WO2021218640A1 - 电解液添加剂、二次电池电解液、二次电池和终端 - Google Patents

电解液添加剂、二次电池电解液、二次电池和终端 Download PDF

Info

Publication number
WO2021218640A1
WO2021218640A1 PCT/CN2021/087317 CN2021087317W WO2021218640A1 WO 2021218640 A1 WO2021218640 A1 WO 2021218640A1 CN 2021087317 W CN2021087317 W CN 2021087317W WO 2021218640 A1 WO2021218640 A1 WO 2021218640A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
group
halogenated
secondary battery
lithium
Prior art date
Application number
PCT/CN2021/087317
Other languages
English (en)
French (fr)
Inventor
马强
秦德君
李阳兴
邓耀明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021218640A1 publication Critical patent/WO2021218640A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of secondary batteries, in particular to an electrolyte additive, a secondary battery electrolyte, a secondary battery and a terminal.
  • lithium secondary batteries Due to the advantages of high energy density, high working voltage, long service life, low self-discharge rate and environmental friendliness, lithium secondary batteries have been widely used in terminal products (smartphones, digital cameras, notebook computers, electric vehicles, etc.) application. With the rapid development of the industry, the demand for battery energy density is getting higher and higher. Among them, the development of high-voltage cathode materials (>4.4V) is one of the effective technical means to improve the energy density of lithium secondary batteries.
  • LiPF 6 lithium hexafluorophosphate
  • HF hydrogen fluoride
  • the embodiment of the application provides an electrolyte additive, which can form a stable interface film on the surface of the positive electrode under high voltage conditions, and can capture HF generated by the decomposition of the electrolyte at the same time, so that it can be effective from both physical and chemical levels. Reduce the influence of HF on the cathode material and improve battery performance.
  • the molecular structure of the electrolyte additive includes a six-membered ring structure of cyclotriphosphazene, and three of the six-membered ring structure of cyclotriphosphazene a total of six groups substituted on the phosphorus atom, the substituent group six, at least one substituent group is -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6 '), wherein the R 1 ', R 2 ', R 3 ', R 4 ', R 5 ', R 6 'are selected from alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, Any one of haloalkenyl, alkenyloxy, haloalkenyloxy, aryl, haloaryl, aryloxy, and haloaryloxy.
  • one or more of the remaining substituent groups are fluorine, chlorine, bromine, haloalkyl, haloalkoxy, haloalkenyl, haloalkenyloxy, and haloaryl. Or halogenated aryloxy.
  • one or more of the remaining substituent groups are fluorine, fluoroalkyl, fluoroalkoxy, fluoroalkenyl, fluoroalkenyloxy, and fluoroaryl. Or fluoroaryloxy.
  • the six groups substituted with a substituent group is -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6'), the The chemical structural formula of the electrolyte additive is shown in formula (I):
  • R 1 , R 2 , R 3 , R 4 , and R 5 are the remaining substituent groups.
  • R 1 , R 2 , R 3 , and R 5 are the remaining substituent groups.
  • R 1 , R 3 , and R 5 are the remaining substituent groups.
  • the carbon of the alkyl group, halogenated alkyl group, alkoxy group, and halogenated alkoxy group The number of atoms is 1-20; the number of carbon atoms of the alkenyl group, halogenated alkenyl group, alkenyloxy group, and halogenated alkenyloxy group is 2-20; the aryl group, halogenated aryl group, aryloxy group, and halogen The number of carbon atoms of the substituted aryloxy group is 6-20.
  • the haloalkyl, haloalkoxy, haloalkenyl, haloalkenyl includes fluorine, chlorine, bromine, and iodine, and the halogenation is perhalogenated or partially halogenated.
  • the number of carbon atoms of the alkyl group, halogenated alkyl group, alkoxy group, and halogenated alkoxy group is 1-20;
  • the number of carbon atoms of the group and the halogenated alkenyloxy group is 2-20;
  • the number of carbon atoms of the aryl group, the halogenated aryl group, the aryloxy group, and the halogenated aryloxy group are 6-20.
  • the halogens in the halogenated alkyl group, halogenated alkoxy group, halogenated alkenyl group, halogenated alkenyloxy group, halogenated aryl group and halogenated aryloxy group include fluorine, Chlorine, bromine, iodine, the halogenation is perhalogenated or partially halogenated.
  • the second aspect of the embodiments of the present application provides an electrolyte for a secondary battery, including an electrolyte salt, a non-aqueous organic solvent, and an additive.
  • the additives include the electrolyte additive described in the first aspect of the embodiments of the present application.
  • the mass percentage of the electrolyte additive in the secondary battery electrolyte is 0.1%-10%.
  • the electrolyte salt includes at least one of lithium salt, sodium salt, potassium salt, magnesium salt, zinc salt, and aluminum salt.
  • the electrolyte salt includes MClO 4 , MBF 4 , MPF 6 , MAsF 6 , MPF 2 O 2 , MCF 3 SO 3 , MTDI, MB(C 2 O 4 ) 2 (MBOB), MBF 2 C 2 O 4 (MDFOB), M[(CF 3 SO 2 ) 2 N], M[(FSO 2 ) 2 N] and M[(C m F 2m+1 SO 2 )(C n F 2n+1 SO 2 )N One or more of ], wherein M is Li, Na or K, and m and n are natural numbers.
  • the molar concentration of the electrolyte salt in the electrolyte of the secondary battery is 0.01 mol/L-8.0 mol/L.
  • the non-aqueous organic solvent includes one or more of carbonate-based solvents, ether-based solvents, and carboxylate-based solvents.
  • the additive further includes other additives, and the other additives include fluoroethylene carbonate, biphenyl, fluorobenzene, vinylene carbonate, trifluoromethyl ethylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, vinyl sulfate, vinyl sulfite, succinonitrile, adiponitrile, 1,2-bis(2-cyanoethoxy) One or more of ethane and 1,3,6-hexane trinitrile.
  • the other additives include fluoroethylene carbonate, biphenyl, fluorobenzene, vinylene carbonate, trifluoromethyl ethylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, vinyl sulfate, vinyl sulfite, succinonitrile, adiponitrile, 1,2-bis(2-cyanoethoxy) One or more of ethane and
  • a third aspect of the embodiments of the present application provides a secondary battery, including a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the electrolyte includes the secondary battery electrolyte described in the second aspect of the embodiments of the present application.
  • the negative electrode includes one or more of a carbon-based negative electrode, a silicon-based negative electrode, a tin-based negative electrode, a lithium negative electrode, a sodium negative electrode, a potassium negative electrode, a magnesium negative electrode, a zinc negative electrode, and an aluminum negative electrode.
  • the carbon-based negative electrode includes one or more of graphite, hard carbon, soft carbon, and graphene
  • the silicon-based negative electrode includes one of silicon, silicon carbon, silicon oxygen, and silicon metal compound.
  • the tin-based negative electrode includes one or more of tin, tin carbon, tin oxide, and tin metal compound.
  • Lithium negative electrode, sodium negative electrode, potassium negative electrode, magnesium negative electrode, zinc negative electrode, aluminum negative electrode can be lithium, sodium, potassium, magnesium, zinc, aluminum metal simple substance or its alloy, also can be the above-mentioned metal or its alloy with current collector, namely It includes a current collector and the foregoing metal element or alloy layer provided on the current collector.
  • the lithium negative electrode can be pure metal lithium or a lithium alloy, such as a lithium foil, or it can include a current collector and a metal lithium or lithium alloy disposed on the current collector, such as a lithium-copper composite tape.
  • the lithium alloy includes at least one of a lithium silicon alloy, a lithium sodium alloy, a lithium potassium alloy, a lithium aluminum alloy, a lithium tin alloy, and a lithium indium alloy.
  • the secondary battery includes a lithium secondary battery, a potassium secondary battery, a sodium secondary battery, a magnesium secondary battery, a zinc secondary battery, or an aluminum secondary battery.
  • An embodiment of the present application further provides a terminal, including a housing, and electronic components and batteries contained in the housing.
  • the battery supplies power to the electronic components, and the battery includes the third aspect of the embodiments of the present application.
  • the secondary battery is the third aspect of the embodiments of the present application.
  • Electrolyte additive provided by the present embodiment of the application while having the molecular structure cyclotriphosphazene structure and silicon nitride structure -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6' ), where the cyclotriphosphazene structure is oxidized and decomposed under high voltage conditions, which can form a stable interface film on the surface of the positive electrode, effectively preventing the side reaction caused by the direct contact between the electrolyte and the positive electrode material, and the silicon-nitrogen structure can effectively capture the electrolyte Therefore, the electrolyte additives in the embodiments of the present application can reduce the impact of HF on the positive electrode material under high voltage from both physical and chemical levels, improve battery performance, and enable the battery to maintain a long-term cycle under 4.40V. And high temperature storage performance.
  • FIG. 1 is a schematic structural diagram of a secondary battery provided by an embodiment of the present application.
  • FIG. 2 is a diagram of the protective mechanism of electrolyte additives on lithium cobalt oxide cathodes in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • Fig. 4 is a cycle graph of lithium secondary batteries in Examples 1-4 and Comparative Examples 1-3 of the present application.
  • the core components of a secondary battery include a positive electrode material 101, a negative electrode material 102, an electrolyte 103, a separator 104, and corresponding connecting accessories and circuits.
  • the electrolyte is the medium through which lithium ions are transported between the positive and negative electrodes, and is mainly composed of lithium salt, non-aqueous organic solvents (conventionally carbonate solvents) and additives.
