WO2021218265A1 - 光学透镜、光学透镜组、车灯系统及车辆 - Google Patents

光学透镜、光学透镜组、车灯系统及车辆 Download PDF

Info

Publication number
WO2021218265A1
WO2021218265A1 PCT/CN2021/074835 CN2021074835W WO2021218265A1 WO 2021218265 A1 WO2021218265 A1 WO 2021218265A1 CN 2021074835 W CN2021074835 W CN 2021074835W WO 2021218265 A1 WO2021218265 A1 WO 2021218265A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical lens
azimuth
lens group
unidirectional
straightening
Prior art date
Application number
PCT/CN2021/074835
Other languages
English (en)
French (fr)
Inventor
张洁
董世琨
孟凡
陈佳缘
Original Assignee
华域视觉科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华域视觉科技(上海)有限公司 filed Critical 华域视觉科技(上海)有限公司
Priority to US17/922,142 priority Critical patent/US20230213162A1/en
Priority to DE112021002606.2T priority patent/DE112021002606T5/de
Priority to EP21796757.9A priority patent/EP4130557A4/en
Priority to JP2022561683A priority patent/JP7490810B2/ja
Publication of WO2021218265A1 publication Critical patent/WO2021218265A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/27Thick lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/275Lens surfaces, e.g. coatings or surface structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions

