, 用于提供 Μ路信号, 其中 Μ为正整数。
赋形电路 72, 连接于信号源 71, 用于对 Μ路信号进行赋形处理, 得 到 Ν路信号, 其中, Ν为大于 Μ的正整数。
天线阵列 73, 连接于赋形电路 72, 用于将 Ν路信号进行辐射形成第 一波束和第二波束, 其中, 第一波束位于天线阵列的法线方向, 第二波 束位于天线阵列的法线两侧。
具体可选的, 权值电路 721, 连接于信号源 71, 用于对信号源提供 的 Μ路信号进行加权处理得到初始 Ν路信号, 其中, 权值电路的权值矩 阵为巴特勒矩阵。
移相电路 722, 连接于权值电路 721和天线阵列 73, 用于对权值电路 721加权处理后的初始 Ν路信号以 π/2相位差的等差相位进行移相处理, 得到提供给天线阵列 73的 Ν路信号。
进一步可选的, 在常见的 4列面阵天线中, Μ为 4, Ν为 8, 权值电 路 721的巴特勒矩阵 Butler Matrix为:
α,βϊ-β-aj
Butler Matrix
α -βϊ,-β,αϊ , 并且, 移相电路 722的移相矩阵 PS为: 1 0 0 0
0 ew 0 0
PS
0 0 eiW 0
0 0 0 eiW
其中, α、 β为幅度系数,
Figure imgf000013_0001
θ=π/2或 -π/2Ε 釆用以上权值矩阵进行赋形处理的结果如下:
[TRXO TRX\]xBxPS = [A0 A\ A2 A3];
[TRX2 TRX3]xBxPS = [A4 A5 A6 Al] 或者,
[TRXO TRXl] = [AO A\ A2 A3]xPSH BH;
[TRX2 TRX3] = [A4 A5 A6 Al]xPSH BH 其中, TRXO、 TRX 1、 TRX2、 TRX3、 TRX3分别为接收到的 M路信 号 (Μ=4) , 公式中等号右边 A0-A7分别为经过赋形处理后输出的 N路 信号 (Ν=8) , ^^和 分别为移相矩阵 PS和权值矩阵 B的逆矩阵。
本发明的实施例提供的波束成形装置, 通过对接收到的 M路信号进 行赋形处理, 得到 N路信号, 将得到的 N路信号经天线阵列辐射后形成 第一波束和第二波束, 其中第一波束位于天线阵列的法线方向, 第二波 束位于天线阵列的法线两侧, 减少了波束增益的交叠区域, 解决了临区 干扰较大的问题。 尤其用于阵列天线的等效列间距为 0.65λ〜0.75λ时效 果非常明显。
在数字域实现时, 可以在基带利用软件与处理器结合的方式实现, 此外, 也可以利用一个芯片去实现。 这种方案的优点是修改灵活性比较 高, 但是, 需要改变基带与射频之间的通道数量。
本发明的再一实施例提供一种波束成形装置, 参照图 8 所示, 该装 置包括信号源 8011 和处理器 8012、 当然, 图中还示出了存储器 8013和 总线 8014, 该信号源 8011、 处理器 8012和存储器 8013通过总线 8014连 接并完成相互间的通信。
该总线 8014可以是 ISA ( Industry Standard Architecture , 工业标准体 系结构 )总线、 PCI ( Peripheral Component, 外部设备互连 )总线或 EISA ( Extended Industry Standard Architecture , 扩展工业标准体系结构) 总线 等。 该总线 8014可以分为地址总线、 数据总线、 控制总线等。 为便于表 示, 图 8 中仅用一条粗线表示, 但并不表示仅有一根总线或一种类型的 总线。 其中:
存储器 8013用于存储可执行程序代码, 该程序代码包括计算机操作 指令。 存储器 8013可能包含高速 RAM存储器, 也可能还包括非易失性 存 4渚器 ( non-volatile memory ) , 例如至少一个磁盘存 4渚器。
处理器 8012可能是一个中央处理器 8012 ( Central Processing Unit, 简称为 CPU ) , 或者是特定集成电路 ( Application Specific Integrated Circuit, 简称为 ASIC ) , 或者是被配置成实施本发明实施例的一个或多 个集成电路。
其中, 信号源 8011 , 用于提供 M路信号, 其中, M为正整数。
处理器 8012 , 连接于信号源 8011 , 用于对信号源提供的 M路信号进 行赋形处理, 使得处理后得到的 N 路信号经过天线阵列辐射后形成第一 波束和第二波束, 其中, N为大于 M的正整数第一波束位于天线阵列的 法线方向, 第二波束位于天线阵列的法线两侧。
可选的, 在常见的 4列面阵天线中, M为 4 , N为 8。
具体可选的, 处理器 8012 , 进一步用于利用权值矩阵对 M路信号进 行赋形处理, 其中权值矩阵 B为:
Figure imgf000014_0001
2.0 <^ < 2.5 其中, α、 β为幅度系数, ―" 'J
