WO2021218353A1 - 室内机环境温度传感器故障后的控制方法、系统及装置 - Google Patents

室内机环境温度传感器故障后的控制方法、系统及装置 Download PDF

Info

Publication number
WO2021218353A1
WO2021218353A1 PCT/CN2021/078614 CN2021078614W WO2021218353A1 WO 2021218353 A1 WO2021218353 A1 WO 2021218353A1 CN 2021078614 W CN2021078614 W CN 2021078614W WO 2021218353 A1 WO2021218353 A1 WO 2021218353A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
indoor
indoor unit
sensor
detection temperature
Prior art date
Application number
PCT/CN2021/078614
Other languages
English (en)
French (fr)
Inventor
马韵华
顾超
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021218353A1 publication Critical patent/WO2021218353A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • This specification belongs to the technical field of air-conditioning operation control, and in particular relates to a control method, system and device after an indoor unit environmental temperature sensor fails.
  • the indoor unit of the air conditioner is usually equipped with an indoor environment temperature sensor to detect the indoor temperature.
  • the air conditioner In the cooling mode, when the indoor environment temperature is higher than the set temperature of the air conditioner, the air conditioner is turned on/run. When the temperature is not higher than the set temperature of the air conditioner, The air conditioner stops; in heating mode, when the indoor ambient temperature is lower than the air conditioner set temperature, the air conditioner turns on/runs; when it is not lower than the air conditioner set temperature, the air conditioner stops; if the indoor unit ambient temperature sensor is the indoor unit The ambient temperature sensor is malfunctioning.
  • the current common practice is that the air conditioner cannot detect the indoor temperature and cannot be compared with the set temperature of the air conditioner. It cannot operate normally.
  • the present invention is proposed to solve or at least partially solve the technical problem of how to control the air conditioner to continue normal operation when the ambient temperature sensor of the indoor unit of the air conditioner fails.
  • the present invention provides a control method, system and device after an indoor unit environmental temperature sensor fails.
  • a control method after the failure of the ambient temperature sensor of the indoor unit of an air conditioner is provided.
  • the detection temperature of the ambient temperature sensor of the indoor unit cannot be obtained, based on the detection temperature of the indoor unit coil sensor and the ambient temperature of the indoor unit
  • the logical relationship of the temperature detected by the sensor and the values of the parameters involved in the logical relationship determine the control temperature difference, and execute the control logic of the air-conditioning operation according to the control temperature difference.
  • the air conditioner when the air conditioner is turned on, execute the control logic of the air conditioner operation by obtaining the control temperature difference between the indoor detection temperature of the indoor unit ambient temperature sensor and the set temperature of the air conditioner operation; When the ambient temperature sensor detects the temperature, the control temperature difference is determined based on the logical relationship between the detection temperature of the indoor unit coil sensor and the detection temperature of the indoor unit ambient temperature sensor and the values of the parameters involved in the logic relationship.” Including: when the indoor detection temperature of the indoor unit environment temperature sensor cannot be obtained, obtaining the coil detection temperature of the indoor unit coil sensor and obtaining the outdoor detection temperature of the outdoor unit environment temperature sensor; according to the indoor unit environment temperature The indoor detection temperature of the sensor, the coil detection temperature of the indoor unit coil sensor, and the outdoor detection temperature of the outdoor unit ambient temperature sensor are established to establish the indoor detection temperature of the indoor unit ambient temperature sensor and the indoor unit panel The calculated logical relationship between the coil detection temperature of the tube sensor; the obtained coil detection temperature, the outdoor detection temperature, and the preset temperature and the pre-set parameter values of each key factor
  • the indoor detection temperature is Tai
  • the coil detection temperature is Tm
  • the outdoor detection temperature is Tao
  • the established calculation logic relationship between the indoor detection temperature Tai and the coil detection temperature Tm is: Tai ⁇ Y ⁇ (K ⁇ (Tm+(35-Tao)/5)+A)
  • the indoor detection temperature of the indoor unit ambient temperature sensor cannot be obtained, use the acquired coil detection temperature Tm and outdoor detection temperature Tao
  • the key factor parameters include: indoor wind speed correction coefficient Y, indoor unit ambient temperature The curve slope K of the indoor detection temperature of the sensor and the coil detection temperature of the indoor coil sensor, deviation correction A, the correction value of the outdoor detection temperature to the detection temperature of the indoor coil
  • the "calculation of the parameter value preset for each key factor parameter in the logical relationship” specifically includes: the value of each parameter is preset according to the corresponding value range; the "indoor wind speed correction coefficient Y"
  • the value range of is: when the indoor unit is running with high-speed wind, the correction coefficient Y takes a value of 0.95 ⁇ 1.05; when the indoor unit is running with a medium-speed wind, the correction coefficient Y takes a value of 1.05 ⁇ 1.15; when the indoor unit is running with low-speed wind, the correction coefficient Y takes a value of 1.05 ⁇ 1.15;
  • the coefficient Y ranges from 1.15 to 1.25; the value range of the "curve slope K" is 1.5 to 2.5; the value range of the "deviation correction A" is 3 to 10.
  • a control system after a failure of the ambient temperature sensor of an air conditioner indoor unit including: a second control unit, when the detection temperature of the indoor unit ambient temperature sensor cannot be obtained, based on the detection temperature of the indoor unit coil sensor
  • the logical relationship with the detected temperature of the indoor unit ambient temperature sensor and the values of the parameters involved in the logical relationship determine the control temperature difference, and execute the control logic of the air-conditioning operation according to the control temperature difference.
  • a first control unit when the air conditioner is turned on, executes the control logic of the air conditioner operation through the obtained control temperature difference between the indoor detection temperature of the indoor unit ambient temperature sensor and the set temperature of the air conditioner operation;
  • the unit specifically includes: an acquiring module, when the indoor detection temperature of the indoor unit ambient temperature sensor cannot be obtained, acquiring the coil detection temperature of the indoor unit coil sensor and acquiring the outdoor detection temperature of the outdoor unit ambient temperature sensor; establishing Module, based on the indoor unit ambient temperature sensor's indoor detection temperature, the indoor unit coil sensor's coil detection temperature, and the outdoor unit ambient temperature sensor's outdoor detection temperature, to establish the indoor unit ambient temperature sensor
  • the calculation logic relationship between the indoor detection temperature and the coil detection temperature of the indoor unit coil sensor uses the acquired coil detection temperature, the outdoor detection temperature, and each of the set temperature and the calculation logic relationship
  • the pre-set parameter value of the key factor parameter is calculated according to the calculation logic relationship, and the estimated indoor detection temperature corresponding to the indoor detection temperature of the indoor unit environmental temperature sensor is calculated to determine
  • the indoor detection temperature is Tai
  • the coil detection temperature is Tm
  • the outdoor detection temperature is Tao.
  • an air conditioner including: an indoor unit ambient temperature sensor, which detects indoor ambient temperature to obtain an indoor detection temperature; an outdoor unit ambient temperature sensor, which detects an outdoor ambient temperature to obtain an outdoor detection temperature; an indoor unit coil sensor, Set in the evaporator area of the indoor unit to detect the temperature of the indoor unit coil to obtain the corresponding temperature value of the coil detection temperature; connect the indoor unit ambient temperature sensor, outdoor unit ambient temperature sensor and indoor unit coil sensor respectively, and receive data from each coil
  • the controller for detecting the temperature value of the indoor unit temperature sensor the controller further includes: when the indoor detection temperature of the indoor unit ambient temperature sensor cannot be obtained, the controller switches to receive the temperature value of the detection temperature from the indoor unit coil sensor , And the temperature value of the outdoor detection temperature from the outdoor unit temperature sensor; the controller executes the aforementioned control method after the indoor unit environmental temperature sensor fails.
  • an air conditioner including: the aforementioned control system after the indoor unit environmental temperature sensor fails.
  • a control device including a storage device and a processor, including: the storage device stores a program for realizing the aforementioned control method for automatically repairing the ambient temperature sensor of an air conditioner indoor unit after failure; The processor loads the storage device to store the program, and executes the steps of the aforementioned control method for automatically repairing the ambient temperature sensor of the air conditioner indoor unit after failure.
  • the air conditioner does not need to stop running and report the failure and wait for the maintenance personnel to come to repair it.
  • the logical relationship between the indoor temperature detected by the indoor unit ambient temperature sensor and the parameter value range of various key factors involved in the established logical relationship are calculated, and the control temperature difference is calculated to execute the control logic of the air-conditioning operation.
  • the relationship between the coil temperature and the indoor temperature is used to replace the previous control temperature difference obtained by the indoor temperature, and the logical control of normal air-conditioning operation is maintained even when the indoor unit's ambient temperature sensor fails, without a failure.
  • the air conditioner is unable to detect the indoor temperature and cannot compare with the air conditioner set temperature to determine the control temperature difference and cannot work normally, while still ensuring that the air conditioner operates normally. Moreover, by introducing the temperature detection of the coil sensor, there is no need to add additional parts, components and other hardware parts, which is high in efficiency and low in cost, and enhances user experience and reduces maintenance and personnel costs.
  • FIG. 1 is a schematic diagram of the processing process when the ambient temperature sensor of the indoor unit of the air conditioner fails in the prior art
  • FIG. 2 is a main flow chart of an embodiment of a control method after a failure of an indoor unit environmental temperature sensor according to the present invention
  • Fig. 3 is a flowchart of an embodiment of automatic repair control of the coil temperature when the indoor temperature cannot be obtained in the method according to the present invention
  • Fig. 4 is a structural block diagram of an embodiment of a control system after a failure of an indoor unit environmental temperature sensor according to the present invention.
  • module and “processor” may include hardware, software, or a combination of both.
  • a module can include hardware circuits, various suitable sensors, communication ports, and memory, and can also include software parts, such as program codes, or a combination of software and hardware.
  • the processor may be a central processing unit, a microprocessor, an image processor, a digital signal processor, or any other suitable processor.
  • the processor has data and/or signal processing functions.
  • the processor can be implemented in software, hardware, or a combination of the two.
  • the non-transitory computer-readable storage medium includes any suitable medium that can store program code, such as magnetic disks, hard disks, optical disks, flash memory, read-only memory, random access memory, and so on.
  • a and/or B means all possible combinations of A and B, such as only A, only B, or A and B.
  • the term "at least one of A or B” or “at least one of A and B” has a meaning similar to “A and/or B” and may include only A, only B, or A and B.
  • the terms “a” and “this” in the singular form may also include the plural form.
  • the indoor unit of the air conditioner is usually equipped with an indoor environment temperature sensor to detect the indoor temperature.
  • an indoor environment temperature sensor to detect the indoor temperature.
  • the air conditioner is turned on, and when the temperature is not higher than the set temperature of the air conditioner, the air conditioner is shut down.
  • the indoor ambient temperature sensor fails, the current common practice is, for example , As shown in Figure 1, because the air conditioner has been unable to detect the indoor temperature and cannot be compared with the air conditioner's set temperature for judgment, it cannot operate normally.
  • the present invention proposes a control scheme for automatically repairing the ambient temperature sensor of the indoor unit of the air conditioner after failure.
  • An air conditioner has: an indoor unit ambient temperature sensor, which detects the indoor ambient temperature to obtain the indoor detection temperature, which is the indoor temperature; an outdoor unit ambient temperature sensor, detects the outdoor ambient temperature to obtain the outdoor detection temperature, which is the outdoor temperature; and the indoor unit coil sensor , Set in the evaporator area of the indoor unit, and detect the coil temperature of the indoor unit to obtain the corresponding coil detection temperature, that is, the coil temperature.
  • the indoor unit ambient temperature sensor provides indoor detection temperature during the operation of the air conditioner, which can be provided to the controller to control whether the air conditioner is on or off. For example, during cooling, when the indoor ambient temperature is higher than the set temperature that the air conditioner should reach, the air conditioner will start and run.
  • the air conditioner When the temperature is not higher than the set temperature, the air conditioner will shut down. The opposite is true for heating, which is lower than the set temperature. Turn on and run at temperature, otherwise stop. It is also possible to control the frequency of the compressor, such as controlling the operating frequency of the compressor when it is used in an inverter air conditioner.
