WO2023169459A1 - 用于定位中的上行参考信号传输配置的设备和方法 - Google Patents

用于定位中的上行参考信号传输配置的设备和方法 Download PDF

Info

Publication number
WO2023169459A1
WO2023169459A1 PCT/CN2023/080258 CN2023080258W WO2023169459A1 WO 2023169459 A1 WO2023169459 A1 WO 2023169459A1 CN 2023080258 W CN2023080258 W CN 2023080258W WO 2023169459 A1 WO2023169459 A1 WO 2023169459A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
user equipment
reference signal
network device
uplink reference
Prior art date
Application number
PCT/CN2023/080258
Other languages
English (en)
French (fr)
Inventor
崔琪楣
张文璐
李浩进
Original Assignee
索尼集团公司
崔琪楣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 崔琪楣 filed Critical 索尼集团公司
Publication of WO2023169459A1 publication Critical patent/WO2023169459A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present disclosure relates generally to devices and methods for use in wireless communication systems, and specifically to techniques for uplink reference signal transmission configurations in positioning in wireless communication systems.
  • Wireless communication systems can use a variety of protocols and standards for data transmission between devices. These protocols and standards have experienced long-term development, including but not limited to the 3rd Generation Partnership Project (3GPP), 3GPP Long Term Evolution (LTE) (for example, 4G communications), 3GPP New Radio (NR) (for example, 5G communications), and the IEEE 802.11 standard for wireless local area networks (WLAN) (also commonly referred to as Wi-Fi), among others.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • NR 3GPP New Radio
  • Wi-Fi wireless local area networks
  • network devices can estimate the location of a mobile user equipment by measuring radio frequency (RF) reference signals from the mobile user equipment, thereby achieving positioning.
  • RF radio frequency
  • one method for determining the location of a user equipment may include configuring the user equipment to transmit an uplink reference signal (eg, a sounding reference signal (SRS)) to two or more network devices, and measuring at least two The network device calculates the arrival time difference of the uplink reference signal received from the user equipment to calculate the corresponding distance difference.
  • the user equipment is located on a hyperbola with the two network devices as the intersection point and the distance difference between them as the fixed difference. Measuring the arrival time difference between multiple pairs of network devices enables obtaining the location of the user device by solving for the hyperbola intersection point.
  • various methods such as angle of arrival (AOD) positioning and multi-round trip time (Multi-RTT) positioning can also be used for uplink positioning.
  • Data transmission at higher frequencies is supported in communication networks such as 5G, where both user equipment and network equipment can use directional beams for directional transmission, thereby achieving higher throughput.
  • the transmission configuration for example, beam configuration, power configuration, etc.
  • the uplink reference signal of the device needs to be well configured in a higher frequency wireless communication system to achieve high-precision uplink positioning.
  • the present disclosure proposes devices and methods for uplink reference signal transmission configuration in positioning in a wireless communication system. More specifically, the present disclosure proposes a transmission beam configuration for uplink reference signals used for uplink positioning, in which the spatial relationship of the uplink reference signals is updated and enhanced, thereby improving the effectiveness and reliability of uplink positioning.
  • a network device in a wireless communication system includes a processing circuit, the processing circuit is configured to cause the network device to perform the following operations: instructing a The user equipment uses the first group of beams to send uplink reference signals to the network device; measure the transmission quality index of the uplink reference signals sent in each beam direction in the first group of beams; and based on at least one of the first group of beams The transmission quality index of the uplink reference signal sent in at least one beam direction is lower than the threshold, indicating that the user equipment uses the second set of beams to send the uplink reference signal to the network device for uplink positioning, wherein the second set of beams makes The user equipment avoids transmitting an uplink reference signal in a beam direction that is interfered by a communication link of a hidden node device, where the hidden node device is unknown to the network device and the user equipment.
  • a method for a network device in a wireless communication system including: instructing a user equipment in the wireless communication system to use a first group of beams to The network device sends an uplink reference signal; measures a transmission quality index of the uplink reference signal sent in each beam direction of the first group of beams; and based on at least one of the first group of beams sent in at least one beam direction
  • the transmission quality index of the uplink reference signal is lower than the threshold, indicating that the user equipment uses the second set of beams to send the uplink reference signal to the network device for uplink positioning, where the second set of beams enables the user equipment to avoid being affected by hidden nodes.
  • the uplink reference signal is sent in the beam direction interfered by the device communication link, where the hidden node device is unknown to the network device and the user equipment.
  • a user equipment in a wireless communication system including a processing circuit configured to cause the user equipment to perform the following operations:
  • the network device receives an instruction to use a first set of beams to send an uplink reference signal to the network device; and sends an uplink reference signal to the network device in each beam direction in the first set of beams for the network device to measure the a transmission quality indicator of an uplink reference signal; receiving an indication from a network device to use a second set of beams to transmit an uplink reference signal to the network device, wherein the indication is based on at least one of the first set of beams
  • the transmission quality index of the uplink reference signal sent in the beam direction is lower than a threshold; and using a second set of beams to send the uplink reference signal to the network device for uplink positioning, wherein the second set of beams enables the user to
  • the device avoids sending uplink reference signals in a beam direction interfered with by a communication link of a hidden node device, where the hidden
  • a method for user equipment in a wireless communication system includes: receiving a first group of beams from a network device in the wireless communication system.
  • the network device sends an indication of an uplink reference signal; sends an uplink reference signal to the network device in each beam direction in the first group of beams, so that the network device can measure the transmission quality index of the uplink reference signal; from The network device receives an indication to use a second set of beams to send an uplink reference signal to the network device, wherein the indication is based at least on the fact that the transmission quality index of the uplink reference signal sent in the direction of at least one beam in the first set of beams is lower than and transmit the uplink reference signal to the network device using a second set of beams for uplink positioning, wherein the second set of beams enables the user equipment to avoid beam directions that are interfered by the communication link of the hidden node device.
  • An uplink reference signal is sent, wherein the hidden node device is unknown to
  • a computer-readable storage medium having one or more instructions stored thereon, which when executed by one or more processors of an electronic device The electronic device is caused to perform methods according to various embodiments of the present disclosure.
  • a computer program product including program instructions that, when executed by one or more processors of a computer, cause the computer to perform various embodiments according to the present disclosure. Methods.
  • the present disclosure also proposes a transmission power configuration for the uplink reference signal used for uplink positioning, in which the transmission power of the uplink reference signal reaching the network equipment of multiple cells is set and updated, thereby improving the uplink positioning. accuracy and reliability.
  • FIG. 1 shows an example scene diagram of a wireless communication system according to an embodiment of the present disclosure.
  • Figure 2 illustrates an exemplary electronic device for a network device according to an embodiment of the present disclosure.
  • Figure 3 illustrates an exemplary electronic device for user equipment according to an embodiment of the present disclosure.
  • FIG. 4A shows an information interaction diagram of the initial default configuration and modified configuration process in the beam configuration of the uplink reference signal for uplink positioning according to an embodiment of the present disclosure
  • FIG. 4B shows an information interaction diagram for the uplink reference signal according to an embodiment of the present disclosure.
  • 5A-5B illustrate example diagrams of a first use case of uplink reference signal beam configuration for uplink positioning according to embodiments of the present disclosure.
  • 6A-6B illustrate example diagrams of a second use case of uplink reference signal beam configuration for uplink positioning according to embodiments of the present disclosure.
  • FIGS. 7A-7C illustrate example diagrams of a third use case of uplink reference signal beam configuration for uplink positioning according to embodiments of the present disclosure.
  • 8A-8B illustrate an information exchange diagram of beam configuration for uplink positioning of a wireless communication system according to an embodiment of the present disclosure.
  • Figure 9 shows a schematic diagram of information exchange for initial power configuration for uplink positioning of a wireless communication system according to an embodiment of the present disclosure.
  • 10A-10B illustrate a flowchart for power adjustment of a wireless communication system according to embodiments of the present disclosure.
  • FIG. 11 shows an example diagram of power configuration for an uplink reference signal according to an embodiment of the present disclosure.
  • Figure 12 illustrates a flow of an example method for a network device in a wireless communication system according to an embodiment of the present disclosure. picture.
  • Figure 13 shows a flowchart of an example method for user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram of an example structure of a personal computer as an information processing device employable in the embodiment of the present disclosure
  • 15 is a block diagram illustrating a first example of a schematic configuration of a base station to which the technology of the present disclosure can be applied;
  • 16 is a block diagram illustrating a second example of a schematic configuration of a base station to which the technology of the present disclosure can be applied;
  • 17 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • FIG. 18 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • a wireless communication system includes at least a network device and user equipment, and the network device can provide communication services for one or more user equipment.
  • the term “network device” (or “base station”, “control device”) has the full breadth of its ordinary meaning and includes at least a wireless communication station that is part of a wireless communication system or a radio system to facilitate communication.
  • the network device may be an eNB of the 4G communication standard, a gNB of the 5G communication standard, a remote radio head, a wireless access point, a drone control tower, or a communication device that performs similar functions.
  • “Network “Device”, “base station” and “control device” can be used interchangeably, or “network equipment” can be implemented as part of the “base station”.
  • the term "user equipment (UE)" or “terminal device” has the full breadth of its ordinary meaning and includes at least a terminal device that is part of a wireless communication system or radio system to facilitate communication.
  • the user equipment may be, for example, a terminal device such as a mobile phone, a laptop, a tablet, a vehicle-mounted communication device, a wearable device, a sensor, or the like, or elements thereof.
  • UE user equipment
  • terminal equipment may be used interchangeably, or “user equipment” may be implemented as a part of “terminal equipment”.
  • network device side /"base station side
  • network device side /"base station side
  • user equipment side /"terminal equipment side
  • user equipment side have the full breadth of their ordinary meaning, and accordingly may indicate the side of the communication system that receives data in the downlink, or may indicate the side of the communication system that transmits data in the uplink. side.
  • FIG. 1 shows an example scene diagram of a wireless communication system according to an embodiment of the present disclosure. It should be understood that Figure 1 illustrates only one of many types and possible arrangements of wireless communication systems; the features of the present disclosure may be implemented in any of the various systems as desired.
  • a wireless communication system 100 includes one or more network devices 101 and one or more user equipments 102.
  • Network equipment and user equipment may be configured to communicate over a wireless transmission medium.
  • the network device 101 may be further configured to communicate with a positioning management function entity (not shown) in the core network, and perform transmission configuration on the uplink reference signal to be sent by the user equipment and notify the user equipment of the transmission configuration. Positioned on the upside.
  • an uplink reference signal is a sounding reference signal (SRS), so "uplink reference signal” and “sounding reference signal” (or “SRS”) may be used interchangeably herein.
  • SRS sounding reference signal
  • uplink reference signal may also be other reference signals sent by the user equipment known to those skilled in the art.
  • both the network equipment side and the user equipment side can use an antenna array including multiple antenna elements to form a directional beam, which can improve transmission efficiency and system throughput.
  • the network device can receive the SRS sent from the user equipment through beam scanning. Since the beams of high-frequency signals are usually large in number and narrow, beam scanning on the network device side requires multiple beam switching, resulting in large delays and overhead. At the same time, when the user equipment transmits SRS, it not only needs to wait for the SRS transmission opportunity, but also needs to repeatedly transmit the SRS so that a sufficient number of network devices can detect the SRS to achieve more accurate uplink positioning. In some existing solutions, it is proposed that the user equipment performs beam scanning to send SRS to reduce the delay and overhead of the network equipment. However, when user equipment is densely distributed, network equipment still needs to continuously and repeatedly perform beam scanning in order to detect SRS from more user equipment to improve uplink coverage. Therefore, in actual scenarios, regardless of whether beam scanning is performed on the user equipment side, beam scanning on the network equipment side cannot be avoided. Therefore, it takes a long time to meet higher-precision positioning requirements.
  • the channel status of the system is likely to change significantly during this period.
  • RATs radio access technologies
  • RATs radio access technologies
  • These devices may be unknown to both network equipment and user equipment during the upstream positioning process, and are therefore referred to as “hidden nodes” or “hidden node devices” in this article.
  • the communication links of these hidden node devices are likely to cause interference to the SRS transmission process, thereby causing large changes in the channel status of SRS transmission. Since neither network equipment nor user equipment can predict the emergence of hidden nodes, the channel state changes during the uplink positioning process are random and unpredictable.
  • the beam transmission direction of the uplink is determined based on the directional beam transmission direction of the downlink between the network device and the user equipment.
  • the user equipment can directly use the trained downlink signal to receive the downlink reference signal based on the measurement results of the previous downlink reference signal.
  • the uplink reference signal is sent by the uplink beam corresponding to the beam.
  • the beam width on the network equipment side is much narrower than the beam width on the user equipment side, causing serious uplink and downlink beam asymmetry problems.
  • the uplink and downlink channel states no longer have reciprocity, so the channel conditions in the uplink transmission direction of the beam cannot be inferred from the quality of the downlink reference signal received by the beam.
  • the downlink transmission between the network equipment and the user equipment will not be interfered by the communication link of the hidden node, so the transmission of the measured downlink reference signal The quality index is high, but the uplink reference signal transmission will be interfered by the communication link of the hidden node. Therefore, the method of configuring the transmission configuration of the uplink reference signal based on the reception quality of the downlink reference signal is not applicable in the unlicensed millimeter wave band.
  • downlink reference signals include synchronization signal blocks (SSB), channel state information reference signals (CSI-RS), and/or positioning reference signals (PRS), so in this article “Downlink reference signal” and “SSB/CSI-RS/PRS” can be used interchangeably.
  • the downlink reference signal may also be other reference signals sent by network devices known to those skilled in the art.
  • the transmission quality index includes but is not limited to one of the following or a combination of multiple of the following: network reference signal received power (RSRP), reference signal received quality (RSRQ), signal-to-interference-to-noise ratio (SINR) ), decoding rate.
  • RSRP network reference signal received power
  • RSRQ reference signal received quality
  • SINR signal-to-interference-to-noise ratio
  • LBT listen-before-talk
  • the hidden node is located within the coverage of the uplink beam of the user equipment (as shown in Figure 1), then the user equipment may discover the existence of the hidden node communication link during the directional LBT operation, thereby determining not to uplink the beam in the corresponding direction.
  • Network devices send SRS to avoid interference.
  • hidden nodes may be located within the reverse coverage of the user equipment's beam. In this case, when the transmission direction of the hidden node communication link is the same or similar to the uplink beam direction from the user equipment to the network equipment, the user equipment cannot discover the hidden node during the LBT operation, but the uplink transmission will be affected by the hidden node. Interference in communication links may severely affect uplink positioning performance.
  • the present disclosure provides a method for SRS transmission configuration for uplink positioning.
  • some uplink beams with poor transmission quality indicators can be updated based on the network device's measurement of the transmission quality index in the beam direction of each SRS transmission, so that the user equipment Switch to the uplink beam that can achieve better transmission quality indicators as soon as possible to send SRS.
  • the network device can configure the SRS transmission power of the user equipment based on the uplink measurement results and/or the auxiliary information received from the user equipment, so that the user equipment can operate under large interference conditions. Adaptively increase power during SRS resource transmission to reduce the impact of interference.
  • FIG. 2 illustrates an exemplary electronic device for network device 101 according to an embodiment of the present disclosure.
  • the electronic device 200 shown in FIG. 2 may include various units to implement various embodiments according to the present disclosure.
  • electronic device 200 includes communication unit 202 , beam management unit 204 and measurement unit 206 .
  • the electronic device 200 is implemented as the network device 101 itself or as a part thereof, or as a device associated with the network device 101 or as a part of the device.
  • Various operations described below in conjunction with the network device may be implemented by the units 202, 204, 206 of the electronic device 200 or other possible units. It should be understood that units 202, 204 and 206 may be included or integrated in the processing circuitry of network device 101.
  • communication unit 202 may be configured to send signals to or receive signals from user equipment 102 in wireless communication system 100 .
  • the communication unit 202 may, under the instruction of the beam management unit 204, send information to the user equipment 102, where the information instructs the user equipment 102 to use the first set of beams to send the uplink reference signal to the network device 101. Thereafter, the communication unit 202 may receive the uplink reference signal sent from the user equipment 102 using the first set of beams, wherein the measurement unit 206 may measure the transmission quality index of the uplink reference signal sent in each beam direction in the first set of beams. .
  • the beam management unit 204 may instruct the communication unit 202 to send a message to the user equipment 102 based on at least a transmission quality indicator of the uplink reference signal sent in at least one beam direction in the first group of beams being lower than a threshold, the message instructing the user equipment 102 to use
  • the second set of beams sends uplink reference signals to the network device 101 for uplink positioning.
  • the second set of beams may enable the user equipment 102 to avoid transmitting the uplink reference signal in a beam direction that is interfered by the communication link of the hidden node device.
  • the hidden node device may be unknown to the network device 101 and the user device 102.
  • the electronic device 200 may further include a power management unit (not shown), which may indicate uplink to the user equipment based at least on the uplink measurement results and/or auxiliary information received from the user equipment.
  • the transmission power configuration of the reference signal for uplink positioning may be indicated.
  • FIG. 3 illustrates an exemplary electronic device 300 for user device 102 in system 100 in accordance with an embodiment of the present disclosure.
  • the electronic device 300 shown in FIG. 3 may include various units to implement various embodiments according to the present disclosure.
  • electronic device 300 includes communication unit 302 and beam switching unit 304.
  • the electronic device 300 is implemented as the user device 102 itself or a part thereof, or is implemented to control the user device 102 or to A device or portion of a device otherwise associated with user device 102 .
  • Various operations described below in conjunction with the user equipment may be implemented by the units 302, 304 of the electronic device 300 or other possible units. It should be understood that units 302 and 304 may be included or integrated in the processing circuitry of user equipment 102.
  • the communication unit 302 may be configured to send signals to or receive signals from the network device 101 in the wireless communication system 100 .
  • the communication unit 302 may receive a message from the network device 101, the message instructs the user equipment 102 to send the uplink reference signal to the network device 101 using the first set of beams.
  • the beam switching unit 304 may instruct the communication unit 302 to send uplink reference signals to the network device 101 in each beam direction in the first group of beams, so that the network device 101 measures transmission quality indicators of these uplink reference signals.
  • the communication unit 302 may receive a message from the network device 101, the message instructs the user equipment 102 to use the second set of beams to send the uplink reference signal to the network device 101, wherein the message is that the network device 101 is based on at least one of the first set of beams.
  • the transmission quality index of the uplink reference signal sent in the beam direction is lower than the threshold.
  • the beam switching unit 304 may instruct the communication unit 302 to use the second set of beams to send the uplink reference signal to the network device 101 for uplink positioning.
  • the second set of beams may enable the user equipment 102 to avoid transmitting the uplink reference signal in a beam direction that is interfered by the communication link of the hidden node device.
  • the hidden node device may be unknown to the network device 101 and the user device 102.
  • the electronic device 300 may further include a power adjustment unit (not shown), which may instruct the communication unit 302 to use corresponding power to transmit the uplink reference signal based on the transmission power configuration indicated by the network device. Used for upward positioning.
  • the above transmission power configuration is based at least on the uplink measurement results of the network device and/or the auxiliary information received by the network device from the user equipment.
  • electronic devices 200 and 300 may be implemented at the chip level, or at the device level by including other external components (eg, radio links, antennas, etc.).
  • each electronic device may function as a communication device as a complete device.
  • processing circuitry may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (a combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, integrated circuits (ICs), application specific integrated circuits (ASICs), A circuit, a portion or circuit of an individual processor core, an entire processor core, an individual processor, a programmable hardware device such as a field programmable gate array (FPGA), and/or a system including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGA field programmable gate array
  • the present disclosure proposes a transmission beam configuration for uplink reference signals used for uplink positioning, in which the spatial relationship of the uplink reference signals is set and updated, thereby improving the accuracy and reliability of uplink positioning.
  • one or more SRS resource sets may be configured for user equipment, where each SRS resource set may include multiple SRS resources, and each SRS resource may be transmitted using a corresponding uplink transmission beam.
  • each SRS resource set may include multiple SRS resources, and each SRS resource may be transmitted using a corresponding uplink transmission beam.
  • the same SRS resource set only transmits one SRS resource at the same time, but SRS resources in different SRS resource sets can be transmitted at the same time. It is understood that in this article, "SRS resources” and “SRS” are sometimes used interchangeably.
  • the SRS resource set may be transmitted through downlink control information (DCI) in the radio resource control (RRC) information element or through higher layer parameters such as medium access control (MAC)-control element (CE) configuration.
  • DCI downlink control information
  • RRC radio resource control
  • CE control element
  • the network device Before officially transmitting SRS for uplink positioning, the network device can perform initial SRS configuration on the user equipment.
  • the SRS initial configuration may include an SRS initial default configuration and an SRS revised configuration. The following uses an SRS resource set as an example to describe the SRS initial configuration process in detail.
  • the configuration of SRS resources can be achieved by configuring spatial relationships.
  • the spatial relationship may refer to a quasi-co-located (QCL) association of the uplink reference signal and the downlink reference signal.
  • the indication of the beam direction of the uplink reference signal may be achieved by indicating the downlink reference signal having a QCL association with the uplink reference signal.
  • an SSB/CSI-RS/PRS with QCL association can be configured for an SRS (for example, in the NR system, the QCL association can also be called QCL-TypeD association), and then the user equipment can receive the SSB/CSI -The downlink receiving beam of RS/PRS transmits the SRS.
  • a set of SSB/CSI-RS/PRS can be configured for the SRS resource set used for uplink positioning, where the set of SSB/CSI-RS/PRS can correspond to multiple downlink receiving beam directions on the user equipment side, so that the SRS resources The concentrated SRS resources are transmitted in corresponding multiple uplink transmit beam directions.
  • the initial default configuration for SRS can be divided into the following two situations:
  • ⁇ Case 1 The number of SSB/CSI-RS/PRS ⁇ the number of SRS in the SRS resource set
  • the same number of SSBs/CSI-RSs/PRSs as SRSs can be randomly selected, these SSBs/CSI-RSs/PRSs corresponding to different beam directions, and then QCL associated with the SRSs respectively.
  • the beam directions corresponding to the selected SSB/CSI-RS/PRS are distributed as evenly as possible at various spatial angles around the user equipment.
  • ⁇ Case 2 The number of SSB/CSI-RS/PRS ⁇ the number of SRS in the SRS resource set
  • the SRS in the SRS resource set can be divided into multiple SRS groups, and the SRS in each SRS group is associated with one SSB/CSI -RS/PRS perform QCL association; when the number of SSB/CSI-RS/PRS is slightly smaller than the number of SRS, multiple SRSs can be QCL associated with the SSB/CSI-RS/PRS centered in the beam direction, and other SRSs can be maintained Perform one-to-one QCL association with other SSB/CSI-RS/PRS in different directions.
  • the user equipment has previously measured or trained the downlink reference signal and has stored the corresponding result information.
  • the user equipment can store the latest downlink reference signal measurement result, and the measurement result can reflect the path loss in the beam direction corresponding to the downlink reference signal.
  • the user equipment may use a bitmap or other methods to store and mark the SSB/CSI-RS/PRS whose downlink transmission quality index is greater than a specific threshold.
  • the measurement results of the downlink reference signal still have reference significance for the transmission of the uplink reference signal. Therefore, the initial default SRS can at least be corrected based on the measurement results of the downlink reference signal. configuration, thereby improving the performance of SRS initial configuration to a certain extent.
  • FIG. 4A shows a signal interaction diagram of the initial default configuration and modified configuration process in the beam configuration of the uplink reference signal for uplink positioning according to an embodiment of the present disclosure.
  • the network device may send the SRS initial default configuration information to the user equipment, which specifies the configuration information related to the uplink reference signal (for example, SRS).
  • a set of downlink reference signals associated with QCL for example, SSB/CSI-RS/PRS.
  • the user equipment After receiving the SRS initial default configuration information, the user equipment The downlink reference signal specified in this information can be compared with its own stored downlink reference signal measurement results.
  • the user equipment can send a correction request to the network device, so that the network device corrects the spatial relationship configuration of the SRS based on the latest downlink reference signal measurement result.
  • the network device may send the SRS revised configuration information to the user equipment, where the information specifies a revised set of SSB/CSI-RS/PRS that has a QCL association with the SRS.
  • the network device may send information activating SRS transmission to the user equipment.
  • FIG. 4B shows a flow chart of the initial default configuration and modified configuration process in the beam configuration of the uplink reference signal for uplink positioning.
  • the user equipment after the network device indicates the SRS initial configuration (including the SRS initial default configuration or the SRS revised configuration) to the user equipment, the user equipment based on a set of downlink reference signals (for example, SSB/CSI) indicated in the initial configuration information -RS/PRS) is associated with the QCL of the uplink reference signal (SRS) resource, and a corresponding set of beams (also referred to as the "first set of beams" herein) is used to transmit the SRS resources. Specifically, the user equipment may use each beam in the first set of beams to transmit the SRS.
  • a set of downlink reference signals for example, SSB/CSI
  • a corresponding set of beams also referred to as the "first set of beams” herein
  • the user equipment may use each beam in the first set of beams to transmit the SRS.
  • the network device receives these SRSs in sequence, and can measure the transmission quality index of the SRSs sent on each beam in the first set of beams.
  • the network reference signal received power RSRP
  • the transmission quality indicator can also be the reference signal received quality (RSRQ), signal interference and noise ratio (SINR), decoding rate, or a combination thereof (for example, a weighted combination of the above-mentioned multiple transmission quality indicators).
  • the network device may maintain a fixed uplink receiving beam during the measurement process, and the receiving beam may be, for example, an uplink receiving beam with better performance previously determined based on uplink beam scanning.
  • the network device can obtain the beam used to send the SRS based on the received index of each SRS.
  • the network device may record the transmission quality indicator of each SRS (for example, also noted as "SRS-RSRP" in this article) and compare it with a specific threshold.
  • the threshold can represent the minimum RSRP that meets the uplink positioning performance requirements, which is recorded as "M” in this article.
  • M the uplink positioning performance requirements
  • the network equipment can obtain the complete SRS-RSRP measurement results and find the maximum SRS-RSRP measurement value, which is recorded in this article as "(SRS- RSRP) max ”. Based on the comparison between the SRS-RSRP values corresponding to all SRSs in the measured SRS resource set and the threshold M, the network device can decide whether to update the SRS transmission configuration according to three situations (more specifically, the spatial relationship updates) and how to perform SRS configuration updates. These three situations will be described in detail below through three use cases (including the first use case, the second use case and the third use case).