  • the embodiment of the present application provides an electrolyte additive, and a small amount of the electrolyte is added to the electrolyte.
  • the liquid additive can significantly improve the high-voltage cycle performance of the battery, and the addition of the electrolyte additive has little effect on the cell system.
  • the electrolyte additive provided in the embodiments of the present application has a molecular structure including a six-membered ring structure of cyclotriphosphazene.
  • Electrolyte additive application according to this embodiment the silicon nitride structure -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6') cyclotriphosphazene grafted by chemical structure
  • Si R 1 'R 2 ' R 3 ' silicon nitride structure -N
  • Si R 4' R 5 'R 6' silicon nitride structure -N
  • the cyclotriphosphazene structure in the electrolyte additive is oxidized and decomposed under high voltage conditions, and can form a stable interface film on the surface of the positive electrode, effectively preventing the side reaction caused by the direct contact between the electrolyte and the positive electrode material, and the silicon-nitrogen structure It can effectively capture the HF generated by the decomposition of the electrolyte, and effectively avoid the influence of HF on the cathode material. Therefore, the electrolyte additives of the embodiments of the present application can reduce the influence of HF on the positive electrode material under high voltage from both physical and chemical levels, and improve battery performance.
  • R 1, R 2, in R 3, R 4, R 5 , R 6, except -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6 ') other substituent groups can be selected from fluorine, chlorine, bromine, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, haloalkenyl, alkenyloxy, haloalkenyloxy, Any one of an aryl group, a halogenated aryl group, an aryloxy group, a halogenated aryloxy group, a substituted sulfonic acid group, a substituted phosphate ester group, a substituted imide group, and a substituted sulfonimide group.
  • R 1, R 2, R 3, R 4, R 5, R 6 in a group is substituted with -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6'), e.g., R 6 is -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6'), and the remaining substituent groups R 1, R 2 , R 3 , R 4 , and R 5 are selected from fluorine, chlorine, bromine, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, haloalkenyl, alkenyloxy, haloalkenyloxy, Any one of aryl group, halogenated aryl group, aryloxy group, halogenated aryloxy group, substituted sulfonic acid group, substituted phosphate ester group, substituted imide group, and substituted sulfonimi
  • the two may be -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6') group is attached to the structure cyclotriphosphazene On the same phosphorus atom.
  • the groups R 1 , R 2 , R 3 , and R 5 are respectively selected from fluorine, chlorine, bromine, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, haloalkenyl, alkenyloxy, halo Any one of an alkenyloxy group, an aryl group, a halogenated aryl group, an aryloxy group, a halogenated aryloxy group, a substituted sulfonic acid group, a substituted phosphate ester group,
  • the two may be -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6') group is attached to the structure cyclotriphosphazene On the same phosphorus atom in.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 may also have four, five, or even six substituent groups as -N(Si R 1 ' R 2 'R 3') ( Si R 4 'R 5' R 6 '). It will be appreciated, a substituent group -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6') , the more beneficial to improve their ability to capture HF in the electrolytic solution.
  • R 1, R 2, R 3, R 4, R 5, R 6, except -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6 ') in the remaining substituent groups one or more substituent groups are fluorine, chlorine, bromine, haloalkyl, haloalkoxy, haloalkenyl, haloalkenyloxy, haloaryl or halo Aryloxy.
  • the interfacial film formed on the surface of the positive electrode will contain a certain content of stable halide (such as lithium fluoride), thereby forming a powerful positive electrode material.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 have multiple (two or more) substituents as the above-mentioned halogen-containing groups, it is beneficial to improve the positive electrode interface film
  • the content of halide improves the protective performance of the interface film.
  • R 1, R 2, R 3, R 4, R 5, R 6, except -N (Si R 1 'R 2 ' R 3 ') (Si R 4' R 5 'R 6 ') among the remaining substituent groups one or more substituent groups are fluorine, fluoroalkyl, fluoroalkoxy, fluoroalkenyl, fluoroalkenyloxy, fluoroaryl, fluoroalkenyl Any one of aryloxy groups.
  • the remaining substituent groups are fluorine-containing groups, a certain amount of stable fluoride can be contained in the interface film formed on the surface of the positive electrode, which is more conducive to the formation of effective protection of the positive electrode.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 1 ', R 2 ', R 3 ', R 4 ', R 5 ', R 6 ' are involved
  • the number of carbon atoms of the alkyl group, halogenated alkyl group, alkoxy group, and halogenated alkoxy group is 1-20, and further, the number of carbon atoms can be 1-10, and the number of carbon atoms is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; the number of carbon atoms of alkenyl, haloalkenyl, alkenyloxy, and haloalkenyloxy is 2-20, and further, the number of carbon atoms can be 2-10, Specifically, the number of carbon atoms is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10; the number of carbon atoms of the aryl group, halogenated aryl group, aryloxy group, and hal
  • the halogen in haloalkyl, haloalkoxy, haloalkenyl, haloalkenyloxy, haloaryl and haloaryloxy groups can be fluorine, chlorine, bromine or iodine, and halogenation can be It is fully halogenated or partially halogenated.
  • the alkyl group, haloalkyl group, alkoxy group, haloalkoxy group, alkenyl group, haloalkenyl group, alkenyloxy group, and haloalkenyloxy group may be linear, branched, or cyclic.
  • the substituted sulfonic acid group is chemically bonded to the phosphorus atom in the six-membered ring structure of the cyclotriphosphazene through the oxygen atom.
  • the substituted sulfonic acid group has a certain high-voltage film-forming performance.
  • the remaining substituted groups include one or more substituted sulfonic acid groups, the high-voltage film-forming performance of the electrolyte additive on the surface of the positive electrode can be further improved.
  • the number of carbon atoms of X can be 1-20.
  • the number of carbon atoms of Y can be 1-20.
  • the substituted sulfonic acid group, substituted imide group, and substituted sulfonimide group contains halogen-containing substituent groups.
  • the halogen may be fluorine, chlorine, bromine, or iodine, and the halogen may be perhalogen. It can also be partially halogenated.
  • the alkyl group, haloalkyl group, alkoxy group, haloalkoxy group, alkenyl group, haloalkenyl group, alkenyloxy group, and haloalkenyloxy group may be linear, branched, or cyclic.
  • R 1, R 2, in R 3, R 4, R 5 , R 6 except -N Si R 1 'R 2 ' R 3 '
  • Si R 4' R 5 'R 6' The remaining substituent groups other than
  • the molecular structural formula of the electrolyte additive can be as shown in formulas (A)-(I):
  • substituent groups -N Si R 1 'R 2 ' R 3 '
  • Si R 4' R 5 'R 6' is formed by a stable N atom cyclotriphosphazene structure P atom NP is covalently bonded, so that it can form a film on the positive electrode together with the cyclotriphosphazene structure, and react with HF to generate fluorosilane and other compounds.
  • electrolyte additive (A) the protection mechanism diagram of the electrolyte additive in the embodiments of the present application on the lithium cobalt oxide cathode is shown in Figure 2.
  • the electrolyte additive ( A) Because of the cyclotriphosphazene structure, it can form a film on the positive electrode to form a stable interface protective film to form a physical protective barrier. At the same time, the outer layer of the protective film contains a large number of silicon-nitrogen structural groups. The silicon-nitrogen structural groups can interact with the electrolyte. A small amount of HF reacts, and the electrolyte additives existing in the electrolyte can also capture HF, thereby removing HF and forming chemical protection for the positive electrode.
  • the electrolyte additive provided by the embodiment of the application contains both a cyclotriphosphazene structure and a silicon nitrogen structure in its molecular structure, which enables the additive to form a strong defense barrier against HF from the dual effects of physics and chemistry, thereby increasing the height of the electrolyte. Voltage characteristics and high temperature storage performance. Since the electrolyte additives of the embodiments of the present application contain the cyclotriphosphazene structure, they also have excellent flame-retardant properties, which can improve the safety of the battery. Using the electrolyte additives provided in the embodiments of the present application can effectively avoid the adverse effects on electrolyte performance caused by the addition of various additives, such as increased viscosity and poor compatibility with the negative electrode. In addition, the electrolyte additives provided in the embodiments of the present application have good compatibility with positive and negative materials, will not deteriorate other aspects of the battery performance (such as low temperature and rate performance), and have a small impact on the cell system.
  • the electrolyte additives described above can be prepared by different methods, and the specific preparation method is not limited. It is only necessary to conduct a reasonable comprehensive design according to the conventional preparation process of cyclotriphosphazene derivatives and the properties of the substituted groups.
  • electrolyte additive (A) taking the electrolyte additive (A) as an example, it can be prepared in the following manner:
  • electrolyte additive (D) taking the electrolyte additive (D) as an example, it can be prepared in the following manner:
  • the electrolyte additive (F) is taken as an example, which can be prepared in the following manner:
  • the embodiments of the present application also provide an electrolyte for a secondary battery, which includes an electrolyte salt, a non-aqueous organic solvent, and additives.
  • the additives include the electrolyte additives described in the embodiments of the present application.
  • the mass percentage content of the electrolyte additive in the electrolyte of the secondary battery may be 0.1%-10%. Further, the mass percentage content of the electrolyte additive in the electrolyte of the secondary battery may be 0.5%-8%, 1%-6%, 2%-5%, 0.5%-1%.
  • the addition of a lower content of electrolyte additives can effectively improve the high-voltage cycle performance of the battery. At the same time, the addition of a lower content of electrolyte additives can ensure that the viscosity of the electrolyte will not be too high and will not affect the battery performance.
  • the electrolyte salt may be a lithium salt, a sodium salt, a potassium salt, a magnesium salt, a zinc salt, an aluminum salt, and the like.
  • the lithium salt, sodium salt, and potassium salt may be MClO 4 , MBF 4 , MPF 6 , MAsF 6 , MPF 2 O 2 , MCF 3 SO 3 , MTDI, MB(C 2 O 4 ) 2 (MBOB), MBF 2 C 2 O 4 (MDFOB), M[(CF 3 SO 2 ) 2 N], M[(FSO 2 ) 2 N] and M[(C m F 2m+1 SO 2 )(C n F 2n+1 One or more of SO 2 )N], wherein M is Li, Na or K, and m and n are natural numbers.
  • the magnesium salt, zinc salt, and aluminum salt may also be a salt substance formed of magnesium ion, zinc ion, aluminum ion, and anions
  • the molar concentration of the electrolyte salt in the electrolyte of the secondary battery is 0.01 mol/L-8.0 mol/L. Further, it may be 0.05 mol/L to 2 mol/L, 0.5 mol/L to 1.0 mol/L.
  • the non-aqueous organic solvent includes one or more of carbonate-based solvents, ether-based solvents, and carboxylate-based solvents.
  • Non-aqueous organic solvents can be mixed in any ratio.
  • carbonate solvents include cyclic carbonates or chain carbonates.
  • the cyclic carbonates may be, but are not limited to, ethylene carbonate (EC), propylene carbonate (PC), ⁇ -butyrolactone (GBL), One or more of butylene carbonate (BC);
  • the chain carbonate may specifically be dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dipropyl carbonate ( One or more of DPC).
  • Ether solvents include cyclic ethers or chain ethers.
  • the cyclic ethers can be specifically but not limited to 1,3-dioxolane (DOL), 1,4-dioxane (DX), crown ether, tetrahydrofuran ( THF), 2-methyltetrahydrofuran (2-CH 3 -THF), 2-trifluoromethyl tetrahydrofuran (2-CF 3 -THF) one or more;
  • the chain ether may specifically be but not Limited to one or more of dimethoxymethane (DMM), 1,2-dimethoxyethane (DME), and diglyme (TEGDME).
  • Carboxylic acid ester solvents can be specifically but not limited to methyl acetate (MA), ethyl acetate (EA), propyl acetate (EP), butyl acetate, propyl propionate (PP), butyl propionate One or more.
  • other additives may be added to the electrolyte of the secondary battery according to different performance requirements.
  • the other additives may specifically be, but are not limited to, fluoroethylene carbonate, biphenyl, and fluorine. Benzene, vinylene carbonate, trifluoromethyl ethylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, vinyl sulfate, vinyl sulfite, One or more of succinonitrile, adiponitrile, 1,2-bis(2-cyanoethoxy)ethane, and 1,3,6-hexanetrinitrile.
  • the embodiment of the present application also provides a preparation method of the above-mentioned secondary battery electrolyte, which includes the following steps:
  • Each operation in the above preparation method can be implemented according to the existing conventional electrolyte preparation process, wherein the specific selection of the raw materials such as electrolyte salt, non-aqueous organic solvent, electrolyte additive, etc. are as described above, and will not be repeated here.
  • the electrolyte further includes other additives, it can be added together with the electrolyte additives in the embodiments of the present application.
  • the embodiments of the present application also provide a secondary battery, including a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the electrolyte adopts the secondary battery electrolyte provided in the above-mentioned embodiments of the present application.
  • the secondary battery provided by the embodiments of the present application because the electrolyte additive mentioned in the present application is added to the electrolyte, can obtain relatively good cycle stability.
  • the secondary battery may be a lithium secondary battery, a potassium secondary battery, a sodium secondary battery, a magnesium secondary battery, a zinc secondary battery, an aluminum secondary battery, or the like.
  • the secondary battery provided in the embodiments of this application can be used in terminal consumer products, such as mobile phones, tablet computers, mobile power supplies, portable computers, notebook computers, and other wearable or movable electronic devices, as well as automobiles and other products to improve product performance .
  • the negative electrode may include one or more of a carbon-based negative electrode, a silicon-based negative electrode, a tin-based negative electrode, a lithium negative electrode, a sodium negative electrode, a potassium negative electrode, a magnesium negative electrode, a zinc negative electrode, and an aluminum negative electrode.
  • the carbon-based negative electrode can include graphite, hard carbon, soft carbon, graphene, etc.
  • the silicon-based negative electrode can include silicon, silicon carbon, silicon oxygen, silicon metal compound, etc.
  • the tin-based negative electrode can include tin, tin carbon, tin oxide, tin Metal compounds.
  • Lithium negative electrode, sodium negative electrode, potassium negative electrode, magnesium negative electrode, zinc negative electrode, aluminum negative electrode can be lithium, sodium, potassium, magnesium, zinc, aluminum metal simple substance or its alloy, also can be the above-mentioned metal or its alloy with current collector, namely It includes a current collector and the foregoing metal element or alloy layer provided on the current collector.
  • the lithium negative electrode can be pure metal lithium or a lithium alloy, such as a lithium foil, or it can include a current collector and a metal lithium or lithium alloy disposed on the current collector, such as a lithium-copper composite tape.
  • the lithium alloy may specifically be at least one of a lithium silicon alloy, a lithium sodium alloy, a lithium potassium alloy, a lithium aluminum alloy, a lithium tin alloy, and a lithium indium alloy.
  • the positive electrode includes a positive electrode active material capable of reversibly intercalating/deintercalating metal ions (lithium ions, sodium ions, potassium ions, magnesium ions, zinc ions, aluminum ions, etc.).
  • the selection of positive electrode active materials in this application There is no particular limitation, and it can be a positive electrode active material conventionally used in existing secondary batteries.
  • the positive electrode active material can be, but not limited to, lithium cobalt oxide (LiCoO 2 ), lithium iron phosphate (LiFePO 4 ), lithium nickel cobalt manganate (LiNi 0.6 Co 0.2 Mn 0.2 ), and polyanionic lithium compound.
  • LiM x (PO 4 ) y M is Ni, Co, Mn, Fe, Ti, V, 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 5), etc.
  • the current collector of the positive electrode may be metals such as aluminum, titanium, and tantalum or alloys thereof, and the current collector of the negative electrode may be materials such as copper, nickel, stainless steel, etc.
  • the diaphragm can be an existing conventional diaphragm, including but not limited to single-layer PP (polypropylene), single-layer PE (polyethylene), double-layer PP/PE, double-layer PP/PP, and three-layer PP/ Diaphragm such as PE/PP.
  • single-layer PP polypropylene
  • PE polyethylene
  • double-layer PP/PE double-layer PP/PP
  • three-layer PP/ Diaphragm such as PE/PP.
  • an embodiment of the present application also provides a terminal.
  • the terminal 200 may be a mobile phone, a tablet computer, a notebook computer, a portable computer, a smart wearable product, an automobile, etc., and includes a housing 201 and a housing.
  • the electronic components and batteries (not shown in the figure) in the housing 201.
  • the battery provides power for the electronic components.
  • the battery is the secondary battery provided in the above embodiment of the application.
  • the housing 201 may include The front cover on the side and the rear case assembled on the rear side, the battery can be fixed inside the rear case.
  • Electrolyte preparation In a glove box filled with argon, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then Dissolve fully dried lithium hexafluorophosphate (LiPF 6 ) in the above solvent, stir and mix to form a uniform solution, and then add the (hexamethyldisilazane) pentafluorocyclotriphosphazene additive whose molecular structure is shown in formula (A) The above solution was added and mixed uniformly to prepare the electrolyte of Example 1 of the present invention.
  • the concentration of LiPF 6 is 1.0 mol/liter
  • the mass percentages of EC, DEC, PC, and PP are 25:25:30:20, respectively
  • the mass percentage of the additive (A) is 5%.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • CMC sodium carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • acetylene black 1% acetylene black and 95% graphite
  • the positive pole piece, the negative pole piece and the commercial PE separator prepared above are made into battery cells, which are packaged by polymer, poured into the electrolyte prepared in Example 1 above, and processed into a soft-packed lithium secondary battery after chemical conversion and other processes.
  • Electrolyte preparation In a glove box filled with argon, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then Dissolve fully dried lithium hexafluorophosphate (LiPF 6 ) and lithium difluoroborate (LiDFOB) in the above solvent, stir and mix into a uniform solution, and then combine the molecular structure of (hexaethyldisilazane) as shown in formula (B) )
  • the pentafluorocyclotriphosphazene additive was added to the above solution and mixed uniformly to prepare the electrolyte of Example 2 of the present invention.
