WO2023070793A1 - 一种成像透镜组、车灯及车辆 - Google Patents

一种成像透镜组、车灯及车辆 Download PDF

Info

Publication number
WO2023070793A1
WO2023070793A1 PCT/CN2021/132615 CN2021132615W WO2023070793A1 WO 2023070793 A1 WO2023070793 A1 WO 2023070793A1 CN 2021132615 W CN2021132615 W CN 2021132615W WO 2023070793 A1 WO2023070793 A1 WO 2023070793A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
lens group
incident surface
imaging lens
Prior art date
Application number
PCT/CN2021/132615
Other languages
English (en)
French (fr)
Inventor
严梦
李辉
桑文慧
仇智平
祝贺
Original Assignee
华域视觉科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华域视觉科技(上海)有限公司 filed Critical 华域视觉科技(上海)有限公司
Publication of WO2023070793A1 publication Critical patent/WO2023070793A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present application relates to the technical field of vehicle lighting, in particular, to an imaging lens group, a vehicle light and a vehicle.
  • the LED matrix headlights integrate a camera to automatically identify oncoming vehicles, set multiple LED light sources that can be turned on and off independently, a concentrator with multiple collimator units, and a lens , by controlling the on and off of each LED light source, the anti-glare high beam lighting is realized.
  • the light shape of the above design avoids the area or part of the area of the oncoming vehicle, avoids the interference of the high beam of the oncoming vehicle, and prevents glare.
  • this anti-glare high-beam lighting module still has the following three defects: 1.
  • the lighting module needs to be equipped with a condenser before the imaging of a single lens, which will cause the size of the lens and even the entire lighting module to be relatively large; 2. .
  • the light collector of the lighting module includes a plurality of separate collimator units, and each collimator unit corresponds to a lighting spot, which makes the lighting module only suitable for car lights with a small number of pixels.
  • the concentrator needs a large number of collimator units, or a larger number of the above-mentioned lighting modules are installed in the headlight, which will lead to the loss of the anti-glare high beam module.
  • the anti-glare high-beam lighting module of the optical device can no longer meet the current demand for the number of anti-glare high-beam pixels; third, the lighting module uses a single lens and cannot eliminate chromatic aberration, so that the edge of the light shape after imaging will have color, so that Affect the driver's visual experience and cause discomfort.
  • the present application provides an imaging lens group, a vehicle lamp and a vehicle.
  • the imaging lens group has a high light utilization rate, can meet lighting and imaging requirements, and improve lighting performance.
  • imaging lens group may include:
  • the first lens the first lens has positive refractive power
  • the first lens has a first light incident surface and a first light exit surface, both of the first light incident surface and the first light exit surface are spherical surfaces curved toward the side away from the light source ;
  • the second lens has a negative refractive power
  • the second lens has a second light incident surface and a second light exit surface, both of the second light incident surface and the second light exit surface are non sphere;
  • the third lens has positive refractive power
  • the third lens has a third light incident surface and a third light exit surface, both of the third light incident surface and the third light exit surface are convex to the outside of the third lens aspheric;
  • the aperture stop is arranged on the third lens and is attached to the outer edge of the third lens;
  • the first lens, the second lens and the third lens are sequentially arranged along the light direction of the light source.
  • the third light-emitting surface may be provided with a grid pattern.
  • the grid pattern may be rectangular.
  • the imaging lens group may further include: an anti-reflection film disposed on at least one of the first light-incident surface and the first light-exit surface.
  • the total length of the imaging lens group may be less than or equal to 75 mm.
  • the maximum half field angle of the imaging lens group may be less than 20°.
  • the distance from the first light incident surface to the light source may be 5 mm to 7 mm;
  • the distance from the second light incident surface to the first light exit surface may be 5 mm to 8 mm;
  • the distance from the third light incident surface to the second light exit surface may be 8mm ⁇ 10mm.
  • the first lens can be made of glass material with high heat resistance
  • the second lens can be made of plastic material
  • the third lens can be made of plastic material.
  • the refractive index of the first lens may be greater than the refractive index of the third lens and smaller than the refractive index of the second lens;
  • the Abbe number of the second lens may be smaller than the Abbe number of the third lens and smaller than the Abbe number of the first lens.
  • the number of light emitting chips included in the light source may be 30-30000.
  • vehicle light may include the imaging lens group in any one of some embodiments of the present application.