  • the transmission quality index of the SRS sent in at least one beam direction of the first set of beams is lower than the threshold M, and the transmission of the SRS sent in at least one other beam direction of the first set of beams The quality index is not lower than the threshold M.
  • FIGS. 5A and 5B illustrate example diagrams of a first use case of uplink reference signal beam configuration for uplink positioning according to embodiments of the present disclosure.
  • the left half thereof shows an example of a first set of beams used by user equipment.
  • the SRS resource set of the user equipment's initial SRS configuration includes a total of 6 SRS resources, which use beams 1-6 for uplink transmission respectively for network equipment (located on the right side of the user equipment, not shown in the figure) to 6
  • the RSRP value of the SRS transmitted on each beam is measured.
  • FIG. 5A there is a hidden node within the coverage of beam 1 of the user equipment, and the communication link of the hidden node has a serious impact on beam 1.
  • the left half of Figure 5B schematically shows the SRS transmission situation between the network device and the user equipment. Since the SRS sent on beam 1 is greatly interfered by the collision of the hidden node communication link, the RSRP measurement value of the SRS sent in this beam direction is almost 0. The SRS sent on beam 2-3 is also interfered by the hidden node communication link to a certain extent, and the corresponding SRS-RSRP values are all lower than the threshold M.
  • the RSRP measurement value of the SRS transmitted on beam 4 is the highest among all SRS-RSRP measurement values, that is, it is equal to (SRS-RSRP)max. Furthermore, the measured value of the SRS transmitted on beam 5-6 is not below the threshold M, but below (SRS-RSRP)max.
  • Network equipment based on the SRS in each beam direction From the RSRP measurement value, it can be roughly inferred that there may be hidden nodes within the coverage of the uplink beams 1-3 of the user equipment, and the communication link of the communication node interferes with the SRS resource transmission on beams 1-3.
  • the user equipment may perform a LBT operation before transmitting the SRS using the beam. For example, before sending SRS on beam 1, the user equipment may fail to perform LBT, so the user equipment may choose not to send SRS. In this case, the network device does not receive the SRS sent in the direction of beam 1, so the RSRP measurement value corresponding to the SRS can be recorded as 0.
  • LBT was successfully performed on beams 2 and 3, due to the hidden node communication link blocking its corresponding uplink to a certain extent, transmission interference occurred, causing the SRS transmitted in these two beam directions to be relatively inconsistent. Severe signal attenuation so that less signal power reaches the network device.
  • the network device may instruct all beams in the first set of beams with RSRP measurements below the threshold M (eg, beams 1-3) to be updated to be consistent with the RSRP measurements in the first set of beams.
  • the beam with the highest value (for example, beam 4) has the same or similar beam direction, thus forming a second group of beams.
  • the right half of Figure 5A and Figure 5B respectively show example diagrams of the updated second set of beams and corresponding SRS transmission situations.
  • the network device sends SRS update configuration information to the user equipment, instructing the user equipment to use the second set of beams to send SRS for uplink positioning.
  • the SRS update configuration information indicates a group of SSB/CSI-RS/PRS that has a QCL association with the updated SRS (the second group of beams corresponds to the receiving beam of the group of downlink reference signals, used to send SRS resources).
  • the network device can use a bitmap to indicate which beams need to be updated (switched), and the information can indicate which beam needs to be switched to.
  • the bitmap may be "111000", indicating that beams 1-3 need to be updated
  • the sending direction of the updated beams 1-3 is the same as or similar to that of beam 4, so the transmission of SRS can bypass the hidden node communication link, so that the RSRP value of the SRS sent on the updated beams 1-6 is not lower than Threshold M.
  • LBT can be successfully performed in the transmission beam directions corresponding to all SRSs after the update.
  • the RSRP values of each SRS received by the network device are large enough, so the accuracy of uplink positioning can be improved.
  • FIG. 5A and FIG. 5B exemplarily illustrate the situation where multiple updated beams are sent in the same direction. This process of repeatedly transmitting SRS using the same beam multiple times Also called SRS repetition. Practice has proven that SRS repetition can enable network equipment to detect positioning signals multiple times, which can improve the reliability of positioning.
  • the transmission quality index of the SRS sent in all beam directions in the first group of beams is not lower than the threshold M.
  • FIGS. 6A and 6B illustrate example diagrams of a second use case of uplink reference signal beam configuration for uplink positioning according to embodiments of the present disclosure.
  • the left half thereof shows an example of a first set of beams used by user equipment.
  • the SRS resource set of the user equipment's initial SRS configuration includes a total of 6 SRS resources, which use beams 1-6 for uplink transmission respectively for network equipment (located on the right side of the user equipment, not shown in the figure) to 6
  • the RSRP value of the SRS transmitted on each beam is measured.
  • FIG. 6A there are no hidden nodes within the uplink coverage of beams 1-6 of the user equipment.
  • the hidden node is located within the reverse coverage of some beams of the user equipment, but the transmission direction of the communication link of the hidden node is not the same as or similar to the beam directions of beams 1-6.
  • FIG. 6B schematically shows the SRS transmission situation between the network device and the user equipment. It can be seen that the hidden node communication link has little impact on SRS transmission on beams 1-6, so all corresponding SRS-RSRP values are not lower than the threshold M.
  • the network equipment can roughly infer that each uplink beam of the user equipment is less affected by interference from the hidden node communication link, thereby determining the first group of beams indicated in the SRS initial configuration.
  • the corresponding uplink channel is in good condition.
  • the user equipment may perform a LBT operation before transmitting the SRS using the beam. Since the interfering node communication link does not fall into the coverage of any beam in the uplink beams 1-6, nor is the transmission direction of the communication link the same as or similar to any beam direction in beams 1-6, it will not cause any interference. Interference occurs in SRS uplink transmission, so that user equipment can successfully perform LBT operations in all beam directions.
  • the network device may not instruct the user equipment to use the second set of beams, so that the user equipment continues to use the first set of beams (eg, beams 1-6) to send uplink reference signals to the network device to use Positioned on the upside. Therefore, in the second use case, the network device does not need to send SRS update configuration information. As shown in the right half of Figure 6A and Figure 6B, the user equipment continues to use the first set of beams (eg, beams 1-6) for SRS transmission for uplink positioning.
  • the first set of beams eg, beams 1-6
  • the transmission quality index of the SRS transmitted in all beam directions in the first set of beams is lower than the threshold M.
  • FIGS. 7A-7C illustrate example diagrams of a third use case of uplink reference signal beam configuration for uplink positioning according to embodiments of the present disclosure.
  • the left half thereof shows an example of a first set of beams used by user equipment.
  • the SRS resource set of the user equipment's initial SRS configuration includes a total of 6 SRS resources, which use beams 1-6 for uplink transmission respectively for network equipment (located on the left side of the user equipment, not shown in the figure) to 6
  • the RSRP value of the SRS transmitted on each beam is measured.
  • FIG. 7A there is a communication link of a hidden node within the coverage of beam 3-4, so the communication link of the hidden node has a serious impact on beam 3-4.
  • the transmission direction of one of the communication links is the same or similar to the beam direction of beam 1-2.
  • the transmission direction of the other communication link is the same as or similar to the beam direction of beams 5-6.
  • FIG. 7B schematically shows the SRS transmission situation between the network device and the user equipment.
  • the network equipment can roughly infer that each uplink beam of the user equipment is greatly affected by the interference of the hidden node communication link, thereby determining the first group of beams indicated in the SRS initial configuration. The corresponding uplink channel condition is poor.
  • the user equipment may perform a LBT operation before transmitting the SRS using the beam. For example, before sending SRS on beam 3-4, the user equipment may fail to perform LBT, so the user equipment may choose not to send SRS. In this case, the network device does not receive the SRS sent in the beam direction of beam 3-4, so the RSRP measurement value corresponding to the SRS can be recorded as 0. It should be understood that although the user equipment successfully performed LBT on beam 1-2, there is still a hidden node communication link that interferes with the SRS transmission on beam 1-2, resulting in SRS transmission in these two beam directions. Significant signal attenuation also occurs, so less power reaches the network equipment. A similar situation exists for beams 5-6.
  • the network device may instruct the user equipment to re-perform omnidirectional beam scanning.
  • the right half of Figure 7A and Figure 7B show the beam for omnidirectional scanning and the corresponding SRS transmission situation, respectively. examples.
  • the network device sends information instructing the user equipment to perform omnidirectional beam scanning to the user equipment, and then the user equipment uses beams 1'-6' for pointing in various directions to perform omnidirectional beam scanning. It should be understood that the beam directions of beams 1'-6' used for omnidirectional scanning are usually different from the beams 1-6 indicated in the SRS initial configuration.
  • the RSRP measurements for SRS transmitted on beams 2', 4', 6' are almost 0 due to interference from the hidden node communication link (additionally or alternatively, the user equipment may fail to perform LBT before sending SRS on these beams , so the user equipment can choose not to send SRS failure.
  • the network equipment does not receive the SRS sent in these beam directions, so the RSRP measurement values corresponding to these SRSs can be recorded as 0).
  • the RSRP measurement value is less than the threshold M.
  • the RSRP measurement value of the SRS transmitted on beam 5' is the highest among all SRS-RSRP measurement values, denoted as (SRS-RSRP)max', and the (SRS-RSRP)max' ⁇ M.
  • a method similar to that in the first use case can be performed to update all beams (for example, beams 1'-4' and 6') in the beams used for omnidirectional beam scanning whose transmission quality indicators are lower than the threshold to be consistent with the full
  • the beam with the highest transmission quality index in the directional beam scanning (for example, beam 5') has the same or similar beam direction, thereby forming a second group of beams.
  • Figure 7C shows an example diagram of the updated second set of beams in the third use case.
  • beams 1-6 in the second group of beams are beams in the same direction as beam 5' (as shown in the upper half of Figure 7C), Or a beam in a direction similar to that of beam 5' (for example, a narrower uplink beam within the uplink beam coverage of beam 5', as shown in the lower half of Figure 7C).
  • the network device instructs the user equipment to use the second set of beams by sending SRS update configuration information.
  • the SRS update configuration information indicates a set of SSB/CSI-RS/PRS that has a QCL association with the updated SRS (the second set of beams corresponds to the receiving beam of the set of downlink reference signals, used for sending SRS resources).
  • the network device can use a bitmap to indicate which omnidirectional scanning beams need to be updated (switched), and the information can indicate which beam needs to be switched to.
  • the RSRP values of each SRS received by the network device are large enough, so the accuracy of uplink positioning can be improved.
  • the network device is at least based on the first set of beams indicated in the SRS initial configuration information.
  • the transmission quality index of the uplink reference signal sent in at least one beam direction is lower than the threshold, and the user equipment is instructed to use the second group of beams to send the uplink reference signal to the network device for uplink positioning through the SRS update configuration information (for example, the first use case , third use case).
  • the network device does not instruct the user equipment to use the second group of beams, based at least on the basis that the transmission quality index of the uplink reference signal sent in all beam directions in the first group of beams is not lower than the above threshold, so that the user equipment continues to use
  • the first set of beams sends uplink reference signals to network devices for uplink positioning.
  • the present disclosure updates the beam direction for transmitting the SRS so that the transmit beam of the SRS used for uplink positioning can avoid or bypass the hidden Interference in node communication links.
  • the transmission quality index of the SRS received by the network device in each direction after the update is large enough, which improves the accuracy and reliability of uplink positioning.
  • the SRS initial configuration information (for example, including SRS initial default configuration information and SRS modified configuration information), SRS update configuration information, and global beam scanning indication information sent by the network equipment to the user equipment can all be sent through the DCI in the RRC. Or MAC-CE to transmit.
  • the specific example descriptions in the above use cases are only illustrative and are not intended to be limiting.
  • the beams in various examples can be measured and updated using the above methods provided by this disclosure.
  • the network device is a gNB and the gNB includes multiple transmission and reception points (TRPs)
  • TRPs transmission and reception points
  • the above method can be used to measure and update the beam between each user equipment and each TRP.
  • TRPs transmission and reception points
  • the method provided according to the present disclosure can improve the uplink positioning performance under various channel conditions.
  • all beams with transmission quality indicators lower than the threshold can be updated to the above A randomly selected beam among the plurality of beams, or all beam groups with transmission quality indicators lower than the threshold may be updated to a plurality of beams among the plurality of beams.
  • 8A-8B illustrate an information exchange diagram of beam configuration for uplink positioning of a wireless communication system according to an embodiment of the present disclosure.
  • the network device may send SRS initial configuration information to the user equipment.
  • the SRS initial configuration information may include SRS initial default configuration information and SRS revised configuration information (for example, in the case where the user equipment has performed previous downlink reference signal measurement or training, it may be configured after the SRS initial default configuration. correct configuration).
  • the network device may then indicate to the user equipment to activate SRS transmission.
  • the user equipment can use the beam specified in the SRS initial configuration as the uplink beam (also referred to as the "th A set of beams") to transmit SRS.
  • the user equipment may send the SRS to the network device in each beam direction in the first set of beams.
  • the network device may measure the transmission quality index of the SRS sent in each beam direction in the first group of beams.
  • the network equipment at least determines that the transmission quality indicators of the uplink reference signals sent in all beam directions in the first group of beams are not lower than the threshold (indicating that the uplink channel conditions in all beam directions in the first group of beams are in good condition), No SRS update configuration information may be sent to the user equipment, so that the user equipment continues to use the first set of beams to send SRS to the network device for uplink positioning (specific examples have been described in detail in the aforementioned second use case).
  • the network device determines that the transmission quality index of the uplink reference signal sent in at least one beam direction in the first group of beams is lower than the threshold (indicating that the uplink channel conditions in some or all beam directions in the first group of beams are relatively poor) difference), send SRS update configuration information to the user equipment.
  • the user equipment receives SRS configuration update information from the network device, the user equipment can apply the SRS update configuration and perform SRS transmission for uplink positioning.
  • the user equipment may use the beam specified in the SRS update configuration as the uplink beam according to the spatial relationship specified in the SRS update configuration (for example, specifying an updated set of downlink reference signals having a QCL association with the SRS) (in this article Also known as the "second set of beams") for SRS transmission for uplink positioning.
  • the spatial relationship specified in the SRS update configuration for example, specifying an updated set of downlink reference signals having a QCL association with the SRS
  • second set of beams for SRS transmission for uplink positioning.
  • the transmission quality index of the uplink reference signal sent in at least one beam direction in the first group of beams is lower than the threshold, which can be divided into the following two situations: (1) At least one beam direction in the first group of beams The transmission quality index of the uplink reference signal sent on is lower than the threshold and the transmission quality index of the SRS sent in at least one other beam direction in the first group of beams is not lower than the threshold; and (2) the first group of beams The transmission quality indicators of the SRS sent in all beam directions are below the threshold.
  • the network device may update all beams in the first group of beams whose transmission quality index is lower than the threshold to the same or similar beam direction as the beam with the highest transmission quality index in the first group of beams. beam, A second set of beams is thereby formed (specific examples have been described in detail in the aforementioned first use case).
  • the network device may instruct the user equipment to re-perform omnidirectional beam scanning, and update all beams in the beams used for omnidirectional beam scanning with transmission quality indicators lower than the threshold to be consistent with omnidirectional beam scanning.
  • the beam with the highest transmission quality index has the same or similar beam direction, thereby forming a second group of beams (specific examples have been described in detail in the third use case mentioned above).
  • the transmission of SRS update configuration information may occur between two SRS transmission opportunities, as shown in Figure 8A.
  • the transmission of SRS update configuration information can also occur during a certain SRS transmission, as shown in Figure 8B (For simplicity of explanation, other elements in Figure 8A are omitted in Figure 8B Steps (including but not limited to SRS initial configuration information transmission, activating SRS transmission, etc.)).
  • the user equipment within an SRS transmission delay, if the user equipment receives the SRS update configuration information from the network device, the user equipment can immediately apply the updated configuration and use the second set of beams to transmit the updated SRS resources and untransmitted SRS resources. SRS resources.
  • the high-level parameter configuration of the SRS resource set may include time domain type configuration, which includes "periodic” type, “semi-persistent” type, and "aperiodic (aperiodic)” type. aperiodic)" type.
  • the transmission interaction mechanism in Figure 8A can be applied to the SRS resource set of the "periodic” type or the "semi-static” type, and the transmission interaction mechanism in Figure 8B can be applied to the "periodic” type, the "semi-static” type or the “semi-static” type.
  • the network device can measure and find that the channel condition in the beam direction of part or all of the uplink beam used to transmit the SRS is poor. , infer that these beam directions are interfered by the hidden node communication link, thereby instructing the user equipment to update the uplink transmission beam used to transmit SRS by indicating the spatial relationship update.
  • the SRS update configuration mechanism provided by the present disclosure can enable the user equipment's transmit beam for transmitting SRS to quickly and effectively avoid interference from the hidden node communication link, thereby improving the accuracy of uplink positioning under various channel conditions. degree and reliability.
  • the present disclosure proposes a transmission power configuration for an uplink reference signal used for uplink positioning, where for the uplink reference
  • the transmission power of the signal is set and adjusted to improve the accuracy and reliability of uplink positioning.
  • the SRS transmission power configuration for positioning and the SRS transmission beam configuration for positioning may be used in combination or alternatively.
  • a serving cell a cell in which the network device 101 provides services to the user equipment 102 is called a serving cell, and cells near the serving cell are called neighbor cells.
  • the serving cell and neighbor cells may be, for example, cellular cells, small cells, micro cells, femto cells, etc.
  • the network equipment of the serving cell is also called the serving network equipment
  • the network equipment of the neighbor cell is also called the neighbor network equipment.
  • the user equipment can report the downlink measurement results of the serving network device (for example, the measurement results of downlink reference signals (such as SSB/CSI-RS/PRS) (such as path loss, etc.)) to the service
  • the network device, and the serving network device configures the transmission power of the uplink reference signal (for example, SRS) used for uplink positioning on the user equipment.
  • the uplink reference signal for example, SRS
  • the above transmission power configuration is only based on the downlink measurement results of the serving cell, it is likely to be inapplicable to the network equipment of the neighboring cells.
  • the distance between the neighbor network equipment and the user equipment is further than that of the serving network equipment.
  • the power of the SRS resources received by the neighbor network equipment is too small, resulting in the corresponding transmission quality indicator. (for example, SRS-RSRP) is too low to meet the performance of uplink positioning.
  • each SRS resource in the SRS resource set is configured with transmission power separately and adjusted in real time to adapt to randomly changing channel conditions.
  • FIG. 9 shows a schematic diagram of information exchange for initial power configuration for uplink positioning of a wireless communication system according to an embodiment of the present disclosure.
  • the location management function entity (LMF) sends a location request (eg, NRPPa location activation request) to the serving network device and receives a location response (eg, NRPPa location activation response) from the serving network device.
  • the LMF may send a measurement request (eg, NRPPa measurement request) to various network devices (including serving network devices and neighbor network devices).
  • each network device performs statistics on uplink measurement results, And the neighbor network device can send its uplink measurements to the serving network device (eg, via the Xn interface). Based on the statistical information of the uplink measurement results of each network device, the serving network device can set a corresponding transmission power configuration for each SRS resource of the user equipment in the serving cell.
  • the transmission power configuration can be indicated by the TPC (Transmission Power Control) command field in the higher layer parameters.
  • TPC Transmission Power Control
  • a TCP field may correspond to an SRS Resource Index (SRI).
  • SRI SRS Resource Index
  • FIG. 9 only shows an example of one serving network device and one neighbor network device.
  • Multiple neighbor network devices can send their own uplink measurement results to a serving network device, or they can be grouped uniformly (for example, each group includes one or more neighbor network devices corresponding to a serving network device, grouping The standard can be based on the distance between network devices, etc.) and then sent to the corresponding service network device.
  • the initial power configuration of the SRS resource for uplink positioning of the user equipment may be based on the uplink measurement results of the SRS resources of each network device and the user equipment collected by the serving network device.
  • P SRS-pos min ⁇ P max , P o +A ⁇ PL(q d ) ⁇ [dBm] (1)
  • P max is the maximum transmission power of the user equipment
  • P o is the reference power setting value
  • A is the influence factor of the uplink path loss estimation
  • PL (q d ) is the uplink value obtained based on the uplink measurement results.
  • Path loss estimation result is the index of the reference signal resource used for uplink path loss estimation.
  • the corresponding PL(q d ) in the initial power configuration is the difference between the user equipment and the neighbor network equipment regarding the SRS resources.
  • the path loss result in the previous uplink measurement (the uplink path loss result has been reported to the service network device).
  • the user equipment can also perform SRS based on the previous downlink measurement results with each network device.
  • Initial power configuration (for configuration examples, refer to equation (1), where PL(q d ) represents the path loss result in the downlink measurement corresponding to the SRS resource). Although the accuracy of the latter is not as good as the former, it is easy and quick to operate. And the downlink measurement results also have reference significance for the transmission of uplink reference signals to a certain extent.
  • the user equipment uses the indicated power value to configure the corresponding SRS power to the user equipment.
  • the network device sends SRS resources for uplink positioning (optionally, the user equipment can also determine its own initial power value based on downlink measurement results with one or more network devices). Since then, due to the large SRS transmission delay in the unlicensed millimeter wave frequency band, the channel status has changed greatly during this period, resulting in serious problems such as hidden node link interference.
  • a power update configuration for SRS resources is proposed, allowing the SRS transmission power of user equipment to be adjusted to better adapt to dynamic channel condition changes.
  • the following takes SRS resource transmission for uplink positioning between user equipment and serving network equipment as an example to describe the power update configuration for specific SRS resources.
  • the user equipment may perform a listen-before-talk (LBT) operation before transmitting SRS resources to the network device, and then transmit the SRS resources after the LBT operation is successful.
  • the user equipment can compare the interference power measured during LBT operation with the threshold to obtain auxiliary information, which can be used for power update configuration of SRS transmission for uplink positioning.
  • auxiliary information can be represented by 1 bit.
  • the specific information is as follows:
  • the thresholds include link quality threshold (LQT) and energy detection threshold (EDT).
  • LQT may be a threshold set by the network device based on the latest uplink measurement result, which represents the tolerable interference power under the current transmission power.
  • EDT can represent the intolerable interference power under the current transmission power.
  • EDT may be associated with the user equipment's maximum transmit power and effective antenna gain. Therefore, EDT is greater than LQT. It should be understood that LQT and EDT can be sent by the network device through higher layer parameters (DCI or MAC-CE in RRC) User equipment.
  • DCI link quality threshold
  • EDT energy detection threshold
  • the interference power is detected to be very small (for example, the interference power ⁇ LQT)
  • the auxiliary information is represented by "0".
  • the interference power is detected to be very small
  • the auxiliary information is represented by "0"
  • the channel condition is good
  • the auxiliary information is represented by "1”.
  • the uplink transmission link of the user equipment may have been interfered by the communication link of the hidden node, but the network device may not have sensed the interference yet (for example, as shown in Figure 1).
  • a large interference power is detected during the LBT process (for example, interference power ⁇ EDT)
  • interference power ⁇ EDT interference power ⁇ EDT
  • the auxiliary information is "NULL"
  • the auxiliary information is "0" or "1"
  • the LBT operation succeeds, otherwise the LBT operation may fail.
  • the user equipment may send the determined auxiliary information along with the SRS resources to the network device.
  • the network device may perform transmission power update configuration on the SRS resource based at least on the assistance information from the user equipment (power update is also referred to as power adjustment in this document).
  • Figures 10A and 10B illustrate example flow diagrams for power adjustment.
  • the network device determines the transmission power adjustment value of the SRS resource (also noted as " ⁇ SRS", unit is dB), where the priority of SRS-RSRP is greater than the auxiliary information. Specifically, the network device first compares the SRS-RSRP measurement to a specific threshold. If the SRS-RSRP value is higher than the specific threshold, it indicates that the channel condition of the SRS resource is very good, then the network device can instruct the user equipment to appropriately reduce the transmission power, that is, set ⁇ SRS to a negative value. If the SRS-RSRP value is not higher than the specific threshold, the network device can determine whether the auxiliary information reported by the user equipment is "0".
  • auxiliary information is "0", it indicates that although the signal condition is not particularly good, it is not too good either. Poor (e.g., no obvious hidden node link interference).
  • the network device can instruct the user equipment to increase the transmission power a little, that is, set ⁇ SRS to a first positive value. Otherwise, if the network device receives the auxiliary information as "1", indicating that the channel condition is poor, the network device can instruct the user device to further increase the transmission power to avoid interference on the hidden node communication link.
  • ⁇ SRS may be set to a second positive value, where the second positive value is greater than the first positive value.
  • the network device measuring the SRS-RSRP value of each SRS resource may cause excessive implementation complexity and power consumption on the network device side. This phenomenon occurs on user equipment This is especially obvious in dense scenarios (for example, where the number of user devices performing uplink positioning is large). Therefore, in order to reduce the implementation complexity and power consumption on the network device side, the step of measuring SRS-RSRP and comparing it with the threshold can be omitted. As shown in Figure 10B, the network device can perform power update configuration based only on the auxiliary information reported by the user equipment.
  • the network device can instruct the user equipment to appropriately reduce the transmission power of the SRS resource, that is, set ⁇ SRS to a negative value; otherwise, when the auxiliary information is "1", The network device may instruct the user equipment to appropriately increase the transmission power of the SRS resource, that is, set ⁇ SRS to a positive value.
  • the network device in order to further improve the performance of uplink positioning, when the auxiliary information is "0", the network device can also indicate to the user equipment that ⁇ SRS is 0 or a smaller positive value, and A large positive value of ⁇ SRS is otherwise indicated to the user equipment. It should be understood that ⁇ SRS may be indicated in the TPC instruction.
  • the field length of a TPC instruction (eg, the number of bits occupied by the field) may be limited in order to save transmission overhead. Therefore, the TPC field may include several adjustment values based on the power of the current user equipment, such as +1dB, +4dB, -1dB, etc. based on the current power.
  • each SRS resource corresponds to a specific Uplink transmit beams
  • Figure 11 shows an example of two transmission sequences of SRS resources in the SRS resource set, but is not intended to be limiting. In practice, as the repetition parameters and time gap parameters of the SRS resources change, there are also multiple transmission sequences of the SRS resources.
  • the power of each SRS resource can be configured before transmission. It should be noted that in one SRS transmission opportunity, the user equipment may receive multiple TPC instructions for the same network device and the same SRS resource. In the next SRS transmission opportunity, the user can use the cumulative sum of multiple power adjustment values (in dB) indicated in multiple previously received TPC instructions as the actual power adjustment value.