  • the controller In the prior art, if the indoor ambient temperature sensor fails, the air conditioner cannot operate normally, the controller cannot obtain the indoor detection temperature, cannot determine whether to start, run or stop, and cannot determine how to adjust the compressor frequency, and so on.
  • the solution of the present invention is to avoid the situation that once the indoor unit environmental temperature sensor fails, the air conditioner will stop running and report the fault and wait for maintenance, so as to ensure that the air conditioner can still operate normally when the indoor unit environmental temperature sensor fails or fails. Increase the cost of other accessory structures.
  • the controller is respectively connected to the indoor unit ambient temperature sensor, the outdoor unit ambient temperature sensor, and the indoor unit coil sensor, and receives the temperature value of the detected temperature from each sensor.
  • the controller can obtain the temperature value of the detection temperature sent from each sensor, including at least: the temperature value of the indoor detection temperature (ie, the indoor temperature), the temperature value of the outdoor detection temperature (ie, the outdoor temperature), and the detection temperature of the indoor coil ( Coil temperature) temperature value.
  • the indoor unit ambient temperature sensor is normal, when the air conditioner is turned on and running, the controller executes the control of the air conditioner operation by obtaining the control temperature difference between the indoor detection temperature of the indoor unit ambient temperature sensor and the set temperature of the air conditioner operation. logic.
  • the detection temperature of the indoor unit ambient temperature sensor When the detection temperature of the indoor unit ambient temperature sensor cannot be obtained, it is determined based on the logical relationship between the detection temperature of the indoor unit coil sensor and the detection temperature of the indoor unit ambient temperature sensor and the values of the parameters involved in the logical relationship Control the temperature difference and execute the control logic of the air conditioner operation. For example, when the indoor unit's ambient temperature sensor fails, the indoor detection temperature Tai cannot be detected, so Tai cannot be sent to the controller to calculate ⁇ T, and ⁇ T cannot be determined. This way, Tai cannot be used to control the operation of the air conditioner.
  • the controller can switch to receive the temperature value of the detection temperature from the indoor unit coil sensor and the temperature value of the outdoor detection temperature from the outdoor unit temperature sensor, and then according to the detection temperature of the indoor unit coil sensor and the indoor unit
  • the logical relationship of the temperature detected by the ambient temperature sensor and the values of the parameters involved in the logical relationship determine the control temperature difference and execute the control logic of the air-conditioning operation.
  • the coil temperature Tm detected by the coil sensor introduced into the indoor unit is intervened in the control to determine the ⁇ T.
  • An example is the coil sensor of the indoor unit, such as the coil sensor installed in the evaporator.
  • the temperature of the detected coil is related to the change of the indoor temperature.
  • the change of the indoor temperature has an effect on the temperature of the coil.
  • detection and Iterative calculations build a relational model to establish a calculation logical relationship/logical relationship between the indoor temperature (indoor detection temperature) and the coil temperature (the detection temperature of the indoor unit coil sensor).
  • the controller obtains the detection temperature of the indoor unit coil sensor and the outdoor detection temperature of the outdoor unit environmental temperature sensor, it is based on the outdoor detection temperature of the indoor unit environmental temperature sensor, the detection temperature of the indoor unit coil sensor, And the detection temperature of the outdoor unit ambient temperature sensor, and establish the calculation logic relationship/logical relationship between the detection temperature of the indoor unit ambient temperature sensor and the detection temperature of the indoor unit coil sensor, specifically as shown in formula 1. :
  • the value of the detection temperature of the indoor unit coil sensor is Tm
  • the value of the outdoor detection temperature is Tao
  • the value of the estimated indoor detection temperature is Tai.
  • one or more key factor parameters are involved, and the key factor parameters affect the magnitude change of the value of the detection temperature of the indoor unit coil sensor.
  • These key factor parameters include at least: indoor wind speed correction coefficient Y, the curve slope K between the indoor detection temperature of the indoor unit environmental temperature sensor and the detection temperature of the indoor coil sensor, the deviation correction A, and the difference between the outdoor detection temperature and the indoor coil sensor
  • the parameter value range of the key factor parameter can be set.
  • the indoor wind speed correction coefficient Y when the indoor unit is running with high-speed wind, the correction coefficient Y takes a value of 0.95 to 1.05; when the indoor unit is running with medium-speed wind, the correction coefficient The coefficient Y takes a value of 1.05 ⁇ 1.15; when the indoor unit is running with low-speed wind, the correction coefficient Y takes a value of 1.15 ⁇ 1.25; the slope of the curve between the indoor detection temperature of the indoor unit environmental temperature sensor and the detection temperature of the indoor coil sensor K: value range It is 1.5 ⁇ 2.5; the value range of deviation correction A is 3 ⁇ 10.
  • the key factor parameter affects the value of the detection temperature of the indoor unit coil sensor.
  • the value of the key factor parameter Y, K, A and the value Tao of the outdoor detection temperature do not change, then Tai The larger the value, the larger the Tm; the value of the key factor parameters Y, K, A and the value of indoor detection temperature Tai do not change, the larger the Tao, the smaller the Tm; the value of the key factor parameters K, A, the outdoor The value Tao of the detected temperature and the value Tai of the indoor detected temperature do not change.
  • the air conditioner does not need a fault alarm at this time, and can continue to control the operation of the air conditioner according to the new control logic, that is, without affecting the normal operation of the air conditioner, switch to the coil of the coil sensor The temperature continues to control the operation of the air conditioner, and it still ensures the normal operation of the control without adding any additional equipment components.
  • the air conditioner does not run or alarms caused by the failure of the ambient temperature sensor of the indoor unit is avoided, and the air conditioner can continue to run, which also greatly reduces the failure rate of the air conditioner, which can guarantee The user's use can save maintenance costs.
  • the detection temperature of the indoor unit ambient temperature sensor is the indoor temperature, that is, the indoor inspection temperature
  • the control temperature difference is the difference between the indoor detection temperature of the indoor unit ambient temperature sensor and the set temperature
  • the air conditioner is controlled to stop; otherwise, the air conditioner is controlled to run;
  • the air conditioner is in heating mode, if the control temperature difference is less than 0, the air conditioner is controlled to run, otherwise the air conditioner is controlled to stop;
  • the detection temperature of the indoor unit ambient temperature sensor cannot be obtained, based on the logical relationship between the detection temperature of the indoor unit coil sensor and the detection temperature of the indoor unit ambient temperature sensor and the parameter values involved in the logical relationship , Determine the control temperature difference, and execute the control logic of the air-conditioning operation. Specifically, when the indoor detection temperature of the indoor unit environment temperature sensor cannot be obtained, the detection temperature of the indoor unit coil sensor and the outdoor detection temperature of the outdoor unit environment temperature sensor are obtained; according to the indoor unit environment temperature sensor The indoor detection temperature, the detection temperature of the indoor unit coil sensor, and the outdoor detection temperature of the outdoor unit ambient temperature sensor, establish the detection temperature of the indoor unit ambient temperature sensor and the detection temperature of the indoor unit coil sensor Calculating logical relationship between temperatures.
  • the calculation logic relationship involves one or more key factor parameters, the key factor parameters affecting the size change of the value of the indoor unit coil sensor's detection temperature; setting the parameter value range of the key factor parameter; According to the calculation logic relationship and the parameter value range, calculate the indoor detection temperature of the corresponding indoor machine ambient temperature sensor based on the detection temperature of the indoor unit coil sensor and the outdoor detection temperature of the outdoor unit ambient temperature sensor The estimated indoor detected temperature of the temperature; the difference between the estimated indoor detected temperature and the set temperature is calculated to determine the control temperature difference; and the control logic of the air conditioning operation is executed according to the determined control temperature difference.
  • the value of the detection temperature of the indoor unit coil sensor is Tm
  • the value of the outdoor detection temperature is Tao
  • the value of the estimated indoor detection temperature is Tai
  • the calculation logic relationship is: Tai ⁇ Y ⁇ ( K ⁇ (Tm+(35-Tao)/5)+A)
  • the calculation logic relationship involves one or more key factor parameters including: indoor wind speed correction coefficient Y, indoor detection temperature of indoor unit environmental temperature sensor and indoor panel The curve slope K of the detection temperature of the tube sensor, the deviation correction A, and the correction value (35-Tao)/5 of the outdoor detection temperature to the detection temperature of the indoor coil sensor.
  • the key factor parameter affects the value of the detection temperature of the indoor unit coil sensor, and the key factor parameter Y, K, A If the value and the outdoor detection temperature Tao do not change, the larger Tai is, the greater Tm; the key factor parameters Y, K, A and the indoor detection temperature value Tai do not change, the greater Tao is, the smaller Tm is The value of the key factor parameters K and A, the value Tao of the outdoor detection temperature and the value Tai of the indoor detection temperature do not change, the higher the operating wind speed of the indoor unit is, the smaller the K is, and the larger the Tm is.
  • Step S210 based on the control temperature difference between the indoor detection temperature of the indoor unit ambient temperature sensor and the set temperature of the air-conditioning operation, execute the control logic of the air-conditioning operation.
  • the indoor temperature sensor is used to detect the indoor temperature, and the temperature value of the indoor temperature (that is, the indoor detected temperature) is obtained.
  • the indoor temperature and the setting temperature of the air-conditioning operation that is, the user sets the temperature value that the air-conditioning needs to be raised or lowered to several degrees, and the difference calculation is performed, and the calculated difference is the control temperature difference.
  • the control temperature difference it is controlled whether the air conditioner is operated or stopped.
  • the indoor temperature Tai can be transmitted to the controller that controls the operation logic of the air conditioner.
  • Step S220 when the detection temperature of the indoor unit ambient temperature sensor cannot be obtained, the parameters involved in the logic relationship are selected based on the logical relationship between the detection temperature of the indoor unit coil sensor and the detection temperature of the indoor unit ambient temperature sensor. Value, determine the control temperature difference, and execute the control logic of air-conditioning operation.
  • the indoor unit coil sensor detects the coil temperature
  • the obtained coil temperature/coil detection temperature the indoor unit ambient temperature sensor detects the indoor temperature
  • a logical relationship can be established between the two temperatures, namely A mathematical model or a calculation logic relationship.
  • the indoor unit of the air conditioner will also be equipped with a coil sensor (installed in the evaporator). The change in indoor temperature will affect the coil temperature.
  • the mathematical model of the relationship can obtain the calculation logic relationship between the detection temperature of the indoor unit ambient temperature sensor and the detection temperature of the coil sensor. Calculating one or more key factor parameters involved in the logical relationship, the value range of these key factor parameters can be predetermined, and then clear parameter values can be set in the range.
  • step S310 when the indoor detection temperature of the indoor unit environmental temperature sensor cannot be obtained, obtain the coil detection temperature of the indoor unit coil sensor and obtain the outdoor detection temperature of the outdoor unit environmental temperature sensor.
  • the indoor unit environment temperature sensor may malfunction.
  • the controller cannot receive the temperature value of the indoor temperature provided from the indoor unit ambient temperature sensor, and at this time introduces the coil temperature detected by the indoor unit coil sensor to perform an alternative control operation.
  • Step S320 Establish the indoor unit ambient temperature sensor based on the indoor detection temperature of the indoor unit ambient temperature sensor, the coil detection temperature of the indoor unit coil sensor, and the outdoor detection temperature of the outdoor unit ambient temperature sensor The calculation logic relationship between the indoor detection temperature of the indoor unit and the coil detection temperature of the indoor unit coil sensor, wherein the calculation logic relationship involves one or more key factor parameters.
  • the estimated indoor detected temperature/estimated temperature corresponding to the indoor detected temperature of the indoor unit ambient temperature sensor can be calculated, and the estimated temperature can replace the detected indoor temperature to control the operation of the air conditioner.
  • the calculation logic relationship involves one or more key factor parameters including: indoor wind speed correction coefficient Y, the curve slope K of the indoor detection temperature of the indoor unit environmental temperature sensor and the detection temperature of the indoor coil sensor, deviation correction A, The correction value (35-Tao)/5 of the outdoor detection temperature to the detection temperature of the indoor coil sensor.