  • Still other embodiments of the present application provide a vehicle, which may include a vehicle body and at least one vehicle light as described in other embodiments of the present application, and the vehicle light may be arranged on the vehicle body.
  • the beneficial effects of the present application compared with the related art are at least reflected in: the present application arranges the first lens, the second lens and the third lens in sequence along the light direction of the light source, and the imaging lens group has good imaging quality and higher
  • the light utilization rate can meet the needs of lighting and imaging. Both the luminous flux and the maximum value of the low-beam light shape obtained by adopting the imaging lens group are improved, and the lighting performance is better.
  • Fig. 1 is a schematic structural diagram of a vehicle shown in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an imaging lens group shown in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a third light-emitting surface shown in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the path of light propagating in the imaging lens group shown in an embodiment of the present application.
  • Fig. 5 is a modulation transfer function curve diagram shown in an embodiment of the present application.
  • Fig. 6 is the low-beam light shape diagram formed by a conventional single lens for low-beam lighting
  • FIG. 7 is a low-beam light pattern formed by an imaging lens group used for low-beam illumination according to an embodiment of the present application.
  • orientation or positional relationship indicated by the terms “inner”, “outer”, “left”, “right”, “upper”, “lower” etc. are based on the Orientation or positional relationship, or the orientation or positional relationship that the application product is usually placed in use, is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, in order to Specific orientation configurations and operations, therefore, are not to be construed as limitations on the application.
  • the terms “installation”, “installation”, “connection” and “connection” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components.
  • FIG. 1 is a schematic structural diagram of a vehicle 1 shown in an embodiment of the present application.
  • the vehicle 1 can include a vehicle body 11 and at least one vehicle light 12, and the vehicle light 12 can be arranged on the vehicle body 11.
  • the vehicle 1 may be a human-driven car or various levels of autonomous vehicles.
  • the vehicle lamp 12 may be a headlamp.
  • the car light 12 is a headlight
  • the car light 12 can be installed on both sides of the head of the car body 11, and is used for driving at night and lighting for urban roads.
  • FIG. 2 is a schematic structural diagram of the imaging lens group 13 shown in an embodiment of the present application.
  • the vehicle light 12 may include an imaging lens group 13 , and the imaging lens group 13 may be connected through a fixing structure such as a bracket, and finally fixed in the vehicle light 12 .
  • the imaging lens group 13 may include a light source 100 , a first lens 200 , a second lens 300 , a third lens 400 and an aperture stop 500 .
  • the first lens 200 , the second lens 300 and the third lens 400 may be sequentially arranged along the light direction of the light source 100 .
  • the first lens 200 may have positive refractive power
  • the first lens 200 may have a first light incident surface 210 and a first light exit surface 220, and both the first light incident surface 210 and the first light exit surface 220 may be facing away from A curved spherical surface on one side of the light source 100
  • the second lens 300 can have a negative refractive power
  • the second lens 300 can have a second light incident surface 310 and a second light exit surface 320
  • the surfaces 320 can all be aspherical surfaces curved toward the side close to the light source 100
  • the third lens 400 can have positive refractive power
  • the third lens 400 can have a third light incident surface 410 and a third light exit surface 420
  • the third lens 400 can have a third light incident surface 410 and a third light exit surface 420
  • Both the light incident surface 410 and the third light output surface 420 may be aspherical surfaces protruding toward the outside of the third lens 400
  • Optical power also called diopter, can be used to characterize the ability of a lens surface to focus or diverge light. The greater the focal power, the stronger the ability of the lens surface to deflect light.
  • the aperture stop 500 can be arranged on the third lens 400, and the aperture stop 500 can be a fixed structure of the third lens 400, such as a black fixed structure such as a lens barrel or a flange ring, and the aperture stop 500 can be connected with the third lens 400.
  • the outer edges are bonded so that the diameter of the aperture stop 500 is the same as that of the third lens 400 .
  • the diameter of the aperture stop 500 may generally be less than 55 mm. In one embodiment, the diameter of the aperture stop 500 may be 44mm.
  • the light source 100 may be an LED light source, and the LED light source may include LED light-emitting chips 110, and the number of the light-emitting chips 110 may be 30-30,000, arranged in a matrix.
  • ordinary LED light-emitting chips with a size of 0.5mm*0.5mm can be used, and Micro LEDs with a size of micron level can also be used, that is, a miniature LED light source.