Definitions

  • the present invention relates to a vehicle optical element, in particular, to an optical lens.
  • it relates to an optical lens group, a vehicle light system having the optical lens or the optical lens group, and a vehicle having the vehicle light system.
  • Vehicle lights refer to lamps on vehicles. They are lighting tools for vehicles running on the road at night, as well as reminders for sending various vehicle driving signals. They play a very important role in ensuring the safe driving of vehicles. With the development of society and economy, the automobile industry also develops. With the continuous development of automobile lighting technology, more requirements are put forward for the functions of automobile lights.
  • collimating optical elements are usually set to obtain approximately parallel outgoing light, such as a hyperboloid collimating lens.
  • the curved surface is a revolving curved surface based on the optical axis of the lens, and its imaging characteristics It is isotropic.
  • the light shape of the car light has anisotropic requirements, such as a small upper and lower lighting angle, and a large left and right lighting angle; for this reason, the car light lighting system based on the above-mentioned collimator lens needs to form a foundation with a certain width through an additional optical system The light shape is imaged onto the road surface through the collimating lens, making the structure relatively complicated.
  • the technical problem to be solved by the present invention is to provide an optical lens, which can meet the requirements of the anisotropy of the light shape of the vehicle lamp illumination and form an asymmetric light shape.
  • the further technical problem to be solved by the present invention is to provide an optical lens group, which can meet the requirements of the anisotropy of the light shape of the vehicle lamp illumination and form an asymmetric light shape.
  • a further technical problem to be solved by the present invention is to provide a vehicle lamp system, which can reduce the structural size of the vehicle lamp.
  • the technical problem to be solved by the present invention is to provide a vehicle that has better lighting effects.
  • An optical lens comprising a light entrance part and a light exit part, the light entrance part is formed with a first single-azimuth straightening surface, the light exit part is formed with a second single-azimuth straightening surface, the alignment of the first single-azimuth straightening surface
  • the straightening azimuth and the straightening azimuths of the second single-azimuth straightening surface are perpendicular to each other, and the first single-azimuth straightening surface and the second single-azimuth straightening surface jointly form the focal point or focusing area of the optical lens.
  • the first unidirectional straightening surface and the second unidirectional straightening surface are both curved surfaces formed by stretching a collimating curve along the normal direction of the plane where the collimating curve is located.
  • first single-azimuth straightening surface and the second single-azimuth straightening surface are both cylindrical or quasi-cylindrical.
  • first single-azimuth straightening surface and the second single-azimuth straightening surface are both cylindrical surfaces.
  • the first single-azimuth straightening surface and the second single-azimuth straightening surface are both stepped Fresnel cylinders.
  • one of the first single-azimuth straightening surface and the second single-azimuth straightening surface is a cylindrical surface, and the other is a stepped Fresnel cylindrical surface.
  • one of the straightening azimuth of the first single-azimuth straightening plane and the straightening azimuth of the second single-azimuth straightening plane is a vertical direction, and the other is a horizontal direction.
  • first unidirectional straightening surface and the second unidirectional straightening surface cooperate with each other so that the focal lengths of the two sides of the optical lens are different, so as to form an asymmetric light shape.
  • the present invention also provides an optical lens group, including a first unidirectional collimating lens group and a second unidirectional collimating lens group, the first unidirectional collimating lens group and the second unidirectional collimating lens group
  • the groups together form the focal point or focusing area of the optical lens group, and the alignment orientation of the first unidirectional collimating lens group and the alignment orientation of the second unidirectional collimating lens group are perpendicular to each other.
  • both the first unidirectional collimating lens group and the second unidirectional collimating lens group are composed of at least one unidirectional collimating lens.
  • one of the incident surface and the exit surface of the unidirectional collimating lens is a unidirectional collimating curved surface or both are unidirectional collimating curved surfaces with the same collimating direction.
  • the first unidirectional collimating lens group and the second unidirectional collimating lens group are connected by a side wall.
  • the present invention also provides a vehicle lamp system, including the optical lens or optical lens group described in any one of the above technical solutions.
  • it also includes a light source arranged at the focal point or focal area of the optical lens or the optical lens group; or, it further includes a light source and a primary optical element, the primary optical element being arranged to enable the light source
  • the emitted light is condensed to the focal point or focus area of the optical lens or the optical lens group, and is introduced into the optical lens or the optical lens group.
  • the present invention also provides a vehicle including the vehicle light system described in any one of the above technical solutions.
  • the optical lens of the present invention includes a first single-azimuth straightening surface and a second single-azimuth straightening surface.
  • the azimuth is single-azimuth;
  • the second single-azimuth alignment surface also has the same characteristics of the single-azimuth alignment of the light, that is, the alignment azimuth of the second single-azimuth alignment surface is also single-azimuth; however, the first single-azimuth alignment surface
  • the straightening azimuth and the straightening azimuth of the second single-azimuth straightening surface are perpendicular to each other, so that an asymmetric light shape can
  • the asymmetric light shape mainly refers to the light shape when the square light-emitting surface is imaged. Rectangle, rather than the isotropic, nearly square light shape formed by the existing collimating lens. Moreover, the optical lens has a focal point or a focusing area, and placing the light source near its focal point or in the focusing area can obtain a better optical effect and a higher utilization rate of light energy.
  • the present invention can also achieve the same functions as the above-mentioned optical lens through the form of an optical lens group.
  • FIG. 1 is a schematic diagram of a three-dimensional optical path of an optical lens according to a first specific embodiment of the present invention
  • FIG. 2 is a screen illuminance diagram of the light shape of the optical lens according to the specific embodiment of the present invention.
  • Fig. 3 is a screen illuminance diagram of the light shape when the existing lens images a square light-emitting surface
  • FIG. 4 is a top view of the optical lens in FIG. 1;
  • Fig. 5 is a front view of the optical lens in Fig. 1;
  • Fig. 6 is a right side view of the optical lens in Fig. 1;
  • FIG. 7 is a schematic diagram of a three-dimensional optical path of an optical lens according to a second specific embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a three-dimensional light path of a vehicle lamp system according to a specific embodiment of the present invention, in which the optical lens adopts the optical lens of the second specific embodiment;
  • FIG. 9 is a front view of the structure of an optical lens according to a third embodiment of the present invention.
  • FIG. 10 is a left view of the structure of the optical lens in the third specific embodiment of the present invention.
  • FIG. 11 is a bottom view of the structure of the optical lens of the third embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a three-dimensional optical path of an optical lens according to a third specific embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a three-dimensional light path of a vehicle lamp system according to a fourth embodiment of the present invention, wherein the optical lens adopts the optical lens of the first embodiment;
  • FIG. 14 is a schematic diagram of the light shape effect of the vehicle lamp system according to the fourth embodiment of the present invention, in which the optical lens adopts the optical lens of the first embodiment;
  • 16 is the second schematic diagram of the optical path of the optical lens in the fourth specific embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a three-dimensional optical path of a prior art lighting module, in which the optical lens adopts an existing hyperboloid collimating lens;
  • 18 is a schematic diagram of the light shape effect of the prior art lighting module, in which the optical lens adopts the existing hyperboloid collimating lens;
  • FIG. 19 is a schematic diagram of a three-dimensional optical path of an optical lens group according to a fifth specific embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a three-dimensional optical path of an optical lens group according to a sixth embodiment of the present invention, in which the first unidirectional collimating lens group and the second unidirectional collimating lens group are both composed of two unidirectional collimating lenses;
  • 21 is a schematic diagram of a three-dimensional optical path of an optical lens group according to a seventh specific embodiment of the present invention, wherein the first unidirectional collimating lens group and the second unidirectional collimating lens group are connected by a side wall;
  • FIG. 22 is a top view of the optical lens group in FIG. 21;
  • FIG. 23 is a front view of the optical lens group in FIG. 21;
  • FIG. 25 is the second schematic diagram of the optical path of the optical lens group in the seventh specific embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the terms “first” and “second” are limited to The “second” feature may explicitly or implicitly include one or more of the features.
  • the terms “set” and “arrangement” should be understood in a broad sense, for example, they may be fixed connection, detachable connection, or Integral connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a communication between two elements or an interaction relationship between two elements.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the terms “horizontal” and “vertical” are azimuth terms related to the installation direction of the optical lens on the vehicle.
  • the light emitting direction is roughly the same; the terminology is based on the orientation or positional relationship shown in the drawings, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as an impact on the present invention.
  • the optical lens of the basic embodiment of the present invention includes a light entrance part and a light exit part, and the light entrance part is formed with a first unidirectional straightening surface 1.
  • a second single-azimuth straightening surface 2 is formed on the part, the straightening azimuth of the first single-azimuth straightening surface 1 and the straightening azimuth of the second single-azimuth straightening surface 2 are perpendicular to each other, and the first single-azimuth straightening surface 1 and The second single-azimuth straightening surface 2 jointly forms the focal point or focusing area of the optical lens.
  • first single-azimuth straightening surface 1 and the second single-azimuth straightening surface 2 of the optical lens are generally made to be roughly the same as the vertical and horizontal directions of the vehicle, that is, the first single-azimuth straightening surface 1
  • the straightening direction of is limited to the horizontal or vertical direction.
  • the straightening direction of the second single-azimuth straightening surface 2 is limited to the vertical or horizontal direction; to simplify the description, the following mainly uses the first single-azimuth straightening surface
  • the straightening direction of 1 is limited to the horizontal direction and the straightening direction of the second single-azimuth straightening surface 2 is limited to the vertical direction, as an example, the optical lens of the present invention will be described.
  • the first single-azimuth straightening surface 1 has the optical characteristic of single-azimuth collimation to the light emitted by the light source 3.
  • the "alignment direction" can be understood as follows: In a horizontal section, refer to FIG. 15 , The first single-azimuth straightening surface 1 has a converging effect and can have a certain collimation effect on the light. Compared with Figure 16, in the vertical section, the first single-azimuth straightening surface 1 has no refraction or at most very weak refraction of the light.
  • the effect (the cutting curve in the vertical direction is almost a straight line), that is, the first single-azimuth straightening surface 1 has a single-direction collimating effect on the light within the horizontal section position range, that is, the first single-azimuth straightening surface 1 has a single-directional collimation effect.
  • the straight direction is limited to the horizontal direction.
  • the second single-azimuth straightening surface 2 has the optical characteristics of single-azimuth collimation of the light emitted by the light source 3 similar to the first single-azimuth straightening surface 1. The difference is: in the horizontal section, the second single-azimuth straightening surface 2 pairs the light There is no refraction or at most only very weak refraction effect.
  • the second single-azimuth straightening surface 2 has a convergence effect and can have a certain collimating effect on the light, that is, the second single-azimuth straightening surface 2 is in the vertical section