  • the neighbor network device can obtain the power adjustment value according to the above method of the present disclosure, and include the recommended power adjustment value in the power update. Sent to the serving network device in the request (for example, via the Xn interface). Then, the serving network device may use, for example, the method shown in Figure 11 to perform power adjustment on the specific SRS resources of the user equipment. Optionally, the serving network device may also receive uplink measurement results and auxiliary information from the neighbor network device, and Based on this information, the SRS transmission power adjustment value for the user equipment to perform uplink positioning to the neighbor network equipment is determined.
  • transmission power configuration of SRS resources can be transmitted through TPC instructions, where TPC instructions can be transmitted through RRC DCI or through MAC-CE.
  • process 1 in Figures 10A and 10B when the number of users performing SRS transmission is too large and the signaling overhead of power adjustment is large, process 1 in Figures 10A and 10B can be omitted. In the case where the power loss of a specific user equipment is too large, the process 1 in Figures 10A and 10B may be required to be enforced (and where ⁇ SRS is a negative value).
  • one TPC field may be associated with multiple SRIs, where the power adjustment value indicated in the TPC field may be for these SRS resources.
  • the mode of the power adjustment value when the power adjustment values for multiple SRS resources are the same or similar, one TPC field may be associated with multiple SRIs, where the power adjustment value indicated in the TPC field may be for these SRS resources.
  • the serving network device can perform SRS power configuration on the user equipment in the serving cell based on the uplink measurement results of itself and neighbor network devices.
  • Initial configuration or the user equipment determines the corresponding SRS power initial configuration based on the downlink measurement results of each network device, so that the reception quality of SRS resources detected by network devices located in different geographical locations can be maintained within a reasonable range .
  • the network equipment can adjust the transmission power of SRS resources in real time based on at least the auxiliary information received from the user equipment, thereby reducing the interference effect of hidden nodes on the transmission of specific SRS resources and better adapting to various channel conditions. Improve the accuracy and effectiveness of uplink positioning.
  • the method proposed in this disclosure balances the power and overhead of user equipment on the premise of satisfying uplink positioning performance.
  • the method may include instructing the user equipment in the wireless communication system to send an uplink reference signal to the network device using a first set of beams (block S1201).
  • the network device may measure a transmission quality index of the uplink reference signal sent in each beam direction in the first set of beams. Thereafter, the network device may instruct the user equipment to use the second set of beams to send the uplink reference signal to the network device for Upstream positioning (block 1203).
  • the second set of beams can enable the user equipment Avoid sending uplink reference signals in beam directions that are interfered by communication links of hidden node devices, where the hidden node devices may be unknown to network equipment and user equipment.
  • the network device or more specifically, the electronic device 200
  • the network device used in the wireless communication system may indicate the transmission power configuration of the uplink reference signal to the user equipment based on the uplink measurement results and/or the auxiliary information reported by the user equipment for uplink use. position.
  • the method may include receiving an indication from a network device in a wireless communication system to transmit an uplink reference signal to the network device using a first set of beams (block S1301).
  • the user equipment may send an uplink reference signal to the network device in each beam direction in the first group of beams, so that the network device measures a transmission quality index of the uplink reference signal.
  • the user equipment may receive an indication from the network device to use the second set of beams to send the uplink reference signal to the network device, wherein the indication is based on at least a transmission quality index of the uplink reference signal sent in the direction of at least one beam in the first set of beams being lower than threshold (block 1303).
  • the user equipment may send uplink reference signals to the network device using the second set of beams for uplink positioning.
  • the second group of beams can enable the user equipment to avoid sending uplink reference signals in beam directions interfered by communication links of hidden node devices, where the hidden node devices may be unknown to the network equipment and the user equipment.
  • reference may be made to the above operational description of the user equipment (or more specifically, the electronic device 300), and will not be repeated here.
  • the user equipment used in the wireless communication system can use corresponding power to transmit the uplink reference signal to the network device based on the transmission power configuration of the network device for uplink positioning.
  • the transmission power configuration is based at least on the uplink measurement result of the network device and/or the auxiliary information received by the network device from the user equipment.
  • a network device in a wireless communication system including a processing circuit configured to cause the network device to perform the following operations:
  • the user equipment Based at least on the fact that the transmission quality index of the uplink reference signal sent in at least one beam direction in the first group of beams is lower than a threshold, instruct the user equipment to use the second group of beams to send the uplink reference signal to the network device for uplink. position,
  • the second group of beams enables the user equipment to avoid sending uplink reference signals in beam directions that are interfered by communication links of hidden node devices, where the hidden node devices are unknown to the network device and the user equipment.
  • the uplink reference signal includes a sounding reference signal (SRS).
  • SRS sounding reference signal
  • Clause 3 The network device according to Clause 2, wherein the indication of the beam direction of the uplink reference signal is achieved by indicating a downlink reference signal having a quasi-colocated (QCL) association with the uplink reference signal, wherein the downlink reference signal includes Synchronization signal block (SSB), channel state information reference signal (CSI-RS), and/or positioning reference signal (PRS).
  • SSB Synchronization signal block
  • CSI-RS channel state information reference signal
  • PRS positioning reference signal
  • Clause 4 The network device according to Clause 1, the processing circuit is further configured to cause the network device to perform the following operations:
  • the transmission quality index of the signal is not lower than the threshold, and all beams in the first group of beams whose transmission quality index is lower than the threshold are updated to have the same or similar beam direction as the beam with the highest transmission quality index in the first group of beams. beam, thereby forming a second set of beams.
  • Clause 5 The network device according to Clause 1, the processing circuit is further configured to cause the network device to perform the following operations:
  • Clause 6 The network device according to Clause 1, the processing circuit is further configured to cause the network device to perform the following operations:
  • the user equipment Based at least on transmission quality indicators of uplink reference signals sent in all beam directions in the first group of beams If the target is not lower than the threshold, the user equipment is not instructed to use the second set of beams, so that the user equipment continues to use the first set of beams to send uplink reference signals to the network device for uplink positioning.
  • the network device corrects the uplink reference signal configuration information sent to the user equipment based on the latest downlink reference signal measurement result.
  • Clause 8 The network device according to clause 1, wherein the network device, the user equipment and the hidden node device operate in an unlicensed millimeter wave frequency band.
  • Clause 9 The network device according to Clause 1, wherein the transmission quality indicator includes one of the following or a combination of more than one of the following: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Signal Interference noise ratio (SINR), or decoding rate.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal Interference noise ratio
  • Clause 10 Network device according to Clause 1, wherein said The user equipment uses a first set of beams and instructs the user equipment to use a second set of beams.
  • Clause 11 The network equipment according to Clause 1, wherein the beam direction of the user equipment used to transmit the uplink reference signal is interfered by the communication link of the hidden node device including: the hidden node device is located within the coverage of the beam direction; or the hidden node The device is located within the reverse coverage of the beam direction and the transmission direction of the communication link of the hidden node device is the same as or similar to the beam direction.
  • User equipment in a wireless communication system including a processing circuit configured to cause the user equipment to perform the following operations:
  • the second group of beams enables the user equipment to avoid sending uplink reference signals in beam directions that are interfered by communication links of hidden node devices, where the hidden node devices are unknown to the network device and the user equipment.
  • the uplink reference signal includes a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the indication of the beam direction of the uplink reference signal is achieved by indicating a downlink reference signal having a quasi-colocated (QCL) association with the uplink reference signal, wherein the downlink reference signal includes Synchronization signal block (SSB), channel state information reference signal (CSI-RS), and/or positioning reference signal (PRS).
  • SSB Synchronization signal block
  • CSI-RS channel state information reference signal
  • PRS positioning reference signal
  • the transmission quality index of at least one uplink reference signal sent in at least one beam direction in the first set of beams is lower than the threshold and the uplink reference signal sent in another at least one beam direction in the first set of beams If the transmission quality index is not lower than the threshold, all beams in the first group of beams whose transmission quality index is lower than the threshold are updated to the same beam direction as the beam with the highest transmission quality index in the first group of beams or Similar beams form a second set of beams.
  • the user equipment At least when the transmission quality index of the uplink reference signal sent in all beam directions in the first group of beams is lower than the threshold, the user equipment re-performs omni-directional beam scanning, and performs omni-directional beam scanning. All beams in the scanned beams whose transmission quality index is lower than the threshold are updated to beams with the same or similar beam direction as the beam with the highest transmission quality index in the omnidirectional beam scanning, thereby forming a second group of beams.
  • the user equipment continues to use the first group of beams to transmit to the network device Uplink reference signal for uplink positioning.
  • the initial default configuration information of the uplink reference signal received by the user equipment from the network device or
  • the uplink reference signal correction configuration information received by the user equipment from the network device is sent based on the latest downlink reference signal measurement result of the network device.
  • Clause 19 The user equipment according to clause 12, wherein the network device, the user device and the hidden node device operate in an unlicensed millimeter wave frequency band.
  • the transmission quality indicator includes one of the following or a combination of multiple of the following: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Signal Interference noise ratio (SINR), or decoding rate.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal Interference noise ratio
  • a method for network equipment in a wireless communication system comprising:
  • the user equipment Based at least on the fact that the transmission quality index of the uplink reference signal sent in at least one beam direction in the first group of beams is lower than a threshold, instruct the user equipment to use the second group of beams to send the uplink reference signal to the network device for uplink. position,
  • the second group of beams enables the user equipment to avoid sending uplink reference signals in beam directions that are interfered by communication links of hidden node devices, where the hidden node devices are unknown to the network device and the user equipment.
  • a method for user equipment in a wireless communication system comprising:
  • the second group of beams enables the user equipment to avoid sending uplink reference signals in beam directions that are interfered by communication links of hidden node devices, where the hidden node devices are unknown to the network device and the user equipment.
  • Clause 24 A computer-readable storage medium having stored thereon one or more instructions that, when executed by one or more processors of an electronic device, cause the electronic device to perform in accordance with Clause 24. The method described in 22 or 23.
  • Clause 25 A computer program product comprising program instructions which, when executed by one or more processors of a computer, cause the computer to perform the method according to clause 22 or 23.
  • machine-executable instructions in the machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be clear to those skilled in the art, and therefore will not be described again.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • the above series of processes and devices can also be implemented through software and/or firmware.
  • the program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose personal computer 1100 shown in FIG. 14 , and the computer is installed with various programs. , can perform various functions and so on.
  • 14 is a block diagram showing an example structure of a personal computer as an information processing device employable in the embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary terminal device according to the present disclosure.
  • a central processing unit (CPU) 1101 performs various processes according to a program stored in a read-only memory (ROM) 1102 or a program loaded from a storage section 1108 into a random access memory (RAM) 1103 .
  • ROM read-only memory
  • RAM random access memory
  • data required when the CPU 1101 performs various processes and the like is also stored as necessary.
  • the CPU 1101, ROM 1102 and RAM 1103 are connected to each other via a bus 1104.
  • Input/output interface 1105 is also connected to bus 1104.
  • the following components are connected to the input/output interface 1105: an input part 1106, including a keyboard, a mouse, etc.; an output part 1107, including a display, such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage part 1108 , including hard disk, etc.; and the communication part 1109, including network interface cards such as LAN cards, modems, etc.
  • the communication section 1109 performs communication processing via a network such as the Internet.
  • Driver 1110 is also connected to input/output interface 1105 as needed.
  • Removable media 1111 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc. are installed on the drive 1110 as necessary, so that computer programs read therefrom are installed into the storage section 1108 as needed.
  • the program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1111.
  • this storage medium is not limited to the removable medium 1111 shown in FIG. 14 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable media 1111 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1102, a hard disk contained in the storage section 1108, or the like, in which programs are stored and distributed to users together with the device containing them.
  • the technology of the present disclosure can be applied to various products.
  • the electronic device 200 according to the embodiment of the present disclosure may be implemented as or included in various network devices/base stations, and the method shown in FIG. 12 may also be implemented by various network devices/base stations.
  • the electronic device 300 according to the embodiment of the present disclosure may be implemented as or included in various user equipment/terminal devices, and the method shown in FIG. 13 may also be implemented by various user equipments. /Terminal device implementation.
  • the network device/base station mentioned in this disclosure may be implemented as any type of base station, such as an evolved node Point B(gNB).
  • a gNB may include one or more Transmit and Receive Points (TRPs).
  • TRPs Transmit and Receive Points
  • User equipment may connect to one or more TRPs within one or more gNBs.
  • a user equipment may be able to receive transmissions from multiple gNBs (and/or multiple TRPs provided by the same gNB).
  • gNBs may include macro gNBs and small gNBs.
  • a small gNB may be a gNB covering a smaller cell than a macro cell, such as pico gNB, micro gNB, and home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • the base station may include: a main body (also called a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) disposed in a different place from the main body.
  • a main body also called a base station device
  • RRH remote radio heads
  • various types of terminals to be described below may operate as base stations by temporarily or semi-persistently performing base station functions.
  • the user equipment mentioned in this disclosure is also called a terminal device in some examples, and may be implemented as a mobile terminal (such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle mobile routers and digital cameras) or vehicle-mounted terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also known as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single die) installed on each of the above-mentioned terminals. In some cases, user equipment may communicate using multiple wireless communication technologies.
  • the user equipment may be configured to communicate using two or more of GSM, UMTS, CDMA2000, WiMAX, LTE, LTE-A, WLAN, NR, Bluetooth, etc.
  • user equipment may also be configured to communicate using only one wireless communication technology.
  • the term base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station used to facilitate communications as part of a wireless communication system or radio system.
  • a base station may be, for example but not limited to, the following: the base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in the GSM system, and may be a radio network controller in the WCDMA system.
  • BTS base transceiver station
  • BSC base station controller
  • One or both of (RNC) and Node B can be the eNB in LTE and LTE-Advanced systems, or can be the corresponding network node in the future communication system (such as gNB, eLTE that may appear in the 5G communication system eNB etc.).
  • Some functions in the base station of the present disclosure can also be implemented as entities with communication control functions in D2D, M2M and V2V communication scenarios, or as entities that play a spectrum coordination role in cognitive radio communication scenarios.
  • gNB 1200 includes multiple antennas 1210 and base station equipment 1220.
  • the base station device 1220 and each antenna 1210 may be connected to each other via an RF cable.
  • the gNB 1200 (or base station device 1220) here may correspond to the above-mentioned network device 101 (or more specifically, the electronic device 200).
  • Each of the antennas 1210 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used by the base station device 1220 to transmit and receive wireless signals.
  • gNB 1200 may include multiple antennas 1210.
  • multiple antennas 1210 may be compatible with multiple frequency bands used by gNB 1200.
  • the base station device 1220 includes a controller 1221, a memory 1222, a network interface 1223, and a wireless communication interface 1225.
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1220 . For example, the controller 1221 generates data packets based on the data in the signal processed by the wireless communication interface 1225 and delivers the generated packets via the network interface 1223 . The controller 1221 may bundle data from multiple baseband processors to generate bundled packets, and deliver the generated bundled packets. The controller 1221 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1222 includes RAM and ROM, and stores programs executed by the controller 1221 and various types of control data such as terminal lists, transmission power data, and scheduling data.
  • the network interface 1223 is a communication interface used to connect the base station device 1220 to the core network 1224. Controller 1221 may communicate with core network nodes or additional gNBs via network interface 1223. In this case, the gNB 1200 and the core network node or other gNBs may be connected to each other through logical interfaces such as the S1 interface and the X2 interface.
  • the network interface 1223 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1223 is a wireless communication interface, the network interface 1223 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1225.
  • the wireless communication interface 1225 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced and provides wireless connectivity to terminals located in the cell of the gNB 1200 via the antenna 1210 .
  • wireless communication interface 1225 may generally include, for example, a baseband (BB) processor 1226 and RF circuitry 1227.
  • the BB processor 1226 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • Packet Data Convergence Protocol Various types of signal processing for PDCP
  • the BB processor 1226 may have part or all of the above-mentioned logical functions.
  • the BB processor 1226 may be a memory that stores a communication control program, or a module including a processor and related circuits configured to execute the program.
  • the update program can cause the functionality of the BB processor 1226 to change.
  • the module may be a card or blade that plugs into a slot of the base station device 1220. Alternatively, the module may be a chip mounted on a card or blade.
  • the RF circuit 1227 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 1210.
  • FIG. 15 shows an example in which one RF circuit 1227 is connected to one antenna 1210, the present disclosure is not limited to this illustration, but one RF circuit 1227 can be connected to multiple antennas 1210 at the same time.
  • the wireless communication interface 1225 may include multiple BB processors 1226 .
  • multiple BB processors 1226 may be compatible with multiple frequency bands used by gNB 1200.
  • wireless communication interface 1225 may include a plurality of RF circuits 1227.
  • multiple RF circuits 1227 may be compatible with multiple antenna elements.
  • FIG. 15 shows an example in which the wireless communication interface 1225 includes multiple BB processors 1226 and multiple RF circuits 1227, the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227.
  • gNB 1330 includes multiple antennas 1340, base station equipment 1350 and RRH 1360.
  • the RRH 1360 and each antenna 1340 may be connected to each other via RF cables.
  • the base station equipment 1350 and the RRH 1360 may be connected to each other via high-speed lines such as fiber optic cables.
  • the gNB 1330 (or base station device 1350) here may correspond to the above-mentioned network device 101 (or more specifically, the electronic device 200).
  • Antennas 1340 each include single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by RRH 1360 to transmit and receive wireless signals.
  • gNB 1330 may include multiple antennas 1340.
  • multiple antennas 1340 may be compatible with multiple frequency bands used by gNB 1330.
  • the base station device 1350 includes a controller 1351, a memory 1352, a network interface 1353, a wireless communication interface 1355, and a connection interface 1357.
  • the controller 1351, the memory 1352, and the network interface 1353 are the same as the controller 1221, the memory 1222, and the network interface 1223 described with reference to FIG. 15 .
  • the wireless communication interface 1355 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in the sector corresponding to the RRH 1360 via the RRH 1360 and the antenna 1340.
  • the wireless communication interface 1355 may generally include a BB processor 1356, for example.
  • the BB processor 1356 is the same as the BB processor 1226 described with reference to FIG. 15 except that the BB processor 1356 is connected to the RF circuit 1364 of the RRH 1360 via the connection interface 1357.
  • the wireless communication interface 1355 may include multiple BB processors 1356.
  • multiple BB processors 1356 may be compatible with multiple frequency bands used by gNB 1330.
  • FIG. 16 shows an example in which the wireless communication interface 1355 includes multiple BB processors 1356, the wireless communication interface 1355 may also include a single BB processor 1356.
  • connection interface 1357 is an interface for connecting the base station device 1350 (wireless communication interface 1355) to the RRH 1360.
  • the connection interface 1357 may also be a communication module used to connect the base station device 1350 (wireless communication interface 1355) to the communication in the above-mentioned high-speed line of the RRH 1360.
  • RRH 1360 includes a connection interface 1361 and a wireless communication interface 1363.
  • connection interface 1361 is an interface for connecting the RRH 1360 (wireless communication interface 1363) to the base station device 1350.
  • the connection interface 1361 may also be a communication module used for communication in the above-mentioned high-speed line.
  • Wireless communication interface 1363 transmits and receives wireless signals via antenna 1340.
  • Wireless communication interface 1363 may generally include RF circuitry 1364, for example.
  • RF circuitry 1364 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1340 .
  • FIG. 16 shows an example in which one RF circuit 1364 is connected to one antenna 1340, the present disclosure is not limited to this illustration, but one RF circuit 1364 can be connected to multiple antennas 1340 at the same time.
  • wireless communication interface 1363 may include a plurality of RF circuits 1364.
  • multiple RF circuits 1364 may support multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1363 includes a plurality of RF circuits 1364, the wireless communication interface 1363 may also include a single RF circuit 1364.
  • the smartphone 1400 includes a processor 1401, a memory 1402, a storage device 1403, an external connection interface 1404, a camera 1406, a sensor 1407, a microphone 1408, an input device 1409, a display device 1410, a speaker 1411, Wireless communication interface 1412, one or more antenna switches 1415, one or more antennas 1416, bus 1417, battery 1418, and auxiliary controller 1419.
  • the smartphone 1400 (or processor 1401) herein may correspond to the user device 102 (or more specifically, the electronic device 300) described above.
  • the processor 1401 may be, for example, a CPU or a system on a chip (SoC), and controls functions of the application layer and other layers of the smartphone 1400 .
  • the memory 1402 includes RAM and ROM, and stores data and programs executed by the processor 1401.
  • the storage device 1403 may include storage media such as semiconductor memory and hard disk.
  • the external connection interface 1404 is an interface for connecting external devices, such as memory cards and Universal Serial Bus (USB) devices, to the smartphone 1400 .
  • the camera 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) and generates a captured image.
  • Sensors 1407 may include a group of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1408 converts the sound input to the smartphone 1400 into an audio signal.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, a button or a switch configured to detect a touch on the screen of the display device 1410, and receives an operation or information input from a user.
  • the display device 1410 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1400 .
  • the speaker 1411 converts the audio signal output from the smartphone 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1412 may generally include, for example, BB processor 1413 and RF circuitry 1414.
  • the BB processor 1413 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1416.
  • the wireless communication interface 1412 may be a chip module on which the BB processor 1413 and the RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 may include multiple BB processors 1413 and multiple RF circuits 1414. Although FIG. 17 shows an example in which the wireless communication interface 1412 includes multiple BB processors 1413 and multiple RF circuits 1414, the wireless communication interface 1412 may also include a single BB processor 1413 or a single RF circuit 1414.
  • the wireless communication interface 1412 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1412 may include a BB processor 1413 and an RF circuit 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches the connection destination of the antenna 1416 between a plurality of circuits included in the wireless communication interface 1412 (for example, circuits for different wireless communication schemes).
  • Antennas 1416 each include single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 1412 to transmit and receive wireless signals.
  • smartphone 1400 may include multiple antennas 1416.
  • FIG. 17 shows an example in which smartphone 1400 includes multiple antennas 1416, smartphone 1400 may also include a single antenna 1416.
  • smartphone 1400 may include an antenna 1416 for each wireless communication scheme.
  • the antenna switch 1415 may be omitted from the configuration of the smartphone 1400.
  • the bus 1417 connects the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the camera 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 to each other. connect.
  • the battery 1418 provides power to the various blocks of the smartphone 1400 shown in Figure 17 via feeders, which are partially shown in the figure as dotted lines.
  • the auxiliary controller 1419 operates the minimum necessary functions of the smartphone 1400 in the sleep mode, for example.
  • the car navigation device 1520 includes a processor 1521, a memory 1522, a global positioning system (GPS) module 1524, a sensor 1525, a data interface 1526, a content player 1527, a storage media interface 1528, an input device 1529, a display device 1530, a speaker 1531, a wireless Communication interface 1533, one or more antenna switches 1536, one or more antennas 1537, and battery 1538.
  • the car navigation device 1520 (or processor 1521) here may correspond to the above-mentioned user device 102 (or more specifically, the electronic device 300).
  • the processor 1521 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 1520 .
  • the memory 1522 includes RAM and ROM, and stores data and programs executed by the processor 1521 .
  • the GPS module 1524 measures the location (such as latitude, longitude, and altitude) of the car navigation device 1520 using GPS signals received from GPS satellites.
  • Sensors 1525 may include a group of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1526 is connected to, for example, the vehicle-mounted network 1541 via a terminal not shown, and acquires data generated by the vehicle (such as vehicle speed data).
  • the content player 1527 reproduces content stored in storage media such as CDs and DVDs. is inserted into the storage media interface 1528.
  • the input device 1529 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1530, and receives an operation or information input from a user.
  • the display device 1530 includes a screen such as an LCD or an OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1531 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1533 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1533 may generally include, for example, BB processor 1534 and RF circuitry 1535.
  • the BB processor 1534 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communications.
  • the RF circuit 1535 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 1537.
  • the wireless communication interface 1533 may also be a chip module on which the BB processor 1534 and the RF circuit 1535 are integrated. As shown in FIG.
  • the wireless communication interface 1533 may include a plurality of BB processors 1534 and a plurality of RF circuits 1535.
  • FIG. 18 shows an example in which the wireless communication interface 1533 includes a plurality of BB processors 1534 and a plurality of RF circuits 1535, the wireless communication interface 1533 may also include a single BB processor 1534 or a single RF circuit 1535.
  • the wireless communication interface 1533 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 1533 may include a BB processor 1534 and an RF circuit 1535 for each wireless communication scheme.
  • Each of the antenna switches 1536 switches the connection destination of the antenna 1537 between a plurality of circuits included in the wireless communication interface 1533, such as circuits for different wireless communication schemes.
  • Antennas 1537 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 1533 to transmit and receive wireless signals.
  • car navigation device 1520 may include multiple antennas 1537 .
  • FIG. 18 shows an example in which the car navigation device 1520 includes a plurality of antennas 1537, the car navigation device 1520 may also include a single antenna 1537.
  • the car navigation device 1520 may include an antenna 1537 for each wireless communication scheme.
  • the antenna switch 1536 may be omitted from the configuration of the car navigation device 1520.
  • the battery 1538 provides power to the various blocks of the car navigation device 1520 shown in FIG. 18 via feeders, which are partially shown in the figure as dotted lines. Battery 1538 accumulates power provided from the vehicle.
  • the technology of the present disclosure may also be implemented to include a car navigation device 1520, a vehicle network 1541, and a vehicle Onboard system (or vehicle) 1540 of one or more blocks in vehicle module 1542.
  • the vehicle module 1542 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1541 .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • steps described in the flowchart include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in steps processed in time series, it goes without saying that the order can be appropriately changed.