  • the key factor parameter affects the magnitude change of the value of the detection temperature of the indoor unit coil sensor. Specifically, the key factor parameter affects the magnitude change of the value of the detection temperature of the indoor unit coil sensor.
  • Tm and other key factor parameters for example: the value of the key factor parameters Y, K, A and the value of outdoor detection temperature Tao do not change, the greater the Tai, the greater the Tm; the key factor parameters Y, K, The value of A and the value of indoor detection temperature Tai do not change, the greater Tao is, the smaller Tm is; the value of the key factor parameters K, A, the value of outdoor detection temperature Tao and the value of indoor detection temperature Tai do not change, then The higher the running wind speed of the indoor unit, the smaller the K, the larger the Tm.
  • the parameter value of the key factor parameter is set according to the parameter value range of each key factor parameter.
  • the parameter value range of each key factor parameter is, for example:
  • the "indoor wind speed correction coefficient Y" specifically includes:
  • the correction coefficient Y takes a value of 0.95 ⁇ 1.05;
  • the correction coefficient Y takes a value of 1.05 ⁇ 1.15;
  • the correction coefficient Y takes a value of 1.15 to 1.25.
  • the “curve slope K of the indoor detection temperature of the indoor unit environmental temperature sensor and the coil detection temperature of the indoor coil sensor” ranges from 1.5 to 2.5.
  • the value range of the "deviation correction A" is 3-10.
  • the corresponding setting values can be set in advance in the value ranges of these parameters corresponding to the situation.
  • Step S330 using the obtained coil detection temperature, outdoor detection temperature, set temperature, and the pre-set value of each key factor parameter in the calculation logic relationship, calculate the corresponding indoor unit environmental temperature sensor according to the calculation logic relationship Estimation of indoor detected temperature Indoor detected temperature/estimated temperature to determine the temperature value of the control temperature difference.
  • the difference of the control temperature difference is (see step S210):
  • ⁇ T Y ⁇ (K ⁇ (Tm+(35-Tao)/5)+A)-Ts...Formula 2.
  • the parameter value range, and the set parameter value the coil detection temperature and the outdoor detection temperature are calculated to obtain the corresponding estimated indoor detection temperature, and then the estimated indoor detection temperature is calculated.
  • the difference between the temperature and the set temperature is detected to determine the control temperature difference.
  • Step S340 execute the control logic of the air conditioner operation.
  • the value of the control temperature difference is ⁇ T
  • the control logic is as follows (see step S210):
  • the following is a structural block diagram of an embodiment of a control system after a failure of an ambient temperature sensor of an air conditioner indoor unit according to the present invention shown in FIG. 4 to further illustrate the principle and implementation of the present invention.
  • the system includes at least:
  • the first control unit 410 executes the control logic of the air-conditioning operation based on the control temperature difference between the indoor detection temperature of the indoor unit ambient temperature sensor and the set temperature of the air-conditioning operation.
  • the indoor temperature sensor is used to detect the indoor temperature, and the temperature value of the indoor temperature (that is, the indoor detected temperature) is obtained.
  • the indoor temperature and the setting temperature of the air-conditioning operation that is, the user sets the temperature value that the air-conditioning needs to be raised or lowered to several degrees, and the difference calculation is performed, and the calculated difference is the control temperature difference.
  • the control temperature difference it is controlled whether the air conditioner is operated or stopped.
  • the indoor temperature Tai can be transmitted to the controller that controls the operation logic of the air conditioner.
  • the second control unit 420 when the detection temperature of the indoor unit environment temperature sensor cannot be obtained, is based on the logical relationship between the detection temperature of the indoor unit coil sensor and the detection temperature of the indoor unit environment temperature sensor and the logical relationship involved
  • the parameter value of determines the control temperature difference, and executes the control logic of air-conditioning operation.
  • the indoor unit coil sensor detects the coil temperature
  • the obtained coil temperature/coil detection temperature the indoor unit ambient temperature sensor detects the indoor temperature
  • a logical relationship can be established between the two temperatures, namely A mathematical model or a calculation logic relationship.
  • the indoor unit of the air conditioner will also be equipped with a coil sensor (installed in the evaporator). The change in indoor temperature will affect the coil temperature.
  • the indoor ambient temperature and the evaporator coil temperature are established.
  • the mathematical model of the relationship can obtain the calculation logic relationship between the detection temperature of the indoor unit ambient temperature sensor and the detection temperature of the coil sensor. Calculating one or more key factor parameters involved in the logical relationship, the value range of these key factor parameters can be predetermined, and then clear parameter values can be set in the range.
  • the automatic repair control of the coil temperature is introduced in the second control unit 420.
  • the structural logic is as follows: the acquisition module 4201, when the indoor unit ambient temperature sensor cannot be obtained When detecting the temperature, obtain the coil detection temperature of the indoor unit coil sensor and obtain the outdoor detection temperature of the outdoor unit ambient temperature sensor.
  • the indoor unit environment temperature sensor may malfunction.
  • the controller cannot receive the temperature value of the indoor temperature provided from the indoor unit ambient temperature sensor, and at this time introduces the coil temperature detected by the indoor unit coil sensor to perform an alternative control operation.
  • the value of the detected temperature of the indoor unit coil sensor is Tm
  • the value of the outdoor detected temperature is Tao
  • the value of the estimated indoor detected temperature that needs to be calculated and determined for substitution is Tai, and Tm, Tao, provide it to the controller.
  • the establishment module 4202 based on the indoor detection temperature of the indoor unit environmental temperature sensor, the coil detection temperature of the indoor unit coil sensor, and the outdoor detection temperature of the outdoor unit environmental temperature sensor, establish the indoor unit environmental temperature The calculation logic relationship between the indoor detection temperature of the sensor and the coil detection temperature of the indoor unit coil sensor, wherein the calculation logic relationship involves one or more key factor parameters.
  • the estimated indoor detected temperature/estimated temperature corresponding to the indoor detected temperature of the indoor unit ambient temperature sensor can be calculated, and the estimated temperature can replace the detected indoor temperature to control the operation of the air conditioner.
  • the calculation logic relationship involves one or more key factor parameters including: indoor wind speed correction coefficient Y, the curve slope K of the indoor detection temperature of the indoor unit environmental temperature sensor and the detection temperature of the indoor coil sensor, deviation correction A, The correction value (35-Tao)/5 of the outdoor detection temperature to the detection temperature of the indoor coil sensor.
  • the key factor parameter affects the magnitude change of the value of the detection temperature of the indoor unit coil sensor. Specifically, the key factor parameter affects the magnitude change of the value of the detection temperature of the indoor unit coil sensor.
  • Tm and other key factor parameters for example: the value of the key factor parameters Y, K, A and the value of outdoor detection temperature Tao do not change, the greater the Tai, the greater the Tm; the key factor parameters Y, K, The value of A and the value of indoor detection temperature Tai do not change, the greater Tao is, the smaller Tm is; the value of the key factor parameters K, A, the value of outdoor detection temperature Tao and the value of indoor detection temperature Tai do not change, then The higher the running wind speed of the indoor unit, the smaller the K, the larger the Tm.
  • the parameter value of the key factor parameter is set according to the parameter value range of each key factor parameter.
  • the parameter value range of each key factor parameter is, for example:
  • the "indoor wind speed correction coefficient Y" specifically includes:
  • the correction coefficient Y takes a value of 0.95 ⁇ 1.05;
  • the correction coefficient Y takes a value of 1.05 ⁇ 1.15;
  • the correction coefficient Y takes a value of 1.15 to 1.25.
  • the “curve slope K of the indoor detection temperature of the indoor unit environmental temperature sensor and the coil detection temperature of the indoor coil sensor” ranges from 1.5 to 2.5.
  • the value range of the "deviation correction A" is 3-10.
  • the corresponding setting values can be set in advance in the value ranges of these parameters corresponding to the situation.
  • the calculation module 4203 uses the obtained coil detection temperature, outdoor detection temperature, set temperature, and pre-set parameter values of each key factor parameter in the calculation logic relationship, and calculates the corresponding indoor unit environmental temperature sensor according to the calculation logic relationship The estimated indoor detected temperature/estimated temperature to determine the temperature value of the control temperature difference.
  • the difference of the control temperature difference is (see step S210):
  • ⁇ T Y ⁇ (K ⁇ (Tm+(35-Tao)/5)+A)-Ts...Formula 2.
  • the parameter value range, and the set parameter value the coil detection temperature and the outdoor detection temperature are calculated to obtain the corresponding estimated indoor detection temperature, and then the estimated indoor detection temperature is calculated.
  • the difference between the detected temperature and the set temperature is determined to determine the control temperature difference.
  • the control module 4204 executes the control logic of the air conditioner operation according to the determined control temperature difference.
  • the value of the control temperature difference is ⁇ T
  • the control logic is as follows (as described in the first control unit): when the air conditioner is cooling: ⁇ T ⁇ 0, the air conditioner is stopped; when ⁇ T>0, the air conditioner is running; when the air conditioner is heating: When ⁇ T ⁇ 0, the air conditioner is running; when ⁇ T ⁇ 0, the air conditioner is stopped.
  • the ambient temperature sensor of the air conditioner indoor unit sends a fault, and it detects that the coil temperature detection value Tm of the air conditioner indoor unit is 21°C, the detection value Tao of the air conditioner outdoor unit environment temperature is 30°C, and the setting of the air conditioner
  • the temperature is 25°C
  • the indoor unit is in high-speed wind operation
  • the correction coefficient Y is 1
  • the slope K of the curve between the indoor ambient temperature sensor temperature and the indoor coil sensor temperature is 2
  • the deviation correction A is 3
  • the indoor unit coil sensor is introduced, and the logical relationship of the temperature of the indoor unit ambient temperature sensor is used to check and calculate the logic relationship to realize the alternative control of the outdoor unit ambient temperature sensor to the indoor unit ambient temperature sensor. Therefore, it is avoided that the indoor environment temperature sensor fails and the air conditioner cannot detect the indoor temperature, cannot compare and judge with the set temperature of the air conditioner, cannot work normally, and the air conditioner reports a failure, and the user can only wait for the air conditioner maintenance personnel to come to repair.
  • an embodiment of an air conditioner of the present invention includes: an indoor unit ambient temperature sensor, which detects the indoor ambient temperature to obtain the indoor detection temperature; an outdoor unit ambient temperature sensor, which detects the outdoor ambient temperature to obtain the outdoor detection temperature;
  • the unit coil sensor is set in the evaporator area of the indoor unit to detect the temperature of the indoor unit coil to obtain the corresponding temperature value of the detected temperature; connect the indoor unit ambient temperature sensor, outdoor unit ambient temperature sensor and indoor unit coil sensor respectively, and A controller that receives the temperature value of the detection temperature from each sensor; wherein, when the indoor detection temperature of the indoor unit ambient temperature sensor cannot be obtained, the controller switches to receive the temperature value of the detection temperature from the indoor unit coil sensor , And the temperature value of the outdoor detection temperature from the outdoor unit temperature sensor; the controller executes the steps of the control method after any one of the aforementioned indoor unit environmental temperature sensors fails.
  • an embodiment of an air conditioner of the present invention includes a control system after any one of the aforementioned indoor unit ambient temperature sensors fails.
  • an embodiment of a control device of the present invention includes a storage device and a processor, and specifically includes: the storage device stores a program for implementing the control method after any one of the foregoing air conditioner indoor unit environmental temperature sensors fails.
  • the processor loads the storage device to store the program, and executes the steps of the control method after any one of the aforementioned air conditioner indoor unit environmental temperature sensors fails.
  • an embodiment of a computer storage medium of the present invention includes a program that stores the aforementioned control method after a failure of any air conditioner indoor unit ambient temperature sensor that can be loaded into the processor/controller for execution.
  • each module is only to illustrate the functional units of the system of the present invention
  • the physical devices corresponding to these modules may be the processor itself, or part of the software in the processor, part of the hardware, or Part of the combination of software and hardware. Therefore, the number of modules in the figure is only schematic.
  • each module in the system can be adaptively split or merged. Such splitting or merging of specific modules will not cause the technical solution to deviate from the principle of the present invention. Therefore, the technical solutions after splitting or merging will fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调室内机环境温度传感器故障后的控制方法、系统及装置,方法包括:当无法获得室内环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,并根据控制温度差,执行空调运行的控制逻辑。该方法利用室内机盘管传感器的检测温度与室内机环境温度传感器的检测温度的逻辑关系,在室内机环境温度传感器出现故障时可实现对室内机环境温度传感器的替代控制,避免室内机环境温度传感器出现故障时导致空调报警或停机。