  • the concentration of LiPF 6 is 1.0 mol/L
  • the concentration of LiDFOB is 0.05 mol/L
  • the mass percentages of EC, DEC, PC and PP are 25:25:30:20
  • the mass percentage of additive (B) Is 3%.
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Example 2 is used, and the other operations are the same as in Example 1.
  • Electrolyte preparation In a glove box filled with argon, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then Dissolve fully dried lithium hexafluorophosphate (LiPF 6 ) in the above-mentioned solvent, stir and mix into a uniform solution, and then combine the molecular structure of (hexa-trifluoromethyldisilazane) pentafluorocyclic three as shown in formula (C)
  • the phosphazene additive was added to the above solution and mixed uniformly to prepare the electrolyte of Example 3 of the present invention.
  • the concentration of LiPF 6 is 1.0 mol/L
  • the mass percentages of EC, DEC, PC, and PP are 25:25:30:20, respectively
  • the mass percentage of the additive (C) is 5%.
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Example 3 is used, and other operations are the same as in Example 1.
  • Electrolyte preparation In a glove box filled with argon, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then Dissolve fully dried lithium hexafluorophosphate (LiPF 6 ) in the above solvent, stir and mix into a uniform solution, and then combine the molecular structure of (1-ethoxy)(3-hexamethyldisilazane) as shown in formula (D) (Base) Tetrafluorocyclotriphosphazene additive and fluoroethylene carbonate (FEC) were added to the above solution separately, and mixed uniformly to prepare the electrolyte of Example 4 of the present invention.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • PP propyl propionate
  • the concentration of LiPF 6 is 1.0 mol/L
  • the mass percentages of EC, DEC, PC and PP are 25:25:30:20
  • the mass percentages of additive (D) and FEC are 3% and 3%, respectively.
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Example 4 is used, and the other operations are the same as in Example 1.
  • Electrolyte preparation In a glove box filled with argon, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then Dissolve fully dried lithium hexafluorophosphate (LiPF 6 ) in the above solvent, stir and mix into a uniform solution, and then combine the molecular structure of (hexamethyldisilazane) (trifluoroethoxy) as shown in formula (E)
  • the tetrafluorocyclotriphosphazene additive was added to the above solution and mixed uniformly to prepare the electrolyte of Example 5 of the present invention.
  • the concentration of LiPF 6 is 1.0 mol/L
  • the mass percentages of EC, DEC, PC and PP are 25:25:30:20, respectively
  • the mass percentage of the additive (E) is 3%.
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Example 5 is used, and the other operations are the same as in Example 1.
  • Electrolyte preparation In a glove box filled with argon, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then Dissolve fully dried lithium hexafluorophosphate (LiPF 6 ) in the above solvent, stir and mix to form a uniform solution, and then combine the molecular structure of (hexamethyldisilazane) (phenoxy) tetrafluoroethylene as shown in formula (F)
  • the cyclotriphosphazene additive was added to the above solution and mixed uniformly to prepare the electrolyte of Example 6 of the present invention.
  • the concentration of LiPF 6 is 1.0 mol/L
  • the mass percentages of EC, DEC, PC and PP are 25:25:30:20, respectively
  • the mass percentage of the additive (F) is 5%.
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Example 6 is used, and the other operations are the same as in Example 1.
  • Electrolyte preparation In a glove box filled with argon, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then Dissolve fully dried lithium hexafluorophosphate (LiPF 6 ) in the above solvent, stir and mix into a uniform solution, and then combine the molecular structure of (Di-hexamethyldisilazane) tetrafluorocyclotriphosphorus as shown in formula (G)
  • the nitrile additive was added to the above solution and mixed uniformly to prepare the electrolyte of Example 7 of the present invention.
  • the concentration of LiPF 6 is 1.0 mol/L
  • the mass percentages of EC, DEC, PC, and PP are 25:25:30:20, respectively
  • the mass percentage of the additive (G) is 3%.
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Example 7 is used, and other operations are the same as in Example 1.
  • Electrolyte preparation In a glove box filled with argon, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then Dissolve fully dried lithium hexafluorophosphate (LiPF 6 ) in the above solvent, stir and mix into a uniform solution, and then combine the molecular structure of (tris-hexamethyldisilazane) trifluorocyclotriphosphorus as shown in formula (H)
  • the nitrile additive was added to the above solution and mixed uniformly to prepare the electrolyte of Example 8 of the present invention.
  • the concentration of LiPF 6 is 1.0 mol/L
  • the mass percentages of EC, DEC, PC and PP are 25:25:30:20, respectively
  • the mass percentage of the additive (H) is 2%.
  • Example 1 The only difference from Example 1 is that the electrolyte prepared in Example 8 is used, and the other operations are the same as in Example 1.
  • Electrolyte preparation In a glove box filled with argon, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then Dissolve fully dried lithium hexafluorophosphate (LiPF 6 ) in the above solvent, stir and mix into a uniform solution, and then change the molecular structure of (hexamethyldisilazane) (methylsulfonic acid) as shown in formula (H)
  • the tetrafluorocyclotriphosphazene additive was added to the above solution and mixed uniformly to prepare the electrolyte of Example 9 of the present invention.
  • the concentration of LiPF 6 is 1.0 mol/L
  • the mass percentages of EC, DEC, PC, and PP are 25:25:30:20, respectively
  • the mass percentage of additive (I) is 3%.
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Example 9 is used, and the other operations are the same as in Example 1.
  • LiPF 6 lithium hexafluorophosphate
  • the concentration of LiPF 6 is 1.0 mol/liter
  • the mass percentages of EC, DEC, PC, and PP are 25:25:30:20, respectively.
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Comparative Example 1 is used, and the other operations are the same as in Example 1.
  • ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then fully dried lithium hexafluorophosphate (LiPF 6 ) and lithium difluoroborate (LiDFOB) were dissolved in the above solvent, stirred and mixed uniformly to prepare the electrolyte of Comparative Example 2 of the present invention.
  • LiPF 6 lithium hexafluorophosphate
  • LiDFOB lithium difluoroborate
  • the concentration of LiPF 6 is 1.0 mol/liter
  • the concentration of LiDFOB is 0.05 mol/liter
  • the mass percentages of EC, DEC, PC, and PP are 25:25:30:20, respectively.
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Comparative Example 2 is used, and the other operations are the same as in Example 1.
  • ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) and propyl propionate (PP) are mixed to form an organic solvent, and then fully dried lithium hexafluorophosphate (LiPF 6 ) was dissolved in the above solvent, stirred and mixed to form a uniform solution, and then fluoroethylene carbonate (FEC) was added to the above solution and mixed uniformly to prepare the electrolyte of Comparative Example 3 of the present invention.
  • LiPF 6 lithium hexafluorophosphate
  • FEC fluoroethylene carbonate
  • Example 1 The difference from Example 1 is only that the electrolyte prepared in Comparative Example 3 is used, and the other operations are the same as in Example 1.
  • the battery was subjected to a charge-discharge cycle test at a charge-discharge rate of 1.0/1.0C .
  • the voltage range of the graphite/LiCoO 2 battery was 3.0V-4.48V, and the capacity retention rate was recorded for 100 weeks.
  • the battery Under the condition of an ambient temperature of 25°C ⁇ 3°C, the battery is charged and discharged once at 0.2C/0.2C, this time the capacity is the initial capacity; the battery is fully charged again at 0.2C, and the charged battery is at 70°C Leave it for 24 hours, then leave it open at room temperature for 2 hours, discharge at a constant current of 0.2C to the end voltage, and record it as the remaining capacity.
  • the voltage range of the graphite/LiCoO 2 battery is 3.0V-4.48V. Record the remaining capacity retention rate (remaining Capacity/initial capacity*100%).
  • the electrolyte of Examples 1-9 of the present application has a certain flame resistance. This is because the electrolyte of Examples 1-9 is added with a suitable amount of the electrolyte of the examples of the present application. Additives, and the cyclotriphosphazene structure in the electrolyte additive of this application will decompose to produce P-based radicals when the electrolyte is heated The reaction can improve the flame resistance of the electrolyte.
  • the batteries in Examples 1-9 of the present application have better high-voltage cycling performance, and the batteries exhibit higher performance after 100 cycles of cycles.
  • the capacity retention rate also shows better high-temperature storage performance.
  • the electrolytes of Examples 1-9 are added with a suitable amount of the electrolyte additives of the examples of the application.
  • the electrolyte additives in the embodiments of this application contain a silicon-nitrogen structure, which can effectively capture the HF generated by the decomposition of the electrolyte and avoid the influence of HF on the cathode material.
  • the cyclotriphosphazene structure in the additive can be used under high voltage conditions.
  • Oxidation and decomposition can form a stable interface film on the surface of the positive electrode, and further prevent side reactions caused by direct contact between the electrolyte and the positive electrode material, thereby improving the battery's high-voltage cycle performance and high-temperature storage performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电解液添加剂,包括环三磷腈六元环结构,环三磷腈六元环结构中的三个磷原子上共有六个取代基团,六个取代基团中,至少有一个为-N(Si R1'R2'R3')(Si R4'R5'R6'),R1'、R2'、R3'、R4'、R5'、R6'分别选自烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基中的任意一种。该电解液添加剂在高电压条件下可在正极表面形成稳定界面膜,同时可捕获电解液分解产生的HF,从而可以从物理和化学两个层面有效避免HF对正极材料的影响,提升电池性能。还提供一种二次电池电解液、二次电池和终端。