釆用以上权值矩阵进行赋形处理的结果如下:
[TRX0 TRXl TRX2 TRX3] x B = [A0 A\ A2 A3 A4 A5 A6 Al]
, TRX0、 TRXl , TRX2、 TRX3、 TRX3分别为接收到的 M路信 号 (M=4 ) , 公式中等号右边 A0-A7分别为经过赋形处理后输出的 N路 信号 (N=8 ) 。
本发明的实施例提供的波束成形装置, 通过对接收到的 M路信号进 行赋形处理, 得到 N路信号, 将得到的 N路信号经天线阵列辐射后形成 第一波束和第二波束, 其中第一波束位于天线阵列的法线方向, 第二波 束位于天线阵列的法线两侧, 减少了波束增益的交叠区域, 解决了临区 干扰较大的问题。 尤其用于阵列天线的等效列间距为 0.65 λ 〜0.75 λ时效 果非常明显。
本发明的实施例还提供一种计算机程序产品, 包括计算机可读介 质, 该计算机可读介质包括一组程序代码, 用于对 Μ路信号进行赋形处 理, 使得处理后得到的 Ν 路信号经天线阵列辐射后形成第一波束和第二 波束, 其中, Μ为正整数, Ν为大于 Μ的正整数, 且第一波束位于天线 阵列的法线方向, 第二波束位于天线阵列的法线两侧。
本发明的实施例提供的计算机程序产品, 通过对接收到的 Μ路信号 进行赋形处理, 得到 Ν路信号, 将得到的 Ν路信号经天线阵列辐射后形 成第一波束和第二波束, 其中第一波束位于天线阵列的法线方向, 第二 波束位于天线阵列的法线两侧, 减少了波束增益的交叠区域, 解决了临 区干扰较大的问题。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解 到本发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当 使用软件实现时, 可以将上述功能存储在计算机可读介质中或作为计算 机可读介质上的一个或多个指令或代码进行传输。 计算机可读介质包括 计算机存储介质和通信介质, 其中通信介质包括便于从一个地方向另一 个地方传送计算机程序的任何介质。 存储介质可以是计算机能够存取的 任何可用介质。 以此为例但不限于: 计算机可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM 或其他光盘存储、 磁盘存储介质或者其他磁 存储设备、 或者能够用于携带或存储具有指令或数据结构形式的期望的 程序代码并能够由计算机存取的任何其他介质。 此外。 任何连接可以适 当的成为计算机可读介质。 例如, 如果软件是使用同轴电缆、 光纤光 缆、 双绞线、 数字用户线(DSL )或者诸如红外线、 无线电和微波之类的 无线技术从网站、 服务器或者其他远程源传输的, 那么同轴电缆、 光纤 光缆、 双绞线、 DSL 或者诸如红外线、 无线和微波之类的无线技术包括 在所属介质的定影中。 如本发明所使用的, 盘 (Disk ) 和碟 (disc ) 包括 压缩光碟 (CD ) 、 激光碟、 光碟、 数字通用光碟 (DVD ) 、 软盘和蓝光 光碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数据。 上面的组合也应当包括在计算机可读介质的保护范围之内。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变换和替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种波束成形的方法, 其特征在于, 包括:
接收 M路信号, 其中 M为正整数;
对所述 M路信号进行赋形处理, 得到 N路信号, 其中, N为大于 M 的正整数;
将所述 N路信号经天线阵列辐射后形成第一波束和第二波束, 其中, 所述第一波束位于所述天线阵列的法线方向,所述第二波束位于所述天线 阵列的法线两侧。
2、 根据权利要求 1所述的方法, 其特征在于,
所述 M为 4 , 所述 N为 8。
3、 根据权利要求 2所述的方法, 其特征在于, 所述对所述 M路信号 进行赋形处理, 包括:
利用权值矩阵对所述 M路信号进行赋形处理, 其中所述权值矩阵为:
Figure imgf000017_0001
2.0 <^ < 2.5
a
其中, B为权值矩阵, α、 β为幅度系数, L" —―。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于,
所述阵列天线的等效列间距为 0.65 λ〜0.75 λ , 其中, λ为波长。
5、 一种波束成形装置, 其特征在于, 包括:
接口单元, 用于接收 Μ路信号, 其中 Μ为正整数;
赋形单元, 用于对所述 Μ路信号进行赋形处理, 得到 Ν路信号, 其 中 Ν为大于 Μ的正整数;
天线阵列, 用于将所述 Ν路信号进行辐射形成第一波束和第二波束, 其中, 所述第一波束位于所述天线阵列的法线方向, 所述第二波束位于所 述天线阵列的法线两侧。