Description

室内机环境温度传感器故障后的控制方法、系统及装置 技术领域
本说明书属于空调运行控制技术领域,尤其涉及一种室内机环境温度传感器故障后的控制方法、系统及装置。
背景技术
空调的室内机通常设置有室内环境温度传感器,用来检测室内温度,制冷模式下,当室内环境温度高于空调设定温度时,空调则开启/运行,当不高于空调设定温度时,空调则停机;制热模式下,当室内环境温度低于空调设定温度时,空调则开启/运行,当不低于空调设定温度时,空调则停机;如果室内机环境温度传感器即室内机环境温度传感器出现故障,当前通常的做法是,空调因已经无法检测室内温度,无法与空调设定温度进行比较判定,不能正常运行,空调报出故障,等待空调维修人员上门维修。
因此,需要一种室内机环境温度传感器故障后的控制方案。
发明内容
为了克服上述缺陷,提出了本发明,以解决或至少部分解决如何在空调的室内机环境温度传感器出现故障时仍能控制空调继续正常运行的技术问题。本发明为解决上述问题,提供了一种室内机环境温度传感器故障后的控制方法、系统及装置。
第一方面,提供一种空调室内机环境温度传感器故障后的控制方法,当无法获得所述室内机环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,并根据所述控制温度差,执行空调运行的控制逻辑。
其中,还包括:空调开机运行时,通过获得的室内机环境温度传感器的室内检测温度与空调运行的设定温度的控制温度差,执行空调运行的控制逻辑;所述“当无法获得所述室内机环境温度传感器的检测 温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差”,具体包括:当无法获得所述室内机环境温度传感器的室内检测温度时,获取所述室内机盘管传感器的盘管检测温度以及获取室外机环境温度传感器的室外检测温度;根据所述室内机环境温度传感器的室内检测温度、所述室内机盘管传感器的盘管检测温度、以及所述室外机环境温度传感器的室外检测温度,建立所述室内机环境温度传感器的室内检测温度与所述室内机盘管传感器的盘管检测温度之间的计算逻辑关系;利用获取的盘管检测温度、室外检测温度,以及所述设定温度、计算逻辑关系中各个关键因素参数的预先设定的参数取值,根据计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度,以确定控制温度差。
其中,还包括:所述室内检测温度为Tai、所述盘管检测温度为Tm、所述室外检测温度为Tao,建立的室内检测温度Tai与盘管检测温度Tm之间的计算逻辑关系为:Tai≈Y×(K×(Tm+(35-Tao)/5)+A);当无法获得所述室内机环境温度传感器的室内检测温度时,利用获取的盘管检测温度Tm、室外检测温度Tao,以及所述设定温度Ts、计算逻辑关系中的每个关键因素参数预先设定的参数取值,根据所述计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度Tai,以确定控制温度差:△T=Y×(K×(Tm+(35-Tao)/5)+A)-Ts;其中,关键因素参数包括:室内风速修正系数Y、室内机环境温传感器的室内检测温度与室内盘管传感器的盘管检测温度的曲线斜率K、偏差修正A、所述室外检测温度对室内盘管传感器的检测温度的修正值(35-Tao)/5;所述“根据所述控制温度差,执行空调运行的控制逻辑”包括:空调制冷时:△T≤0,空调停机;△T>0,空调运行;空调制热时:△T<0,空调运行;△T≥0,空调停机。
其中,所述“计算逻辑关系中每个关键因素参数预先设定的参数取值”具体包括:在每个参数取值根据对应的取值范围预先设定;所述“室内风速修正系数Y”的取值范围为:当室内机运行高速风时,修正系数Y取值0.95~1.05;当室内机运行中速风时,修正系数Y取值1.05~1.15;当室内机运行低速风时,修正系数Y取值1.15~1.25;所述“曲线斜率K”的取值范围为:1.5~2.5;所述“偏差修正A”取值范围为3~10。
第二方面,提供一种空调室内机环境温度传感器故障后的控制系统,包括:第二控制单元,当无法获得所述室内机环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,并根据所述控制温度差,执行空调运行的控制逻辑。
其中,具体还包括:第一控制单元,空调开机运行时,通过获得的室内机环境温度传感器的室内检测温度与空调运行的设定温度的控制温度差,执行空调运行的控制逻辑;第二控制单元,具体包括:获取模块,当无法获得所述室内机环境温度传感器的室内检测温度时,获取所述室内机盘管传感器的盘管检测温度以及获取室外机环境温度传感器的室外检测温度;建立模块,根据所述室内机环境温度传感器的室内检测温度、所述室内机盘管传感器的盘管检测温度、以及所述室外机环境温度传感器的室外检测温度,建立所述室内机环境温度传感器的室内检测温度与所述室内机盘管传感器的盘管检测温度之间的计算逻辑关系;计算模块,利用获取的盘管检测温度、室外检测温度,以及所述设定温度、计算逻辑关系中各个关键因素参数的预先设定的参数取值,根据计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度,以确定控制温度差。
其中,所述室内检测温度为Tai、所述盘管检测温度为Tm、所述室外检测温度为Tao,建立的室内检测温度Tai与盘管检测温度Tm之间的计算逻辑关系为:Tai≈Y×(K×(Tm+(35-Tao)/5)+A);当无法获得所述室内机环境温度传感器的室内检测温度时,利用获取的盘管检测温度Tm、室外检测温度Tao,以及所述设定温度Ts、计算逻辑关系中的每个关键因素参数预先设定的参数取值,根据所述计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度Tai,以确定控制温度差:△T=Y×(K×(Tm+(35-Tao)/5)+A)-Ts;其中,关键因素参数包括:室内风速修正系数Y、室内机环境温传感器的室内检测温度与室内盘管传感器的盘管检测温度的曲线斜率K、偏差修正A、所述室外检测温度对室内盘管传感器的检测温度的修正值(35-Tao)/5;其中,“计算逻辑关系中每个关键因素参数预先设定的参数取值”包括:在每个参数取值根据对应的取值范围预先设定;所述“室内风速修正系数Y”的取值范围为:当室内机运行高速风时,修正系数Y取值0.95~1.05;当室内 机运行中速风时,修正系数Y取值1.05~1.15;当室内机运行低速风时,修正系数Y取值1.15~1.25;所述“曲线斜率K”的取值范围为:1.5~2.5;所述“偏差修正A”取值范围为3~10;控制模块,具体包括:空调制冷时:△T≤0,空调停机;△T>0,空调运行;空调制热时:△T<0,空调运行;△T≥0,空调停机。
第三方面,提供一种空调装置,包括:室内机环境温度传感器,检测室内的环境温度获得室内检测温度;室外机环境温度传感器,检测室外的环境温度获得室外检测温度;室内机盘管传感器,设置在室内机的蒸发器区域,检测室内机盘管温度获得对应的盘管检测温度的温度值;分别连接室内机环境温度传感器、室外机环境温度传感器以及室内机盘管传感器,并接收来自每个传感器的检测温度的温度值的控制器,控制器还包括:当无法获得所述室内机环境温度传感器的室内检测温度时,控制器切换为接收来自室内机盘管传感器的检测温度的温度值、以及来自室外机温度传感器的室外检测温度的温度值;所述控制器执行如前述的室内机环境温度传感器故障后的控制方法。
第四方面,提供一种空调装置,包括:如前述的室内机环境温度传感器故障后的控制系统。
第五方面,提供一种控制装置,包括存储设备和处理器,包括:所述存储设备中存储用于实现如前述的一种空调室内机环境温度传感器故障后自动修复的控制方法的程序;所述处理器加载所述存储设备中存储所述程序,并执行如前述的一种空调室内机环境温度传感器故障后自动修复的控制方法的步骤。
本发明上述一个或多个技术方案,至少具有如下一种或多种有益效果:
当室内机环境温度传感器出现故障时,空调不必停止运行而报故障等待维修人员上门维修,而是切换为根据室内机盘管传感器的盘管温度和室外机环境温度传感器的室外检测温度,利用与室内机环境温度传感器检测的室内温度之间的逻辑关系和建立的逻辑关系所涉及的各种关键因素的参数取值范围,计算得出控制温度差来执行空调运行的控制逻辑。通过引入盘管温度,利用盘管温度与室内温度的关系,替代以往通过室内温度获得的控制温度差,在室内机环境温度传感器故障情况下依然保持正常的空调运行的逻辑控制,无需一出现故障、空调就因无 法检测室内温度而无法与空调设定温度进行比较确定控制温度差,不能正常工作运行的情况,而仍然保证空调运行正常。并且,通过引入盘管传感器的温度检测,无需加入附加的零部件、组件等硬件部分,效率高、成本低,并且增强用户体验也减少了维修和人员成本。
附图说明
下面参照附图来描述本发明的具体实施方式,附图中:
图1为现有技术中当空调的室内机环境温度传感器发生故障后的处理过程的示意图;
图2为根据本发明的一种室内机环境温度传感器故障后的控制方法的一个实施例的主要流程图;
图3为根据本发明的方法中无法获得室内温度时引入盘管温度的自动修复控制的一个实施例的流程图;
图4为根据本发明的一种室内机环境温度传感器故障后的控制系统的一个实施例的结构框图。
具体实施方式
为了便于理解发明,下文将结合说明书附图和实施例对本发明作更全面、细致地描述,但本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
在本发明的描述中,“模块”、“处理器”可以包括硬件、软件或者两者的组合。一个模块可以包括硬件电路,各种合适的感应器,通信端口,存储器,也可以包括软件部分,比如程序代码,也可以是软件和硬件的组合。处理器可以是中央处理器、微处理器、图像处理器、数字信号处理器或者其他任何合适的处理器。处理器具有数据和/或信号处理功能。处理器可以以软件方式实现、硬件方式实现或者二者结合方式实现。非暂时性的计算机可读存储介质包括任何合适的可存储程序代码的介质,比如磁碟、硬盘、光碟、闪存、只读存储器、随机存取存储器等等。术语“A和/或B”表示所有可能的A与B的组合,比如只是A、只是B或者A和B。术语“至少一个A或B”或者“A和B中的至少一个”含义与“A和/或B”类似,可以包括只是A、只是B或者A和B。单数形式的术语“一个”、“这个”也可以包含复数形式。
空调的室内机通常设置有室内环境温度传感器,用来检测室内温度,制冷时,当室内环境温度高于空调设定温度时,空调则开启,当不高于空调设定温度时,空调则停机;制热时,当室内环境温度低于空调设定温度时,空调则开启,当不低于空调设定温度时,空调则停机;如果室内环境温度传感器出现故障,当前通常的做法是,例如,如图1所示,空调因已经无法检测室内温度,无法与空调设定温度进行比较判定,不能正常运行,空调报出故障,等待空调维修人员上门维修。
本发明对上述现有技术的缺陷,提出了空调室内机环境温度传感器故障后自动修复的控制方案。下面通过该方案的一个应用场景的实施例来简述此方案的实现方式:
一个空调装置中,具有:室内机环境温度传感器,检测室内的环境温度获得室内检测温度即室内温度;室外机环境温度传感器,检测室外的环境温度获得室外检测温度即室外温度;室内机盘管传感器,设置在室内机的蒸发器区域,检测室内机盘管温度获得对应的盘管检测温度即盘管温度。其中,室内机环境温度传感器在空调的运行中,提供室内检测温度,可以提供给控制器,控制空调是开启运行还是停机。例如,制冷时,当室内的环境温度高于空调运行要达到的设定温度时空调开启、运行,当不高于设定温度时,空调则停机,而制热时则相反,低于设定温度时开启、运行,否则停机。也可以控制压缩机的频率,比如在变频空调上使用时,控制压缩机的运转频率等。而现有技术中,如果室内环境温度传感器出现故障,空调就不能正常运行,控制器无法获得室内检测温度,无法确定是否该启动、运行或停机,无法确定压缩机频率该如何调整,等等。本发明的解决方案就是要避免一旦出现室内机环境温度传感器出现故障就停止空调运行报故障等待维修的情况,保证在室内机环境温度传感器无法工作或者出现故障时空调仍然能够正常地运行,且无需增加其他附件结构提高成本。
一个例子中,控制器分别连接室内机环境温度传感器、室外机环境温度传感器以及室内机盘管传感器,并接收来自每个传感器的检测温度的温度值。控制器能够获得从各个传感器发送来的检测温度的温度值,至少包括:室内检测温度(即室内温度)的温度值、室外检测温度(即室外温度)的温度值、室内盘管的检测温度(盘管温度)的温度值。具体地,在室内机环境温度传感器正常的情况下,空调开机运行时, 控制器通过获得的室内机环境温度传感器的室内检测温度与空调运行的设定温度的控制温度差,执行空调运行的控制逻辑。例如:调控参数如下:室内检测温度Tai、室外检测温度Tao、盘管温度Tm、空调运行时的设定温度Ts,室内检测温度Tai与设定温度Ts的差值即为控制温度差的值:△T=Tai-Ts;空调运行控制逻辑为1)制冷模式下△T≤0、空调停机,△T>0、空调运行;2)制热模式下△T<0、空调运行,△T≥0、空调停机。
当无法获得所述室内机环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,执行空调运行的控制逻辑。比如,室内机环境温度传感器出现故障时、室内检测温度Tai已经无法检测到了,也就无法发送Tai给控制器算出△T、无法判定△T,这样无法依靠Tai来执行控制空调运行的操作,此时,控制器可以切换为接收来自室内机盘管传感器的检测温度的温度值、以及来自室外机温度传感器的室外检测温度的温度值,再根据室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,执行空调运行的控制逻辑。具体地,引入室内机的盘管传感器所检测的盘管温度Tm介入控制,进行△T的判定。一个例子,室内机的盘管传感器,例如安装在蒸发器的盘管传感器,检测的盘管的温度与室内温度的变化有关联,室内温度变化对盘管的温度有影响,通过实验、检测和反复运算构建关系模型,建立起室内温度(室内检测温度)与盘管温度(室内机盘管传感器的检测温度)之间的计算逻辑关系/逻辑关系。控制器获取所述室内机盘管传感器的检测温度以及获取室外机环境温度传感器的室外检测温度后,根据所述室内机环境温度传感器的室外检测温度、所述室内机盘管传感器的检测温度、以及所述室外机环境温度传感器的检测温度,建立所述室内机环境温度传感器的检测温度与所述室内机盘管传感器的检测温度之间的计算逻辑关系/逻辑关系,具体如公式1所示:
Tai≈Y×(K×(Tm+(35-Tao)/5)+A)……公式1
所述室内机盘管传感器的检测温度的值为Tm,所述室外检测温度的值为Tao,所述估计室内检测温度的值为Tai。而计算逻辑关系中,涉及一个或多个关键因素参数,所述关键因素参数影响所述室内机盘管传感器的检测温度的值的大小变化。这些关键因素参数至少包括:室内 风速修正系数Y、室内机环境温传感器的室内检测温度与室内盘管传感器的检测温度的曲线斜率K、偏差修正A、所述室外检测温度对室内盘管传感器的检测温度的修正值(35-Tao)/5。可以设定所述关键因素参数的参数取值范围,具体地,室内风速修正系数Y:当室内机运行高速风时,修正系数Y取值0.95~1.05;当室内机运行中速风时,修正系数Y取值1.05~1.15;当室内机运行低速风时,修正系数Y取值1.15~1.25;室内机环境温传感器的室内检测温度与室内盘管传感器的检测温度的曲线斜率K:取值范围为1.5~2.5;偏差修正A取值范围为3~10。而所述关键因素参数影响所述室内机盘管传感器的检测温度的值的大小变化,具体地:所述关键因素参数Y、K、A的值和室外检测温度的值Tao不变化,则Tai越大、Tm越大;所述关键因素参数Y、K、A的值和室内检测温度的值Tai不变化,则Tao越大、Tm越小;所述关键因素参数K、A的值、室外检测温度的值Tao和室内检测温度的值Tai不变化,则室内机运行风速越高K越小、则Tm越大。进而,控制器可以通过计算逻辑关系/逻辑关系和逻辑关系中参数取值范围,计算估计室内温度与设定温度的差值(如公式2),即控制温度差:△T=Y×(K×(Tm+(35-Tao)/5)+A)-Ts……公式2,Ts为所述设定温度的值。然后,根据确定的所述控制温度差,执行空调运行的控制逻辑,具体地,空调制冷时:△T≤0,空调停机;△T>0,空调运行;空调制热时:△T<0,空调运行;△T≥0,空调停机。这样,通过引入室内机盘管传感器、室外机环境温度传感器对室内机环境温度传感器,利用二者与室内机环境温度传感器温度的校核计算逻辑,实现替代控制。因而,如果空调的室内机温度传感器出现故障,此时空调不需故障报警,可以按照新控制逻辑继续控制空调运行,也就是说,不必影响空调的正常工作运行,切换到盘管传感器的盘管温度来继续控制空调运行,其在不增加任何设备附加组件的情况下,仍然确保控制正常运行。进一步,由于通过替代逻辑对空调实施控制后,避免了在室内机环温传感器的故障而导致的空调不运行或报警情况,空调仍可继续运行,这也大大降低空调的故障几率,既能保证用户的使用,又能节约维修成本。
本发明的一种室内机环境温度传感器故障后的控制方法的例子,其能在空调的室内机环境温度传感器故障后通过自动修复式的控制方式对空调运行继续控制:
S1、在空调运行时,室内机环境温度传感器正常即无故障的情况下,基于获得的室内机环境温度传感器的检测温度与空调运行的设定温度的控制温度差,执行空调运行的控制逻辑。具体地:室内机环境温度传感器的检测温度是室内温度即室内检查温度;所述控制温度差,为所述室内机环境温度传感器的室内检测温度与设定温度的差值;当空调为制冷模式时,如果所述控制温度差小于或等于0则控制空调停机,否则控制空调运行;当空调为制热模式时,如果所述控制温度差小于0则控制空调运行,否则控制空调停机;其中,所述控制温度差的差值计算方式为:△T=Tai-Ts,△T为控制温度差的差值,Tai为所述室内机环境温度传感器的室内检测温度的值,Ts为空调运行要达到的设定温度的值。S2、当无法获得所述室内机环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,执行空调运行的控制逻辑。具体地,当无法获得所述室内机环境温度传感器的室内检测温度时,获取所述室内机盘管传感器的检测温度以及获取室外机环境温度传感器的室外检测温度;根据所述室内机环境温度传感器的室内检测温度、所述室内机盘管传感器的检测温度、以及所述室外机环境温度传感器的室外检测温度,建立所述室内机环境温度传感器的检测温度与所述室内机盘管传感器的检测温度之间的计算逻辑关系。其中,计算逻辑关系中涉及一个或多个关键因素参数,所述关键因素参数影响所述室内机盘管传感器的检测温度的值的大小变化;设定所述关键因素参数的参数取值范围;根据所述计算逻辑关系、以及所述参数取值范围,计算基于所述室内机盘管传感器的检测温度和所述室外机环境温度传感器的室外检测温度而获得对应室内机环境温度传感器的室内检测温度的估计室内检测温度;计算所述估计室内检测温度与所述设定温度的差值以确定控制温度差;根据确定的所述控制温度差,执行空调运行的控制逻辑。
进一步,所述室内机盘管传感器的检测温度的值为Tm,所述室外检测温度的值为Tao,所述估计室内检测温度的值为Tai;所述计算逻辑关系为:Tai≈Y×(K×(Tm+(35-Tao)/5)+A);所述计算逻辑关系中涉及一个或多个关键因素参数包括:室内风速修正系数Y、室内机环境温传感器的室内检测温度与室内盘管传感器的检测温度的曲线斜率 K、偏差修正A、所述室外检测温度对室内盘管传感器的检测温度的修正值(35-Tao)/5。其中,计算所述估计室内检测温度与所述设定温度的差值为:△T=Y×(K×(Tm+(35-Tao)/5)+A)-Ts;Ts为所述设定温度的值;所述“根据确定的所述控制温度差,执行空调运行的控制逻辑包括:空调制冷时:△T≤0,空调停机;△T>0,空调运行;空调制热时:△T<0,空调运行;△T≥0,空调停机。所述关键因素参数影响所述室内机盘管传感器的检测温度的值的大小变化,其中,所述关键因素参数Y、K、A的值和室外检测温度的值Tao不变化,则Tai越大、Tm越大;所述关键因素参数Y、K、A的值和室内检测温度的值Tai不变化,则Tao越大、Tm越小;所述关键因素参数K、A的值、室外检测温度的值Tao和室内检测温度的值Tai不变化,则室内机运行风速越高K越小、则Tm越大。
下面结合图2所示根据本发明的一种室内机环境温度传感器故障后的控制方法的一个实施例流程图,进一步说明本发明的空调室内机环境温度传感器出现故障后自动修复空调运行控制的过程。
步骤S210,基于室内机环境温度传感器的室内检测温度与空调运行的设定温度的控制温度差,执行空调运行的控制逻辑。
具体地,在空调开机运行时,利用室内机环境温度传感器对室内温度进行检测,得到室内温度(即室内检测温度)的温度值。将室内温度与空调运行的设置温度,即用户设定需要空调升高或降低到几度的温度值,进行求差值运算,算出的差值为控制温度差。根据该控制温度差来控制空调运行还是停止。一个实施例中,可以将室内温度Tai,传送给控制空调运行逻辑的控制器等,控制器接收到Tai后与用户设定的空调运行的设定温度Ts求差,得到的差值即为控制温度差:△T=Tai-Ts,然后控制器根据空调运行的控制逻辑进行空调运行的控制:
制冷时:△T≤0,空调停机;△T>0,空调运行;
制热时:△T<0,空调运行;△T≥0,空调停机。
例:制冷时Ts=26℃、检测Tai=31℃,△T=Tai-Ts=5℃,大于0,空调开启、运行;制冷时Ts=26℃、检测Tai=25℃,△T=Tai-Ts=-1℃,小于0,空调停机。
例:制热时,Ts=22℃、检测Tai=18℃,△T=Tai-Ts=-4℃,小于0,空调开启、运行;制热时,Ts=22℃、检测Tai=22℃,△T=Tai-Ts=0℃,空调停机。