Description

电解液添加剂、二次电池电解液、二次电池和终端
本申请要求于2020年4月28日提交中国专利局、申请号为202010349137.3、申请名称为“电解液添加剂、二次电池电解液、二次电池和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及二次电池技术领域,尤其涉及一种电解液添加剂、二次电池电解液、二次电池和终端。
背景技术
锂二次电池由于能量密度高、工作电压高、使用寿命长、自放电率低和环境友好等优点,已在终端产品(智能手机、数码相机、笔记本电脑和电动汽车等)中得到了广泛的应用。随着行业的快速发展,对电池能量密度的需求越来越高,其中开发高电压正极材料(>4.4V)是提高锂二次电池能量密度的有效技术手段之一。
然而,目前的常规电解液体系很难维持电池在4.40V以上条件下的长期循环和高温存储性能,在高电压下正极材料与电解液接触会发生一系列副反应,造成电池循环衰减甚至引发安全性问题。而且,目前常规电解液体系大都以六氟磷酸锂(LiPF 6)为主导锂盐,由于LiPF 6自身化学热稳定性较差,对水敏感,易分解产生氟化氢(HF),而HF会与高电压正极材料发生严重的副反应,破坏正极材料结构,加速正极材料中过渡金属的溶出,因此会严重恶化电池性能。为解决上述问题,有必要开发一种高电压电解液体系,以对正极材料形成有效保护。
发明内容
本申请实施例提供了一种电解液添加剂,该电解液添加剂在高电压条件下可在正极表面形成稳定界面膜,同时可捕获电解液分解产生的HF,从而可以从物理和化学两个层面有效降低HF对正极材料的影响,提升电池性能。
具体地,本申请实施例第一方面提供了一种电解液添加剂,所述电解液添加剂的分子结构包括环三磷腈六元环结构,所述环三磷腈六元环结构中的三个磷原子上共有六个取代基团,所述六个取代基团中,至少有一个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),其中,所述R 1'、R 2'、R 3'、R 4'、R 5'、R 6'分别选自烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基中的任意一种。
本申请实施方式中,所述六个取代基团中,除所述-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')以外的其余取代基团分别选自氟、氯、溴、烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基、取代磺酸基、取代磷酸酯基、取代酰亚胺基和取代磺酰亚胺基中的任意一种。
本申请实施方式中,所述其余取代基团中有一个或多个取代基团为氟、氯、溴、卤代 烷基、卤代烷氧基、卤代烯基、卤代烯氧基、卤代芳基或卤代芳氧基。
本申请实施方式中,所述其余取代基团中有一个或多个取代基团为氟、氟代烷基、氟代烷氧基、氟代烯基、氟代烯氧基、氟代芳基或氟代芳氧基。
本申请一实施方式中,所述六个取代基团中,有一个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),所述电解液添加剂的化学结构式如式(Ⅰ)所示:
Figure PCTCN2021087317-appb-000001
式(Ⅰ)中,所述R 1、R 2、R 3、R 4、R 5为所述其余取代基团。
本申请另一实施方式中,所述六个取代基团中,有两个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),所述电解液添加剂的化学结构式如式(Ⅱ)所示:
Figure PCTCN2021087317-appb-000002
式(Ⅱ)中,所述R 1、R 2、R 3、R 5为所述其余取代基团。
本申请又一实施方式中,所述六个取代基团中,有三个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),所述R 2、R 4和R 6为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),所述电解液添加剂的化学结构式如式(Ⅲ)所示:
Figure PCTCN2021087317-appb-000003
式(Ⅲ)中,所述R 1、R 3、R 5为所述其余取代基团。
本申请实施方式中,所述R 1'、R 2'、R 3'、R 4'、R 5'、R 6'中,所述烷基、卤代烷基、烷氧基、卤代烷氧基的碳原子数为1-20;所述烯基、卤代烯基、烯氧基、卤代烯氧基的碳原子数为2-20;所述芳基、卤代芳基、芳氧基、卤代芳氧基的碳原子数为6-20。
本申请实施方式中,所述R 1'、R 2'、R 3'、R 4'、R 5'、R 6'中,所述卤代烷基、卤代烷氧基、卤代烯基、卤代烯氧基、卤代芳基和卤代芳氧基中的卤素包括氟、氯、溴、碘,所述卤代为全卤代或部分卤代。
本申请实施方式中,所述其余取代基团中,所述烷基、卤代烷基、烷氧基、卤代烷氧基的碳原子数为1-20;所述烯基、卤代烯基、烯氧基、卤代烯氧基的碳原子数为2-20;所述芳基、卤代芳基、芳氧基、卤代芳氧基的碳原子数为6-20。
本申请实施方式中,所述其余取代基团中,所述卤代烷基、卤代烷氧基、卤代烯基、卤代烯氧基、卤代芳基和卤代芳氧基中的卤素包括氟、氯、溴、碘,所述卤代为全卤代或部分卤代。
本申请实施例第二方面提供一种二次电池电解液,包括电解质盐、非水有机溶剂和添加剂,所述添加剂包括本申请实施例第一方面所述的电解液添加剂。
本申请实施方式中,所述电解液添加剂在所述二次电池电解液中的质量百分含量为0.1%-10%。
本申请实施方式中,所述电解质盐包括锂盐、钠盐、钾盐、镁盐、锌盐和铝盐中的至少一种。
本申请实施方式中,电解质盐包括MClO 4、MBF 4、MPF 6、MAsF 6、MPF 2O 2、MCF 3SO 3、MTDI、MB(C 2O 4) 2(MBOB)、MBF 2C 2O 4(MDFOB)、M[(CF 3SO 2) 2N]、M[(FSO 2) 2N]和M[(C mF 2m+1SO 2)(C nF 2n+1SO 2)N]中的一种或多种,其中,M为Li、Na或K,m和n为自然数。
本申请实施方式中,电解质盐在二次电池电解液中的摩尔浓度为0.01mol/L-8.0mol/L。
本申请实施方式中,非水有机溶剂包括碳酸酯类溶剂、醚类溶剂、羧酸酯类溶剂中的一种或多种。
本申请实施方式中,所述添加剂还包括其它添加剂,所述其它添加剂包括氟代碳酸乙烯酯、联苯、氟苯、碳酸亚乙烯酯、三氟甲基碳酸乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、亚硫酸乙烯酯、丁二腈、己二腈、1,2-二(2-氰乙氧基)乙烷和1,3,6-己烷三腈中的一种或多种。
本申请实施例第三方面提供一种二次电池,包括正极、负极、隔膜和电解液,所述电解液包括本申请实施例第二方面所述的二次电池电解液。
本申请实施方式中,所述负极包括碳基负极、硅基负极、锡基负极、锂负极、钠负极、钾负极、镁负极、锌负极和铝负极中的一种或多种。
本申请实施方式中,所述碳基负极包括石墨、硬碳、软碳、石墨烯中的一种或多种,所述硅基负极包括硅、硅碳、硅氧、硅金属化合物中的一种或多种,所述锡基负极包括锡、锡碳、锡氧、锡金属化合物中的一种或多种。锂负极、钠负极、钾负极、镁负极、锌负极、铝负极可以是锂、钠、钾、镁、锌、铝金属单质或其合金,也可以是具有集流体的上述金 属或其合金,即包括集流体和设置在集流体上的上述金属单质或合金层。以锂负极为例,锂负极可以是单纯的金属锂或锂合金,例如锂箔,也可以是包括集流体和设置在集流体上的金属锂或锂合金,例如锂铜复合带。
本申请实施方式中,所述锂合金包括锂硅合金、锂钠合金、锂钾合金、锂铝合金、锂锡合金和锂铟合金中的至少一种。
本申请实施方式中,所述二次电池包括锂二次电池、钾二次电池、钠二次电池、镁二次电池、锌二次电池或铝二次电池。
本申请实施例还提供一种终端,包括壳体、以及收容于所述壳体内的电子元器件和电池,所述电池为所述电子元器件供电,所述电池包括本申请实施例第三方面所述的二次电池。
本申请实施例提供的电解液添加剂,其分子结构中同时具有环三磷腈结构和硅氮结构-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),其中,环三磷腈结构在高电压条件下氧化分解,能够在正极表面形成稳定的界面膜,有效阻止电解液与正极材料直接接触引起的副反应,而硅氮结构可以有效捕获电解液分解产生的HF,因此,本申请实施例电解液添加剂可以从物理和化学两个层面降低高电压下HF对正极材料的影响,提升电池性能,使电池能够维持在4.40V以上条件下的长期循环和高温存储性能。
附图说明
图1是本申请实施例提供的一种二次电池的结构示意图;
图2是本申请实施例中电解液添加剂对钴酸锂正极的保护作用机理图;
图3是本申请实施例提供的一种终端的结构示意图;
图4是本申请实施例1-4和对比例1-3中的锂二次电池的循环曲线图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
如图1所示,二次电池(以锂离子电池为例)的核心部件包括正极材料101、负极材料102、电解液103、隔膜104以及相应的连通辅件和回路。充电时,锂离子从正极材料101的晶格中脱出,经过电解液103后沉积到负极;放电时,锂离子从负极脱出,经过电解液103后插入到正极材料101的晶格中。其中,电解液是锂离子在正负极之间传输的介质,主要由锂盐、非水有机溶剂(常规为碳酸酯类溶剂)和添加剂组成。目前常规碳酸酯类电解液很难维持电池在4.40V以上高电压条件下的长期循环和高温存储性能,鉴于此,本申请实施例提供了一种电解液添加剂,在电解液中加入少量该电解液添加剂,能显著改善电池的高电压循环性能,而且该电解液添加剂的加入对电芯体系影响较小。
具体地,本申请实施例提供的电解液添加剂,其分子结构包括环三磷腈六元环结构,环三磷腈六元环结构中的三个磷原子上共有六个取代基团,分别为R 1、R 2、R 3、R 4、R 5、R 6,R 1、R 2、R 3、R 4、R 5、R 6中至少有一个取代基团为硅氮结构基团-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6');其中,R 1'、R 2'、R 3'、R 4'、R 5'、R 6'分别选自烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基中 的任意一种。
本申请实施例提供的电解液添加剂,将硅氮结构-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')通过化学键接枝到环三磷腈结构上,使得添加剂同时具有高电压成膜功能和捕获HF功能的双重特性,从而能够维持电池在4.40V以上条件下的长期循环和高温存储性能。具体地,该电解液添加剂中的环三磷腈结构在高电压条件下氧化分解,能够在正极表面形成稳定的界面膜,有效阻止电解液与正极材料直接接触引起的副反应,而硅氮结构可以有效捕获电解液分解产生的HF,有效避免HF对正极材料的影响。因此,本申请实施例电解液添加剂可以从物理和化学两个层面降低高电压下HF对正极材料的影响,提升电池性能。
本申请实施方式中,R 1、R 2、R 3、R 4、R 5、R 6中,除-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')以外的其余取代基团可分别选自氟、氯、溴、烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基、取代磺酸基、取代磷酸酯基、取代酰亚胺基和取代磺酰亚胺基中的任意一种。
本申请一些实施方式中,R 1、R 2、R 3、R 4、R 5、R 6中有一个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),例如,R 6为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),而其余取代基团R 1、R 2、R 3、R 4、R 5分别选自氟、氯、溴、烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基、取代磺酸基、取代磷酸酯基、取代酰亚胺基和取代磺酰亚胺基中的任意一种,此时,电解液添加剂的化学结构式如式(Ⅰ)所示:
Figure PCTCN2021087317-appb-000004
本申请另一些实施方式中,R 1、R 2、R 3、R 4、R 5、R 6中有两个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),例如,R 4和R 6为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),而其余取代基团R 1、R 2、R 3、R 5分别选自氟、氯、溴、烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基、取代磺酸基、取代磷酸酯基、取代酰亚胺基和取代磺酰亚胺基中的任意一种,此时,电解液添加剂的化学结构式如式(Ⅱ)所示:
Figure PCTCN2021087317-appb-000005