  • the resolution of the imaging lens group 13 is not smaller than that of the light source 100 so as to accurately project the light distribution and light intensity distribution of the light source 100 and improve the accuracy of imaging.
  • Table 1 shows the structural parameters of each lens of the imaging lens group 13 .
  • the curvature radius of the first light incident surface 210 may be 34.98mm, and the curvature radius of the first light exit surface 220 may be 17.11mm.
  • the radius of curvature of the second light incident surface 310 may be -30.85mm, and the radius of curvature of the second light exit surface 320 may be -13.997mm.
  • the curvature radius of the third light incident surface 410 may be -63.903mm, and the curvature radius of the third light exit surface 420 may be 39.352mm.
  • the positive and negative values of the radius of curvature are defined in terms of the direction in which the light incident surface or light exit surface of each lens is curved relative to one side of the light source 100 . It can be defined that if the curvature toward the side away from the light source 100 is positive, then the value of the radius of curvature is positive; if the curvature toward the side close to the light source 100 is negative, then the value of the radius of curvature is negative.
  • the distance from the first light incident surface 210 to the light source 100 may be 5 mm to 7 mm. In one embodiment, the distance from the first light incident surface 210 to the light source 100 may be 5.499 mm, and the central thickness of the first lens 200 may be 16.501 mm. .
  • the distance from the second light incident surface 310 to the first light exit surface 220 may be 5 mm to 8 mm. In one embodiment, the distance from the second light incident surface 310 to the first light exit surface 220 may be 5.87 mm.
  • the second lens 300 Center thickness can be 13.394mm.
  • the distance from the third light incident surface 410 to the second light exit surface 320 may be 8 mm to 10 mm. In one embodiment, the distance from the third light incident surface 410 to the second light exit surface 320 may be 8.968 mm.
  • the third lens 400 Center thickness can be 16.504mm.
  • the imaging lens group 13 formed by sequentially setting the light source 100, the first lens 200, the second lens 300, and the third lens 400 can be calculated. of the total length.
  • the total length of the imaging lens group 13 may be less than or equal to 75mm. In one embodiment, the total length of the imaging lens group 13 may be 66.736mm.
  • the first lens 200 can be made of glass material with high heat resistance
  • the second lens 300 can be made of plastic material, specifically can be made of polycarbonate (a high molecular polymer, referred to as PC)
  • the 400 can be made of plastic material, specifically polymethyl methacrylate (a transparent thermoplastic polymer, PMMA for short).
  • the refractive index of the first lens 200 may be larger than that of the third lens 400 but smaller than that of the second lens 300 .
  • the refractive index of the first lens may be 1.517
  • the refractive index of the second lens 300 may be 1.586
  • the refractive index of the third lens 400 may be 1.492.
  • the Abbe number of the second lens 300 may be smaller than the Abbe number of the third lens 400 and smaller than the Abbe number of the first lens 200 .
  • the Abbe number of the first lens may be 64.17
  • the Abbe number of the second lens 300 may be 29.9
  • the Abbe number of the third lens 400 may be 57.4.
  • the Abbe coefficient also known as the dispersion coefficient, can be used to measure the degree of light dispersion in a transparent medium.
  • Abbe's coefficient can be an index used to represent the dispersion ability of a transparent medium.
  • the imaging lens group 13 may further include: an anti-reflection film disposed on one of the first light-incident surface 210 and the first light-exit surface 220 .
  • an anti-reflection film can be disposed on the first light-incident surface 210 , and the thickness of the anti-reflection film is very thin, which can increase light transmittance and reduce Fresnel reflection.
  • FIG. 3 is a schematic structural diagram of the third light-emitting surface 420 shown in an embodiment of the present application.
  • the third light emitting surface 420 may be provided with a grid pattern.
  • the grid pattern can be rectangular, which properly diffuses the light in the up, down, left, and right directions to make the light shape more uniform.
  • FIG. 4 is a schematic diagram of the path of light propagating in the imaging lens group 13 according to an embodiment of the present application.
  • the light can be emitted from the light source 100, enter from the first light incident surface 210, be refracted by the first lens 200, exit from the first light exit surface 220, enter the second lens 300 through the second light incident surface 310, pass through the second lens
  • the refraction of 300 exits from the second light exit surface 320, enters the third lens 400 through the third light incident surface 410, and finally exits from the third light exit surface 420, finally making the maximum half field angle of the imaging lens group 13 less than 20°
  • the outgoing light of the imaging lens group 13 can meet the requirements of illumination and imaging at the same time.