步骤S220,当无法获得所述室内机环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,执行空调运行的控制逻辑。具体地,室内机盘管传感器进行盘管温度检测,获得的盘管温度/盘管检测温度,室内机环境温度传感器进行检测获得的室内温度,两个温度之间,可以建立一个逻辑关系,即一个数学模型或者说一个计算逻辑关系。空调的室内机除了配置了室内环境温度传感器外,还会配置盘管传感器(安装在蒸发器),室内温度的变化会对盘管温度有影响,因而,建立室内环境温度与蒸发器盘管温度之间的关系数学模型即能够获得室内机环境温度传感器的检测温度与盘管传感器的检测温度之间的计算逻辑关系。计算逻辑关系中涉及的一个或多个关键因素参数,这些关键因素参数的取值范围可以预先确定,进而可以在范围中设定明确的参数值。
一个实施方式中,参见图3的根据本发明的方法中无法获得室内温度时引入盘管温度的自动修复控制的一个实施例的流程图。步骤S310,当无法获得所述室内机环境温度传感器的室内检测温度时,获取所述室内机盘管传感器的盘管检测温度以及获取室外机环境温度传感器的室外检测温度。一个实施方式中,无法获得室内机环境温度传感器的室内检测温度,则可能室内机环境温度传感器发生故障。例如,控制器无法接收到从室内机环境温度传感器提供的室内温度的温度值,此时引入室内机盘管传感器检测的盘管温度进行替代控制操作。具体如:所述室内机盘管传感器的检测温度的值为Tm,所述室外检测温度的值为Tao,将替代用的需要计算确定的估计室内检测温度的值为Tai,分别检测获得Tm、Tao,提供给控制器。步骤S320,根据所述室内机环境温度传感器的室内检测温度、所述室内机盘管传感器的盘管检测温度、以及所述室外机环境温度传感器的室外检测温度,建立所述室内机环境温度传感器的室内检测温度与所述室内机盘管传感器的盘管检测温度之间的计算逻辑关系,其中,所述计算逻辑关系中涉及一个或多个关键因素参数。
具体地,建立该计算逻辑关系例如:
Tai≈Y×(K×(Tm+(35-Tao)/5)+A)……公式1。
由此,可以计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度/估计温度,进而估计温度可以替代检测的室内温 度来控制空调运行。其中,所述计算逻辑关系中涉及一个或多个关键因素参数包括:室内风速修正系数Y、室内机环境温传感器的室内检测温度与室内盘管传感器的检测温度的曲线斜率K、偏差修正A、所述室外检测温度对室内盘管传感器的检测温度的修正值(35-Tao)/5。
进一步,所述关键因素参数影响所述室内机盘管传感器的检测温度的值的大小变化。具体地,所述关键因素参数影响所述室内机盘管传感器的检测温度的值的大小变化。Tm与其他关键因素参数的关系例如:所述关键因素参数Y、K、A的值和室外检测温度的值Tao不变化,则Tai越大、Tm越大;所述关键因素参数Y、K、A的值和室内检测温度的值Tai不变化,则Tao越大、Tm越小;所述关键因素参数K、A的值、室外检测温度的值Tao和室内检测温度的值Tai不变化,则室内机运行风速越高K越小、则Tm越大。
进一步,根据各个关键因素参数的参数取值范围,设定所述关键因素参数的参数取值。具体地,各个关键因素参数的参数取值范围例如:
所述“室内风速修正系数Y”,具体包括:
当室内机运行高速风时,修正系数Y取值0.95~1.05;
当室内机运行中速风时,修正系数Y取值1.05~1.15;
当室内机运行低速风时,修正系数Y取值1.15~1.25。
所述“室内机环境温传感器的室内检测温度与室内盘管传感器的盘管检测温度的曲线斜率K”取值范围为1.5~2.5。
所述“偏差修正A”取值范围为3~10。
可以预先在这些参数取值范围中对应状况设定相应的设定值。
步骤S330,利用获取的盘管检测温度、室外检测温度、设定温度、计算逻辑关系中各个关键因素参数的预先设定的参数取值,根据计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度/估计温度,以确定控制温度差的温度值。
具体地,控制温度差的差值为(参见步骤S210):
△T=Tai-Ts,
估计Tai=Y×(K×(Tm+(35-Tao)/5)+A),则
△T=Y×(K×(Tm+(35-Tao)/5)+A)-Ts……公式2。
由此,根据所述计算逻辑关系、以及所述参数取值范围、设定的参数取值,计算盘管检测温度和室外检测温度而获得对应的估计室内检测温度,进而,计算所述估计室内检测温度与所述设定温度的差值以确定控制温度差。
步骤S340,根据确定的所述控制温度差,执行空调运行的控制逻辑。具体地:控制温度差的值为△T,控制逻辑如下(参见步骤S210):
空调制冷时:△T≤0,空调停机;△T>0,空调运行;空调制热时:△T<0,空调运行;△T≥0,空调停机。
需要指出的是,尽管上述实施例中将各个步骤按照特定的先后顺序进行了描述,但是本领域技术人员可以理解,为了实现本发明的效果,不同的步骤之间并非必须按照这样的顺序执行,其可以同时(并行)执行或以其他顺序执行,这些变化都在本发明的保护范围之内。
下面结合图4所示根据本发明的一种空调室内机环境温度传感器故障后的控制系统的一个实施例的结构框图,进一步说明本发明的原理和实现方式。该系统至少包括:
第一控制单元410,基于室内机环境温度传感器的室内检测温度与空调运行的设定温度的控制温度差,执行空调运行的控制逻辑。
具体地,在空调开机运行时,利用室内机环境温度传感器对室内温度进行检测,得到室内温度(即室内检测温度)的温度值。将室内温度与空调运行的设置温度,即用户设定需要空调升高或降低到几度的温度值,进行求差值运算,算出的差值为控制温度差。根据该控制温度差来控制空调运行还是停止。
一个实施例中,可以将室内温度Tai,传送给控制空调运行逻辑的控制器等,控制器接收到Tai后与用户设定的空调运行的设定温度Ts求差,得到的差值即为控制温度差:△T=Tai-Ts,然后控制器根据空调运行的控制逻辑进行空调运行的控制:
制冷时:△T≤0,空调停机;△T>0,空调运行;
制热时:△T<0,空调运行;△T≥0,空调停机。
例:制冷时Ts=26℃、检测Tai=31℃,△T=Tai-Ts=5℃,大于0,空调开启、运行;制冷时Ts=26℃、检测Tai=25℃,△T=Tai-Ts=-1℃,小于0,空调停机。
例:制热时,Ts=22℃、检测Tai=18℃,△T=Tai-Ts=-4℃,小于0,空调开启、运行;制热时,Ts=22℃、检测Tai=22℃,△T=Tai-Ts=0℃,空调停机。
第二控制单元420,当无法获得所述室内机环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,执行空调运行的控制逻辑。具体地,室内机盘管传感器进行盘管温度检测,获得的盘管温度/盘管检测温度,室内机环境温度传感器进行检测获得的室内温度,两个温度之间,可以建立一个逻辑关系,即一个数学模型或者说一个计算逻辑关系。空调的室内机除了配置了室内环境温度传感器外,还会配置盘管传感器(安装在蒸发器),室内温度的变化会对盘管温度有影响,因而,建立室内环境温度与蒸发器盘管温度之间的关系数学模型即能够获得室内机环境温度传感器的检测温度与盘管传感器的检测温度之间的计算逻辑关系。计算逻辑关系中涉及的一个或多个关键因素参数,这些关键因素参数的取值范围可以预先确定,进而可以在范围中设定明确的参数值。一个实施方式中,第二控制单元420中,无法获得室内温度时引入盘管温度的自动修复控制的一个实施例的结构逻辑如下:获取模块4201,当无法获得所述室内机环境温度传感器的室内检测温度时,获取所述室内机盘管传感器的盘管检测温度以及获取室外机环境温度传感器的室外检测温度。一个实施方式中,无法获得室内机环境温度传感器的室内检测温度,则可能室内机环境温度传感器发生故障。例如,控制器无法接收到从室内机环境温度传感器提供的室内温度的温度值,此时引入室内机盘管传感器检测的盘管温度进行替代控制操作。具体如:所述室内机盘管传感器的检测温度的值为Tm,所述室外检测温度的值为Tao,将替代用的需要计算确定的估计室内检测温度的值为Tai,分别检测获得Tm、Tao,提供给控制器。
建立模块4202,根据所述室内机环境温度传感器的室内检测温度、所述室内机盘管传感器的盘管检测温度、以及所述室外机环境温度传感器的室外检测温度,建立所述室内机环境温度传感器的室内检测温度与所述室内机盘管传感器的盘管检测温度之间的计算逻辑关系,其中,所述计算逻辑关系中涉及一个或多个关键因素参数。
具体地,建立该计算逻辑关系例如:
Tai≈Y×(K×(Tm+(35-Tao)/5)+A)……公式1。
由此,可以计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度/估计温度,进而估计温度可以替代检测的室内温度来控制空调运行。其中,所述计算逻辑关系中涉及一个或多个关键因素参数包括:室内风速修正系数Y、室内机环境温传感器的室内检测温度与室内盘管传感器的检测温度的曲线斜率K、偏差修正A、所述室外检测温度对室内盘管传感器的检测温度的修正值(35-Tao)/5。
进一步,所述关键因素参数影响所述室内机盘管传感器的检测温度的值的大小变化。具体地,所述关键因素参数影响所述室内机盘管传感器的检测温度的值的大小变化。Tm与其他关键因素参数的关系例如:所述关键因素参数Y、K、A的值和室外检测温度的值Tao不变化,则Tai越大、Tm越大;所述关键因素参数Y、K、A的值和室内检测温度的值Tai不变化,则Tao越大、Tm越小;所述关键因素参数K、A的值、室外检测温度的值Tao和室内检测温度的值Tai不变化,则室内机运行风速越高K越小、则Tm越大。
进一步,根据各个关键因素参数的参数取值范围,设定所述关键因素参数的参数取值。具体地,各个关键因素参数的参数取值范围例如:
所述“室内风速修正系数Y”,具体包括:
当室内机运行高速风时,修正系数Y取值0.95~1.05;
当室内机运行中速风时,修正系数Y取值1.05~1.15;
当室内机运行低速风时,修正系数Y取值1.15~1.25。
所述“室内机环境温传感器的室内检测温度与室内盘管传感器的盘管检测温度的曲线斜率K”取值范围为1.5~2.5。
所述“偏差修正A”取值范围为3~10。
可以预先在这些参数取值范围中对应状况设定相应的设定值。
计算模块4203,利用获取的盘管检测温度、室外检测温度、设定温度、计算逻辑关系中各个关键因素参数的预先设定的参数取值,根据计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度/估计温度,以确定控制温度差的温度值。
具体地,控制温度差的差值为(参见步骤S210):
△T=Tai-Ts,
估计Tai=Y×(K×(Tm+(35-Tao)/5)+A),则
△T=Y×(K×(Tm+(35-Tao)/5)+A)-Ts……公式2。
由此,根据所述计算逻辑关系、以及所述参数取值范围、设定的参数取值,计算盘管检测温度和室外检测温度而获得对应的估计室内检测温度,进而,计算所述估计室内检测温度与所述设定温度的差值以确定控制温度差。
控制模块4204,根据确定的所述控制温度差,执行空调运行的控制逻辑。
具体地:控制温度差的值为△T,控制逻辑如下(如第一控制单元所述):空调制冷时:△T≤0,空调停机;△T>0,空调运行;空调制热时:△T<0,空调运行;△T≥0,空调停机。
需要说明的是下面的例子只是为说明本发明的方案实施情况的一个结合参数的例子,为说明本发明的方案实现过程而非实际的实施参数,其中各个参数的设置和系数的设定,可以根据实际应用时进行对应的调整和设置。