Abstract

本申请涉及用于定位中的上行参考信号传输配置的设备和方法。描述了一种用于无线通信系统中的网络设备的方法,该方法可以包括:指示该无线通信系统中的用户设备使用第一组波束向网络设备发送上行参考信号;测量第一组波束中的每一个波束方向上所发送的上行参考信号的传输质量指标;以及至少基于第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,指示用户设备使用第二组波束向网络设备发送上行参考信号以用于上行定位。在该方法中,第二组波束使得用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于网络设备和用户设备可以是未知的。

Description

用于定位中的上行参考信号传输配置的设备和方法 技术领域
本公开一般地涉及用于无线通信系统中的设备和方法,并且具体地涉及用于无线通信系统中的定位中的上行参考信号传输配置的技术。
背景技术
无线通信系统可以使用多种协议和标准进行设备之间的数据传输。这些协议和标准经历了长期的发展,包括但不限于第三代合作伙伴计划(3GPP)、3GPP长期演进(LTE)(例如,4G通信)、3GPP新无线电(NR)(例如,5G通信)、以及用于无线局域网(WLAN)的IEEE 802.11标准(通常也称为Wi-Fi)等。
在无线通信系统中,为了支持地面无线网络中的位置估计,网络设备可以通过测量来自移动用户设备的无线电射频(RF)参考信号来估计该移动用户设备的位置,从而实现定位。
作为示例,用于确定用户设备的位置的一种方法可以包括将用户设备配置为向两个或更多个网络设备发送上行参考信号(例如,探测参考信号(SRS)),并且测量至少两个网络设备从该用户设备接收到的上行参考信号的到达时间差,从而计算相应的距离差。对于任何两个前述网络设备来说,该用户设备位于以这两个网络设备为交点,以其距离差为定差的双曲线上。测量多对网络设备之间的到达时间差可以通过求解双曲线交点来获得用户设备的位置。除了到达时间差(TDOA)定位方法之外,还可以使用到达角(AOD)定位、多-往返时间(Multi-RTT)定位等多种方法来进行上行定位。
在诸如5G的通信网络中支持较高频率(诸如毫米波频段)的数据传输,其中用户设备和网络设备都可以使用定向波束来进行定向传输,从而获得较高的吞吐量。在上行定位的过程中,设备的上行参考信号的传输配置(例如,波束配置、功率配置等)非常重要。在这种情况下,需要在较高频率的无线通信系统中对设备的上行参考信号进行良好的配置,从而实现高精确度的上行定位。
发明内容
本公开提出了用于无线通信系统中的定位中的上行参考信号传输配置的设备和方法。更具体而言,本公开提出了针对用于上行定位的上行参考信号的传输波束配置,其中对上行参考信号的空间关系进行更新和增强,从而提高上行定位的有效性和可靠性。
根据本公开的第一方面,提供了一种无线通信系统中的网络设备,所述网络设备包括处理电路,所述处理电路被配置为使得网络设备执行以下操作:指示所述无线通信系统中的用户设备使用第一组波束向所述网络设备发送上行参考信号;测量第一组波束中的每一个波束方向上所发送的上行参考信号的传输质量指标;以及至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,指示用户设备使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
对应地,根据本公开的第一方面,还提供了一种用于无线通信系统中的网络设备的方法,所述方法包括:指示所述无线通信系统中的用户设备使用第一组波束向所述网络设备发送上行参考信号;测量第一组波束中的每一个波束方向上所发送的上行参考信号的传输质量指标;以及至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,指示用户设备使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
根据本公开的第二方面,提供了一种无线通信系统中的用户设备,所述用户设备包括处理电路,所述处理电路被配置为使得用户设备执行以下操作:从所述无线通信系统中的网络设备接收使用第一组波束向所述网络设备发送上行参考信号的指示;在第一组波束中的每一个波束方向上向所述网络设备发送上行参考信号,以用于网络设备测量所述上行参考信号的传输质量指标;从网络设备接收使用第二组波束向所述网络设备发送上行参考信号的指示,其中该指示至少基于所述第一组波束中的至少一个 波束方向上所发送的上行参考信号的传输质量指标低于阈值而发送;以及使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
对应地,根据本公开的第二方面,还提供了一种用于无线通信系统中的用户设备的方法,所述方法包括:从所述无线通信系统中的网络设备接收使用第一组波束向所述网络设备发送上行参考信号的指示;在第一组波束中的每一个波束方向上向所述网络设备发送上行参考信号,以用于网络设备测量所述上行参考信号的传输质量指标;从网络设备接收使用第二组波束向所述网络设备发送上行参考信号的指示,其中该指示至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值而发送;以及使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
根据本公开的第三方面,提供了一种具有存储在其上的一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使得该电子设备执行根据本公开的各种实施例的方法。
根据本公开的第四方面,提供了一种包括程序指令的计算机程序产品,所述程序指令在由计算机的一个或多个处理器执行时,使得所述计算机执行根据本公开的各种实施例的方法。
附加地或可选地,本公开还提出了针对用于上行定位的上行参考信号的传输功率配置,其中对上行参考信号到达多个小区的网络设备的传输功率进行设置和更新,从而提高上行定位的准确性和可靠性。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是示例并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1示出了根据本公开实施例的无线通信系统的示例场景图。
图2示出了根据本公开实施例的用于网络设备的示例性电子设备。
图3示出了根据本公开实施例的用于用户设备的示例性电子设备。
图4A示出了根据本公开实施例的用于上行定位的上行参考信号的波束配置中的初始默认配置和修正配置过程的信息交互图,并且图4B示出了根据本公开实施例的用于上行定位的上行参考信号的波束配置中的初始默认配置和修正配置过程的流程图。
图5A-5B示出了根据本公开实施例的用于上行定位的上行参考信号波束配置的第一用例的示例图。
图6A-6B示出了根据本公开实施例的用于上行定位的上行参考信号波束配置的第二用例的示例图。
图7A-7C示出了根据本公开实施例的用于上行定位的上行参考信号波束配置的第三用例的示例图。
图8A-图8B示出了根据本公开实施例的用于无线通信系统的上行定位的波束配置的信息交互示意图。
图9示出了根据本公开实施例的用于无线通信系统的上行定位的功率初始配置的信息交互示意图。
图10A-图10B示出了根据本公开实施例的用于无线通信系统的功率调整的流程图。
图11示出了根据本公开实施例的针对上行参考信号的功率配置的示例图。
图12示出了根据本公开实施例的用于无线通信系统中的网络设备的示例方法的流程 图。
图13示出了根据本公开实施例的用于无线通信系统中的用户设备的示例方法的流程图。
图14为作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图15为示出可以应用本公开的技术的基站的示意性配置的第一示例的框图;
图16为示出可以应用本公开的技术的基站的示意性配置的第二示例的框图;
图17为示出可以应用本公开的技术的智能电话的示意性配置的示例的框图。
图18为示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应该理解的是,附图以及对其的详细描述不旨在将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言清楚的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
典型地,无线通信系统至少包括网络设备和用户设备,网络设备可以为一个或多个用户设备提供通信服务。
在本公开中,术语“网络设备”(或“基站”、“控制设备”)具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。作为例子,网络设备例如可以是4G通信标准的eNB、5G通信标准的gNB、远程无线电头端、无线接入点、无人机控制塔台或者执行类似功能的通信装置。在本公开中,“网络 设备”、“基站”和“控制设备”可以互换地使用,或者“网络设备”可以实现为“基站”的一部分。下文将以网络设备为例结合附图详细描述应用示例。
在本公开中,术语“用户设备(UE)”或“终端设备”具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的终端设备。作为例子,用户设备例如可以是移动电话、膝上型电脑、平板电脑、车载通信设备、可穿戴设备、传感器等之类的终端设备或其元件。在本公开中,“用户设备”(以下可被简称为“UE”)和“终端设备”可以互换地使用,或者“用户设备”可以实现为“终端设备”的一部分。
在本公开中,术语“网络设备侧”/“基站侧”具有其通常含义的全部广度,通常指示通信系统下行链路中发送数据的一侧,或者指示通信系统上行链路中接收数据的一侧。类似地,术语“用户设备侧”/“终端设备侧”具有其通常含义的全部广度,并且相应地可以指示通信系统下行链路中接收数据的一侧,或者指示通信系统上行链路中发送数据的一侧。
应该注意的是,以下虽然主要基于包含网络设备和用户设备的通信系统对本公开的实施例进行了描述,但是这些描述可以相应地扩展到包含任何其它类型的网络设备侧和用户设备侧的通信系统的情况。例如,网络设备侧的操作可以对应于基站的操作,而用户设备侧的操作可以相应地对应于终端设备的操作。
图1示出了根据本公开实施例的无线通信系统的示例场景图。应该理解的是,图1仅示出无线通信系统的多种类型和可能布置中的一种;本公开的特征可根据需要在各种系统中的任一者中实现。
如图1所示,无线通信系统100包括一个或多个网络设备101和一个或多个用户设备102。网络设备和用户设备可以被配置为通过无线传输介质进行通信。网络设备101可以还被配置为与核心网中的定位管理功能实体(未示出)进行通信,并且对用户设备将要发送的上行参考信号进行传输配置并将该传输配置通知给用户设备,以用于上行定位。根据本公开的实施例,上行参考信号的一个示例为探测参考信号(SRS),因此在本文中“上行参考信号”与“探测参考信号”(或“SRS”)可以互换地使用。应该理解的是,上行参考信号还可以是本领域技术人员已知的由用户设备发送的其他参考信号。
如图1所示,在使用较高频率(诸如毫米波频段)的无线通信系统中,网络设备侧和用户设备侧均可以使用包括多个天线元件的天线阵列来形成定向波束,这样能够提高 传输效率和系统吞吐量。
在上行定位过程中,网络设备可以通过波束扫描来接收从用户设备发送的SRS。由于高频段信号的波束通常具有数量多和波束窄的特点,因此网络设备侧的波束扫描需要进行多次波束切换,产生较大的时延和开销。同时,在用户设备进行SRS传输时,不仅要等待SRS的传输机会,还需要重复传输SRS以便让足够数量的网络设备探测到SRS,才能实现较为精确的上行定位。在一些现有的方案中,提出由用户设备来执行波束扫描来发送SRS,用于减少网络设备的时延和开销。然而,在用户设备分布较密集的情况下,网络设备仍然需要持续地重复进行波束扫描,才能探测到来自更多用户设备的SRS从而提高上行覆盖。因此,在实际场景中,无论用户设备侧是否执行波束扫描,网络设备侧的波束扫描都无法避免,因此实现满足较高精度的定位要求都需要消耗较长的时间。
由于上行定位中的时延较大,因此在这段时间里系统的信道状态很可能发生较大的变化。具体而言,例如,在非授权高频率频段(诸如,60GHz毫米波频段等)中可能部署了大量使用不同的无线电接入技术(RAT)(诸如,蜂窝通信技术、Wi-Fi技术、蓝牙(Bluetooth)技术等)的设备。这些设备对于上行定位过程中的网络设备和用户设备而言都可能是未知的,因此在本文中称为“隐藏节点”或“隐藏节点设备”。这些隐藏节点设备的通信链路很可能对SRS传输过程造成干扰,从而使得SRS传输的信道状态发生较大的变化。由于网络设备和用户设备都无法预知隐藏节点的出现,因此其上行定位过程中的信道状态变化是随机且无法预测的。
在一些现有的上行定位方案中,根据网络设备与用户设备之间的下行链路的定向波束传输方向来确定上行链路的波束传输方向。作为示例,通过指示用于上行定位的上行参考信号与下行参考信号的准共址关联的空间关系,使得用户设备基于先前的下行参考信号的测量结果,直接利用训练好的接收下行参考信号的下行波束所对应的上行波束来发送上行参考信号。然而,这些方案在非授权毫米波频段并不适用。如图1所示,由于网络设备的天线数量通常远大于用户设备的天线数量,因此网络设备侧的波束宽度远窄于用户设备侧的波束宽度,造成了严重的上下行波束不对称问题。在该频段中,上下行信道状态不再具有互易性,因此不能通过波束接收到的下行参考信号的质量来推断该波束的上行发送方向的信道状况。作为示例,可以从图1中看出,在网络设备与用户设备的下行传输中并不会受到隐藏节点的通信链路的干扰,因而测量得到的下行参考信号的传输 质量指标较高,但是上行参考信号传输就会受到隐藏节点的通信链路的干扰,因此基于下行参考信号的接收质量来进行上行参考信号的传输配置的方法在非授权毫米波频段不适用。
应该理解的是,根据本公开的实施例,下行参考信号的示例包括同步信号块(SSB)、信道状态信息参考信号(CSI-RS)、和/或定位参考信号(PRS),因此在本文中“下行参考信号”与“SSB/CSI-RS/PRS”可以互换地使用。应该理解的是,下行参考信号还可以是本领域技术人员已知的由网络设备发送的其他参考信号。根据本公开的实施例,传输质量指标包括但不限于以下中的一个或以下中的多个的组合:网络参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、信干噪比(SINR)、解码率。
在非授权毫米波频段的通信中,用户设备可以在与网络设备进行通信之前执行先听后说(LBT)操作。如果隐藏节点位于用户设备的上行波束的覆盖范围内(如图1中所示),那么用户设备可能在定向的LBT操作期间发现隐藏节点通信链路的存在,从而确定不在相应方向的波束上向网络设备发送SRS来避免干扰的发生。然而,隐藏节点可能位于用户设备的波束的反向覆盖范围内。在这种情况下,当隐藏节点通信链路的传输方向与用户设备到网络设备的上行波束方向相同或相近时,用户设备并不能在LBT操作期间发现隐藏节点,但是上行传输会受到该隐藏节点通信链路的干扰,从而上行定位性能可能受到严重的影响。
综合来说,在诸如非授权毫米波频段等高频段无线通信系统中,上行定位过程中由于波束扫描造成的较大的时延几乎无法避免。在这段较长的时间中,由于隐藏节点的通信链路可能对用户设备到网络设备的上行SRS传输造成干扰,并且这种干扰有事无法通过LBT操作监测到。同时,由于高频段通信中的上下行信道不具有互异性,不能简单地将训练好的下行链路配置设置为上行链路配置。因此,需要可靠且高效的用于上行定位的SRS传输配置,使得SRS在传输过程中尽量避开隐藏节点通信链路的干扰,提高上行定位的准确度和可靠性。
为了能够解决上述问题,本公开提供了一种用于上行定位的SRS传输配置的方法。根据本公开的实施例,在SRS传输过程中,可以基于网络设备对每个传输SRS的波束方向上的传输质量指标的测量,对某些传输质量指标不好的上行波束进行更新,使得用户设备尽快切换到能够实现较好传输质量指标的上行波束来发送SRS。此外,根据本公开 的实施例,在SRS传输过程中,网络设备可以基于上行链路测量结果和/或从用户设备接收到的辅助信息,对用户设备的SRS传输功率进行配置,使得用户设备在受到较大干扰的SRS资源传输中适应性地增大功率,减小干扰的影响。
图2示出了根据本公开实施例的用于网络设备101的示例性电子设备。图2所示的电子设备200可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备200包括通信单元202、波束管理单元204和测量单元206。在一种实施方式中,电子设备200被实现为网络设备101本身或其一部分,或者被实现为与网络设备101相关的设备或者该设备的一部分。以下结合网络设备描述的各种操作可以由电子设备200的单元202、204、206或者其他可能的单元实现。应该理解的是,单元202、204和206可以被包括或集成在网络设备101的处理电路中。
在实施例中,通信单元202可以被配置为向无线通信系统100中的用户设备102发送信号或接收来自用户设备102的信号。例如,通信单元202可以在波束管理单元204的指示下,向用户设备102发送信息,该信息指示用户设备102使用第一组波束向网络设备101发送上行参考信号。此后,通信单元202可以接收来自用户设备102使用第一组波束所发送的上行参考信号,其中测量单元206可以测量第一组波束中的每一个波束方向上所发送的上行参考信号的传输质量指标。波束管理单元204可以至少基于第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,指示通信单元202向用户设备102发送消息,该消息指示用户设备102使用第二组波束向网络设备101发送上行参考信号以用于上行定位。根据本公开的实施例,第二组波束可以使得用户设备102避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号。如前所述,隐藏节点设备对于网络设备101和用户设备102可以是未知的。
附加地或可选地,电子设备200还可以包括功率管理单元(未示出),该功率管理单元可以至少基于上行链路测量结果和/或从用户设备接收到的辅助信息向用户设备指示上行参考信号的传输功率配置,以用于上行定位。
图3示出了根据本公开实施例的用于系统100中的用户设备102的示例性电子设备300。图3所示的电子设备300可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备300包括通信单元302和波束切换单元304。在一种实施方式中,电子设备300被实现为用户设备102本身或其一部分,或者被实现为用于控制用户设备102或以 其他方式与用户设备102相关的设备或者该设备的一部分。以下结合用户设备描述的各种操作可以由电子设备300的单元302、304或者其他可能的单元实现。应该理解的是,单元302和304可以被包括或集成在用户设备102的处理电路中。
在实施例中,通信单元302可以被配置为向无线通信系统100中的网络设备101发送信号或接收来自网络设备101的信号。例如,通信单元302可以从网络设备101接收消息,该消息指示用户设备102使用第一组波束向网络设备101发送上行参考信号。此后,波束切换单元304可以指示通信单元302在第一组波束中的每一个波束方向上向网络设备101发送上行参考信号,以便网络设备101测量这些上行参考信号的传输质量指标。然后,通信单元302可以从网络设备101接收消息,该消息指示用户设备102使用第二组波束向网络设备101发送上行参考信号,其中该消息是网络设备101至少基于第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值而发送的。相应地,波束切换单元304可以指示通信单元302使用第二组波束向网络设备101发送上行参考信号以用于上行定位。根据本公开的实施例,第二组波束可以使得用户设备102避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号。如前所述,隐藏节点设备对于网络设备101和用户设备102可以是未知的。
附加地或可选地,电子设备300还可以包括功率调整单元(未示出),该功率调整单元可以基于网络设备指示的传输功率配置,指示通信单元302使用相应的功率来传输上行参考信号以用于上行定位。上述传输功率配置至少基于网络设备的上行链路测量结果和/或网络设备从用户设备接收到的辅助信息。
在一些实施例中,电子设备200和300可以以芯片级来实现,或者也可以通过包括其他外部部件(例如无线电链路、天线等)而以设备级来实现。例如,各电子设备可以作为整机而工作为通信设备。
应该注意的是,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的 电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
<用于定位的SRS传输中的波束配置>
本公开提出了针对用于上行定位的上行参考信号的传输波束配置,其中对上行参考信号的空间关系进行设置和更新,从而提高上行定位的准确性和可靠性。
SRS初始配置
根据本公开的实施例,可以为用户设备配置一个或多个SRS资源集,其中每一个SRS资源集可以包括多个SRS资源,并且其中每一个SRS资源可以使用一个相应的上行发送波束进行传输。在SRS资源集用于波束管理的情况下,同一个SRS资源集在同一时刻仅传输一个SRS资源,但是不同SRS资源集中的SRS资源可以同时传输。可以理解的是,在本文中,“SRS资源”与“SRS”有时可以互换地使用。
根据本公开的实施例,可以通过无线资源控制(RRC)信息元素中的下行链路控制信息(DCI)或通过介质访问控制(MAC)-控制元素(CE)等高层参数对SRS资源集进行传输配置。
在正式传输SRS进行上行定位之前,网络设备可以对用户设备进行SRS初始配置。根据本公开的实施例,SRS初始配置可以包括SRS初始默认配置和SRS修正配置。以下将以一个SRS资源集为例来详细说明SRS初始配置的过程。
SRS初始默认配置
对于SRS资源的配置可以通过对其进行空间关系配置来实现。具体而言,空间关系可以指代上行参考信号与下行参考信号的准共址(QCL)关联。对上行参考信号的波束方向的指示可以通过指示与上行参考信号具有QCL关联的下行参考信号来实现。例如,可以为一个SRS配置具有QCL关联的一个SSB/CSI-RS/PRS(例如,在NR系统中,该QCL关联也可以称为QCL-TypeD关联),则用户设备可以使用接收该SSB/CSI-RS/PRS的下行接收波束来发送该SRS。因此,可以为用于上行定位的SRS资源集配置一组SSB/CSI-RS/PRS,其中该组SSB/CSI-RS/PRS可以对应于用户设备侧的多个下行接收波束方向,使得SRS资源集中的SRS资源分别在对应的多个上行发送波束方向上进行传输。
针对SRS的初始默认配置可以分为以下两种情况:
·情况1:SSB/CSI-RS/PRS的数量≥SRS资源集中的SRS的数量
在这种情况下,可以随机地选取与SRS相同数量的SSB/CSI-RS/PRS,这些SSB/CSI-RS/PRS对应于不同的波束方向,然后将其分别与SRS进行QCL关联。优选地,选取的SSB/CSI-RS/PRS所对应的波束方向尽可能均匀地分布在用户设备周围的各个空间角度。
·情况2:SSB/CSI-RS/PRS的数量<SRS资源集中的SRS的数量
在这种情况下,当SSB/CSI-RS/PRS的数量远小于SRS的数量时,可以将SRS资源集中的SRS划分为多个SRS组,每个SRS组中的SRS都与一个SSB/CSI-RS/PRS进行QCL关联;当SSB/CSI-RS/PRS的数量略小于SRS的数量时,可以将多个SRS与波束方向居中的SSB/CSI-RS/PRS进行QCL关联,并且保持其他SRS与其他不同方向的SSB/CSI-RS/PRS进行一对一QCL关联。
应该理解的是,以上仅仅给出了SRS的初始默认配置的示例,并不旨在进行限制。可以使用本领域技术人员能够想到的其他的方式对SRS进行初始默认空间关系配置。
SRS修正配置
在一些实施例中,用户设备先前已经对下行参考信号进行过测量或训练,并且已经存储了对应的结果信息。例如,用户设备可以存储最近一次的下行参考信号测量结果,该测量结果可以体现出下行参考信号所对应的波束方向上的路径损耗。作为示例而非限制,用户设备可以使用比特图等方式存储对下行传输质量指标大于特定阈值的SSB/CSI-RS/PRS进行标记。虽然在非授权毫米波频段不能直接利用上下行信道互易特性,但是下行参考信号的测量结果对于上行参考信号的传输仍然具有参考意义,因此至少可以基于下行参考信号的测量结果来修正SRS初始默认配置,从而在一定程度上提高SRS初始配置的性能。
SRS初始配置的信息交互和流程
图4A示出了根据本公开实施例的用于上行定位的上行参考信号的波束配置中的初始默认配置和修正配置过程的信号交互图。在上行定位过程中,例如,当网络设备接收到定位管理功能实体(LMF)发送的定位请求之后,可以向用户设备发送SRS初始默认配置信息,其中指定了与上行参考信号(例如,SRS)具有QCL关联的一组下行参考信号(例如,SSB/CSI-RS/PRS)。可选地,用户设备在接收到SRS初始默认配置信息之后, 可以将该信息中指定的下行参考信号与自身存储的下行参考信号测量结果进行比较。如果二者差异较大(例如,SRS初始默认信息中所指定的下行参考信号中存在较大比例的下行参考信号的先前测量结果差于特定门限(诸如路径损耗高于特定阈值,或者RSRP/RSRQ/SINR等值低于特定阈值)),那么用户设备可以向网络设备发送修正请求,使得网络设备基于最近一次的下行参考信号测量结果来修正对SRS的空间关系配置。网络设备可以将SRS修正配置信息发送给用户设备,其中该信息指定修正后的与SRS具有QCL关联的一组SSB/CSI-RS/PRS。至此,SRS初始空间关系配置结束。此后,网络设备可以向用户设备发送激活SRS传输的信息。
与图4A对应地,图4B示出了用于上行定位的上行参考信号的波束配置中的初始默认配置和修正配置过程的流程图。应该理解的是,考虑到上述配置信息传输中可能存在干扰或时延等因素,用户设备在发送修正请求后未接收到SRS修正配置信息的情况下,可以考虑等待一段时间后再次发送修正请求。当发送修正请求的次数达到一定阈值时,可以直接放弃发送修正请求,并且使用SRS初始默认配置作为最终的初始空间关系配置(图中未示出)。还应该理解的是,在用户设备没有进行过先前的下行参考信号测量或训练的情况下,可以选择不进行比较操作,并且使用SRS初始默认配置作为最终的初始空间关系配置。
SRS更新配置
根据本公开的实施例,网络设备向用户设备指示SRS初始配置(包括SRS初始默认配置或SRS修正配置)之后,用户设备基于初始配置信息中所指示的一组下行参考信号(例如,SSB/CSI-RS/PRS)与上行参考信号(SRS)资源的QCL关联,使用对应的一组波束(在本文中也被称为“第一组波束”)来发送SRS资源。具体而言,用户设备可以使用第一组波束中的每一个波束来发送SRS。相应地,网络设备依次接收这些SRS,并且可以测量第一组波束中的每一个波束上所发送的SRS的传输质量指标。为了便于说明,在本部分中,以网络参考信号接收功率(RSRP)作为传输质量指标的示例进行描述,但是应该理解的是,传输质量指标还可以是参考信号接收质量(RSRQ)、信干噪比(SINR)、解码率、或其组合(例如,上述多种传输质量指标的加权组合)。此外,可以理解的是,网络设备在测量过程中可以保持固定的上行接收波束,该接收波束可以例如是先前根据上行波束扫描而确定的性能较好的上行接收波束。
用户设备在使用第一组波束发送SRS时,网络设备可以根据接收到的每个SRS的索引来得到用于发送该SRS的波束。网络设备在测量过程中可以记录每个SRS的传输质量指标(例如,在本文中也记为“SRS-RSRP”),并且将其与特定阈值进行比较。例如,该阈值可以表示满足上行定位性能要求的最小RSRP,在本文中记为“M”。应该认识到的是,上述特定阈值可以是预先设定的数值,也可以是根据先验测量信息而计算得到的数值。在用户设备使用第一组波束完整地进行过一次上行波束扫描之后,网络设备可以获得完整的SRS-RSRP的测量结果,并且找到SRS-RSRP的最大测量值,在本文中记为“(SRS-RSRP)max”。网络设备基于所测量的SRS资源集合中的所有SRS对应的SRS-RSRP值与阈值M的比较,可以按照三种情况来决定是否进行SRS传输配置的更新(更具体而言,SRS传输配置中的空间关系的更新)以及如何进行SRS配置更新。以下将通过三个用例(包括第一用例、第二用例和第三用例)来详细描述这三种情况。
第一用例:(SRS-RSRP)max≥M且存在至少一个SRS-RSRP<M
在第一用例中,第一组波束中的至少一个波束方向上所发送的SRS的传输质量指标低于阈值M,并且第一组波束中的另外的至少一个波束方向上所发送的SRS的传输质量指标不低于阈值M。