当然,在其他一些实施方式中,也可以是两个-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')基团连接在环三磷腈结构中的同一个磷原子上。
本申请另一些实施方式中,R 1、R 2、R 3、R 4、R 5、R 6中有三个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),例如,R 2、R 4和R 6为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),而其余取代基团R 1、R 2、R 3、R 5分别选自氟、氯、溴、烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基、取代磺酸基、取代磷酸酯基、取代酰亚胺基和取代磺酰亚胺基中的任意一种,此时,电解液添加剂的化学结构式如式(Ⅲ)所示:
Figure PCTCN2021087317-appb-000006
同样,在其他一些实施方式中,也可以是有两个-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')基团连接在环三磷腈结构中的同一个磷原子上。
本申请其他一些实施方式中,R 1、R 2、R 3、R 4、R 5、R 6中也可以是有四个、五个、甚至六个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')。可以理解地,取代基团-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')越多,越有利于提高其捕获电解液中HF的能力。
本申请一些实施方式中,R 1、R 2、R 3、R 4、R 5、R 6中除-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')以外的其余取代基团中,有一个或多个取代基团为氟、氯、溴、卤代烷基、卤代烷氧基、卤代烯基、卤代烯氧基、卤代芳基或卤代芳氧基。当其余取代基团中有一个或多个为上述含卤基团时,会使得在正极表面形成的界面膜中含有一定含量的稳定的卤化物(如氟化锂),从而对正极材料形成有力保护。其中,当R 1、R 2、R 3、R 4、R 5、R 6中有多个(两个或两个以上)取代基团为上述含卤基团时,有利于提高正极界面膜中卤化物的含量,提高界面膜保护性能。本申请一些实施方式中,R 1、R 2、R 3、R 4、R 5、R 6中除-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')以外的其余取代基团中,有一个或多个取代基团为氟、氟代烷基、氟代烷氧基、氟代烯基、氟代烯氧基、氟代芳基、氟代芳氧基中的任意一种。当其余取代基团为含氟基团时,可使得在正极表面形成的界面膜中含有一定含量的稳定的氟化物,更有利于对正极形成有效保护。
本申请实施方式中,R 1、R 2、R 3、R 4、R 5、R 6和R 1'、R 2'、R 3'、R 4'、R 5'、R 6'中涉及到的烷基、卤代烷基、烷氧基、卤代烷氧基的碳原子数为1-20,进一步地,碳原子数可以是1-10,具体地碳原子数例如为1、2、3、4、5、6、7、8、9、10;烯基、卤代烯基、烯氧基、卤代烯氧基的碳原子数为2-20,进一步地,碳原子数可以是2-10,具体地碳原子数例如为 2、3、4、5、6、7、8、9、10;芳基、卤代芳基、芳氧基、卤代芳氧基的碳原子数为6-20,进一步地,碳原子数可以是7-10,具体地碳原子数例如为7、8、9、10。较少的碳原子数,有利于控制添加剂分子量,进而较好控制电解液粘度。本申请实施方式中,卤代烷基、卤代烷氧基、卤代烯基、卤代烯氧基、卤代芳基和卤代芳氧基中的卤素可以是氟、氯、溴或碘,卤代可以是全卤代,也可以是部分卤代。烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基可以是直链的也可以是支链的,或者也可以是环状。
本申请实施方式中,取代磺酸基表示为-O-S(=O) 2-R,其中R可选自烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基、取代磷酸酯基、取代酰亚胺基和取代磺酰亚胺基中的任意一种,取代磺酸基通过氧原子与环三磷腈六元环结构中的磷原子形成P-O键化学键合。R的碳原子数可为1-20。具体地,R可选自但不限于是-CH 3(甲基)、-CH 2CH 3(乙基)、-CH 2CH 2CH 3(丙基)、-CH(CH 3) 2(异丙基)、-CH 2CH 2CH 2CH 3(丁基)、-CH 2CH 2CH=CH 2(1-丁烯基)、-CF 2CF 2CF 2CF 3(全氟取代丁烷基)、-OCH 2CF 3(三氟取代乙氧基)、甲基苯基、乙烯基苯基、氟代苯基或-OP=O(OCH 3) 2(二甲基磷酸酯基)、-OP=O(OCH 2CF 3) 2(二-三氟乙基磷酸酯基)、-NHC(=O)CH 3(乙酰亚胺基)、-NHS(=O) 2CF 3(三氟甲基磺酰亚胺基)。取代磺酸基具有一定高电压成膜性能,当其余取代基团包括一个或多个取代磺酸基时,可以进一步提升电解液添加剂在正极表面的高电压成膜性能。
本申请实施方式中,取代酰亚胺基可表示为-NH-C(=O)-X,其中X可选自烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基中的任意一种。X的碳原子数可为1-20。
本申请实施方式中,取代磺酰亚胺基可表示为-NH-S(=O) 2-Y,其中Y可选自烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基中的任意一种。Y的碳原子数可为1-20。
本申请实施方式中,取代磺酸基、取代酰亚胺基和取代磺酰亚胺基中的含有卤素的取代基团,其卤素可以是氟、氯、溴、碘,卤代可以是全卤代,也可以是部分卤代。烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基可以是直链的也可以是支链的,或者也可以是环状。
本申请实施方式中,R 1、R 2、R 3、R 4、R 5、R 6中除-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')以外的其余取代基团可为相同或不同基团。
在本申请具体的实施方式中,电解液添加剂的分子结构式可如式(A)-(I)所示:
[根据细则91更正 08.05.2021] 
Figure WO-DOC-FIGURE-1
[根据细则91更正 08.05.2021] 
Figure WO-DOC-FIGURE-2
本申请实施方式中,取代基团-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')通过N原子与环三磷 腈结构中的P原子形成稳定的N-P共价键合,从而可随环三磷腈结构一同在正极成膜,并与HF反应生成氟硅烷等化合物。以电解液添加剂(A)为例,本申请实施例的电解液添加剂对钴酸锂正极的保护作用机理图如图2所示,在电芯化成和/或充放电过程中,电解液添加剂(A)由于具有环三磷腈结构可在正极成膜,形成稳定的界面保护膜,构成物理保护屏障,同时保护膜外层含有大量硅氮结构基团,硅氮结构基团可以与电解液中微量的HF反应,另外存在于电解液中的电解液添加剂也能捕获HF,从而起到去除HF的作用,对正极形成化学保护。
本申请实施例提供的电解液添加剂,其分子结构中同时含有环三磷腈结构和硅氮结构,可使添加剂从物理和化学的双重作用构成对HF的有力防御屏障,从而提高电解液的高电压特性和高温存储性能。本申请实施例电解液添加剂由于含有环三磷腈结构,也具有优异的阻燃特性,可提升电池的安全性。采用本申请实施例提供的电解液添加剂,可以有效避免多种添加剂的加入对电解液性能造成的不良影响,如粘度增大、与负极相容性差等问题。另外,本申请实施例提供的电解液添加剂,具有与正负极材料良好的兼容性,不会恶化电池其它方面性能(如低温和倍率性能),对电芯体系的影响较小。
本申请实施方式中,上述电解液添加剂可通过不同方法制备得到,具体制备方法不限,根据环三磷腈衍生物的常规制备工艺、结合取代基团的性质进行合理综合设计即可。
在本申请一些实施方式中,以电解液添加剂(A)为例,可以是按照以下方式制备:
向三口烧瓶中分别加入三乙胺(作为缚酸剂)、六氟环三磷腈和乙腈(作为溶剂),在-20℃-30℃条件下向三口烧瓶中缓慢加入六甲基二硅烷胺,再在25℃-60℃下搅拌反应6-48小时,经过过滤、干燥等后处理,即可得到式(A)所示电解液添加剂。
在本申请另一些实施方式中,以电解液添加剂(D)为例,可以是按照以下方式制备:
向三口烧瓶中分别加入三乙胺(作为缚酸剂)、(乙氧基)五氟环三磷腈和乙腈(作为溶剂),在-20℃-30℃条件下向三口烧瓶中缓慢加入六甲基二硅烷胺,再在25℃-60℃下搅拌反应6-48小时,经过过滤、干燥等后处理,即可得到式(D)所示电解液添加剂。
在本申请另一些实施方式中,以电解液添加剂(F)为例,可以是按照以下方式制备:
向三口烧瓶中分别加入三乙胺(作为缚酸剂)、(苯氧基)五氟环三磷腈和乙腈(作为溶剂),在-20℃-30℃条件下向三口烧瓶中缓慢加入六甲基二硅烷胺,再在25℃-60℃下搅拌反应6-48小时,经过过滤、干燥等后处理,即可得到式(F)所示电解液添加剂。
本申请实施例还提供一种二次电池电解液,包括电解质盐、非水有机溶剂和添加剂,添加剂包括本申请实施例上述的电解液添加剂。
本申请实施方式中,电解液添加剂在二次电池电解液中的质量百分含量可以是0.1%-10%。进一步地,电解液添加剂在二次电池电解液中的质量百分含量可以是0.5%-8%、1%-6%、2%-5%、0.5%-1%。本申请实施方式中,较低含量的电解液添加剂的加入,便可有效提高电池的高电压循环性能。同时较低含量的电解液添加剂的加入能保证电解液的粘度不会太高,不至于影响电池性能。
本申请实施方式中,根据不同二次电池体系,电解质盐可以是锂盐、钠盐、钾盐、镁盐、锌盐、铝盐等。具体地,锂盐、钠盐、钾盐可以是MClO 4、MBF 4、MPF 6、MAsF 6、MPF 2O 2、MCF 3SO 3、MTDI、MB(C 2O 4) 2(MBOB)、MBF 2C 2O 4(MDFOB)、M[(CF 3SO 2) 2N]、 M[(FSO 2) 2N]和M[(C mF 2m+1SO 2)(C nF 2n+1SO 2)N]中的一种或多种,其中,M为Li、Na或K,m和n为自然数。同样,镁盐、锌盐、铝盐也可以是由镁离子、锌离子、铝离子与上述锂盐、钠盐、钾盐中的阴离子形成的盐类物质。
本申请实施方式中,电解质盐在二次电池电解液中的摩尔浓度为0.01mol/L-8.0mol/L。进一步地,可以是0.05mol/L-2mol/L、0.5mol/L-1.0mol/L。
本申请实施方式中,非水有机溶剂包括碳酸酯类溶剂、醚类溶剂、羧酸酯类溶剂中的一种或多种。非水有机溶剂可以按照任意比例混合。其中,碳酸酯类溶剂包括环状碳酸酯或链状碳酸酯,环状碳酸酯具体可以是但不限于碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、γ-丁内酯(GBL)、碳酸亚丁酯(BC)中的一种或多种;链状碳酸酯具体可以是碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)中的一种或多种。醚类溶剂包括环状醚或链状醚,环状醚具体可以是但不限于1,3-二氧戊烷(DOL)、1,4-二氧惡烷(DX)、冠醚、四氢呋喃(THF)、2-甲基四氢呋喃(2-CH 3-THF),2-三氟甲基四氢呋喃(2-CF 3-THF)中的一种或多种;所述链状醚具体可以是但不限于二甲氧基甲烷(DMM)、1,2-二甲氧基乙烷(DME)、二甘醇二甲醚(TEGDME)中的一种或多种。羧酸酯类溶剂具体可以是但不限于乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(EP)、乙酸丁酯、丙酸丙酯(PP)、丙酸丁酯中的一种或多种。
本申请实施方式中,二次电池电解液中除加入上述的电解液添加剂外,还可以根据不同性能需要,加入其它添加剂,其它添加剂具体可以是但不限于氟代碳酸乙烯酯、联苯、氟苯、碳酸亚乙烯酯、三氟甲基碳酸乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、亚硫酸乙烯酯、丁二腈、己二腈、1,2-二(2-氰乙氧基)乙烷和1,3,6-己烷三腈中的一种或多种。
相应地,本申请实施例还提供上述二次电池电解液的制备方法,包括以下步骤:
在惰性环境或密闭环境(如填充氩气的手套箱)中,将充分干燥的电解质盐溶解于非水有机溶剂中,搅拌混合均匀后,然后将电解液添加剂加入到上述溶液中,混合均匀后得到二次电池电解液。
上述制备方法中的各操作可根据现有常规电解液制备工艺实施,其中,关于电解质盐、非水有机溶剂、电解液添加剂等原料的具体选择如前文所述,此处不再赘述。当电解液还包括其它添加剂时,可与本申请实施例电解液添加剂一同加入。