当空调制冷时,空调室内机环境温度传感器发送故障,检测获得所述空调室内机的盘管温度检测值Tm是21℃,所述空调室外机环境温度检测值Tao为30℃,空调的设定温度为25℃,室内机处于运行高速风状态,修正系数Y取值1,室内环境温度传感器温度与室内盘管传感器温度的曲线斜率K取值2,偏差修正A取值3,计算得出室内温度与空调的设定温度的差值△T=25,△T=25≥0,即室内温度大于空调的设定温度,空调制冷状态下,空调继续保持正常运行。这样,引入室内机盘管传感器、利用室内机环温传感器温度的校核计算逻辑关系,实现室外机环温传感器对室内机环温传感器的替代控制。从而,避免了室内环境温度传感器出现故障导致空调无法检测室内温度,无法与空调设定温度进行比较判定,不能正常工作运行,空调报出故障,用户只能等待空调维修人员上门维修的情形。
进一步,本发明的一种空调装置的一个实施例中,包括:室内机环境温度传感器,检测室内的环境温度获得室内检测温度;室外机环境温度传感器,检测室外的环境温度获得室外检测温度;室内机盘管传感器,设置在室内机的蒸发器区域,检测室内机盘管温度获得对应的检 测温度的温度值;分别连接室内机环境温度传感器、室外机环境温度传感器以及室内机盘管传感器,并接收来自每个传感器的检测温度的温度值的控制器;其中,当无法获得所述室内机环境温度传感器的室内检测温度时,控制器切换为接收来自室内机盘管传感器的检测温度的温度值、以及来自室外机温度传感器的室外检测温度的温度值;所述控制器执行前述任一室内机环境温度传感器故障后的控制方法的步骤。
进一步,本发明的一种空调装置的一个实施例中,包括前述任一室内机环境温度传感器故障后的控制系统。
进一步,本发明的一种控制装置的一个实施例中,包括存储设备和处理器,具体包括:所述存储设备中存储用于实现前述任一空调室内机环境温度传感器故障后的控制方法的程序;所述处理器加载所述存储设备中存储所述程序,并执行前述任一空调室内机环境温度传感器故障后的控制方法的步骤。
进一步,本发明的一种计算机存储介质的一个实施例中,包括存储了前述的能加载到处理器/控制器中执行的任一空调室内机环境温度传感器故障后的控制方法的程序。
进一步,应该理解的是,由于各个模块的设定仅仅是为了说明本发明的系统的功能单元,这些模块对应的物理器件可以是处理器本身,或者处理器中软件的一部分,硬件的一部分,或者软件和硬件结合的一部分。因此,图中的各个模块的数量仅仅是示意性的。
本领域技术人员能够理解的是,可以对系统中的各个模块进行适应性地拆分或合并。对具体模块的这种拆分或合并并不会导致技术方案偏离本发明的原理,因此,拆分或合并之后的技术方案都将落入本发明的保护范围内。
至此,已经结合附图所示的一个实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调室内机环境温度传感器故障后的控制方法,其特征在于,包括:
    当无法获得所述室内机环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,并根据所述控制温度差,执行空调运行的控制逻辑。
  2. 如权利要求1所述的方法,其中,还包括:
    空调开机运行时,通过获得的室内机环境温度传感器的室内检测温度与空调运行的设定温度的控制温度差,执行空调运行的控制逻辑;
    所述“当无法获得所述室内机环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差”,具体包括:
    当无法获得所述室内机环境温度传感器的室内检测温度时,获取所述室内机盘管传感器的盘管检测温度以及获取室外机环境温度传感器的室外检测温度;
    根据所述室内机环境温度传感器的室内检测温度、所述室内机盘管传感器的盘管检测温度、以及所述室外机环境温度传感器的室外检测温度,建立所述室内机环境温度传感器的室内检测温度与所述室内机盘管传感器的盘管检测温度之间的计算逻辑关系;
    利用获取的盘管检测温度、室外检测温度,以及所述设定温度、计算逻辑关系中各个关键因素参数的预先设定的参数取值,根据计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度,以确定控制温度差。
  3. 如权利要求2所述的方法,其中,还包括:
    所述室内检测温度为Tai、所述盘管检测温度为Tm、所述室外检测温度为Tao,建立的室内检测温度Tai与盘管检测温度Tm之间的计算逻辑关系为:Tai≈Y×(K×(Tm+(35-Tao)/5)+A);
    当无法获得所述室内机环境温度传感器的室内检测温度时,利用获 取的盘管检测温度Tm、室外检测温度Tao,以及所述设定温度Ts、计算逻辑关系中的每个关键因素参数预先设定的参数取值,根据所述计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度Tai,以确定控制温度差:
    △T=Y×(K×(Tm+(35-Tao)/5)+A)-Ts;
    其中,关键因素参数包括:室内风速修正系数Y、室内机环境温传感器的室内检测温度与室内盘管传感器的盘管检测温度的曲线斜率K、偏差修正A、所述室外检测温度对室内盘管传感器的检测温度的修正值(35-Tao)/5;
    所述“根据所述控制温度差,执行空调运行的控制逻辑”包括:
    空调制冷时:△T≤0,空调停机;△T>0,空调运行;
    空调制热时:△T<0,空调运行;△T≥0,空调停机。
  4. 如权利要求3所述的方法,其中,所述“计算逻辑关系中每个关键因素参数预先设定的参数取值”具体包括:
    在每个参数取值根据对应的取值范围预先设定;
    所述“室内风速修正系数Y”的取值范围为:
    当室内机运行高速风时,修正系数Y取值0.95~1.05;
    当室内机运行中速风时,修正系数Y取值1.05~1.15;
    当室内机运行低速风时,修正系数Y取值1.15~1.25;
    所述“曲线斜率K”的取值范围为:1.5~2.5;
    所述“偏差修正A”取值范围为3~10。
  5. 一种空调室内机环境温度传感器故障后的控制系统,其特征在于,包括:
    第二控制单元,当无法获得所述室内机环境温度传感器的检测温度时,基于室内机盘管传感器的检测温度与所述室内机环境温度传感器的检测温度的逻辑关系以及逻辑关系中所涉及的参数取值,确定控制温度差,并根据所述控制温度差,执行空调运行的控制逻辑。
  6. 如权利要求5所述的系统,其中,具体还包括:
    第一控制单元,空调开机运行时,通过获得的室内机环境温度传感 器的室内检测温度与空调运行的设定温度的控制温度差,执行空调运行的控制逻辑;
    第二控制单元,具体包括:
    获取模块,当无法获得所述室内机环境温度传感器的室内检测温度时,获取所述室内机盘管传感器的盘管检测温度以及获取室外机环境温度传感器的室外检测温度;
    建立模块,根据所述室内机环境温度传感器的室内检测温度、所述室内机盘管传感器的盘管检测温度、以及所述室外机环境温度传感器的室外检测温度,建立所述室内机环境温度传感器的室内检测温度与所述室内机盘管传感器的盘管检测温度之间的计算逻辑关系;
    计算模块,利用获取的盘管检测温度、室外检测温度,以及所述设定温度、计算逻辑关系中各个关键因素参数的预先设定的参数取值,根据计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度,以确定控制温度差。
  7. 如权利要求6所述的系统,其中,
    所述室内检测温度为Tai、所述盘管检测温度为Tm、所述室外检测温度为Tao,建立的室内检测温度Tai与盘管检测温度Tm之间的计算逻辑关系为:Tai≈Y×(K×(Tm+(35-Tao)/5)+A);
    当无法获得所述室内机环境温度传感器的室内检测温度时,利用获取的盘管检测温度Tm、室外检测温度Tao,以及所述设定温度Ts、计算逻辑关系中的每个关键因素参数预先设定的参数取值,根据所述计算逻辑关系来计算对应该室内机环境温度传感器的室内检测温度的估计室内检测温度Tai,以确定控制温度差:
    △T=Y×(K×(Tm+(35-Tao)/5)+A)-Ts;
    其中,关键因素参数包括:室内风速修正系数Y、室内机环境温传感器的室内检测温度与室内盘管传感器的盘管检测温度的曲线斜率K、偏差修正A、所述室外检测温度对室内盘管传感器的检测温度的修正值(35-Tao)/5;
    其中,“计算逻辑关系中每个关键因素参数预先设定的参数取值”包括:
    在每个参数取值根据对应的取值范围预先设定;
    所述“室内风速修正系数Y”的取值范围为:
    当室内机运行高速风时,修正系数Y取值0.95~1.05;
    当室内机运行中速风时,修正系数Y取值1.05~1.15;
    当室内机运行低速风时,修正系数Y取值1.15~1.25;
    所述“曲线斜率K”的取值范围为:1.5~2.5;
    所述“偏差修正A”取值范围为3~10;
    控制模块,具体包括:
    空调制冷时:△T≤0,空调停机;△T>0,空调运行;
    空调制热时:△T<0,空调运行;△T≥0,空调停机。
  8. 一种空调装置,包括:
    室内机环境温度传感器,检测室内的环境温度获得室内检测温度;
    室外机环境温度传感器,检测室外的环境温度获得室外检测温度;
    室内机盘管传感器,设置在室内机的蒸发器区域,检测室内机盘管温度获得对应的盘管检测温度的温度值;
    分别连接室内机环境温度传感器、室外机环境温度传感器以及室内机盘管传感器,并接收来自每个传感器的检测温度的温度值的控制器,其特征在于,控制器还包括:
    当无法获得所述室内机环境温度传感器的室内检测温度时,控制器切换为接收来自室内机盘管传感器的检测温度的温度值、以及来自室外机温度传感器的室外检测温度的温度值;所述控制器执行如权利要求1至4任一项所述的室内机环境温度传感器故障后的控制方法。
  9. 一种空调装置,其特征在于,包括:如权利要求5至7任一项所述的室内机环境温度传感器故障后的控制系统。
  10. 一种控制装置,包括存储设备和处理器,其特征在于,包括:
    所述存储设备中存储用于实现如权利要求1至4任一项所述的一种空调室内机环境温度传感器故障后自动修复的控制方法的程序;
    所述处理器加载所述存储设备中存储所述程序,并执行如权利要求1至4任一项所述的一种空调室内机环境温度传感器故障后自动修复的控制方法的步骤。
PCT/CN2021/078614 2020-04-29 2021-03-02 室内机环境温度传感器故障后的控制方法、系统及装置 WO2021218353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010356703.3 2020-04-29
CN202010356703.3A CN113566379B (zh) 2020-04-29 2020-04-29 室内机环境温度传感器故障后的控制方法、系统及装置