  • the size of the field of view determines the field of view of the optical instrument, the larger the field of view, the larger the field of view.
  • the half field of view refers to the angle value corresponding to half of the field of view.
  • the maximum half field angle of the imaging lens group 13 may be 15°.
  • Each lens changes its optical properties by changing its shape, its refractive index, or both. After the portions of the lens are exposed to one or more shots to selectively and spatially modify their refractive power, the entire lens is irradiated, sharing the power.
  • the imaging lens group 13 formed by the sequential arrangement of the light source 100 , the first lens 200 , the second lens 300 and the third lens 400 has higher light utilization efficiency.
  • FIG. 5 is a graph showing a modulation transfer function according to an embodiment of the present application.
  • the modulation transfer function also known as the spatial contrast transfer function and the spatial frequency contrast sensitivity function, can reflect the ability of the optical system to transmit the modulation degree of various frequency sinusoids as a function of the spatial frequency.
  • MTF modulation transfer function
  • the modulation transfer function can be used to represent the characteristics of the optical system, and the larger the MTF, the better the imaging quality of the imaging lens group 13 .
  • the modulation transfer function curve in Figure 5 represents the curves of the meridional and sagittal directions of different half angles of view (wherein the minimum half angle of view is 0°, and the maximum half angle of view is 15°), as shown in Figure 5
  • the modulation transfer function (MTF) of the imaging lens group 13 at the spatial frequency of 1 line pair/mm is basically greater than 0.8, indicating that the imaging lens group 13 has high imaging quality and meets the imaging requirements.
  • the size of the LED light-emitting chip 110 in the light source 100 is 0.5mm*0.5mm, it is only necessary to measure the modulation transfer function (MTF) when the spatial frequency is 1 line pair/mm.
  • the imaging lens group 13 realizes anti-dazzling high beam lighting and low beam lighting by controlling the bright and dark of each LED light-emitting chip. Take the low-beam light shape of low-beam lighting as an example, and compare its advantages compared with conventional single-lens lighting modules.
  • FIG. 6 is a low-beam light pattern formed by a conventional single lens used for low-beam lighting.
  • Figure 6 shows the low-beam light shape projected on the light distribution screen by the lighting module of a single lens. It can be seen that the light shape is greatly distorted, and the low-beam light shape cut-off line (the upper boundary of the light shape) is seriously inclined, which is easy to cause low-beam Zone III is super bright.
  • FIG. 7 is a low-beam light pattern formed by the imaging lens group 13 for low-beam illumination according to an embodiment of the present application.
  • the cut-off line of the low-beam light shape formed by the imaging lens group 13 in FIG. 7 is flat, and there is no great distortion even at the edge of the light shape.
  • the low-beam light shape obtained by the imaging lens group 13 is much higher than the former in terms of luminous flux and maximum value, so the lighting performance is also better.
  • the application discloses an imaging lens group, a vehicle lamp and a vehicle.
  • the imaging lens group includes: a light source; a first lens, the first lens has a positive refractive power, the first lens has a first light incident surface and a first light exit surface, and both the first light incident surface and the first light exit surface are facing away from A curved spherical surface on one side of the light source; the second lens, the second lens has a negative refractive power, the second lens has a second light incident surface and a second light exit surface, and the second light incident surface and the second light exit surface are close to A curved aspheric surface on one side of the light source; a third lens, the third lens has a positive refractive power, the third lens has a third light incident surface and a third light exit surface, and the third light incident surface and the third light exit surface are both An aspheric surface protruding to the outside of the third lens; an aperture stop, the aperture stop is arranged on the third lens, and is attached to the outer edge
  • the imaging lens group, vehicle lights and vehicles of the present application are reproducible and can be applied in various industrial applications.