本申请实施例还提供一种二次电池,包括正极、负极、隔膜和电解液,其中,电解液采用本申请实施例上述提供的二次电池电解液。本申请实施例提供的二次电池,由于其电解液中加入了本申请前述的电解液添加剂,因此能够获得较良好的循环稳定性。本申请实施方式中,二次电池可以是锂二次电池、钾二次电池、钠二次电池、镁二次电池、锌二次电池、铝二次电池等。本申请实施例提供的二次电池,可用于终端消费产品,如手机、平板电脑、移动电源、便携机、笔记本电脑以及其它可穿戴或可移动的电子设备、以及汽车等产品,以提高产品性能。
本申请实施方式中,负极可包括碳基负极、硅基负极、锡基负极、锂负极、钠负极、钾负极、镁负极、锌负极和铝负极中的一种或多种。其中碳基负极可包括石墨、硬碳、软碳、石墨烯等;硅基负极可包括硅、硅碳、硅氧、硅金属化合物等;锡基负极可包括锡、 锡碳、锡氧、锡金属化合物。锂负极、钠负极、钾负极、镁负极、锌负极、铝负极可以是锂、钠、钾、镁、锌、铝金属单质或其合金,也可以是具有集流体的上述金属或其合金,即包括集流体和设置在集流体上的上述金属单质或合金层。以锂负极为例,锂负极可以是单纯的金属锂或锂合金,例如锂箔,也可以是包括集流体和设置在集流体上的金属锂或锂合金,例如锂铜复合带。锂合金具体可以是锂硅合金、锂钠合金、锂钾合金、锂铝合金、锂锡合金和锂铟合金中的至少一种。
本申请实施方式中,正极包括能够可逆地嵌入/脱嵌金属离子(锂离子、钠离子、钾离子、镁离子、锌离子、铝离子等)的正极活性材料,本申请对正极活性材料的选择无特殊限定,可为现有二次电池常规使用的正极活性材料。以锂二次电池为例,正极活性材料可以是但不限于钴酸锂(LiCoO 2)、磷酸铁锂(LiFePO 4)、镍钴锰酸锂(LiNi 0.6Co 0.2Mn 0.2)、聚阴离子锂化合物LiM x(PO 4) y(M为Ni、Co、Mn、Fe、Ti、V、0≤x≤5、0≤y≤5)等。
本申请实施方式中,正极的集流体可以是铝、钛、钽等金属或其合金,负极的集流体可以是铜、镍、不锈钢等材质。
本申请实施方式中,隔膜可为现有常规隔膜,包括但不限于单层PP(聚丙烯)、单层PE(聚乙烯)、双层PP/PE、双层PP/PP和三层PP/PE/PP等隔膜。
如图3所示,本申请实施例还提供一种终端,该终端200可以是手机、也可以是平板电脑、笔记本电脑、便携机、智能穿戴产品、汽车等产品,包括壳体201、以及收容于壳体201内的电子元器件和电池(图中未示出),电池为电子元器件供电,其中,电池为本申请实施例上述提供的二次电池,壳体201可包括组装在终端前侧的前盖和组装在后侧的后壳,电池可固定在后壳内侧。
下面通过具体实施例对本申请实施例技术方案进行进一步的说明。
实施例1
电解液的配制:在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将分子结构式如式(A)所示的(六甲基二硅氮烷基)五氟环三磷腈添加剂加入上述溶液,混合均匀制得本发明实施例1的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20,添加剂(A)的质量百分含量为5%。
Figure PCTCN2021087317-appb-000009
锂二次电池的制作:
称取质量百分含量为2%聚偏氟乙烯(PVDF)、2%导电剂super P和96%钴酸锂(LiCoO 2),依次加入到N-甲基吡咯烷酮(NMP)中,充分搅拌混合均匀,将浆料涂布在铝箔集流体上, 烘干、冷压、分切制得正极极片。
称取质量百分含量为1.5%CMC(羧甲基纤维素钠)、2.5%SBR(丁苯橡胶)、1%乙炔黑和95%石墨,依次加入到去离子水中,充分搅拌混合均匀,将浆料涂布在铜箔集流体上,烘干、冷压、分切制得负极极片。
将上述制备的正极极片、负极极片和商用PE隔膜制成电芯,采用聚合物包装,灌注上述实施例1制备的电解液,经化成等工艺后制成软包锂二次电池。
实施例2
电解液的配制:在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)和二氟硼酸锂(LiDFOB)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将分子结构式如式(B)所示的(六乙基二硅氮烷基)五氟环三磷腈添加剂加入上述溶液,混合均匀制得本发明实施例2的电解液。其中,LiPF 6的浓度为1.0摩尔/升,LiDFOB的浓度为0.05摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20,添加剂(B)的质量百分含量为3%。
Figure PCTCN2021087317-appb-000010
锂二次电池的制作:
与实施例1的区别仅在于采用实施例2制备得到的电解液,其他操作同实施例1。
实施例3
电解液的配制:在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将分子结构式如式(C)所示的(六-三氟甲基二硅氮烷基)五氟环三磷腈添加剂加入上述溶液,混合均匀制得本发明实施例3的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20,添加剂(C)的质量百分含量为5%。
Figure PCTCN2021087317-appb-000011
锂二次电池的制作:
与实施例1的区别仅在于采用实施例3制备得到的电解液,其他操作同实施例1。
实施例4
电解液的配制:在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将分子结构式如式(D)所示的(1-乙氧基)(3-六甲基二硅氮烷基)四氟环三磷腈添加剂和氟代碳酸乙烯酯(FEC)分别加入上述溶液,混合均匀制得本发明实施例4的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20,添加剂(D)和FEC的质量百分含量分别为3%和3%。
Figure PCTCN2021087317-appb-000012
锂二次电池的制作:
与实施例1的区别仅在于采用实施例4制备得到的电解液,其他操作同实施例1。
实施例5
电解液的配制:在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将分子结构式如式(E)所示的(六甲基二硅氮烷基)(三氟乙氧基)四氟环三磷腈添加剂加入上述溶液,混合均匀制得本发明实施例5的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20,添加剂(E)的质量百分含量为3%。
Figure PCTCN2021087317-appb-000013
锂二次电池的制作:
与实施例1的区别仅在于采用实施例5制备得到的电解液,其他操作同实施例1。
实施例6
电解液的配制:在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将分子结构式如式(F)所示的(六甲基二硅氮烷基)(苯氧基)四氟环三磷腈添加剂加入上述溶液,混合均匀制得本发明实施例6的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25: 25:30:20,添加剂(F)的质量百分含量为5%。
Figure PCTCN2021087317-appb-000014
锂二次电池的制作:
与实施例1的区别仅在于采用实施例6制备得到的电解液,其他操作同实施例1。
实施例7
电解液的配制:在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将分子结构式如式(G)所示的(二-六甲基二硅氮烷基)四氟环三磷腈添加剂加入上述溶液,混合均匀制得本发明实施例7的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20,添加剂(G)的质量百分含量为3%。
Figure PCTCN2021087317-appb-000015
锂二次电池的制作:
与实施例1的区别仅在于采用实施例7制备得到的电解液,其他操作同实施例1。
实施例8
电解液的配制:在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将分子结构式如式(H)所示的(三-六甲基二硅氮烷基)三氟环三磷腈添加剂加入上述溶液,混合均匀制得本发明实施例8的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20,添加剂(H)的质量百分含量为2%。
Figure PCTCN2021087317-appb-000016
锂二次电池的制作:
与实施例1的区别仅在于采用实施例8制备得到的电解液,其他操作同实施例1。
实施例9
电解液的配制:在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将分子结构式如式(H)所示的(六甲基二硅氮烷基)(甲基磺酸基)四氟环三磷腈添加剂加入上述溶液,混合均匀制得本发明实施例9的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20,添加剂(I)的质量百分含量为3%。
Figure PCTCN2021087317-appb-000017
锂二次电池的制作:
与实施例1的区别仅在于采用实施例9制备得到的电解液,其他操作同实施例1。
对比例1
在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌制得本发明对比例1的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20。
锂二次电池的制作:
与实施例1的区别仅在于采用对比例1制备得到的电解液,其他操作同实施例1。
对比例2
在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC) 和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)和二氟硼酸锂(LiDFOB)溶解于上述溶剂中,搅拌混合均匀制得本发明对比例2的电解液。其中,LiPF 6的浓度为1.0摩尔/升,LiDFOB的浓度为0.05摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20。
锂二次电池的制作:
与实施例1的区别仅在于采用对比例2制备得到的电解液,其他操作同实施例1。
对比例3
在填充氩气的手套箱中,将碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸丙烯酯(PC)和丙酸丙酯(PP)混合形成有机溶剂,再将充分干燥的六氟磷酸锂(LiPF 6)溶解于上述溶剂中,搅拌混合成均匀溶液,然后将氟代碳酸乙烯酯(FEC)加入上述溶液,混合均匀制得本发明对比例3的电解液。其中,LiPF 6的浓度为1.0摩尔/升,EC、DEC、PC和PP的质量百分数分别为25:25:30:20,FEC的质量百分含量为3%。
锂二次电池的制作:
与实施例1的区别仅在于采用对比例3制备得到的电解液,其他操作同实施例1。
将本申请实施例1-9和对比例1-3的电解液和锂二次电池进行以下性能测试:
1、电解液自熄性能测试
取1.0克电解液置于5.0毫升的坩埚中,点燃测试其自熄时间。用点火装置迅速点燃,记录点燃时间,并记录点火装置移开后至火焰自动熄灭的时间,即为自熄时间(SET)。每种电解液样品的SET测试5次并取其平均值。以单位质量电解液的自熄时间为标准,比较不同电解液的阻燃性能。
2、锂二次电池性能测试
2.1、循环性能测试
以1.0/1.0C充放电倍率对电池进行充放电循环测试,石墨/LiCoO 2电池的电压范围为3.0V-4.48V,记录100周的容量保持率。
2.2、高温存储性能测试
在环境温度25℃±3℃的条件下,电池按照0.2C/0.2C充放电1次,此次的容量为初始容量;电池再次按照0.2C充满电,充电后的电池在70℃温度条件下搁置24小时,然后在室温状态下开路搁置2h,以0.2C恒流放电至终止电压,记为剩余容量,石墨/LiCoO 2电池的电压范围为3.0V-4.48V,记录剩余容量保持率(剩余容量/初始容量*100%)。
实施例1-9和对比例1-3的测试结果列于表1和图4。
表1实施例1-9和对比例1-3的测试数据
Figure PCTCN2021087317-appb-000018
Figure PCTCN2021087317-appb-000019
从表1和图4可以看出,本申请实施例1-9的电解液具有一定的耐燃性,这是由于实施例1-9的电解液中加入了适合量的本申请实施例的电解液添加剂,而本申请电解液添加剂中的环三磷腈结构在电解液受热情况下,其环三磷腈会分解产生P系自由基捕获电解液受热分解产生的H或OH自由基,切断链式反应,从而可提高电解液的耐燃性。
另外,从表1和图4可以看出,相比对比例1-3,本申请实施例1-9中的电池具有更好的高电压循环性能,电池在100周循环后表现出更高的容量保持率,同时也表现出更好的高温存储性能,这是由于实施例1-9的电解液中加入有适合量的本申请实施例的电解液添加剂。一方面,本申请实施例电解液添加剂中含有硅氮结构,可以有效捕获电解液分解产生的HF,避免HF对正极材料的影响,同时该添加剂中的环三磷腈结构可以在高电压条件下氧化分解,能够在正极表面形成稳定的界面膜,进一步阻止电解液与正极材料直接接触引起的副反应,从而提升了电池高电压循环性能和高温存储性能。