  • the straightening azimuth of the first single-azimuth straightening surface 1 and the straightening azimuth of the second single-azimuth straightening surface 2 are perpendicular to each other; referring to Figures 15 and 16, since the first single-azimuth straightening surface 1 and the second single-azimuth straightening surface 1 There is a lens thickness A between 2 and the first single-azimuth straightening surface 1 is closer to the focal point or focal area.
  • the focal length is smaller; according to the imaging principle, the smaller the focal length, the resulting image The larger is, so there is a difference in imaging between the first single-azimuth straightening surface 1 and the second single-azimuth straightening surface 2, and the first single-azimuth straightening surface 1 close to the focal point or focal area has better imaging than the second single-azimuth straightening surface 1.
  • the straightening azimuth of the single-azimuth straightening surface 2 is larger, that is, the light diffusion of the light source 3 in the straightening azimuth of the first single-azimuth straightening surface 1 after passing through the optical lens is greater than that of the second single-azimuth straightening surface 2
  • the degree of light diffusion in the straight azimuth; the imaging difference is determined by the refractive index of the lens and the lens thickness A between the first single-azimuth straightening surface 1 and the second single-azimuth straightening surface 2.
  • a light source 3 with a square emitting surface is arranged near the focal point of the optical lens or in the focal area, so that the light emitted by the light source 3 passes through the first single-azimuth straightening surface 1 and the second single-azimuth straightening surface 2 in sequence to form an asymmetric light shape
  • asymmetric light shape refers to the large difference between the length and width of the light shape, such as a rectangular light shape; for example, the second unidirectional straightening plane 2 stretched in the horizontal direction combined with the second one stretched in the vertical direction One-sided straightening surface 1, so that the degree of diffusion of light in the horizontal direction is greater than the degree of diffusion in the vertical direction, and a light shape that is wider in the horizontal direction and relatively narrow in the vertical direction can be obtained; on the contrary, pull it in the vertical direction
  • the extended second single-azimuth straightening surface 2 combined with the first-azimuth straightening surface 1 stretched in the horizontal direction makes the light spread in the vertical direction greater than the spread in
  • Figure 3 is a screen illuminance diagram of the light shape when the existing lens is imaging a square light-emitting surface. It is obvious that the light shape obtained by the optical lens of the present invention has obvious asymmetry.
  • the first single-azimuth alignment surface 1 can be regarded as a curved surface formed by stretching the alignment curve in the horizontal section along the normal direction of the plane where the alignment curve is located. That is, the curved surface formed by stretching in the vertical direction.
  • the second unidirectional straightening surface 2 can be regarded as a curved surface formed by stretching the collimating curve in the vertical section along the normal direction of the plane where the collimating curve is located. That is, the curved surface formed by stretching in the horizontal direction.
  • the curved surface formed by the first single-azimuth straightening surface 1 and the curved surface formed by the second single-azimuth straightening surface 2 may be cylindrical; the cylindrical surface can be understood as such an optical curved surface, and the first single-azimuth straightening surface 1 is For example, it has a convergence effect in a horizontal section and can have a certain collimation effect on light.
  • the cutting curve in the vertical direction is almost a straight line
  • the cutting curve in the horizontal direction does not have to be a circular arc
  • the curved surface formed by the first single-azimuth straightening surface 1 and the curved surface formed by the second single-azimuth straightening surface 2 may be cylindrical-like surfaces.
  • the horizontal cutting curve of the cylindrical surface formed by the first single-azimuth straightening surface 1 can be an arc shape; the same
  • the principle is also applicable to the cylindrical structure formed by the second single-azimuth straightening plane 2.
  • the asymmetry of the asymmetric light shape formed by the above technical solution is caused by the different focal lengths on both sides of the optical lens.
  • the ratio of magnification is related to the ratio of magnification, and the ratio of magnification depends on the distance between the first single-azimuth straightening surface 1 and the second single-azimuth straightening surface 2. The larger the distance, the greater the ratio, the more obvious the asymmetry;
  • the optical lens in 13 is compared with the optical lens shown in Fig. 7. A small ratio can reduce the thickness of the optical lens.
  • the first single-azimuth straightening surface 1 and the second single-azimuth straightening surface 2 may also be stepped Fresnel cylinders, and the "stepped Fresnel cylinders" are Refers to the realization of the Fresnel curve stretching method, which has a unidirectional collimating effect on the light.
  • the "Fresnel curve” refers to the plane passing through the optical axis of the Fresnel lens and the Fresnel lens The intersecting lines of the surfaces with multiple concentric circles have the same or similar curved shape.
  • the stepped Fresnel cylinder is formed by a series of cylindrical structures arranged horizontally or vertically.
  • the stepped Fresnel cylinder structure is the same as the above-mentioned cylindrical structure, which can collimate light.
  • the Niel cylinders are arranged perpendicular to each other and can also form an asymmetric light shape.
  • first single-azimuth straightening surface 1 and the second single-azimuth straightening surface 2 adopt a cylindrical surface or a stepped Fresnel cylinder are respectively described above. It is understandable that for the first single-azimuth straightening surface 1 and the second single-azimuth straightening surface 2 can be simply deformed.
  • the first single-azimuth straightening surface 1 is a cylindrical surface and the second single-azimuth straightening surface 2 is a stepped Fresnel cylinder, or the first single-azimuth straightening surface
  • the straightening surface 1 is a stepped Fresnel cylindrical surface and the second single-azimuth straightening surface 2 is a cylindrical surface, and the straightening directions of the two may be perpendicular to each other.
  • the above description of the optical lens of the present invention takes the first single-azimuth straightening surface 1 in the horizontal direction and the second single-azimuth straightening surface 2 in the vertical direction as examples.
  • the foregoing specific embodiments are also applicable to the case where the straightening orientation of the first single-azimuth straightening surface 1 is in the vertical direction and the straightening orientation of the second single-azimuth straightening surface 2 is in the horizontal direction, for example, in the embodiment of FIG.
  • the alignment of the cylindrical surface on the first single-azimuth straightening surface 1 is in the vertical direction, and the alignment of the cylindrical surface on the second single-azimuth straightening surface 2 is in the Horizontal direction; or, in the embodiment of FIG. 12, from the arrangement of the optical lens in FIG. 12, the stepped Fresnel cylinder on the first single-azimuth straightening surface 1 extends in the horizontal direction, and the straightening The azimuth is in the vertical direction, the stepped Fresnel cylinder on the second single-azimuth straightening surface 2 extends in the vertical direction, and the straightening direction is in the horizontal direction.
  • the optical lens of the present invention can also be designed as an optical lens group structure; further, as shown in Figure 19 to Figure 25, the first unidirectional collimating lens group 6 and the second unidirectional collimating lens group 7 Composition, the first unidirectional collimating lens group 6 and the second unidirectional collimating lens group 7 together form the focal point or focusing area of the optical lens group of the present invention, and the alignment orientation of the first unidirectional collimating lens group 6 is the same as
  • the alignment directions of the second unidirectional collimating lens group 7 are perpendicular to each other; similar to the optical lens of the present invention, it can be seen from the optical paths shown in FIGS.
  • the unidirectional collimating lens group 7 has the optical characteristics of unidirectional collimation for the light emitted by the light source 3, that is, the collimating direction of the first unidirectional collimating lens group 6 is the horizontal direction, and the second unidirectional collimating lens group
  • the collimation direction of 7 is the vertical direction; specifically, both the first unidirectional collimating lens group 6 and the second unidirectional collimating lens group 7 are composed of at least one unidirectional collimating lens, for example, FIG. 19 shows The first unidirectional collimating lens group 6 and the second unidirectional collimating lens group 7 are both composed of one unidirectional collimating lens.
  • FIG. 20 shows the first unidirectional collimating lens group 6 and the second unidirectional collimating lens group 6 and the second unidirectional collimating lens.
  • the unidirectional collimating lens group 7 is composed of two unidirectional collimating lenses
  • both the first unidirectional collimating lens group 6 and the second unidirectional collimating lens group 7 can be composed of more It is composed of multiple unidirectional collimating lenses, as long as the first unidirectional collimating lens group 6 and the second unidirectional collimating lens group 7 have the optical characteristics of unidirectional collimation, that is, the first unidirectional collimating lens group
  • the collimating directions of the multiple unidirectional collimating lenses in 6 are the same, and the collimating directions of the multiple unidirectional collimating lenses in the second unidirectional collimating lens group 7 are the same; that is, the unidirectional collimating lenses can As shown in Fig.
  • the incident surface or the exit surface is a unidirectional collimating surface, or the unidirectional collimating lens can also be a unidirectional collimating surface as shown in Fig. 19
  • the “unidirectional collimated curved surface” here refers to a curved surface that has the same function as the first single-sided straightening surface 1 or the second single-sided straightening surface 2 of the optical lens of the present invention, and specifically can be cylindrical or cylindrical-like Surface or stepped Fresnel cylinder, etc.; further, as shown in FIGS. 21 to 23, the two ends of the first unidirectional collimating lens group 6 and the two ends of the second unidirectional collimating lens group 7 correspond to each other Through the side wall connection, the two are connected as one piece, effectively ensuring the stability of the optical system.
  • the optical lens of the present invention is adapted to the general vehicle lamp system, as shown in Figure 1, Figure 7 and Figure 12, the light source 3 is set near the focal point or focus area of the optical lens, or as shown in Figure 8, Figure 13 As shown, the optical lens of the present invention can also be used as a secondary optical element.
  • the primary optical element 4 condenses the light emitted from the light source 3 to the focal point or focal area of the optical lens, and then injects the light into the optical lens.
  • the element 4 is provided with a cut-off structure for forming a cut-off line of light and dark. With reference to Fig. 13, a light shape with cut-off line of light and dark as shown in Fig.
  • the primary optical element 4 can be a mirror, a condenser or a condenser.
  • Optical components such as light cups.
  • the optical lens group of the present invention can also be adapted to a general vehicle lamp system to obtain the same function.
  • Fig. 17 shows an embodiment of a prior art lighting module.
  • a hyperboloid collimating lens 5 is used as a secondary optical element.
  • the primary optical element 4 converges the light emitted by the light source 3 and then shoots it to the hyperboloid collimation.
  • the degree of diffusion of the light emitted by the light source 3 in the horizontal direction is greater than the degree of diffusion in the vertical direction, and the light shape is approximately rectangular. It can be seen from the above comparison that the optical lens of the present invention can make The light shape has obvious asymmetry. Compared with the prior art, there is no need to add additional optical elements to make the size of the light shape in the horizontal direction and the vertical direction have a certain difference. structure.
  • the optical lens of the present invention can form a rectangular light shape, when arranging a car light system in a car light, take two car light systems as an example.
  • the other car light system is set obliquely, so that the light shape formed by the corresponding optical lens is a rectangular light shape with a certain inclination, and the two rectangular light shapes overlap to form a light with a bright and dark cut-off line that meets the requirements. shape.
  • the optical lens can also be replaced with the optical lens group of the present invention, and the same function can also be achieved.
  • the corresponding vehicle lamp design can make the vehicle light have a flat and wide shape, so that the front part of the vehicle can tend to a streamlined design, which is convenient to reduce the impact of oncoming wind. Noise; moreover, it has a better lighting effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lenses (AREA)