图5A和图5B示出了根据本公开实施例的用于上行定位的上行参考信号波束配置的第一用例的示例图。参考图5A,其左半部分示出了用户设备所使用的第一组波束的一个示例。该用户设备的SRS初始配置的SRS资源集中共包括6个SRS资源,分别利用波束1-6进行上行传输,以用于网络设备(位于用户设备的右侧,在图中未示出)对6个波束上所发送的SRS的RSRP值进行测量。
根据图5A,在用户设备的波束1的覆盖范围内存在隐藏节点,并且该隐藏节点的通信链路对波束1的影响较为严重。与图5A的左半部分对应,图5B的左半部分示意性地示出了网络设备与用户设备之间的SRS传输情况。由于波束1上所发送的SRS受到隐藏节点通信链路的碰撞干扰较大,因此在该波束方向上发送的SRS的RSRP测量值几乎为0。波束2-3上所发送的SRS也在一定程度上受到了隐藏节点通信链路的干扰,对应的SRS-RSRP值均低于阈值M。相反,波束4上所发送的SRS的RSRP测量值是所有SRS-RSRP测量值中最高的,即等于(SRS-RSRP)max。此外,波束5-6上所发送的SRS的测量值不低于阈值M,但是低于(SRS-RSRP)max。网络设备根据各个波束方向上的SRS的 RSRP测量值,可以大致推断出用户设备的上行波束1-3的覆盖范围内可能存在隐藏节点,并且通信节点的通信链路干扰了波束1-3上的SRS资源传输。
附加地或替代地,在测量期间,在使用波束发送SRS之前,用户设备可以执行LBT操作。例如在波束1上发送SRS之前,用户设备可能执行LBT失败,因此用户设备可以选择不发送SRS。在这种情况下,网络设备没有接收到波束1方向上所发送的SRS,因此可以将该SRS对应的RSRP测量值记为0。在波束2和3上虽然成功执行了LBT,但是由于隐藏节点通信链路在一定程度上阻挡了其对应的上行链路,传输发生干扰,导致在这两个波束方向上传输的SRS发生了较为严重的信号衰减,从而到达网络设备的信号功率较小。
根据本公开,在第一用例中,网络设备可以指示将第一组波束中的RSRP测量值低于阈值M的所有波束(例如,波束1-3)更新为与第一组波束中的RSRP测量值最高的波束(例如,波束4)的波束方向相同或相近的波束,从而形成第二组波束。图5A和图5B的右半部分分别示出了更新后的第二组波束和相应的SRS传输情况的示例图。如图所示,网络设备向用户设备发送了SRS更新配置信息,指示用户设备使用第二组波束来发送SRS,以用于上行定位。与SRS的初始配置信息类似,该SRS更新配置信息中指示了与更新后的SRS具有QCL关联的一组SSB/CSI-RS/PRS(第二组波束与该组下行参考信号的接收波束对应,用于发送SRS资源)。作为示例而非限制,在SRS更新配置信息中,网络设备可以使用比特图的方式来指示哪些波束需要更新(切换),并且该信息中可以指出需要切换为哪个波束。例如,比特图可以为“111000”,指示需要对波束1-3进行更新,并且SRS更新配置信息中可以指示“SRI=4(其中SRI表示SRS索引)”,其表示将这波束1-3切换为与波束4的波束方向相同的波束(如图5A所示),或者可以切换为与波束4的波束方向相近的方向(例如在波束4的上行波束覆盖范围内的更窄的上行波束)。
更新后的波束1-3的发送方向与波束4相同或相近,因此SRS的传输可以绕过隐藏节点通信链路,从而使得更新后的波束1-6上发送的SRS的RSRP值均不低于阈值M。附加地,在用户设备执行LBT的情况下,更新后的所有SRS对应的发送波束方向上均可以成功执行LBT。在更新SRS配置后,网络设备接收到的各个SRS的RSRP值都足够大,因此能够提高上行定位的准确性。应该理解的是,图5A和图5B中示例性地示出了更新后的多个波束发送方向相同的情况,这种利用相同的波束多次重复传输SRS的过程 也被称为SRS重复(SRS repetition)。实践中已经证明SRS重复可以使得网络设备多次探测到定位信号,能够提升定位的可靠性能。
第二用例:(SRS-RSRP)max≥M且所有SRS-RSRP≥M
在第二用例中,第一组波束中的所有波束方向上所发送的SRS的传输质量指标不低于阈值M。
图6A和图6B示出了根据本公开实施例的用于上行定位的上行参考信号波束配置的第二用例的示例图。参考图6A,其左半部分示出了用户设备所使用的第一组波束的一个示例。该用户设备的SRS初始配置的SRS资源集中共包括6个SRS资源,分别利用波束1-6进行上行传输,以用于网络设备(位于用户设备的右侧,在图中未示出)对6个波束上所发送的SRS的RSRP值进行测量。
根据图6A,在用户设备的波束1-6的上行覆盖范围内不存在隐藏节点。隐藏节点位于用户设备的一些波束的反向覆盖范围内,但是隐藏节点的通信链路的传输方向与波束1-6的波束方向不相同也不相近。与图6A的左半部分对应,图6B的左半部分示意性地示出了网络设备与用户设备之间的SRS传输情况。可以看出,隐藏节点通信链路对波束1-6上的SRS传输影响都不大,因此所有对应的SRS-RSRP值均不低于阈值M。网络设备根据各个波束方向上的SRS的RSRP测量值,可以大致推断出用户设备的各个上行波束受到隐藏节点通信链路的干扰影响较小,从而判断出SRS初始配置中所指示的第一组波束所对应的上行信道状况良好。
附加地或替代地,在测量期间,在使用波束发送SRS之前,用户设备可以执行LBT操作。由于干扰节点通信链路既没有落入上行波束1-6中的任何波束的覆盖范围,该通信链路的传输方向也不与波束1-6中的任何波束方向相同或相近,因此不会对SRS上行传输发生干扰,从而用户设备在所有波束方向上均可以成功执行LBT操作。
根据本公开,在第二用例中,网络设备可以不向用户设备指示使用第二组波束,使得用户设备继续使用第一组波束(例如,波束1-6)向网络设备发送上行参考信号以用于上行定位。因此,在第二用例中,网络设备不需要发送SRS更新配置信息。如图6A和图6B的右半部分所示,用户设备继续使用第一组波束(例如,波束1-6)来进行SRS传输,以用于上行定位。
第三用例:(SRS-RSRP)max<M
在第三用例中,第一组波束中的所有波束方向上所发送的SRS的传输质量指标低于阈值M。
图7A-7C示出了根据本公开实施例的用于上行定位的上行参考信号波束配置的第三用例的示例图。参考图7A,其左半部分示出了用户设备所使用的第一组波束的一个示例。该用户设备的SRS初始配置的SRS资源集中共包括6个SRS资源,分别利用波束1-6进行上行传输,以用于网络设备(位于用户设备的左侧,在图中未示出)对6个波束上所发送的SRS的RSRP值进行测量。
根据图7A,在波束3-4的覆盖范围内存在隐藏节点的通信链路,因此该隐藏节点的通信链路对波束3-4的影响较为严重。此外,在位于用户设备的波束1-2和5-6的反向覆盖范围内也存在两条隐藏节点通信链路,其中一条通信链路的传输方向与波束1-2的波束方向相同或相近,并且另一条通信链路的传输方向与波束5-6的波束方向相同或相近。与图7A的左半部分对应,图7B的左半部分示意性地示出了网络设备与用户设备之间的SRS传输情况。由于波束3-4上所发送的SRS受到隐藏节点通信链路的碰撞干扰较大,因此在这两个波束方向上发送的SRS的RSRP测量值几乎为0。波束1-2和波束5-6上所发送的SRS也在一定程度上分别受到了隐藏节点通信链路的干扰,对应的SRS-RSRP值均小于阈值M。网络设备根据各个波束方向上的SRS的RSRP测量值,可以大致推断出用户设备的各个上行波束受到隐藏节点通信链路的干扰影响较大,从而判断出SRS初始配置中所指示的第一组波束所对应的上行信道状况较差。
附加地或替代地,在测量期间,在使用波束发送SRS之前,用户设备可以执行LBT操作。例如在波束3-4上发送SRS之前,用户设备可能执行LBT失败,因此用户设备可以选择不发送SRS。在这种情况下,网络设备没有接收到波束3-4的波束方向上所发送的SRS,因此可以将该SRS对应的RSRP测量值记为0。应该理解的是,虽然用户设备在波束1-2上成功执行了LBT,但是由于依然存在隐藏节点通信链路干扰了波束1-2上的SRS传输,导致在这两个波束方向上传输的SRS也发生了较为严重的信号衰减,从而到达网络设备的功率较小。波束5-6也是类似的情况。
根据本公开,在第三用例中,网络设备可以指示用户设备重新执行全方向波束扫描。图7A和图7B的右半部分分别示出了用于全方向扫描的波束和相应的SRS传输情况的示 例图。如图所示,网络设备向用户设备发送了指示用户设备进行全方向波束扫描的信息,然后用户设备使用用于指向各个方向的波束1’-6’进行全方向波束扫描。应该理解的是,用于全方向扫描的波束1’-6’与SRS初始配置中指示的波束1-6的波束方向通常是不同的。由于隐藏节点通信链路的干扰,波束2’、4’、6’上传输的SRS的RSRP测量值几乎为0(附加地或替代地,在这些波束上发送SRS之前,用户设备可能执行LBT失败,因此用户设备可以选择不发送SRS失败。网络设备没有接收到波束这些波束方向上所发送的SRS,因此可以将这些SRS对应的RSRP测量值记为0)。此外,由于波束1’和3’的反向覆盖范围内存在隐藏节点通信链路,并且相应的通信链路传输方向与波束发送方向相同或相近,因此这些波束方向上传输的SRS受到干扰,从而RSRP测量值小于阈值M。波束5’上所发送的SRS的RSRP测量值是所有SRS-RSRP测量值中最高的,记作(SRS-RSRP)max’,并且该(SRS-RSRP)max’≥M。
此后,可以执行类似于第一用例中的方法,将用于全方向波束扫描的波束中的传输质量指标低于阈值的所有波束(例如,波束1’-4’和6’)更新为与全方向波束扫描中的传输质量指标最高的波束(例如,波束5’)的波束方向相同或相近的波束,从而形成第二组波束。图7C示出了第三用例中的更新后的第二组波束的示例图。由于在该示例中,波束5’的RSRP测量值满足上行定位性能要求,因此第二组波束中的波束1-6是与波束5’方向相同的波束(如图7C上半部分所示),或者是与波束5’方向相近的波束(例如在波束5’的上行波束覆盖范围内的更窄的上行波束,如图7C下半部分所示)。
与第一用例类似,在第三用例中,网络设备指示用户设备使用第二组波束是通过发送SRS更新配置信息而实现的。与SRS的初始配置信息类似,SRS更新配置信息中指示了与更新后的SRS具有QCL关联的一组SSB/CSI-RS/PRS(第二组波束与该组下行参考信号的接收波束对应,用于发送SRS资源)。作为示例而非限制,在SRS更新配置信息中,网络设备可以使用比特图的方式来指示哪些全方向扫描波束需要更新(切换),并且该信息中可以指出需要切换为哪个波束。
在更新SRS配置后,网络设备接收到的各个SRS的RSRP值都足够大,因此能够提高上行定位的准确性。
SRS更新配置的用例小结
总结来说,一方面,网络设备至少基于SRS初始配置信息中指示的第一组波束中的 至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,通过SRS更新配置信息指示用户设备使用第二组波束向网络设备发送上行参考信号以用于上行定位(例如,第一用例、第三用例)。另一方面,网络设备至少基于第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指标不低于上述阈值,不向用户设备指示使用第二组波束,使得用户设备继续使用第一组波束向网络设备发送上行参考信号以用于上行定位。
因此,本公开在SRS初始配置中指示的部分或全部波束方向上的信道状况较差的情况下,更新传输SRS的波束方向,使得用于上行定位的SRS的发送波束能够避开或绕开隐藏节点通信链路的干扰。由此,网络设备在更新后的各个方向上接收到的SRS的传输质量指标足够大,提高了上行定位的准确性和可靠性。
应该理解的是,网络设备向用户设备发送的SRS初始配置信息(例如,包括SRS初始默认配置信息和SRS修正配置信息)、SRS更新配置信息、以及全局波束扫描指示信息都可以通过RRC中的DCI或者MAC-CE来传输。
应该认识到的是,上述用例(包括第一用例、第二用例、第三用例)中的具体示例描述仅仅是示例性的,并不旨在进行限制。在实践中,可以存在多个用户设备和网络设备。对于每个用户设备和每个网络设备,可以使用本公开提供的上述方法对各种示例中的波束进行测量和更新。可以理解的是,在网络设备是gNB并且该gNB包括多个发送和接收点(TRP)的情况下,可以使用上述方法对每个用户设备和每个TRP之间的波束进行测量和更新。还应该认识到的是,在实践中,可以存在更多或更少数量的波束和隐藏节点。根据本公开提供的方法能够提高多种信道状况下的上行定位性能。
应该理解的是,在第一用例和第三用例的情况下,如果多个波束方向上的SRS-RSRP测量值都达到了最大值,那么可以将传输质量指标低于阈值的所有波束更新为上述多个波束中的随机选择的一个波束,或者可以将传输质量指标低于阈值的所有波束分组更新为上述多个波束中的多个波束。
信息交互
图8A-图8B示出了根据本公开实施例的用于无线通信系统的上行定位的波束配置的信息交互示意图。
如图8A所示,网络设备从定位管理功能实体(LMF)接收到定位请求(例如,NRPPa定位请求)之后,可以向用户设备发送SRS初始配置信息。如前所述,SRS初始配置信息可以包括SRS初始默认配置信息和SRS修正配置信息(例如,在用户设备执行过先前下行参考信号测量或训练的情况下,可以在SRS初始默认配置之后对其进行修正配置)。然后,网络设备可以向用户设备指示激活SRS传输。
根据SRS初始配置中指定的空间关系(例如,指定与SRS具有QCL关联的一组下行参考信号),用户设备可以使用该SRS初始配置中指定的波束作为上行波束(在本文中也称为“第一组波束”)来传输SRS。具体而言,用户设备可以在第一组波束中的每一个波束方向上向网络设备发送SRS。相应地,网络设备可以测量第一组波束中的每一个波束方向上所发送的SRS的传输质量指标。
网络设备至少在确定第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指标不低于阈值的情况下(说明第一组波束中的所有波束方向的上行信道状况良好),可以不向用户设备发送任何SRS更新配置信息,使得用户设备继续使用第一组波束向网络设备发送SRS以用于上行定位(具体示例已经在前述第二用例中详细描述)。
网络设备至少在确定第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值的情况下(说明第一组波束中的部分或所有波束方向的上行信道状况较差),向用户设备发送SRS更新配置信息。在用户设备从网络设备接收到SRS配置更新信息的情况下,用户设备可以应用该SRS更新配置,并且执行SRS传输以用于上行定位。作为示例,用户设备可以根据SRS更新配置中指定的空间关系(例如,指定与SRS具有QCL关联的更新的一组下行参考信号),以该SRS更新配置中指定的波束作为上行波束(在本文中也称为“第二组波束”)来进行SRS传输,以用于上行定位。
更细分地,第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值可以分为以下两种情况:(1)第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值并且第一组波束中的另外的至少一个波束方向上所发送的SRS的传输质量指标不低于该阈值;和(2)第一组波束中的所有波束方向上所发送的SRS的传输质量指标低于阈值。
在第(1)种情况下,网络设备可以将第一组波束中的传输质量指标低于阈值的所有波束更新为与第一组波束中的传输质量指标最高的波束的波束方向相同或相近的波束, 从而形成第二组波束(具体示例已经在前述第一用例中详细描述)。在第(2)种情况下,网络设备可以指示用户设备重新执行全方向波束扫描,并且将用于全方向波束扫描的波束中的传输质量指标低于阈值的所有波束更新为与全方向波束扫描中的传输质量指标最高的波束的波束方向相同或相近的波束,从而形成第二组波束(具体示例已经在前述第三用例中详细描述)。
应该理解的是,SRS更新配置信息的传输可以发生在两次SRS传输时机之间,如图8A所示。考虑到SRS传输与测量的时延较长,SRS更新配置信息的传输也可以发生在某一次SRS传输的过程中,如图8B所示(为了简便说明,图8B中省略了图8A中的其他步骤(包括但不限于SRS初始配置信息传输、激活SRS传输等))。根据图8B,在一次SRS传输时延内,如果用户设备从网络设备接收到SRS更新配置信息,那么用户设备可以立即应用该更新配置,使用第二组波束来传输更新的SRS资源和未传输的SRS资源。
还应该理解的是,对SRS资源集的高层参数配置中可以包括时域类型配置,其包括“周期性(periodic)”类型、“半静态(semi-persistent)”类型、和“非周期性(aperiodic)”类型。图8A中的传输交互机制可以应用于“周期性”类型或“半静态”类型的SRS资源集,而图8B中的传输交互机制可以应用于“周期性”类型、“半静态”类型或“非周期性”类型的SRS资源集。
应该注意的是,图8A-8B中的信息交互图仅仅提供了示例,并不旨在进行限制。图中可以包括更多或更少的步骤,并且也可能按照与图中描绘的步骤顺序不同的顺序来执行步骤。
根据本公开提出的用于定位中的上行参考信号(例如,SRS)传输波束配置的方法,网络设备能够在测量发现用于传输SRS的部分或全部上行波束的波束方向上的信道状况较差时,推断这些波束方向受到了隐藏节点通信链路的干扰,从而通过指示空间关系更新来指示用户设备更新用于传输SRS的上行发送波束。本公开所提供的SRS更新配置的机制能够使得用户设备的用于发送SRS的发送波束快速且有效地避开隐藏节点通信链路的干扰,从而在多种信道条件下都能够提升上行定位的精确度和可靠性。
<用于定位的SRS传输中的功率配置>
本公开提出了针对用于上行定位的上行参考信号的传输功率配置,其中对上行参考 信号的传输功率进行设置和调整,从而提高上行定位的准确性和可靠性。应该理解的是,用于定位的SRS传输功率配置与用于定位的SRS传输波束配置可以组合地或替代地使用。
再次参考图1,网络设备101为用户设备102提供服务的小区被称为服务小区,并且在该服务小区附近的小区被称为邻居小区。服务小区和邻居小区可以是例如蜂窝小区、小小区、微小区、毫微微小区等。在本文中,对于用户设备而言,服务小区的网络设备也称为服务网络设备,邻居小区的网络设备也称为邻居网络设备。
在当前的无线通信系统中,用户设备可以将服务网络设备的下行链路测量结果(例如,下行参考信号(诸如SSB/CSI-RS/PRS)的测量结果(诸如路径损耗等))上报给服务网络设备,并且由该服务网络设备对该用户设备进行用于上行定位的上行参考信号(例如,SRS)的传输功率配置。然而,由于上述传输功率配置仅仅基于服务小区的下行链路测量结果,对于邻居小区的网络设备很可能不适用。通常来说,邻居网络设备与用户设备的距离相比于服务网络设备更远,因此根据当前的传输功率配置很可能使得邻居网络设备接收到的SRS资源的功率过小,使得相应的传输质量指标(例如,SRS-RSRP)过低,无法满足上行定位的性能。根据本公开的实施例,优选地针对不同的网络设备分别对用户设备进行传输功率配置,用于适应不同传输距离和路径损耗的传输信道。
不仅如此,如前所述,在诸如非授权毫米波系统的高频段系统中,由于使用不同RAT的设备数量较多,加上SRS传输过程中不可避免的长时延,隐藏节点干扰问题较为严重,从而使得用于上行定位的每个SRS资源的信道状态的变化较为随机和难以预测。因此,当前对SRS资源集统一进行传输功率配置的方式也不再适用。根据本公开的实施例,优选地对SRS资源集中的每个SRS资源分别进行传输功率配置,并且进行实时调整,用于适应随机变化的信道状况。
SRS功率初始配置
图9示出了根据本公开实施例的用于无线通信系统的上行定位的功率初始配置的信息交互示意图。如图9所示,定位管理功能实体(LMF)向服务网络设备发送定位请求(例如,NRPPa定位激活请求)并且从服务网络设备接收定位响应(例如,NRPPa定位激活响应)。之后,LMF可以向各个网络设备(包括服务网络设备和邻居网络设备)发送测量请求(例如,NRPPa测量请求)。与当前无线通信系统中仅统计服务网络设备的下行链路测量结果不同,根据本公开的实施例,每个网络设备进行上行链路测量结果统计, 并且邻居网络设备可以(例如,通过Xn接口)将其上行链路测量结果发送给服务网络设备。基于各个网络设备的上行链路测量结果的统计信息,服务网络设备可以为本服务小区内的用户设备的每个SRS资源设置相应的传输功率配置。该传输功率配置可以通过高层参数中的TPC(传输功率控制)指令字段来指示。应该理解的是,一个TCP字段可以对应于一个SRS资源索引(SRI)。TCP指令可以与激活SRS传输的消息一起由服务网络设备发送给用户设备,用于上行定位。
应该理解的是,为了简便说明,图9仅示出了一个服务网络设备和一个邻居网络设备的示例。在实践中,可以存在更多数量的服务网络设备和/或邻居网络设备。多个邻居网络设备可以将自身的上行链路测量结果发送给一个服务网络设备,也可以经过统一分组(例如,每个分组中包括与一个服务网络设备对应的一个或多个邻居网络设备,分组的标准可以基于网络设备之间的距离等)后发送给对应的服务网络设备。
如前所述,对于用户设备的用于上行定位的SRS资源的功率初始配置可以基于服务网络设备收集到的各个网络设备与该用户设备的关于该SRS资源的上行链路测量结果。根据本公开的实施例,以下给出了用户设备的SRS资源的初始功率PSRS-pos(单位为dBm)的配置示例:
PSRS-pos=min{Pmax,Po+A·PL(qd)}[dBm]   (1)
其中,Pmax为用户设备的最大传输功率;Po为基准功率设定值;A为上行链路路径损耗估计的影响因子;PL(qd)为基于上行链路测量结果得到的上行链路路径损耗估计结果;qd为用于上行链路路径损耗估计的参考信号资源的索引。这些参数都可以与该SRS资源的载波、频带、所在带宽占用的资源块(RB)数量相关联。
应该注意的是,对于用户设备向邻居网络设备的发送的用于上行定位的SRS资源,其功率初始配置中对应的PL(qd)是该用户设备和该邻居网络设备的关于该SRS资源的先前上行链路测量中的路径损耗结果(该上行链路路径损耗结果已经上报给服务网路设备)。
可选地,除了由服务网络设备基于各个网络设备的上行链路测量结果来对用户设备进行SRS功率初始配置以外,还可以由用户设备基于先前与各个网络设备的下行链路测量结果来进行SRS功率初始配置(配置示例参考式(1),其中PL(qd)表示与SRS资源对应的下行链路测量中的路径损耗结果)。后者的准确率虽然不如前者,但是操作简便快捷, 并且下行链路测量结果在一定程度上对于上行参考信号的传输也具有参考意义。
SRS功率更新配置
根据本公开的实施例,服务网络设备向用户设备指示针对一个或多个网络设备(包括服务网络设备和邻居网络设备)的SRS功率初始配置之后,用户设备使用其中指示的功率值来向相应的网络设备发送SRS资源以进行上行定位(可选地,用户设备也可以基于与一个或多个网络设备的下行链路测量结果来决定自身的初始功率值)。此后,由于非授权毫米波频段的SRS传输时延较大,期间信道状态变化较大,导致隐藏节点链路干扰等问题较为严重。根据本公开的实施例,提出了针对SRS资源的功率更新配置,允许对用户设备的SRS传输功率进行调整,从而更好地适应动态的信道状况变化。为了便于说明,以下以用户设备和服务网络设备之间的用于上行定位的SRS资源传输为例,描述针对特定SRS资源的功率更新配置。
根据本公开的实施例,用户设备在向网络设备传输SRS资源之前可以进行先听后说(LBT)操作,并且在LBT操作成功后再传输该SRS资源。用户设备可以将LBT操作中测量得到的干扰功率与阈值进行比较,获取辅助信息,该辅助信息可以用于上行定位的SRS传输的功率更新配置。作为示例,辅助信息可以以1比特来表示,其具体信息如下表:
表1辅助信息
其中,阈值包括链路质量阈值(LQT)和能量检测阈值(EDT)。LQT可以是网络设备基于最近的一次上行链路测量结果而设置的阈值,其代表当前传输功率下能够容忍的干扰功率。EDT可以代表当前传输功率下无法容忍的干扰功率。在一些示例中,EDT可能与用户设备的最大传输功率和有效天线增益相关联。因此,EDT大于LQT。应该理解的是,LQT和EDT可以通过(RRC中的DCI或MAC-CE的)高层参数由网络设备发送给 用户设备。
如表1所示,在用户设备的LBT过程中,如果检测到干扰功率很小(例如,干扰功率≤LQT),则表示信道状况良好,辅助信息用“0”表示。在这种情况下可以确定用户设备几乎没有受到干扰,其测量到的干扰功率基本符合网络设备的先前的上行链路测量结果。如果在LBT过程中检测到干扰功率中等(例如,LQT<干扰功率<EDT),则表示信道状况中等,辅助信息用“1”表示。在这种情况下用户设备的上行传输链路可能已经受到隐藏节点通信链路的干扰,但是网络设备可能尚未感知到该干扰(例如,如图1所示)。如果在LBT过程中检测到干扰功率较大(例如,干扰功率≥EDT),则表示信道状况较差,辅助信息为“NULL(空)”。在这种情况下用户设备的SRS上行波束覆盖范围内大概率存在明显的干扰节点,并且用户设备可以不发送相应的SRS资源。应该理解的是,在辅助信息为“0”或“1”的情况下,LBT操作成功,否则LBT操作可能失败。用户设备可以将所确定的辅助信息伴随SRS资源一起发送给网络设备。
网络设备可以至少基于来自用户设备的辅助信息来对SRS资源进行传输功率更新配置(在本文中功率更新也称为功率调整)。图10A和10B示出了功率调整的示例流程图。
如图10A所示,网络设备基于在测量过程中记录的SRS资源的传输质量指标(例如,“SRS-RSRP”)与辅助信息来确定该SRS资源的传输功率调整值(在本文中也记为“δSRS”,单位为dB),其中SRS-RSRP的优先级大于辅助信息。具体而言,网路设备首先将SRS-RSRP测量值与特定阈值进行比较。如果SRS-RSRP值高于该特定阈值,表明该SRS资源的信道状况非常好,那么网络设备可以指示用户设备适当减小传输功率,即将δSRS设置为负值。如果SRS-RSRP值不高于该特定阈值,那么网络设备可以判断用户设备上报的辅助信息是否为“0”,如果辅助信息为“0”,那么表明信号状况虽然不是特别好,但是也没有太差(例如,没有明显的隐藏节点链路干扰)。在这种情况下,网络设备可以指示用户设备将传输功率增大一点,即将δSRS设置为第一正值。否则,如果网络设备接收到辅助信息为“1”,表明信道状况较差,那么网络设备可以指示用户设备进一步增大传输功率,以避免隐藏节点通信链路的干扰。在这种情况下,可以将δSRS设置为第二正值,其中第二正值大于第一正值。
由于SRS资源集中可能包括较多数量的SRS资源,因此网络设备测量每个SRS资源的SRS-RSRP值可能造成网络设备侧的实施复杂度和功耗过大。这种现象在用户设备 密集的场景(例如,进行上行定位的用户设备数量较大)中尤为明显。因此,为了降低网络设备侧的实施复杂度和功耗,可以省去测量SRS-RSRP并将其与阈值进行比较的步骤。如图10B所示,网络设备可以仅基于用户设备上报的辅助信息来进行功率更新配置。具体而言,在辅助信息为“0”的情况下,网络设备可以指示用户设备适当减小SRS资源的传输功率,即将δSRS设置为负值;否则,在辅助信息为“1”的情况下,网络设备可以指示用户设备适当增大SRS资源的传输功率,即将δSRS设置为正值。应该理解的是,在另一个实施例中,为了进一步提高上行定位的性能,在辅助信息为“0”的情况下,网络设备也可以向用户设备指示δSRS为0或者较小的正值,并且在其他情况下向用户设备指示δSRS为较大的正值。应该理解的是,δSRS可以在TPC指令中指示。在某些情况下,为了节省传输开销,TPC指令的字段长度(例如,该字段占用的比特数量)可能受限。因此,TPC字段可以包括几个基于当前用户设备的功率的调整值,诸如在当前功率的基础上调整+1dB、+4dB、-1dB等。
应该理解的是,由于一个TCP字段可以对应于一个SRS资源索引(SRI),因此用户设备侧的功率配置发生在SRS资源集中的每个SRS资源传输前。如图11所示,与传统的无线通信系统中对于SRS资源集中的所有SRS资源配置相同的传输功率不同,本公开的实施例中对于每个SRS资源(例如,每个SRS资源对应于特定的上行发送波束)都进行了相应的功率配置。图11示出了SRS资源集中的SRS资源的两种传输顺序的示例,但不旨在进行限制。在实践中,随着SRS资源的重复参数和时间间隙参数的改变,还存在多种SRS资源的传输顺序。在不同的顺序的SRS资源传输中,可以在每个SRS资源传输前对其进行功率配置。应该注意的是,在一个SRS传输时机中,用户设备可能接收到针对同一个网络设备和同一个SRS资源的多个TPC指令。在下一个SRS传输时机中,用户可以根据先前接收到的多个TPC指令中指示的多个功率调整值(单位为dB)的累积之和作为实际的功率调整值。
应该认识到的是,如果邻居网络设备希望对用户设备的特定SRS资源进行功率更新配置,该邻居网络设备可以根据本公开的上述方法得到功率调整值,并且将建议的功率调整值包含在功率更新请求中(例如,通过Xn接口)发送给服务网络设备。然后,服务网络设备可以使用例如图11中所示的方法,对用户设备的特定SRS资源进行功率调整。可选地,服务网络设备也可以从邻居网络设备接收上行链路测量结果和辅助信息,并且 基于这些信息来确定用户设备向该邻居网络设备进行上行定位的SRS传输功率调整值。
应该理解的是,SRS资源的传输功率配置(包括功率初始配置和功率更新配置)可以通过TPC指令进行传输,其中TPC指令可以通过RRC DCI或通过MAC-CE进行传输。