Publications (1)

Publication Number Publication Date
WO2021218353A1 true WO2021218353A1 (zh) 2021-11-04

Family

ID=78158568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078614 WO2021218353A1 (zh) 2020-04-29 2021-03-02 室内机环境温度传感器故障后的控制方法、系统及装置

Country Status (2)

Country Link
CN (1) CN113566379B (zh)
WO (1) WO2021218353A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114508830A (zh) * 2022-01-25 2022-05-17 北京小米移动软件有限公司 控制空调运行的方法、空调、电子设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279161B (zh) * 2021-12-22 2022-11-18 珠海格力电器股份有限公司 冰箱温度控制方法、装置及冰箱
CN115978756A (zh) * 2022-12-22 2023-04-18 宁波奥克斯电气股份有限公司 一种多联机空调传感器自修复的控制方法、可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050105865A (ko) * 2004-05-03 2005-11-08 엘지전자 주식회사 천정형 에어컨의 실온제어장치 및 방법
KR100630831B1 (ko) * 2005-06-09 2006-10-04 위니아만도 주식회사 에어컨의 실내 온도센서 고장시 응급 운전방법
CN104374049A (zh) * 2014-10-29 2015-02-25 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN106642584A (zh) * 2016-12-27 2017-05-10 珠海格力电器股份有限公司 一种空调运行的控制方法及装置
CN107401820A (zh) * 2017-07-21 2017-11-28 广东美的暖通设备有限公司 空调系统及其温度传感器故障时的控制方法和装置
CN107631447A (zh) * 2017-09-30 2018-01-26 广东美的制冷设备有限公司 运行控制方法、运行控制装置、空调器和存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648947B1 (ko) * 2005-10-25 2006-11-27 삼성전자주식회사 공기조화기
CN101504179B (zh) * 2009-02-27 2011-04-06 海信(山东)空调有限公司 一种制冷模式下空调器故障传感器的替代控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050105865A (ko) * 2004-05-03 2005-11-08 엘지전자 주식회사 천정형 에어컨의 실온제어장치 및 방법
KR100630831B1 (ko) * 2005-06-09 2006-10-04 위니아만도 주식회사 에어컨의 실내 온도센서 고장시 응급 운전방법
CN104374049A (zh) * 2014-10-29 2015-02-25 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN106642584A (zh) * 2016-12-27 2017-05-10 珠海格力电器股份有限公司 一种空调运行的控制方法及装置
CN107401820A (zh) * 2017-07-21 2017-11-28 广东美的暖通设备有限公司 空调系统及其温度传感器故障时的控制方法和装置
CN107631447A (zh) * 2017-09-30 2018-01-26 广东美的制冷设备有限公司 运行控制方法、运行控制装置、空调器和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114508830A (zh) * 2022-01-25 2022-05-17 北京小米移动软件有限公司 控制空调运行的方法、空调、电子设备及存储介质
CN114508830B (zh) * 2022-01-25 2024-05-07 小米科技(武汉)有限公司 控制空调运行的方法、空调、电子设备及存储介质

Also Published As

Publication number Publication date
CN113566379A (zh) 2021-10-29
CN113566379B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2021218353A1 (zh) 室内机环境温度传感器故障后的控制方法、系统及装置
US10684055B2 (en) Sensor failure error handling
US11168913B2 (en) Control method and control device of air conditioner and air conditioner
JP6785852B2 (ja) 冷凍サイクル装置
CN104101051A (zh) 一种空调器及其冷媒循环异常检测控制方法和装置
EP1980797B1 (en) Outdoor unit for air conditioner and method of controlling the same
JP2015045487A (ja) 空気調和機
CN106403142A (zh) 多联机空调系统室内机异常断电保护方法
CN106352489A (zh) 一种空调故障的检测方法及系统
CN108954670A (zh) 一种空调器的故障预判方法、控制系统及空调器
WO2021208605A1 (zh) 一种变频空调压缩机频率快速稳定方法、系统及空调装置
CN109140852B (zh) 一种变频空调器外环温度检测修正方法
CN113551371B (zh) 空调器的高低压阀状态检测方法、装置、空调器与介质
WO2021042666A1 (zh) 空调器中间能力的控制方法、空调器和存储器
CN114183883A (zh) 四通阀的检测方法及空调
CN107192157B (zh) 四通阀换向异常的检测方法、系统及获取制热初始频率的方法
CN112432387B (zh) 一种空调系统的回油控制方法、装置和空调系统
CN108627711B (zh) 用于制冷系统的故障检测系统和方法以及制冷系统
CN105674646A (zh) 制冷设备的除霜控制方法、装置及空调器
CN113280470B (zh) 一种四通阀故障检测方法、装置及空调器
JPH09282002A (ja) マスタ・スレーブ式制御装置および冷凍サイクル装置用制御装置
CN113074442B (zh) 空调变频器防反装的检测方法、设备及空调
CN112594875B (zh) 一种多联机室内机通讯台数控制方法
CN115200163A (zh) 一种空调器控制方法、控制装置以及空调器
JP3473336B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795584

Country of ref document: EP

Kind code of ref document: A1