Abstract

一种光学透镜,包括入光部和出光部,入光部形成有第一单方位校直面(1),出光部形成有第二单方位校直面(2),第一单方位校直面(1)的校直方位与第二单方位校直面(2)的校直方位相互垂直,且第一单方位校直面(1)与第二单方位校直面(2)共同形成光学透镜的焦点或聚焦区域。此外,还提供了一种光学透镜组、车灯系统及车辆。光学透镜能够满足车灯照明光形各向异性的要求,形成非对称光形。

Description

光学透镜、光学透镜组、车灯系统及车辆
相关申请的交叉引用
本申请要求2020年04月30日提交的中国专利申请202010367179.X以及2020年07月01日提交的中国专利申请202010628888.9的权益,上述申请的内容通过引用被合并于本文。
技术领域
本发明涉及车辆光学元件,具体地,涉及一种光学透镜。此外还涉及一种光学透镜组、具有该光学透镜或光学透镜组的车灯系统以及具有该车灯系统的车辆。
背景技术
车灯就是指车辆上的灯具,是车辆夜间行驶在道路上的照明工具,也是发出各种车辆行驶信号的提示工具,在确保车辆安全行驶方面具有非常重要的作用。随着社会经济的发展,汽车行业也随之发展,随着汽车照明技术的不断发展,对车灯的功能也提出了更多的要求。
在实现车灯的照明功能的照明模组中,通常设置准直光学元件以得到近似平行的出射光线,如双曲面准直透镜,其上的曲面为基于透镜光轴的回转曲面,其成像特点是各向同性的。
但是,车灯照明光形具有各向异性的要求,例如上下照明角度小,左右照明角度大;为此,基于上述准直透镜的车灯照明系统需要通过额外的光学系统形成具有一定宽度的基础光形,再通过准直透镜成像到路面,使得结构相对复杂。
因此,需要设计一种新型的光学透镜,以能够克服或缓解上述技术问题。
发明内容
本发明所要解决的技术问题是提供一种光学透镜,该光学透镜能够满足车灯照明光形各向异性的要求,形成非对称光形。
本发明进一步所要解决的技术问题是提供一种光学透镜组,该光学透镜组能够满足车灯照明光形各向异性的要求,形成非对称光形。
本发明更进一步所要解决的技术问题是提供一种车灯系统,该车灯系统能够降低车灯的构造尺寸。
此外,本发明所要解决的技术问题是提供一种车辆,该车辆具有较好地照明效果。
为了达到上述目的,本发明的技术方案是这样实现的:
一种光学透镜,包括入光部和出光部,所述入光部形成有第一单方位校直面,所述出光部形成有第二单方位校直面,所述第一单方位校直面的校直方位与第二单方位校直面的校直方位相互垂直,且所述第一单方位校直面与第二单方位校直面共同形成所述光学透镜的焦点或聚焦区域。
优选地,所述第一单方位校直面与第二单方位校直面均为由准直曲线沿该准直曲线所在平面的法向拉伸形成的曲面。
更优选地,所述第一单方位校直面与第二单方位校直面均为柱面或类柱面。
进一步地,所述第一单方位校直面与第二单方位校直面均为圆柱面。
优选地,所述第一单方位校直面与第二单方位校直面均为阶梯状菲涅尔柱面。
进一步地,所述第一单方位校直面与第二单方位校直面两者中一者为柱面,另一者为阶梯状菲涅尔柱面。
具体地,所述第一单方位校直面的校直方位与第二单方位校直面的校直方位两者中一者为竖直方向,另一者为水平方向。
更具体地,所述第一单方位校直面与第二单方位校直面相互配合为使得所述光学透镜两侧的焦距不同,以能够形成非对称光形。
而且,本发明还提供了一种光学透镜组,包括第一单向准直透镜组和第二单向准直透镜组,所述第一单向准直透镜组与第二单向准直透镜组共同形成所述光学透镜组的焦点或聚焦区域,且所述第一单向准直透镜组的校直方位与所述第二单向准直透镜组的校直方位相互垂直。
优选地,所述第一单向准直透镜组与第二单向准直透镜组均由至少一个单向准直透镜组成。
更优选地,所述单向准直透镜的入射面及出射面中一者为单向准直曲面或两者均为准直方向相同的单向准直曲面。
可选地,所述第一单向准直透镜组与第二单向准直透镜组之间通过侧壁连接。
另外,本发明还提供了一种车灯系统,包括以上任一项技术方案所述的光学透镜或光学透镜组。
典型地,还包括光源,所述光源布置在所述光学透镜或所述光学透镜组的焦点或聚焦区域;或者,还包括光源和初级光学元件,所述初级光学元件布置为能够将所述光源出射的光线汇聚到所述光学透镜或所述光学透镜组的焦点或聚焦区域,并引入所述光学透镜或所述光学透镜组。
此外,本发明还提供了一种车辆,包括以上任一项技术方案所述的车灯系统。
通过上述技术方案,本发明的有益效果如下:
在本发明基本技术方案中,本发明的光学透镜包括第一单方位校直面与第二单方位校直面,第一单方位校直面具有对光线单方位准直的特点;例如,在第一单方位校直面的一个剖面方向上没有折射或最多只有非常弱的折射(切割曲线几乎为直线),同时在与该剖面垂直的方向上具有最大的折射效果,即第一单方位校直面的校直方位是单方位的;第二单方位校直面也具有同样的对光线单方位准直的特点,即第二单方位校直面的校直方位也是单方位的;但是,第一单方位校直面的校直方位与第二单方位校直面的校直方位相互垂直,这样,就可以形成非对称性光形,这里,非对称性光形主要是指在对正方形发光面进行成像时,光形呈现长方形,而非现有的准直透镜形成的各向同性的近似正方形的光形。而且,光学透镜具有焦点或聚焦区域,将光源放置在其焦点附近或聚焦区域内,可以得到较好的光学效果,对光能具有较高的利用率。
此外,本发明还可以通过光学透镜组的形式实现与上述光学透镜相同的功能。
有关本发明的其他优点以及优选实施方式的技术效果,将在下文的具体实施方式中进一步说明。
附图说明
图1是本发明第一种具体实施方式的光学透镜的立体光路示意图;
图2是本发明具体实施方式的光学透镜的光形的屏幕照度图;
图3是现有透镜对正方形发光面成像时的光形的屏幕照度图;
图4是图1中的光学透镜的俯视图;
图5是图1中的光学透镜的主视图;
图6是图1中的光学透镜的右视图;
图7是本发明第二种具体实施方式的光学透镜的立体光路示意图;
图8是本发明具体实施方式的车灯系统的立体光路示意图,其中,光学透镜采用第二种具体实施方式的光学透镜;
图9是本发明第三种具体实施方式的光学透镜的结构主视图;
图10是本发明第三种具体实施方式的光学透镜的结构左视图;
图11是本发明第三种具体实施方式的光学透镜的结构仰视图;
图12是本发明第三种具体实施方式的光学透镜的立体光路示意图;
图13是本发明第四种具体实施方式的车灯系统的立体光路示意图,其中,光学透镜采用第一种具体实施方式的光学透镜;
图14是本发明第四种具体实施方式的车灯系统的光形效果示意图,其中,光学透镜采用第一种具体实施方式的光学透镜;
图15是本发明第四种具体实施方式的光学透镜的光路示意图之一;
图16是本发明第四种具体实施方式的光学透镜的光路示意图之二;
图17是现有技术的照明模组的立体光路示意图,其中,光学透镜采用现有的双曲面准直透镜;
图18是现有技术的照明模组的光形效果示意图,其中,光学透镜采用现有的双曲面准直透镜;
图19是本发明第五种具体实施方式的光学透镜组的立体光路示意图;
图20是本发明第六种具体实施方式的光学透镜组的立体光路示意图,其中,第一单向准直透镜组与第二单向准直透镜组均由两个单向准直透镜组成;
图21是本发明第七种具体实施方式的光学透镜组的立体光路示意图,其中,第一单向准直透镜组与第二单向准直透镜组之间通过侧壁连接;
图22是图21中的光学透镜组的俯视图;
图23是图21中的光学透镜组的主视图;
图24是本发明第七种具体实施方式的光学透镜组的光路示意图之一;
图25是本发明第七种具体实施方式的光学透镜组的光路示意图之二。
附图标记说明
1第一单方位校直面                 2第二单方位校直面
3光源                             4初级光学元件
5现有的双曲面准直透镜             6第一单向准直透镜组
7第二单向准直透镜组
具体实施方式
下面结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
此外,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性或隐含指明所指示的技术特征的数量,因此,限定有“第一”、“第二”的特征可以明示或隐含地包括一个或更多个所述特征。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“布置”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或者是一体连接;可以是直接连接,也可以是通过中间媒介间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
需要理解的是,为了便于描述本发明和简化描述,术语“水平”、“竖直”是与光学透镜在车辆上的安装方向有关的方位术语,一般来说,光学透镜的出光方向与车辆的出光方向大致相同;术语为基于附图所示的方位或位置关系,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;而且,对于本发明的方位术语,应当结合实际安装状态进行理解。
如图1、图2、图4至图16所示,本发明基本实施方式的光学透镜,包括入光部和出光部,所述入光部形成有第一单方位校直面1,所述出光部形成有第二单方位校直面2,所述第一单方位校直面1的校直方位与第二单方位校直面2的校直方位相互垂直,且所述第一单方位校直面1与第二单方位校直面2共同形 成所述光学透镜的焦点或聚焦区域。
在实际使用中,一般会使光学透镜的第一单方位校直面1与第二单方位校直面2的校直方位与车辆的竖直方向以及水平方向大致相同,即将第一单方位校直面1的校直方位限定在水平方向或者竖直方向,对应地,将第二单方位校直面2的校直方位限定在竖直方向或者水平方向;为了简化描述,以下主要以第一单方位校直面1的校直方位限定在水平方向以及第二单方位校直面2的校直方位限定在竖直方向为例对本发明的光学透镜进行说明。