功耗与信令开销的权衡
根据本公开的实施例,在进行SRS传输的用户数量过多而导致功率调整的信令开销较大的情况下,可以省略图10A和10B中的过程①。在特定的用户设备的功率损耗过大的情况下,可以要求强制执行图10A和10B中的过程①(并且其中δSRS为负值)。
此外,根据本公开的实施例,当对于多个SRS资源的功率调整值相同或相近时,可以将一个TPC字段与多个SRI相关联,其中该TPC字段中指示的功率调整值可以这些SRS资源的功率调整值的众数。
根据本公开提出的用于定位中的上行参考信号(例如,SRS)传输功率配置的方法,服务网络设备能够基于自身和邻居网络设备的上行链路测量结果对服务小区内的用户设备进行SRS功率初始配置(或由用户设备基于各个网络设备的下行链路测量结果来确定相应的SRS功率初始配置),使得位于不同地理位置的网络设备探测到的SRS资源的接收质量均能够保持在合理范围内。此外,网络设备至少基于从用户设备接收到的辅助信息,能够对SRS资源的传输功率进行实时调整,从而减小隐藏节点对特定SRS资源的传输的干扰影响,更好地适应多种信道条件,提升上行定位的精确度和有效性。进一步地,本公开提出的方法在满足上行定位性能的前提下,均衡了用户设备的功率与开销。
<示例性方法>
图12示出了根据本公开实施例的用于无线通信系统中的网络设备(或更具体地,电子设备200)的示例方法的流程图。如图12所示,该方法可以包括指示无线通信系统中的用户设备使用第一组波束向网络设备发送上行参考信号(方框S1201)。在方框S1202处,网络设备可以测量第一组波束中的每一个波束方向上所发送的上行参考信号的传输质量指标。此后,网络设备可以至少基于第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,指示用户设备使用第二组波束向网络设备发送上行参考信号以用于上行定位(方框1203)。在该方法中,第二组波束可以使得用户设备 避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于网络设备和用户设备可以是未知的。该方法的详细示例操作可以参考上文关于网络设备(或更具体地,电子设备200)的操作描述,此处不再重复。
附加地或可选地,用于无线通信系统中的网络设备可以基于上行链路测量结果和/或用户设备所上报的辅助信息,向用户设备指示上行参考信号的传输功率配置,以用于上行定位。
图13示出了根据本公开实施例的无线通信系统中的用户设备(或更具体地,电子设备300)的示例方法的流程图。如图13所示,该方法可以包括从无线通信系统中的网络设备接收使用第一组波束向网络设备发送上行参考信号的指示(方框S1301)。在方框S1302处,用户设备可以在第一组波束中的每一个波束方向上向网络设备发送上行参考信号,以用于网络设备测量上行参考信号的传输质量指标。用户设备可以从网络设备接收使用第二组波束向网络设备发送上行参考信号的指示,其中该指示至少基于第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值而发送(方框1303)。此后,在方框1304处,用户设备可以使用第二组波束向网络设备发送上行参考信号以用于上行定位。在该方法中,第二组波束可以使得用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于网络设备和用户设备可以是未知的。该方法的详细示例操作可以参考上文关于用户设备(或更具体地,电子设备300)的操作描述,此处不再重复。
附加地或可选地,用于无线通信系统中的用户设备可以基于网路设备的传输功率配置,使用相应的功率向网络设备传输上行参考信号,以用于上行定位。其中,传输功率配置至少基于网络设备的上行链路测量结果和/或网络设备从用户设备接收到的辅助信息。
本公开的方案可以以如下的示例方式实施。
条款1、一种无线通信系统中的网络设备,所述网络设备包括处理电路,所述处理电路被配置为使得网络设备执行以下操作:
指示所述无线通信系统中的用户设备使用第一组波束向所述网络设备发送上行参考信号;
测量第一组波束中的每一个波束方向上所发送的上行参考信号的传输质量指标;以及
至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,指示用户设备使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,
其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
条款2、根据条款1所述的网络设备,其中所述上行参考信号包括探测参考信号(SRS)。
条款3、根据条款2所述的网络设备,其中对上行参考信号的波束方向的指示是通过指示与上行参考信号具有准共址(QCL)关联的下行参考信号来实现的,其中下行参考信号包括同步信号块(SSB)、信道状态信息参考信号(CSI-RS)、和/或定位参考信号(PRS)。
条款4、根据条款1所述的网络设备,所述处理电路还被配置为使得网络设备执行以下操作:
至少响应于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于所述阈值并且第一组波束中的另外的至少一个波束方向上所发送的上行参考信号的传输质量指标不低于所述阈值,将第一组波束中的传输质量指标低于阈值的所有波束更新为与第一组波束中的传输质量指标最高的波束的波束方向相同或相近的波束,从而形成第二组波束。
条款5、根据条款1所述的网络设备,所述处理电路还被配置为使得网络设备执行以下操作:
至少响应于所述第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指标低于所述阈值,指示所述用户设备重新执行全方向波束扫描,并且将用于全方向波束扫描的波束中的传输质量指标低于阈值的所有波束更新为与全方向波束扫描中的传输质量指标最高的波束的波束方向相同或相近的波束,从而形成第二组波束。
条款6、根据条款1所述的网络设备,所述处理电路还被配置为使得网络设备执行以下操作:
至少基于所述第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指 标不低于所述阈值,不向用户设备指示使用第二组波束,使得所述用户设备继续使用第一组波束向所述网络设备发送上行参考信号以用于上行定位。
条款7、根据条款1所述的网络设备,其中对用户设备使用第一组波束的指示是在以下中的一者中进行传输的:
所述网络设备向所述用户设备发送的上行参考信号初始默认配置信息;或
所述网络设备基于最近一次的下行参考信号测量结果,向所述用户设备发送的上行参考信号修正配置信息。
条款8、根据条款1所述的网络设备,其中所述网络设备、所述用户设备和所述隐藏节点设备工作在非授权毫米波频段。
条款9、根据条款1所述的网络设备,其中所述传输质量指标包括以下中的一个或以下中的多个的组合:参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、信干噪比(SINR)、或解码率。
条款10、根据条款1所述的网络设备,其中通过无线资源控制(RRC)信息元素中的下行链路控制信息(DCI)或通过介质访问控制(MAC)-控制元素(CE)来指示所述用户设备使用第一组波束和指示所述用户设备使用第二组波束。
条款11、根据条款1所述的网络设备,其中用户设备的用于发送上行参考信号的波束方向受到隐藏节点设备通信链路干扰包括:隐藏节点设备位于该波束方向的覆盖范围内;或者隐藏节点设备位于该波束方向的反向覆盖范围内并且隐藏节点设备通信链路的传输方向与该波束方向相同或相近。
条款12、一种无线通信系统中的用户设备,所述用户设备包括处理电路,所述处理电路被配置为使得用户设备执行以下操作:
从所述无线通信系统中的网络设备接收使用第一组波束向所述网络设备发送上行参考信号的指示;
在第一组波束中的每一个波束方向上向所述网络设备发送上行参考信号,以用于网络设备测量所述上行参考信号的传输质量指标;
从网络设备接收使用第二组波束向所述网络设备发送上行参考信号的指示,其中该指示至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质 量指标低于阈值而发送;以及
使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,
其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
条款13、根据条款12所述的用户设备,其中所述上行参考信号包括探测参考信号(SRS)。
条款14、根据条款13所述的用户设备,其中对上行参考信号的波束方向的指示是通过指示与上行参考信号具有准共址(QCL)关联的下行参考信号来实现的,其中下行参考信号包括同步信号块(SSB)、信道状态信息参考信号(CSI-RS)、和/或定位参考信号(PRS)。
条款15、根据条款12所述的用户设备,其中::
至少在所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于所述阈值并且第一组波束中的另外的至少一个波束方向上所发送的上行参考信号的传输质量指标不低于所述阈值的情况下,第一组波束中的传输质量指标低于阈值的所有波束被更新为与第一组波束中的传输质量指标最高的波束的波束方向相同或相近的波束,从而形成第二组波束。
条款16、根据条款12所述的用户设备,其中:
至少在所述第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指标低于所述阈值的情况下,所述用户设备重新执行全方向波束扫描,并且用于全方向波束扫描的波束中的传输质量指标低于阈值的所有波束被更新为与全方向波束扫描中的传输质量指标最高的波束的波束方向相同或相近的波束,从而形成第二组波束。
条款17、根据条款12所述的用户设备,其中:
至少在所述第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指标不低于所述阈值的情况下,所述用户设备继续使用第一组波束向所述网络设备发送上行参考信号以用于上行定位。
条款18、根据条款12所述的用户设备,其中使用第一组波束的指示是在以下中的 一者中进行传输的:
所述用户设备从所述网络设备接收的上行参考信号初始默认配置信息;或
所述用户设备从所述网络设备接收的上行参考信号修正配置信息,该上行参考信号修正配置信息基于网络设备最近一次的下行参考信号测量结果而发送。
条款19、根据条款12所述的用户设备,其中所述网络设备、所述用户设备和所述隐藏节点设备工作在非授权毫米波频段。
条款20、根据条款12所述的用户设备,其中所述传输质量指标包括以下中的一个或以下中的多个的组合:参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、信干噪比(SINR)、或解码率。
条款21、根据条款12所述的用户设备,其中所述用户设备通过无线资源控制(RRC)信息元素中的下行链路控制信息(DCI)或通过介质访问控制(MAC)-控制元素(CE)来接收使用第一组波束的指示和使用第二组波束的指示。
条款22、一种用于无线通信系统中的网络设备的方法,所述方法包括:
指示所述无线通信系统中的用户设备使用第一组波束向所述网络设备发送上行参考信号;
测量第一组波束中的每一个波束方向上所发送的上行参考信号的传输质量指标;以及
至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,指示用户设备使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,
其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
条款23、一种用于无线通信系统中的用户设备的方法,所述方法包括:
从所述无线通信系统中的网络设备接收使用第一组波束向所述网络设备发送上行参考信号的指示;
在第一组波束中的每一个波束方向上向所述网络设备发送上行参考信号,以用于网络设备测量所述上行参考信号的传输质量指标;
从网络设备接收使用第二组波束向所述网络设备发送上行参考信号的指示,其中该指示至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值而发送;以及
使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,
其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
条款24、一种具有存储在其上的一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使得该电子设备执行根据条款22或23所述的方法。
条款25、一种包括程序指令的计算机程序产品,所述程序指令在由计算机的一个或多个处理器执行时,使得所述计算机执行根据条款22或23所述的方法。
应该指出,上述的应用实例仅仅是示例性的。本公开的实施例在上述应用实例中还可以任何其它适当的方式执行,仍可实现本公开的实施例所获得的有利效果。而且,本公开的实施例同样可应用于其它类似的应用实例,仍可实现本公开的实施例所获得的有利效果。
应该理解的是,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应该理解的是,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图14所示的通用个人计算机1100安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图14是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图14中,中央处理单元(CPU)1101根据只读存储器(ROM)1102中存储的程序或从存储部分1108加载到随机存取存储器(RAM)1103的程序执行各种处理。在RAM 1103中,也根据需要存储当CPU 1101执行各种处理等时所需的数据。
CPU 1101、ROM 1102和RAM 1103经由总线1104彼此连接。输入/输出接口1105也连接到总线1104。
下述部件连接到输入/输出接口1105:输入部分1106,包括键盘、鼠标等;输出部分1107,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1108,包括硬盘等;和通信部分1109,包括网络接口卡比如LAN卡、调制解调器等。通信部分1109经由网络比如因特网执行通信处理。
根据需要,驱动器1110也连接到输入/输出接口1105。可拆卸介质1111比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1110上,使得从中读出的计算机程序根据需要被安装到存储部分1108中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1111安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图14所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1111。可拆卸介质1111的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1102、存储部分1108中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备200可以被实现为各种网络设备/基站或者被包含在各种网络设备/基站中,而如图12所示的方法也可由各种网络设备/基站实现。例如,根据本公开的实施例的电子设备300可以被实现为各种用户设备/终端设备或者被包含在各种用户设备/终端设备中,而如图13所示的方法也可由各种用户设备/终端设备实现。
例如,本公开中提到的网络设备/基站可以被实现为任何类型的基站,例如演进型节 点B(gNB)。gNB可以包括一个或多个发送和接收点(TRP)。用户设备可以连接到一个或多个gNB内的一个或多个TRP。例如,用户设备可能能够接收来自多个gNB(和/或由同一gNB提供的多个TRP)的传输。例如,gNB可以包括宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的用户设备在一些示例中也称为终端设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。在一些情况下,用户设备可以使用多种无线通信技术进行通信。例如,用户设备可以被配置为使用GSM、UMTS、CDMA2000、WiMAX、LTE、LTE-A、WLAN、NR、蓝牙等中的两者或更多者进行通信。在一些情况下,用户设备也可以被配置为仅使用一种无线通信技术进行通信。
以下将参照图15至图18描述根据本公开的示例。
关于基站的示例
应该理解的是,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图15是示出可以应用本公开内容的技术的基站(本图中以gNB作为示例)的示意性配置的第一示例的框图。gNB 1200包括多个天线1210以及基站设备1220。基站设备1220和每个天线1210可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1200(或基站设备1220)可以对应于上述网络设备101(或更具体地,电子设备200)。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图15所示,gNB 1200可以包括多个天线1210。例如,多个天线1210可以与gNB 1200使用的多个频段兼容。
基站设备1220包括控制器1221、存储器1222、网络接口1223以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225处理的信号中的数据来生成数据分组,并经由网络接口1223来传递所生成的分组。控制器1221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1223而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1200与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1223为无线通信接口,则与由无线通信接口1225使用的频段相比,网络接口1223可以使用较高频段用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1210来提供到位于gNB 1200的小区中的终端的无线连接。无线通信接口 1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1226的功能改变。该模块可以为插入到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。虽然图15示出一个RF电路1227与一根天线1210连接的示例,但是本公开并不限于该图示,而是一个RF电路1227可以同时连接多根天线1210。
如图15所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与gNB 1200使用的多个频段兼容。如图15所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图15示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
第二示例
图16是示出可以应用本公开内容的技术的基站(本图中以gNB作为示例)的示意性配置的第二示例的框图。gNB 1330包括多个天线1340、基站设备1350和RRH 1360。RRH 1360和每个天线1340可以经由RF线缆而彼此连接。基站设备1350和RRH 1360可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1330(或基站设备1350)可以对应于上述网络设备101(或更具体地,电子设备200)。
天线1340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1360发送和接收无线信号。如图16所示,gNB 1330可以包括多个天线1340。例如,多个天线1340可以与gNB 1330使用的多个频段兼容。
基站设备1350包括控制器1351、存储器1352、网络接口1353、无线通信接口1355以及连接接口1357。控制器1351、存储器1352和网络接口1353与参照图15描述的控制器1221、存储器1222和网络接口1223相同。
无线通信接口1355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1360和天线1340来提供到位于与RRH 1360对应的扇区中的终端的无线通信。无线通信接口1355通常可以包括例如BB处理器1356。除了BB处理器1356经由连接接口1357连接到RRH 1360的RF电路1364之外,BB处理器1356与参照图15描述的BB处理器1226相同。如图16所示,无线通信接口1355可以包括多个BB处理器1356。例如,多个BB处理器1356可以与gNB 1330使用的多个频段兼容。虽然图16示出其中无线通信接口1355包括多个BB处理器1356的示例,但是无线通信接口1355也可以包括单个BB处理器1356。
连接接口1357为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的接口。连接接口1357还可以为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的上述高速线路中的通信的通信模块。
RRH 1360包括连接接口1361和无线通信接口1363。
连接接口1361为用于将RRH 1360(无线通信接口1363)连接至基站设备1350的接口。连接接口1361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1363经由天线1340来传送和接收无线信号。无线通信接口1363通常可以包括例如RF电路1364。RF电路1364可以包括例如混频器、滤波器和放大器,并且经由天线1340来传送和接收无线信号。虽然图16示出一个RF电路1364与一根天线1340连接的示例,但是本公开并不限于该图示,而是一个RF电路1364可以同时连接多根天线1340。
如图16所示,无线通信接口1363可以包括多个RF电路1364。例如,多个RF电路1364可以支持多个天线元件。虽然图16示出其中无线通信接口1363包括多个RF电路1364的示例,但是无线通信接口1363也可以包括单个RF电路1364。
关于用户设备的示例
第一示例
图17是示出可以应用本公开内容的技术的智能电话1400的示意性配置的示例的框图。智能电话1400包括处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、 无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。在一种实现方式中,此处的智能电话1400(或处理器1401)可以对应于上述用户设备102(或更具体地,电子设备300)。
处理器1401可以为例如CPU或片上系统(SoC),并且控制智能电话1400的应用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到智能电话1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1400的输出图像。扬声器1411将从智能电话1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图17所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图17示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接收无线信号。如图17所示,智能电话1400可以包括多个天线1416。虽然图17示出其中智能电话1400包括多个天线1416的示例,但是智能电话1400也可以包括单个天线1416。
此外,智能电话1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从智能电话1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图17所示的智能电话1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作智能电话1400的最小必需功能。
第二示例
图18是示出可以应用本公开内容的技术的汽车导航设备1520的示意性配置的示例的框图。汽车导航设备1520包括处理器1521、存储器1522、全球定位系统(GPS)模块1524、传感器1525、数据接口1526、内容播放器1527、存储介质接口1528、输入装置1529、显示装置1530、扬声器1531、无线通信接口1533、一个或多个天线开关1536、一个或多个天线1537以及电池1538。在一种实现方式中,此处的汽车导航设备1520(或处理器1521)可以对应于上述用户设备102(或更具体地,电子设备300)。
处理器1521可以为例如CPU或SoC,并且控制汽车导航设备1520的导航功能和另外的功能。存储器1522包括RAM和ROM,并且存储数据和由处理器1521执行的程序。
GPS模块1524使用从GPS卫星接收的GPS信号来测量汽车导航设备1520的位置(诸如纬度、经度和高度)。传感器1525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1526经由未示出的终端而连接到例如车载网络1541,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质 被插入到存储介质接口1528中。输入装置1529包括例如被配置为检测显示装置1530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1531输出导航功能的声音或再现的内容。
无线通信接口1533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1533通常可以包括例如BB处理器1534和RF电路1535。BB处理器1534可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1535可以包括例如混频器、滤波器和放大器,并且经由天线1537来传送和接收无线信号。无线通信接口1533还可以为其上集成有BB处理器1534和RF电路1535的一个芯片模块。如图18所示,无线通信接口1533可以包括多个BB处理器1534和多个RF电路1535。虽然图18示出其中无线通信接口1533包括多个BB处理器1534和多个RF电路1535的示例,但是无线通信接口1533也可以包括单个BB处理器1534或单个RF电路1535。
此外,除了蜂窝通信方案之外,无线通信接口1533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1533可以包括BB处理器1534和RF电路1535。
天线开关1536中的每一个在包括在无线通信接口1533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1537的连接目的地。
天线1537中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1533传送和接收无线信号。如图18所示,汽车导航设备1520可以包括多个天线1537。虽然图18示出其中汽车导航设备1520包括多个天线1537的示例,但是汽车导航设备1520也可以包括单个天线1537。
此外,汽车导航设备1520可以包括针对每种无线通信方案的天线1537。在此情况下,天线开关1536可以从汽车导航设备1520的配置中省略。
电池1538经由馈线向图18所示的汽车导航设备1520的各个块提供电力,馈线在图中被部分地示为虚线。电池1538累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1520、车载网络1541以及车 辆模块1542中的一个或多个块的车载系统(或车辆)1540。车辆模块1542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1541。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (25)