6、 根据权利要求 5所述的装置, 其特征在于, 所述 M为 4 , 所述 N为 8。
7、 根据权利要求 6所述的装置, 其特征在于,
所述赋形单元, 进一步用于利用权值矩阵对所述 M路信号进行赋形 处理, 其中所述权值矩阵为:
Figure imgf000018_0001
中, B为权值矩阵, α、 β为幅度系数, 。
8、 根据权利要求 5-7任一项所述的装置, 其特征在于,
所述阵列天线的等效列间距为 0.65 λ 〜0.75 λ , 其中, λ为波长。
9、 一种波束成形装置, 其特征在于, 包括:
信号源, 用于提供 Μ路信号, 其中 Μ为正整数;
赋形电路, 连接于所述信号源, 用于对所述 Μ路信号进行赋形处理, 得到 Ν路信号, 其中, Ν为大于 Μ的正整数;
天线阵列, 连接于所述赋形电路, 用于将所述 Ν 路信号进行辐射形 成第一波束和第二波束, 其中, 所述第一波束位于所述天线阵列的法线方 向, 所述第二波束位于所述天线阵列的法线两侧。
10、 根据权利要求 9所述的装置, 其特征在于, 所述赋形电路包括: 权值电路, 连接于所述信号源, 用于对所述信号源提供的所述 Μ路 信号进行加权处理得到初始 Ν 路信号, 其中, 所述权值电路的权值矩阵 为巴特勒矩阵;
移相电路, 连接于所述权值电路和所述天线阵列, 用于对所述权值电 路加权处理后的初始 Ν路信号以 π/2相位差的等差相位进行移相处理, 得 到提供给所述天线阵列的所述 Ν路信号。
11、 根据权利要求 10所述的装置, 其特征在于,
所述 Μ为 4 , 所述 Ν为 8。
12、 根据权利要求 11所述的装置, 其特征在于, 所述巴特勒矩阵 Butler Matrix为:
α,βϊ-β-aj
Butler Matrix
α -βϊ,-β,αϊ ,
并且, 所述移相电路的移相矩阵为
1 0 0 0
0 ew 0 0
PS
0 0 eiW 0
0 0 0 eiW
2.0<^<2.5
a
其中, PS为移相矩阵, α、 β为幅度系数, ί«2+ 2 =0·5, θ=π/2或- π/
13、 根据权利要求 9所述的装置, 其特征在于,
所述 Μ为 4, 所述 Ν为 8。
14、 根据权利要求 13所述的装置, 其特征在于,
所述赋形电路为权值电路, 且所述权值电路的权值矩阵为:
Figure imgf000019_0001
2.0<^<2.5 其中, B为权值矩阵, α、 β为幅度系数, 2 +^2 = 5
15、 根据权利要求 9至 14任一项所述的装置,
所述阵列天线的等效列间距为 0.65λ〜0.75 λ , 其中, λ为波长。
16、 一种波束成形装置, 其特征在于, 包括:
信号源, 用于提供 Μ路信号, 其中, Μ为正整数;
处理器, 连接于所述信号源, 用于对所述信号源提供的所述 Μ路信 号进行赋形处理, 使得处理后得到的 Ν 路信号经过天线阵列辐射后形成 第一波束和第二波束, 其中, Ν为大于 Μ的正整数, 且所述第一波束位 所述天线阵列的法线方向, 所述第二波束位于所述天线阵列的法线两
17、 根据权利要求 16所述的装置, 其特征在于, 所述 M为 4, 所述 N为 8。
18、 根据权利要求 17所述的装置, 其特征在于,
所述处理器, 进一步用于利用权值矩阵对所述 M路信号进行赋形处 理, 其中所述权值矩阵为:
Figure imgf000020_0001
2.0<^<2.5
a
其中, B为权值矩阵, α、 β为幅度系数, 2+^2= 5
19、 根据权利要求 16-18任一项所述的装置, 其特征在于,
所述阵列天线的等效列间距为 0.65λ〜0.75λ , 其中, λ为波长。
20、 一种计算机程序产品, 其特征在于, 包括计算机可读介质, 所述计算机可读介质包括: 一组程序代码, 用于对 Μ路信号进行赋 形处理, 使得处理后得到的 Ν 路信号经天线阵列辐射后形成第一波束和 第二波束, 其中, Μ为正整数, Ν为大于 Μ的正整数, 且所述第一波束 位于所述天线阵列的法线方向,所述第二波束位于所述天线阵列的法线两
PCT/CN2013/081173 2013-08-09 2013-08-09 一种波束成形的方法及装置 WO2015018062A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/081173 WO2015018062A1 (zh) 2013-08-09 2013-08-09 一种波束成形的方法及装置
CN201380001057.7A CN103650370B (zh) 2013-08-09 2013-08-09 一种波束成形的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/081173 WO2015018062A1 (zh) 2013-08-09 2013-08-09 一种波束成形的方法及装置