在上述基本技术方案中,第一单方位校直面1具有对光源3发出的光线具有单方位准直的光学特点,所述“校直方位”可以作如下理解:在水平剖面中,参照图15,第一单方位校直面1起会聚效应,能够对光线具有一定的准直作用,对比图16,在竖直剖面中,第一单方位校直面1对光线没有折射或最多只有非常弱的折射效果(竖直方向的切割曲线几乎为直线),即第一单方位校直面1在水平剖面位置范围内对光线具有单一方向的准直效果,也就是说,第一单方位校直面1的校直方位限定在水平方向。第二单方位校直面2具有与第一单方位校直面1类似的对光源3发出的光线进行单方位准直的光学特点,区别在于:在水平剖面中,第二单方位校直面2对光线没有折射或最多只有非常弱的折射效果,在竖直剖面中,第二单方位校直面2起会聚效应,能够对光线具有一定的准直作用,即第二单方位校直面2在竖直剖面位置范围内对光线具有单一方向的准直效果,也就是说,第二单方位校直面2的校直方位限定在竖直方向。因此,第一单方位校直面1的校直方位与第二单方位校直面2的校直方位相互垂直;参照图15和图16,由于第一单方位校直面1与第二单方位校直面2之间具有透镜厚度A,并且第一单方位校直面1更靠近焦点或焦点区域,相对于第二单方位校直面2,其焦距更小;根据成像原理,焦距越小,所成的像越大,所以第一单方位校直面1与第二单方位校直面2在成像上存在差异,并且靠近焦点或焦点区域的第一单方位校直面1的校直方位上,其成像较第二单方位校直面2的校直方位上更大,即光源3在通过该光学透镜后在第一单方位校直面1的校直方位上的光线扩散程度大于在第二单方位校直面2的校直方位上的光线扩散程度;其成像差异由透镜折射率及第一单方位校直面1与第二单方位校直面2之间的透镜厚度A确定。如此,在光学透镜的焦点附近或聚焦区域内布置发光面为正方形的光源3, 使光源3发出的光线依次经过第一单方位校直面1与第二单方位校直面2,形成非对称光形,这里“非对称光形”是指光形的长宽尺寸相差较大,如长方形光形;例如,沿水平方向拉伸的第二单方位校直面2,结合沿竖直方向拉伸的第一方位校直面1,使得光线在水平方向上的扩散程度大于在竖直方向上的扩散程度,可以得到水平方向较宽、竖直方向相对较窄的光形;相反地,沿竖直方向拉伸的第二单方位校直面2,结合沿水平方向拉伸的第一方位校直面1,使得光线在竖直方向上的扩散程度大于在水平方向上的扩散程度,可以得到如图2所示的竖直方向较宽、水平方向相对较窄的光形;图3为现有透镜对正方形发光面成像时的光形的屏幕照度图,对比图2和图3的光形,很明显地看出,通过本发明的光学透镜得到的光形具有很明显的非对称性。
具体地,如图13、图15和图16所示,第一单方位校直面1可以看成由水平剖面中的准直曲线沿该准直曲线所在平面的法线方向拉伸形成的曲面,即沿竖直方向拉伸形成的曲面,同理,第二单方位校直面2可以看成由竖直剖面中的准直曲线沿该准直曲线所在平面的法线方向拉伸形成的曲面,即沿水平方向拉伸形成的曲面。
进一步地,第一单方位校直面1形成的曲面与第二单方位校直面2形成的曲面可以为柱面;可以将柱面理解为这样一种光学曲面,以第一单方位校直面1为例,在水平剖面中起会聚效应,能够对光线具有一定的准直作用,在竖直剖面中,对光线没有折射或最多只有非常弱的折射效果(竖直方向的切割曲线几乎为直线);其中,水平方向的切割曲线并非必须为圆弧形;进一步地,第一单方位校直面1形成的曲面与第二单方位校直面2形成的曲面可以为类柱面,所述“类柱面”是指形状上接近柱面的曲面,同样具有与上述柱面近似的技术效果;优选地,可以使第一单方位校直面1形成的柱面的水平方向的切割曲线为圆弧形;同理,也适用于第二单方位校直面2形成的柱面结构。
而且,通过上述技术方案形成的非对称光形的非对称性是由于光学透镜两侧的焦距不同导致的,也可以说与第一单方位校直面1与第二单方位校直面2对光形的放大倍率的比值有关,而放大倍率的比值取决于第一单方位校直面1与第二单方位校直面2之间的间距,间距越大,比值越大,非对称性越明显;将图13中的光学透镜和图7所示的光学透镜进行对比,比值小时可以减小光学透 镜的厚度。
此外,如图9至图12所示,第一单方位校直面1与第二单方位校直面2还可以为阶梯状菲涅尔柱面,所述的“阶梯状菲涅尔柱面”是指采用菲涅尔式曲线拉伸的方式实现的,对光线具有单方向的准直效果,所述“菲涅尔式曲线”是指经过菲涅尔透镜的光轴的平面与菲涅尔透镜的具有多个同心圆的表面的交线形状相同或类似的曲线形状。
进一步地,阶梯状菲涅尔柱面是由一系列的柱面结构按照水平或竖直排布形成。
阶梯状菲涅尔柱面结构与上述柱面结构同样能够对光线进行准直,第一单方位校直面1形成的阶梯状菲涅尔柱面与第二单方位校直面2形成的阶梯状菲涅尔柱面被布置为相互垂直的形式,也可以形成非对称光形。
以上分别对第一单方位校直面1与第二单方位校直面2采用柱面或阶梯状菲涅尔柱面的两种技术方案进行了说明,可以理解的是,对于第一单方位校直面1与第二单方位校直面2,可以进行简单的变形,如第一单方位校直面1为柱面以及第二单方位校直面2为阶梯状菲涅尔柱面,或者,第一单方位校直面1为阶梯状菲涅尔柱面以及第二单方位校直面2为柱面,两者的校直方位相互垂直即可。
需要说明的是,以上对以第一单方位校直面1的校直方位在水平方向以及第二单方位校直面2的校直方位在竖直方向为例对本发明的光学透镜进行说明,然而,上述各个具体实施方式也适用于第一单方位校直面1的校直方位在竖直方向以及第二单方位校直面2的校直方位在水平方向的情况,例如,在图1的实施例中,从图1中的光学透镜的布置方位来看,第一单方位校直面1上的柱面的校直方位在竖直方向,第二单方位校直面2上的柱面的校直方位在水平方向;或者,在图12的实施例中,从图12中的光学透镜的布置方位来看,第一单方位校直面1上的阶梯状菲涅尔柱面沿水平方向延伸,其校直方位在竖直方向,第二单方位校直面2上的阶梯状菲涅尔柱面沿竖直方向延伸,其校直方向在水平方向。
以上对光学透镜的结构进行设计,通过在光学透镜的入光部和出光部设置校直方位相互垂直的第一单方位校直面1与第二单方位校直面2,形成非对称光形;当然,还可以将本发明的光学透镜设计为光学透镜组的结构形式;进一步地,如图19至图25所示,由第一单向准直透镜组6和第二单向准直透镜组7组成, 第一单向准直透镜组6与第二单向准直透镜组7共同形成本发明的光学透镜组的焦点或聚焦区域,且第一单向准直透镜组6的校直方位与第二单向准直透镜组7的校直方位相互垂直;与本发明的光学透镜类似,从图24和图25所示的光路可以看出,第一单向准直透镜组6与第二单向准直透镜组7对光源3发出的光线分别具有单方位准直的光学特点,即第第一单向准直透镜组6的准直方向为水平方向,第二单向准直透镜组7的准直方向为竖直方向;具体地,第一单向准直透镜组6与第二单向准直透镜组7均由至少一个单向准直透镜组成,例如,图19示出了第一单向准直透镜组6与第二单向准直透镜组7均由一个单向准直透镜组成的一种示例,图20示出了第一单向准直透镜组6与第二单向准直透镜组7均由两个单向准直透镜组成的一种示例,可以理解的是,第一单向准直透镜组6与第二单向准直透镜组7均可以由更多个单向准直透镜组成,只要保证第一单向准直透镜组6与第二单向准直透镜组7具有单方位准直的光学特点即可,即第一单向准直透镜组6中的多个单向准直透镜的准直方向相同,第二单向准直透镜组7中的多个单向准直透镜的准直方向相同;也就是说,单向准直透镜可以为如图24或图25所示的其入射面或出射面为单向准直曲面,或者,单向准直透镜也可以为如图19所示的其入射面与出射面均为单向准直曲面,这里的“单向准直曲面”是指与本发明的光学透镜的第一单方位校直面1或第二单方位校直面2具有相同功能的曲面,具体可以为柱面、类柱面或阶梯状菲涅尔柱面等;更进一步地,如图21至图23所示,第一单向准直透镜组6两端与第二单向准直透镜组7两端分别对应地通过侧壁连接,两者连为一体件,有效保证光学系统的稳定性。
将本发明的光学透镜与一般的车灯系统相适应,如图1、图7和图12所示,将光源3设置在光学透镜的焦点附近或聚焦区域,或者,如图8、图13所示,也可以将本发明的光学透镜作为次级光学元件,初级光学元件4将光源3出射的光线汇聚到光学透镜的焦点或聚焦区域,然后再将光线射入光学透镜,而且,由于初级光学元件4上设置有用于形成明暗截止线的截止结构,结合图13,可以得到如图14所示的具有明暗截止线的光形;其中,初级光学元件4可以为反射镜、聚光器或聚光杯等光学元件。同理,也可以将本发明的光学透镜组与一般的车灯系统相适应,得到相同的功能。
图17示出了现有技术的照明模组的一个实施例,采用双曲面准直透镜5作 为次级光学元件,初级光学元件4将光源3出射的光线汇聚后,再射向双曲面准直透镜5,并且,由于初级光学元件4上设置有的截止结构的作用,可以得到如图18所示的具有明暗截止线的光形。对比图14与图18所示的光形,可以很明显地看出,图18所示的光形水平方向与竖直方向的尺寸较为接近,近似正方形;然而,图14所示光形水平方向与竖直方向的尺寸有较大的差别,光源3出射的光线在水平方向的扩散程度大于在竖直方向上的扩散程度,光形近似长方形;通过上述对比可见,本发明的光学透镜能够使光形具有较为明显的非对称性,相对于现有技术,不需要增加额外的光学元件来使光形的水平方向与竖直方向的尺寸具有一定的差别,一定程度上,简化了车灯的结构。
另外,由于本发明的光学透镜能够形成长方形的光形,因此,在车灯内布置车灯系统时,以两个车灯系统为例,一个车灯系统按照常规方式布置,即形成沿水平方向的长方形光形,另一个车灯系统倾斜设置,使经由对应的光学透镜出射形成的光形为具有一定倾斜度的长方形光形,两部分长方形光形重叠形成符合要求的具有明暗截止线的光形。在上述实施例中,也可以将光学透镜替换为本发明的光学透镜组,同样可以实现相同的功能。
本发明的车辆由于采用上述的光学透镜或光学透镜组,对于相应的车灯设计,可以使车灯具有平且宽的造型,使车辆前部能够趋向流线形设计,便于降低迎面风产生的噪声;而且,具有较好的照明效果。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个具体技术特征以任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。但这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (15)