  1. 一种无线通信系统中的网络设备,所述网络设备包括处理电路,所述处理电路被配置为使得网络设备执行以下操作:
    指示所述无线通信系统中的用户设备使用第一组波束向所述网络设备发送上行参考信号;
    测量第一组波束中的每一个波束方向上所发送的上行参考信号的传输质量指标;以及
    至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,指示用户设备使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,
    其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
  2. 根据权利要求1所述的网络设备,其中所述上行参考信号包括探测参考信号(SRS)。
  3. 根据权利要求2所述的网络设备,其中对上行参考信号的波束方向的指示是通过指示与上行参考信号具有准共址(QCL)关联的下行参考信号来实现的,其中下行参考信号包括同步信号块(SSB)、信道状态信息参考信号(CSI-RS)、和/或定位参考信号(PRS)。
  4. 根据权利要求1所述的网络设备,所述处理电路还被配置为使得网络设备执行以下操作:
    至少响应于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于所述阈值并且第一组波束中的另外的至少一个波束方向上所发送的上行参考信号的传输质量指标不低于所述阈值,将第一组波束中的传输质量指标低于阈值的所有波束更新为与第一组波束中的传输质量指标最高的波束的波束方向相同或相近的波束,从而形成第二组波束。
  5. 根据权利要求1所述的网络设备,所述处理电路还被配置为使得网络设备执行以下操作:
    至少响应于所述第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指标低于所述阈值,指示所述用户设备重新执行全方向波束扫描,并且将用于全方向波束扫描的波束中的传输质量指标低于阈值的所有波束更新为与全方向波束扫描中的传输质量指标最高的波束的波束方向相同或相近的波束,从而形成第二组波束。
  6. 根据权利要求1所述的网络设备,所述处理电路还被配置为使得网络设备执行以下操作:
    至少基于所述第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指标不低于所述阈值,不向用户设备指示使用第二组波束,使得所述用户设备继续使用第一组波束向所述网络设备发送上行参考信号以用于上行定位。
  7. 根据权利要求1所述的网络设备,其中对用户设备使用第一组波束的指示是在以下中的一者中进行传输的:
    所述网络设备向所述用户设备发送的上行参考信号初始默认配置信息;或
    所述网络设备基于最近一次的下行参考信号测量结果,向所述用户设备发送的上行参考信号修正配置信息。
  8. 根据权利要求1所述的网络设备,其中所述网络设备、所述用户设备和所述隐藏节点设备工作在非授权毫米波频段。
  9. 根据权利要求1所述的网络设备,其中所述传输质量指标包括以下中的一个或以下中的多个的组合:参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、信干噪比(SINR)、或解码率。
  10. 根据权利要求1所述的网络设备,其中通过无线资源控制(RRC)信息元素中的下行链路控制信息(DCI)或通过介质访问控制(MAC)-控制元素(CE)来指示所述用户设备使用第一组波束和指示所述用户设备使用第二组波束。
  11. 根据权利要求1所述的网络设备,其中用户设备的用于发送上行参考信号的波束方向受到隐藏节点设备通信链路干扰包括:隐藏节点设备位于该波束方向的覆盖范围内;或者隐藏节点设备位于该波束方向的反向覆盖范围内并且隐藏节点设备通信链路的传输方向与该波束方向相同或相近。
  12. 一种无线通信系统中的用户设备,所述用户设备包括处理电路,所述处理电路被配置为使得用户设备执行以下操作:
    从所述无线通信系统中的网络设备接收使用第一组波束向所述网络设备发送上行参考信号的指示;
    在第一组波束中的每一个波束方向上向所述网络设备发送上行参考信号,以用于网络设备测量所述上行参考信号的传输质量指标;
    从网络设备接收使用第二组波束向所述网络设备发送上行参考信号的指示,其中该指示至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值而发送;以及
    使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,
    其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
  13. 根据权利要求12所述的用户设备,其中所述上行参考信号包括探测参考信号(SRS)。
  14. 根据权利要求13所述的用户设备,其中对上行参考信号的波束方向的指示是通过指示与上行参考信号具有准共址(QCL)关联的下行参考信号来实现的,其中下行参考信号包括同步信号块(SSB)、信道状态信息参考信号(CSI-RS)、和/或定位参考信号(PRS)。
  15. 根据权利要求12所述的用户设备,其中:
    至少在所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于所述阈值并且第一组波束中的另外的至少一个波束方向上所发送的上行参考信 号的传输质量指标不低于所述阈值的情况下,第一组波束中的传输质量指标低于阈值的所有波束被更新为与第一组波束中的传输质量指标最高的波束的波束方向相同或相近的波束,从而形成第二组波束。
  16. 根据权利要求12所述的用户设备,其中:
    至少在所述第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指标低于所述阈值的情况下,所述用户设备重新执行全方向波束扫描,并且用于全方向波束扫描的波束中的传输质量指标低于阈值的所有波束被更新为与全方向波束扫描中的传输质量指标最高的波束的波束方向相同或相近的波束,从而形成第二组波束。
  17. 根据权利要求12所述的用户设备,其中:
    至少在所述第一组波束中的所有波束方向上所发送的上行参考信号的传输质量指标不低于所述阈值的情况下,所述用户设备继续使用第一组波束向所述网络设备发送上行参考信号以用于上行定位。
  18. 根据权利要求12所述的用户设备,其中使用第一组波束的指示是在以下中的一者中进行传输的:
    所述用户设备从所述网络设备接收的上行参考信号初始默认配置信息;或
    所述用户设备从所述网络设备接收的上行参考信号修正配置信息,该上行参考信号修正配置信息基于网络设备最近一次的下行参考信号测量结果而发送。
  19. 根据权利要求12所述的用户设备,其中所述网络设备、所述用户设备和所述隐藏节点设备工作在非授权毫米波频段。
  20. 根据权利要求12所述的用户设备,其中所述传输质量指标包括以下中的一个或以下中的多个的组合:参考信号接收功率(RSRP)、参考信号接收质量(RSRQ)、信干噪比(SINR)、或解码率。
  21. 根据权利要求12所述的用户设备,其中所述用户设备通过无线资源控制(RRC)信息元素中的下行链路控制信息(DCI)或通过介质访问控制(MAC)-控制元素(CE) 来接收使用第一组波束的指示和使用第二组波束的指示。
  22. 一种用于无线通信系统中的网络设备的方法,所述方法包括:
    指示所述无线通信系统中的用户设备使用第一组波束向所述网络设备发送上行参考信号;
    测量第一组波束中的每一个波束方向上所发送的上行参考信号的传输质量指标;以及
    至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值,指示用户设备使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,
    其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
  23. 一种用于无线通信系统中的用户设备的方法,所述方法包括:
    从所述无线通信系统中的网络设备接收使用第一组波束向所述网络设备发送上行参考信号的指示;
    在第一组波束中的每一个波束方向上向所述网络设备发送上行参考信号,以用于网络设备测量所述上行参考信号的传输质量指标;
    从网络设备接收使用第二组波束向所述网络设备发送上行参考信号的指示,其中该指示至少基于所述第一组波束中的至少一个波束方向上所发送的上行参考信号的传输质量指标低于阈值而发送;以及
    使用第二组波束向所述网络设备发送上行参考信号以用于上行定位,
    其中,第二组波束使得所述用户设备避免在受到隐藏节点设备通信链路干扰的波束方向上发送上行参考信号,其中隐藏节点设备对于所述网络设备和所述用户设备是未知的。
  24. 一种具有存储在其上的一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使得该电子设备执行根据权利要求22或23所述的方法。
  25. 一种包括程序指令的计算机程序产品,所述程序指令在由计算机的一个或多个处理器执行时,使得所述计算机执行根据权利要求22或23所述的方法。
PCT/CN2023/080258 2022-03-11 2023-03-08 用于定位中的上行参考信号传输配置的设备和方法 WO2023169459A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210235137.X 2022-03-11
CN202210235137.XA CN116782119A (zh) 2022-03-11 2022-03-11 用于定位中的上行参考信号传输配置的设备和方法