  • the imaging lens group of the present application can be applied to lighting of any vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种成像透镜组(13)、车灯(12)及车辆(1),成像透镜组(13)包括:光源(100);第一透镜(200),第一透镜(200)具有正折射光焦度,第一透镜(200)具有第一入光面(210)和第一出光面(220),第一入光面(210)和第一出光面(220)均为向远离光源(100)的一侧弯曲的球面;第二透镜(300),第二透镜(300)具有负折射光焦度,第二透镜(300)具有第二入光面(310)和第二出光面(320),第二入光面(310)和第二出光面(320)均为靠近光源(100)的一侧弯曲的非球面;第三透镜(400),第三透镜(400)具有正折射光焦度,第三透镜(400)具有第三入光面(410)和第三出光面(420),第三入光面(410)和第三出光面(420)均为向第三透镜(400)的外侧凸出的非球面;孔径光阑(500),孔径光阑(500)设于第三透镜(400)上,与第三透镜(400)的外边缘贴合,第一透镜(200)、第二透镜(300)和第三透镜(400)沿光源(100)的光线方向依次设置。成像透镜组(13)具有良好的成像品质,光线利用率提高。

Description

一种成像透镜组、车灯及车辆
相关申请的交叉引用
本申请要求于2021年10月25日提交中国国家知识产权局的申请号为202111239500.7、名称为“一种成像透镜组、车灯及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆照明技术领域,具体而言,涉及一种成像透镜组、车灯及车辆。
背景技术
近年来,夜间滥用远光灯的现象比较严重,当夜晚和对向车辆会车时,对向车辆的远光灯可使驾驶人双目以及视觉上产生瞬间致盲,从而导致交通事故和危害的发生。针对上述技术问题,在夜间行驶时,LED矩阵大灯集成摄像头,自动识别迎面而来的车辆,设置多颗可独立亮灭的LED光源、具有多个准直器单元的聚光器以及一个透镜,通过控制各LED光源的亮灭,实现防眩目远光照明。采用上述设计的光形规避掉对向车辆的区域或部分区域,避免对面车辆受到远光的干扰,防止眩目。
然而这种防眩目远光照明模组仍然存在以下三方面缺陷:一、照明模组需在单个透镜成像前设置聚光器,这会导致透镜甚至整个照明模组的尺寸都比较大;二、该照明模组的聚光器包括多个分离的准直器单元,每个准直器单元对应形成一个照明光斑,这使得该照明模组只能适用于具有少量像素需求的车灯中,而针对有更多像素数量要求的车灯,该聚光器需要数量很多的准直器单元,或者在车灯内设置更多数量的上述照明模组,这都会导致防眩目远光模组占用更大的灯内空间,而且聚光器的加工制造难度会很高,成本会增加。同时,随着像素化照明技术的发展,在百级万级像素化照明模组开发过程中,更无法加工具有百个万个准直器单元的聚光器,也就是说现有的具有聚光器的防眩目远光照明模组已不能满足现在防眩目远光像素数量的需求;三、该照明模组采用单个透镜消不了色差,使得成像后的光形边缘会有颜色,从而影响驾驶员的视觉感受,造成不适。
发明内容
本申请提供了一种成像透镜组、车灯及车辆,该成像透镜组的光线利用率高,能够满足照明和成像的需求,提升照明性能。
本申请的实施例是这样实现的:
本申请的一些实施例提供一种成像透镜组,成像透镜组可以包括:
光源;
第一透镜,第一透镜具有正折射光焦度,第一透镜具有第一入光面和第一出光面,第 一入光面和第一出光面均为向远离光源的一侧弯曲的球面;
第二透镜,第二透镜具有负折射光焦度,第二透镜具有第二入光面和第二出光面,第二入光面和第二出光面均为向靠近光源的一侧弯曲的非球面;
第三透镜,第三透镜具有正折射光焦度,第三透镜具有第三入光面和第三出光面,第三入光面和第三出光面均为向第三透镜的外侧凸出的非球面;以及
孔径光阑,孔径光阑设于第三透镜上,且与第三透镜的外边缘贴合;
其中,第一透镜、第二透镜和第三透镜沿光源的光线方向依次设置。
于一实施例中,第三出光面可以设有网格花纹。
于一实施例中,网格花纹可以为矩形。
于一实施例中,成像透镜组还可以包括:增透膜,增透膜设于第一入光面和第一出光面的至少一者之上。
于一实施例中,成像透镜组的总长度可以小于或者等于75mm。
于一实施例中,成像透镜组的最大半视场角可以小于20°。