  1. 一种光学透镜,包括入光部和出光部,其特征在于,所述入光部形成有第一单方位校直面(1),所述出光部形成有第二单方位校直面(2),所述第一单方位校直面(1)的校直方位与第二单方位校直面(2)的校直方位相互垂直,且所述第一单方位校直面(1)与第二单方位校直面(2)共同形成所述光学透镜的焦点或聚焦区域。
  2. 根据权利要求1所述的光学透镜,其特征在于,所述第一单方位校直面(1)与第二单方位校直面(2)均为由准直曲线沿该准直曲线所在平面的法向拉伸形成的曲面。
  3. 根据权利要求2所述的光学透镜,其特征在于,所述第一单方位校直面(1)与第二单方位校直面(2)均为柱面或类柱面。
  4. 根据权利要求3所述的光学透镜,其特征在于,所述第一单方位校直面(1)与第二单方位校直面(2)均为圆柱面。
  5. 根据权利要求1所述的光学透镜,其特征在于,所述第一单方位校直面(1)与第二单方位校直面(2)均为阶梯状菲涅尔柱面。
  6. 根据权利要求1所述的光学透镜,其特征在于,所述第一单方位校直面(1)与第二单方位校直面(2)两者中一者为柱面,另一者为阶梯状菲涅尔柱面。
  7. 根据权利要求1至6中任一项所述的光学透镜,其特征在于,所述第一单方位校直面(1)的校直方位与第二单方位校直面(2)的校直方位两者中一者为竖直方向,另一者为水平方向。
  8. 根据权利要求1至6中任一项所述的光学透镜,其特征在于,所述第一 单方位校直面(1)与第二单方位校直面(2)相互配合为使得所述光学透镜两侧的焦距不同,以能够形成非对称光形。
  9. 一种光学透镜组,其特征在于,包括第一单向准直透镜组(6)和第二单向准直透镜组(7),所述第一单向准直透镜组(6)与第二单向准直透镜组(7)共同形成所述光学透镜组的焦点或聚焦区域,且所述第一单向准直透镜组(6)的校直方位与所述第二单向准直透镜组(7)的校直方位相互垂直。
  10. 根据权利要求9所述的光学透镜组,其特征在于,所述第一单向准直透镜组(6)与第二单向准直透镜组(7)均由至少一个单向准直透镜组成。
  11. 根据权利要求10所述的光学透镜组,其特征在于,所述单向准直透镜的入射面及出射面中一者为单向准直曲面或两者均为准直方向相同的单向准直曲面。
  12. 根据权利要求9所述的光学透镜组,其特征在于,所述第一单向准直透镜组(6)与第二单向准直透镜组(7)之间通过侧壁连接。
  13. 一种车灯系统,其特征在于,包括根据权利要求1至8中任一项所述的光学透镜或根据权利要求9至12中任一项所述的光学透镜组。
  14. 根据权利要求13所述的车灯系统,其特征在于,还包括光源(3),所述光源(3)布置在所述光学透镜或所述光学透镜组的焦点或聚焦区域;或者,
    还包括光源(3)和初级光学元件(4),所述初级光学元件(4)布置为能够将所述光源(3)出射的光线汇聚到所述光学透镜或所述光学透镜组的焦点或聚焦区域,并引入所述光学透镜或所述光学透镜组。
  15. 一种车辆,其特征在于,包括根据权利要求13或14所述的车灯系统。
PCT/CN2021/074835 2020-04-30 2021-02-02 光学透镜、光学透镜组、车灯系统及车辆 WO2021218265A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/922,142 US20230213162A1 (en) 2020-04-30 2021-02-02 Optical lens, optical lens group, vehicle lamp system, and vehicle
DE112021002606.2T DE112021002606T5 (de) 2020-04-30 2021-02-02 Optiklinse, Optiklinsengruppe, Fahrzeugleuchtensystem, und Fahrzeug
EP21796757.9A EP4130557A4 (en) 2020-04-30 2021-02-02 OPTICAL LENS, OPTICAL LENS GROUP, VEHICLE LAMP SYSTEM AND VEHICLE
JP2022561683A JP7490810B2 (ja) 2020-04-30 2021-02-02 光学レンズ、光学レンズ群、車両ランプシステムおよび車両