Publications (1)

Publication Number Publication Date
WO2023169459A1 true WO2023169459A1 (zh) 2023-09-14

Family

ID=87936093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080258 WO2023169459A1 (zh) 2022-03-11 2023-03-08 用于定位中的上行参考信号传输配置的设备和方法

Country Status (2)

Country Link
CN (1) CN116782119A (zh)
WO (1) WO2023169459A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999119A (zh) * 2017-08-10 2020-04-10 高通股份有限公司 多波束系统中的基于上行链路的定位参考信号传输
WO2021159407A1 (en) * 2020-02-13 2021-08-19 Nokia Shanghai Bell Co., Ltd. Beam sweeping on reference signal transmission for ul positioning
CN113475004A (zh) * 2019-02-14 2021-10-01 苹果公司 发射和面板感知波束选择
EP3927036A1 (en) * 2020-06-17 2021-12-22 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Improvement of uplink ue positioning
CN114071735A (zh) * 2020-08-06 2022-02-18 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999119A (zh) * 2017-08-10 2020-04-10 高通股份有限公司 多波束系统中的基于上行链路的定位参考信号传输
CN113475004A (zh) * 2019-02-14 2021-10-01 苹果公司 发射和面板感知波束选择
WO2021159407A1 (en) * 2020-02-13 2021-08-19 Nokia Shanghai Bell Co., Ltd. Beam sweeping on reference signal transmission for ul positioning
EP3927036A1 (en) * 2020-06-17 2021-12-22 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Improvement of uplink ue positioning
CN114071735A (zh) * 2020-08-06 2022-02-18 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CEWIT, IITM, TEJAS NETWORKS, IITH, RELIANCE JIO, SAANKHYA LABS: "Discussion on positioning enhancements for Release 17", 3GPP DRAFT; R1-2008718, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting; 20201016 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051940317 *

Also Published As

Publication number Publication date
CN116782119A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
US20220408298A1 (en) Electronic device and method for wireless communications
TWI830852B (zh) 具有半持續性或非週期性時序行為之定位參考信號抹除模式
US8897702B2 (en) Mobility measurement using CSI-RS in additional carrier
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021004357A1 (zh) 电子装置、无线通信方法和计算机可读介质
WO2019206061A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2019137308A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20210400510A1 (en) Electronic device, method and storage medium for wireless communication system
WO2018059151A1 (zh) 资源管理指示方法及装置
WO2022001241A1 (zh) 一种波束管理方法及装置
US20230319764A1 (en) Configuring positioning signals and measurements to reduce latency
WO2021204074A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US10306584B2 (en) User equipment, computer readable medium, and method to determine the mobility of user equipment in a long-term evolution network
US20220338023A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2021027802A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2023169459A1 (zh) 用于定位中的上行参考信号传输配置的设备和方法
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
EP3951418A1 (en) Coordination of transmission reception point selection between base station and location management function
WO2020143782A1 (zh) 一种资源指示方法及装置
WO2022213894A1 (zh) 用于无线通信的电子设备、无线通信方法以及存储介质
TWI815083B (zh) 空間關係切換方法與使用者設備
WO2021156994A1 (ja) 端末装置、基地局装置、及び無線通信方法
WO2023221913A1 (zh) 用于指示tci状态的方法及相关设备
WO2022062877A1 (en) Angle calibration for cross-link interference angle-of-arrival estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766036

Country of ref document: EP

Kind code of ref document: A1