Claims (24)

  1. 一种电解液添加剂,其特征在于,所述电解液添加剂的分子结构包括环三磷腈六元环结构,所述环三磷腈六元环结构中的三个磷原子上共有六个取代基团,所述六个取代基团中,至少有一个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),其中,所述R 1'、R 2'、R 3'、R 4'、R 5'、R 6'分别选自烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基中的任意一种。
  2. 如权利要求1所述的电解液添加剂,其特征在于,所述六个取代基团中,除所述-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6')以外的其余取代基团分别选自氟、氯、溴、烷基、卤代烷基、烷氧基、卤代烷氧基、烯基、卤代烯基、烯氧基、卤代烯氧基、芳基、卤代芳基、芳氧基、卤代芳氧基、取代磺酸基、取代磷酸酯基、取代酰亚胺基和取代磺酰亚胺基中的任意一种。
  3. 如权利要求2所述的电解液添加剂,其特征在于,所述其余取代基团中有一个或多个取代基团为氟、氯、溴、卤代烷基、卤代烷氧基、卤代烯基、卤代烯氧基、卤代芳基或卤代芳氧基。
  4. 如权利要求3所述的电解液添加剂,其特征在于,所述其余取代基团中有一个或多个取代基团为氟、氟代烷基、氟代烷氧基、氟代烯基、氟代烯氧基、氟代芳基或氟代芳氧基。
  5. 如权利要求2-4任一项所述的电解液添加剂,其特征在于,所述六个取代基团中,有一个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),所述电解液添加剂的化学结构式如式(Ⅰ)所示:
    Figure PCTCN2021087317-appb-100001
    式(Ⅰ)中,所述R 1、R 2、R 3、R 4、R 5为所述其余取代基团。
  6. 如权利要求2-4任一项所述的电解液添加剂,其特征在于,所述六个取代基团中,有两个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),所述电解液添加剂的化学结构式如式(Ⅱ)所示:
    Figure PCTCN2021087317-appb-100002
    式(Ⅱ)中,所述R 1、R 2、R 3、R 5为所述其余取代基团。
  7. 如权利要求2-4任一项所述的电解液添加剂,其特征在于,所述六个取代基团中,有三个取代基团为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),所述R 2、R 4和R 6为-N(Si R 1'R 2'R 3')(Si R 4'R 5'R 6'),所述电解液添加剂的化学结构式如式(Ⅲ)所示:
    Figure PCTCN2021087317-appb-100003
    式(Ⅲ)中,所述R 1、R 3、R 5为所述其余取代基团。
  8. 如权利要求1-7任一项所述的电解液添加剂,其特征在于,所述R 1'、R 2'、R 3'、R 4'、R 5'、R 6'中,所述烷基、卤代烷基、烷氧基、卤代烷氧基的碳原子数为1-20;所述烯基、卤代烯基、烯氧基、卤代烯氧基的碳原子数为2-20;所述芳基、卤代芳基、芳氧基、卤代芳氧基的碳原子数为6-20。
  9. 如权利要求1-8任一项所述的电解液添加剂,其特征在于,所述R 1'、R 2'、R 3'、R 4'、R 5'、R 6'中,所述卤代烷基、卤代烷氧基、卤代烯基、卤代烯氧基、卤代芳基和卤代芳氧基中的卤素包括氟、氯、溴、碘,所述卤代为全卤代或部分卤代。
  10. 如权利要求2-9任一项所述的电解液添加剂,其特征在于,所述其余取代基团中,所述烷基、卤代烷基、烷氧基、卤代烷氧基的碳原子数为1-20;所述烯基、卤代烯基、烯氧基、卤代烯氧基的碳原子数为2-20;所述芳基、卤代芳基、芳氧基、卤代芳氧基的碳原子数为6-20。
  11. 如权利要求2-10任一项所述的电解液添加剂,其特征在于,所述其余取代基团中,所述卤代烷基、卤代烷氧基、卤代烯基、卤代烯氧基、卤代芳基和卤代芳氧基中的卤素包括氟、氯、溴、碘,所述卤代为全卤代或部分卤代。
  12. 一种二次电池电解液,包括电解质盐、非水有机溶剂和添加剂,所述添加剂包括如权利要求1-11任一项所述的电解液添加剂。
  13. 如权利要求12所述的二次电池电解液,其特征在于,所述电解液添加剂在所述二次电池电解液中的质量百分含量为0.1%-10%。
  14. 如权利要求12或13所述的二次电池电解液,其特征在于,所述电解质盐包括锂盐、钠盐、钾盐、镁盐、锌盐和铝盐中的至少一种。
  15. 如权利要求12-14任一项所述的二次电池电解液,其特征在于,所述电解质盐包括MClO 4、MBF 4、MPF 6、MAsF 6、MPF 2O 2、MCF 3SO 3、MTDI、MB(C 2O 4) 2、MBF 2C 2O 4、M[(CF 3SO 2) 2N]、M[(FSO 2) 2N]和M[(C mF 2m+1SO 2)(C nF 2n+1SO 2)N]中的一种或多种,其中,M为Li、Na或K,m和n为自然数。
  16. 如权利要求12-15任一项所述的二次电池电解液,其特征在于,所述电解质盐在所述二次电池电解液中的摩尔浓度为0.01mol/L-8.0mol/L。
  17. 如权利要求12-16任一项所述的二次电池电解液,其特征在于,所述非水有机溶剂包括碳酸酯类溶剂、醚类溶剂、羧酸酯类溶剂中的一种或多种。
  18. 如权利要求12-17任一项所述的二次电池电解液,其特征在于,所述添加剂还包括其它添加剂,所述其它添加剂包括氟代碳酸乙烯酯、联苯、氟苯、碳酸亚乙烯酯、三氟甲基碳酸乙烯酯、碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、亚硫酸乙烯酯、丁二腈、己二腈、1,2-二(2-氰乙氧基)乙烷和1,3,6-己烷三腈中的一种或多种。
  19. 一种二次电池,其特征在于,包括正极、负极、隔膜和电解液,所述电解液包括权利要求12-18任一项所述的二次电池电解液。
  20. 如权利要求19所述的二次电池,其特征在于,所述负极包括碳基负极、硅基负极、锡基负极、锂负极、钠负极、钾负极、镁负极、锌负极和铝负极中的一种或多种。
  21. 如权利要求20所述的二次电池,其特征在于,所述碳基负极包括石墨、硬碳、软碳、石墨烯中的一种或多种;所述硅基负极包括硅、硅碳、硅氧、硅金属化合物中的一种或多种;所述锡基负极包括锡、锡碳、锡氧、锡金属化合物中的一种或多种;所述锂负极包括金属锂或锂合金。
  22. 如权利要求21所述的二次电池,其特征在于,所述锂合金包括锂硅合金、锂钠合金、锂钾合金、锂铝合金、锂锡合金和锂铟合金中的至少一种。
  23. 如权利要求20所述的二次电池,其特征在于,所述二次电池包括锂二次电池、钾二次电池、钠二次电池、镁二次电池、锌二次电池或铝二次电池。
  24. 一种终端,其特征在于,包括壳体、以及收容于所述壳体内的电子元器件和电池,所述电池为所述电子元器件供电,所述电池包括权利要求19-23任一项所述的二次电池。
PCT/CN2021/087317 2020-04-28 2021-04-14 电解液添加剂、二次电池电解液、二次电池和终端 WO2021218640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010349137.3 2020-04-28
CN202010349137.3A CN113571769A (zh) 2020-04-28 2020-04-28 电解液添加剂、二次电池电解液、二次电池和终端

Publications (1)

Publication Number Publication Date
WO2021218640A1 true WO2021218640A1 (zh) 2021-11-04

Family

ID=78157972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087317 WO2021218640A1 (zh) 2020-04-28 2021-04-14 电解液添加剂、二次电池电解液、二次电池和终端

Country Status (2)

Country Link
CN (1) CN113571769A (zh)
WO (1) WO2021218640A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507257A (zh) * 2021-06-07 2022-05-17 华南师范大学 一种氟代环状含磷分子及其应用
CN114914544A (zh) * 2022-05-18 2022-08-16 湖南大学 一种钠金属电池电解液及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863655B (zh) * 2023-02-27 2023-05-05 江门市科恒实业股份有限公司 一种耐高温钴酸锂正极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107915759A (zh) * 2017-11-08 2018-04-17 山东泽世新材料科技有限公司 一种高效阻燃剂硅氧基氟代环三磷腈及其合成方法
CN107936062A (zh) * 2016-10-13 2018-04-20 中国科学院福建物质结构研究所 一种环磷腈衍生物及其制备方法和用作电解液添加剂的用途
US10026991B2 (en) * 2014-07-04 2018-07-17 Fujifilm Corporation Manufacturing method for amino-substituted phosphazene compound, manufacturing method for electrolyte solution for nonaqueous secondary battery, and manufacturing method for nonaqueous secondary battery
CN108963337A (zh) * 2017-05-26 2018-12-07 宁德时代新能源科技股份有限公司 锂离子电池及其电解液
CN112242562A (zh) * 2019-07-16 2021-01-19 东莞市杉杉电池材料有限公司 一种阻燃型锂离子电池电解液及含该电解液的锂离子电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437372B (zh) * 2011-11-22 2014-04-16 华为技术有限公司 锂离子电池电解液及含有该电解液的锂离子电池
CN105098245A (zh) * 2015-08-14 2015-11-25 东莞市凯欣电池材料有限公司 一种含氟代碳酸乙烯酯的锂离子电池电解液及一种锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10026991B2 (en) * 2014-07-04 2018-07-17 Fujifilm Corporation Manufacturing method for amino-substituted phosphazene compound, manufacturing method for electrolyte solution for nonaqueous secondary battery, and manufacturing method for nonaqueous secondary battery
CN107936062A (zh) * 2016-10-13 2018-04-20 中国科学院福建物质结构研究所 一种环磷腈衍生物及其制备方法和用作电解液添加剂的用途
CN108963337A (zh) * 2017-05-26 2018-12-07 宁德时代新能源科技股份有限公司 锂离子电池及其电解液
CN107915759A (zh) * 2017-11-08 2018-04-17 山东泽世新材料科技有限公司 一种高效阻燃剂硅氧基氟代环三磷腈及其合成方法
CN112242562A (zh) * 2019-07-16 2021-01-19 东莞市杉杉电池材料有限公司 一种阻燃型锂离子电池电解液及含该电解液的锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EDGAR NIECKE,HORST THAMM,GERALD FLASKERUD: "2.4.4.6.6-Pentafluor-1.3.5.2.4.6-triazaphosphor(V)inyl-(2)-amine und -hydrazine (,,Pentafluorcyclotriphosphazoamine und -hydrazine'')", CHEMISCHE BERICHTE, vol. 104, no. 12, 14 June 1971 (1971-06-14), pages 3729 - 3739, XP055072986, ISSN: 0009-2940, DOI: 10.1002/cber.19711041203 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507257A (zh) * 2021-06-07 2022-05-17 华南师范大学 一种氟代环状含磷分子及其应用
CN114507257B (zh) * 2021-06-07 2023-04-18 华南师范大学 一种氟代环状含磷分子及其应用
CN114914544A (zh) * 2022-05-18 2022-08-16 湖南大学 一种钠金属电池电解液及其制备方法
CN114914544B (zh) * 2022-05-18 2023-03-10 湖南大学 一种钠金属电池电解液及其制备方法

Also Published As

Publication number Publication date
CN113571769A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2021208955A1 (zh) 电解液添加剂、二次电池电解液、二次电池和终端
WO2021218640A1 (zh) 电解液添加剂、二次电池电解液、二次电池和终端
JP5605221B2 (ja) 二次電池用非水電解液および二次電池
JP4536724B2 (ja) 電池の安全性を向上するための電解液溶媒及びこれを含むリチウム二次電池
CN102077405B (zh) 用于高电压锂电池的非水电解质
CN109935904B (zh) 一种电解液添加剂、锂二次电池电解液和锂二次电池
CN111433962A (zh) 非水电解液电池用电解液和使用了其的非水电解液电池
CN114583270B (zh) 一种锂离子电池
WO2021180135A1 (zh) 锂二次电池电解液及其制备方法、锂二次电池和终端
JP5474785B2 (ja) 非水電解液及びこれを備えた二次電池
WO2016013480A1 (ja) 非水電解液二次電池、非水電解液及び化合物
WO2019111983A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
US11177507B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including the same
WO2017185997A1 (zh) 电解液、正极及其制备方法和锂离子电池
JP5338037B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP4586388B2 (ja) 非水電解液及びリチウムイオン二次電池、並びにフッ素含有エステル化合物
JP5315594B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5654191B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
WO2021146839A1 (zh) 电解液和使用其的电化学装置
CN114503331A (zh) 组合物
WO2022127796A1 (zh) 电池电解液、二次电池和终端
WO2024012244A1 (zh) 局部高浓度电解液、二次电池、电子设备和移动装置
JP5772901B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
WO2012173253A1 (ja) 二次電池用非水電解液および二次電池
JP5900569B2 (ja) 非水系電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796205

Country of ref document: EP

Kind code of ref document: A1