于一实施例中,第一入光面到光源的距离可以为5mm~7mm;
第二入光面到第一出光面的距离可以为5mm~8mm;
第三入光面到第二出光面的距离可以为8mm~10mm。
于一实施例中,第一透镜可以由耐热性高的玻璃材质制成,第二透镜可以由塑料材质制成,第三透镜可以由塑料材质制成。
于一实施例中,第一透镜的折射率可以大于第三透镜的折射率,且小于第二透镜的折射率;
第二透镜的阿贝系数可以小于第三透镜的阿贝系数,且小于第一透镜的阿贝系数。
于一实施例中,光源包含的发光芯片个数可以为30~30000。
本申请的另一些实施例提供一种车灯,车灯可以包括本申请一些实施例中的任一项实施例中的成像透镜组。
本申请的又一些实施例提供一种车辆,车辆可以包括车体以及至少一个如本申请另一些实施例中的实施例所述的车灯,车灯可以设于车体上。
本申请与相关技术相比的有益效果至少体现在:本申请通过沿光源的光线方向依次设置第一透镜、第二透镜和第三透镜,该成像透镜组具有良好的成像品质,具有更高的光线利用率,能够满足照明和成像的需求。采用该成像透镜组得到的近光光形无论是光通量还是最大值都有所提高,照明性能更优。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施例示出的车辆的结构示意图;
图2为本申请一实施例示出的成像透镜组的结构示意图;
图3为本申请一实施例示出的第三出光面的结构示意图;
图4为本申请一实施例示出的光线在成像透镜组内传播的路径示意图;
图5为本申请一实施例示出的调制传递函数曲线图;
图6为常规单个透镜用于近光照明形成的近光光形图;
图7为本申请一实施例示出的成像透镜组用于近光照明形成的近光光形图。
图标:
1-车辆;11-车体;12-车灯;13-成像透镜组;100-光源;110-发光芯片;200-第一透镜;210-第一入光面;220-第一出光面;300-第二透镜;310-第二入光面;320-第二出光面;400-第三透镜;410-第三入光面;420-第三出光面;500-孔径光阑。
具体实施方式
术语“第一”、“第二”、“第三”等仅用于区分描述,并不表示排列序号,也不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本申请的描述中,需要说明的是,术语“内”、“外”、“左”、“右”、“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。
下面将结合附图对本申请的技术方案进行清楚、完整地描述。
请参照图1,其为本申请一实施例示出的车辆1的结构示意图。车辆1可以包括车体 11以及至少一个车灯12,车灯12可以设于车体11上。车辆1可以是人工驾驶汽车或者各级别的自动驾驶车辆。
本实施例中,车灯12可以为前照灯。当车灯12为前照灯时,车灯12可安装在车体11头部两侧,用于夜间行车、城市道路行使的照明。
请参照图2,其为本申请一实施例示出的成像透镜组13的结构示意图。车灯12可以包括成像透镜组13,成像透镜组13可通过支架等固定结构连接,最终固定到车灯12内。
成像透镜组13可以包括光源100、第一透镜200、第二透镜300、第三透镜400和孔径光阑500。第一透镜200、第二透镜300和第三透镜400可以沿光源100的光线方向依次设置。其中,第一透镜200可以具有正折射光焦度,第一透镜200可以具有第一入光面210和第一出光面220,第一入光面210和第一出光面220均可以为向远离光源100的一侧弯曲的球面;第二透镜300可以具有负折射光焦度,第二透镜300可以具有第二入光面310和第二出光面320,第二入光面310和第二出光面320均可以为向靠近光源100的一侧弯曲的非球面;第三透镜400可以具有正折射光焦度,第三透镜400可以具有第三入光面410和第三出光面420,第三入光面410和第三出光面420均可以为向第三透镜400的外侧凸出的非球面。
光焦度,也称屈光度,可以用于表征透镜曲面拥有使光聚焦或者发散的能力。光焦度越大,透镜曲面对光线的偏折能力越强。
孔径光阑500可以设于第三透镜400上,孔径光阑500可以是第三透镜400的固定结构,例如镜筒或法兰环等黑色固定结构,孔径光阑500可以与第三透镜400的外边缘贴合,使孔径光阑500的直径与第三透镜400的直径相同,在设计时,孔径光阑500的直径一般可以小于55mm。于一实施例中,孔径光阑500的直径可以为44mm。