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010367179.X 2020-04-30
CN202010367179 2020-04-30
CN202010628888.9A CN113587041A (zh) 2020-04-30 2020-07-01 光学透镜、光学透镜组、车灯系统及车辆
CN202010628888.9 2020-07-01

Publications (1)

Publication Number Publication Date
WO2021218265A1 true WO2021218265A1 (zh) 2021-11-04

Family

ID=74757079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074835 WO2021218265A1 (zh) 2020-04-30 2021-02-02 光学透镜、光学透镜组、车灯系统及车辆

Country Status (6)

Country Link
US (1) US20230213162A1 (zh)
EP (1) EP4130557A4 (zh)
JP (1) JP7490810B2 (zh)
CN (2) CN212618084U (zh)
DE (1) DE112021002606T5 (zh)
WO (1) WO2021218265A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212618084U (zh) * 2020-04-30 2021-02-26 华域视觉科技(上海)有限公司 光学透镜、光学透镜组、车灯系统及车辆
CN113091014B (zh) * 2021-04-06 2022-02-22 华域视觉科技(上海)有限公司 车灯光学元件、车灯模组和车辆
WO2023039903A1 (zh) * 2021-09-18 2023-03-23 华域视觉科技(上海)有限公司 车灯照明装置的光学透反系统和车灯照明装置
EP4206524A4 (en) 2021-09-18 2024-01-03 Hasco Vision Technology Co., Ltd. OPTICAL REFLECTION SYSTEM FOR VEHICLE LAMP ILLUMINATION DEVICE, AND VEHICLE LAMP ILLUMINATION DEVICE
CN115968071B (zh) * 2022-01-30 2023-08-25 河北省交通规划设计研究院有限公司 一种亮度可调的隧道照明系统
CN116221647B (zh) * 2023-05-08 2023-07-28 常州星宇车灯股份有限公司 车灯远光照明系统、照明模组及车辆