Publications (1)

Publication Number Publication Date
WO2015018062A1 true WO2015018062A1 (zh) 2015-02-12

Family

ID=50253412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081173 WO2015018062A1 (zh) 2013-08-09 2013-08-09 一种波束成形的方法及装置

Country Status (2)

Country Link
CN (1) CN103650370B (zh)
WO (1) WO2015018062A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471751A (zh) * 2014-08-15 2017-03-01 富士通株式会社 资源配置方法、装置以及通信系统
WO2016169598A1 (en) * 2015-04-23 2016-10-27 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive beamforming
US20180332372A1 (en) * 2017-05-12 2018-11-15 Futurewei Technologies, Inc. Optical Implementation of a Butler Matrix
CN110324833B (zh) * 2018-03-31 2021-06-22 华为技术有限公司 信号处理方法、装置及系统
CN110943770B (zh) * 2018-09-25 2021-08-31 上海华为技术有限公司 多通道波束赋形方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842974A (zh) * 2004-06-25 2006-10-04 三菱电机株式会社 在无线多输入多输出通信系统内处理射频信号的方法
US20090233556A1 (en) * 2008-03-17 2009-09-17 Samsung Electronics Co., Ltd. Method and system for beamforming communication in high throughput wireless communication systems
US20110018767A1 (en) * 2007-11-09 2011-01-27 Alexander Maltsev Adaptive antenna beamforming
CN102064379A (zh) * 2010-07-29 2011-05-18 摩比天线技术(深圳)有限公司 一种电调天线及基站
CN102983897A (zh) * 2012-11-23 2013-03-20 南京邮电大学 易实现双天线定向发送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842974A (zh) * 2004-06-25 2006-10-04 三菱电机株式会社 在无线多输入多输出通信系统内处理射频信号的方法
US20110018767A1 (en) * 2007-11-09 2011-01-27 Alexander Maltsev Adaptive antenna beamforming
US20090233556A1 (en) * 2008-03-17 2009-09-17 Samsung Electronics Co., Ltd. Method and system for beamforming communication in high throughput wireless communication systems
CN102064379A (zh) * 2010-07-29 2011-05-18 摩比天线技术(深圳)有限公司 一种电调天线及基站
CN102983897A (zh) * 2012-11-23 2013-03-20 南京邮电大学 易实现双天线定向发送装置

Also Published As

Publication number Publication date
CN103650370B (zh) 2016-08-10
CN103650370A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
JP6457108B2 (ja) アンテナ装置を使用するビーム形成
WO2015018062A1 (zh) 一种波束成形的方法及装置
US11563480B2 (en) Beam forming using an antenna arrangement
CN102769487B (zh) 一种基于多接收天线的自干扰消除系统及消除方法
KR102038302B1 (ko) 비직교 다중 접속을 위한 빔포밍 장치 및 방법
US20130278464A1 (en) Method and apparatus for directional proxmity detection
TW201832607A (zh) 使用波束成形細化訊框的分割式扇區級掃瞄
WO2018028398A1 (zh) 一种到达角估计的方法、装置、终端及基站和计算机存储介质
WO2009082907A1 (fr) Procédé, système et dispositif de formation de faisceau
US10868367B2 (en) Antenna apparatus
US20230344149A1 (en) Antenna subarray, antenna array, and polarization reconfiguration method and apparatus
WO2016000096A1 (zh) 天线端口映射方法及装置
EP3776874B1 (en) Antenna arrangement for transmitting reference signals
US10848220B2 (en) Compressing and decompressing beamspace coefficients
US10193606B2 (en) Beam configuration method and device
KR102167832B1 (ko) 빔 페어 링크를 형성하는 방법 및 그 단말
CN110417523B (zh) 信道估计方法和装置
CN107306518B (zh) 基于分束多路访问的协同传输方法及执行其的装置
JP5325624B2 (ja) マルチアンテナ受信機及びマルチアンテナ受信機を用いた受信方法
CN114125900A (zh) 智能表面辅助跳频传输的通信方法、装置、设备及介质
JP6650997B2 (ja) アンテナ装置を使用するビーム形成
US11153003B2 (en) Cell-specific signal generation
KR102254670B1 (ko) 무선랜 시스템 및 상기 무선랜 시스템에서의 빔포밍 트레이닝 방법
JP2002359585A (ja) 送信ゲイン関数を得る方法および送信/受信デバイス
CN109698714B (zh) 一种阵列波束检测的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891265

Country of ref document: EP

Kind code of ref document: A1