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100112A (ja) * 2001-09-26 2003-04-04 Ichikoh Ind Ltd 車両用ハイマウントストップランプ
CN101086531A (zh) * 2006-06-07 2007-12-12 本田技研工业株式会社 光学装置及移动装置
CN202083837U (zh) * 2010-11-03 2011-12-21 中航华东光电有限公司 激光投影显示系统
CN102879908A (zh) * 2012-10-24 2013-01-16 北京凯普林光电科技有限公司 补偿光源系统及列车运行故障动态图像检测设备
CN202886733U (zh) * 2012-10-24 2013-04-17 北京凯普林光电科技有限公司 补偿光源系统及列车运行故障动态图像检测设备
CN203519855U (zh) * 2013-11-06 2014-04-02 福州巴斯光电技术有限公司 一种用于车辆雷达传感器的柱面镜组件
CN104076365A (zh) * 2013-03-27 2014-10-01 欧姆龙汽车电子株式会社 激光雷达装置
CN105143962A (zh) * 2013-03-13 2015-12-09 Limo专利管理有限及两合公司 用于均匀化激光辐射的设备
CN206330082U (zh) * 2016-09-28 2017-07-14 法雷奥照明湖北技术中心有限公司 光图案化装置与车灯
CN108253372A (zh) * 2016-12-29 2018-07-06 汽车照明罗伊特林根有限公司 用于机动车前灯的光模块
CN108549085A (zh) * 2018-04-12 2018-09-18 北醒(北京)光子科技有限公司 一种发射镜头、面阵激光雷达及移动平台
CN109958958A (zh) * 2017-12-14 2019-07-02 Sl株式会社 车辆用灯具
US20190293948A1 (en) * 2018-03-26 2019-09-26 Simmonds Precision Products, Inc. Scanned linear illumination of distant objects
CN212618084U (zh) * 2020-04-30 2021-02-26 华域视觉科技(上海)有限公司 光学透镜、光学透镜组、车灯系统及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT517887B1 (de) * 2015-10-23 2018-06-15 Zkw Group Gmbh Mikroprojektions-Lichtmodul für Fahrzeugscheinwerfer
JP6690960B2 (ja) 2016-02-18 2020-04-28 株式会社小糸製作所 車両用灯具
FR3047940B1 (fr) * 2016-02-18 2019-11-01 Koito Manufacturing Co., Ltd. Feu de vehicule
JP2018041664A (ja) * 2016-09-08 2018-03-15 スタンレー電気株式会社 車両用灯具
DE102017117376A1 (de) * 2017-08-01 2019-02-07 HELLA GmbH & Co. KGaA Scheinwerfer, insbesondere Scheinwerfer eines Kraftfahrzeugs

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100112A (ja) * 2001-09-26 2003-04-04 Ichikoh Ind Ltd 車両用ハイマウントストップランプ
CN101086531A (zh) * 2006-06-07 2007-12-12 本田技研工业株式会社 光学装置及移动装置
CN202083837U (zh) * 2010-11-03 2011-12-21 中航华东光电有限公司 激光投影显示系统
CN102879908A (zh) * 2012-10-24 2013-01-16 北京凯普林光电科技有限公司 补偿光源系统及列车运行故障动态图像检测设备
CN202886733U (zh) * 2012-10-24 2013-04-17 北京凯普林光电科技有限公司 补偿光源系统及列车运行故障动态图像检测设备
CN105143962A (zh) * 2013-03-13 2015-12-09 Limo专利管理有限及两合公司 用于均匀化激光辐射的设备
CN104076365A (zh) * 2013-03-27 2014-10-01 欧姆龙汽车电子株式会社 激光雷达装置
CN203519855U (zh) * 2013-11-06 2014-04-02 福州巴斯光电技术有限公司 一种用于车辆雷达传感器的柱面镜组件
CN206330082U (zh) * 2016-09-28 2017-07-14 法雷奥照明湖北技术中心有限公司 光图案化装置与车灯
CN108253372A (zh) * 2016-12-29 2018-07-06 汽车照明罗伊特林根有限公司 用于机动车前灯的光模块
CN109958958A (zh) * 2017-12-14 2019-07-02 Sl株式会社 车辆用灯具
US20190293948A1 (en) * 2018-03-26 2019-09-26 Simmonds Precision Products, Inc. Scanned linear illumination of distant objects
CN108549085A (zh) * 2018-04-12 2018-09-18 北醒(北京)光子科技有限公司 一种发射镜头、面阵激光雷达及移动平台
CN212618084U (zh) * 2020-04-30 2021-02-26 华域视觉科技(上海)有限公司 光学透镜、光学透镜组、车灯系统及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130557A4 *

Also Published As

Publication number Publication date
EP4130557A4 (en) 2023-08-30
US20230213162A1 (en) 2023-07-06
CN113587041A (zh) 2021-11-02
DE112021002606T5 (de) 2023-03-16
JP2023521397A (ja) 2023-05-24
CN212618084U (zh) 2021-02-26
EP4130557A1 (en) 2023-02-08
JP7490810B2 (ja) 2024-05-27

Similar Documents

Publication Publication Date Title
WO2021218265A1 (zh) 光学透镜、光学透镜组、车灯系统及车辆
JP6948818B2 (ja) 光ビームを放出するための自動車両ヘッドライト・モジュール
US8109662B2 (en) Headlight lens for a vehicle headlight
WO2020244229A1 (zh) 车灯光学元件及车辆前照灯
WO2019024368A1 (zh) 全反射屏幕和投影系统
US11731552B2 (en) Low beam optical module, low beam illumination module, vehicle lamp and vehicle
US11788702B2 (en) Headlight module and headlight device
US20190195455A1 (en) Headlight device
CN113958921A (zh) 照明模组、照明装置及车辆
TWI418916B (zh) 投影裝置
CN217684748U (zh) 车灯、投射组件和车辆
CN215954056U (zh) 一种组合型光源收集器
WO2023208065A1 (zh) 投射组件、车灯和车辆
CN209782494U (zh) 棱镜全反射式近光模组以及车灯
WO2021218826A1 (zh) 透镜单元、光学透镜、照明模组、车灯及车辆
US11079084B2 (en) Direct-type automobile headlamp module and automobile headlamp
WO2024016499A1 (zh) 应用于车灯的动态投影模组及其设计方法
CN207599596U (zh) 一种汽车大灯
TWM370050U (en) Light guide plate
CN212929894U (zh) 一种图案灯的光路折射结构
CN113701065A (zh) 一种组合型光源收集器及其设计方法
CN220958053U (zh) 反射式造型的展宽光学系统、照明装置、车灯及车辆
CN112240534A (zh) 一种出光面为晶亮倾斜无花纹的组合厚壁件光学系统
WO2021109362A1 (zh) 透镜及车灯照明系统
WO2023070793A1 (zh) 一种成像透镜组、车灯及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561683

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021796757

Country of ref document: EP

Effective date: 20221027