于一实施例中,光源100可以为LED光源,LED光源中可以包含LED发光芯片110,发光芯片110的个数可以为30~30000个,呈矩阵式排列。根据发光芯片110数量的不同,可以采用尺寸为0.5mm*0.5mm的普通LED发光芯片,还可以采用尺寸为微米级别的Micro LED,即一种微缩LED光源。
本申请中,成像透镜组13的分辨率不小于光源100的分辨率,以能够将光源100的光线分布和光照强度分布精确地投射出去,提高成像的准确度。
请参照表1,示出了成像透镜组13的各透镜的结构参数。
表1成像透镜组13的各透镜的结构参数
Figure PCTCN2021132615-appb-000001
Figure PCTCN2021132615-appb-000002
第一入光面210的曲率半径可以是34.98mm,第一出光面220的曲率半径可以是17.11mm。
第二入光面310的曲率半径可以是-30.85mm,第二出光面320的曲率半径可以是-13.997mm。
第三入光面410的曲率半径可以是-63.903mm,第三出光面420的曲率半径可以是39.352mm。
本实施例中,曲率半径值的正负界定是以每个透镜的入光面或出光面相对于光源100一侧弯曲的方向而言的。可以定义向远离光源100一侧的方向弯曲为正,则曲率半径值为正;向靠近光源100一侧的方向弯曲为负,则曲率半径值为负。
第一入光面210到光源100的距离可以为5mm~7mm,于一实施例中,第一入光面210到光源100的距离可以为5.499mm,第一透镜200的中心厚度可以为16.501mm。
第二入光面310到第一出光面220的距离可以为5mm~8mm,于一实施例中,第二入光面310到第一出光面220的距离可以为5.87mm,第二透镜300的中心厚度可以为13.394mm。
第三入光面410到第二出光面320的距离可以为8mm~10mm,于一实施例中,第三入光面410到第二出光面320的距离可以为8.968mm,第三透镜400的中心厚度可以为16.504mm。
在确定了第一入光面210到光源100的距离、第一透镜200的中心厚度、第二入光面310到第一出光面220的距离、第二透镜300的中心厚度、第三入光面410到第二出光面320的距离、以及第三透镜400的中心厚度后,可计算出由光源100、第一透镜200、第二透镜300、第三透镜400依次设置形成的成像透镜组13的总长度。成像透镜组13的总长度可以小于等于75mm。于一实施例中,成像透镜组13的总长度可以为66.736mm。
第一透镜200可以由耐热性高的玻璃材质制成,第二透镜300可以由塑料材质制成,具体可以由聚碳酸酯(一种高分子聚合物,简称PC)制成,第三透镜400可以由塑料材质制成,具体可以由聚甲基丙烯酸甲酯(一种透明的热塑性聚合物,简称PMMA)制成。
其中,第一透镜200的折射率可以大于第三透镜400的折射率,但小于第二透镜300的折射率。于一实施例中,第一透镜的折射率可以为1.517,第二透镜300的折射率可以为1.586,第三透镜400的折射率可以为1.492。
第二透镜300的阿贝系数可以小于第三透镜400的阿贝系数,且小于第一透镜200的 阿贝系数。于一实施例中,第一透镜的阿贝系数可以为64.17,第二透镜300的阿贝系数可以为29.9,第三透镜400的阿贝系数可以为57.4。
阿贝系数也称色散系数,可以用来衡量透明介质的光线色散程度。阿贝系数可以为用以表示透明介质色散能力的指数。
成像透镜组13还可以包括:增透膜,增透膜设于第一入光面210和第一出光面220的一者之上。于一实施例中,增透膜可以设置在第一入光面210上,增透膜的厚度非常薄,可以提高光线透过率,减少菲涅尔反射。
请参照图3,其为本申请一实施例示出的第三出光面420的结构示意图。第三出光面420可以设有网格花纹。于一实施例中,网格花纹可以为矩形,对光线在上下左右方向上进行适当扩散,使光形更加均匀。
请参照图4,其为本申请一实施例示出的光线在成像透镜组13内传播的路径示意图。光线可以由光源100发出,由第一入光面210进入,经过第一透镜200的折射,从第一出光面220射出,经过第二入光面310进入到第二透镜300,经过第二透镜300的折射从第二出光面320射出,经过第三入光面410进入到第三透镜400,最终从第三出光面420射出,最终使成像透镜组13的最大半视场角小于20°,使得成像透镜组13的出射光线能够同时满足照明和成像的要求。
视场角的大小决定了光学仪器的视野范围,视场角越大,视野就越大。半视场角则是指视场角的一半对应的角度值。于一实施例中,成像透镜组13的最大半视场角可以为15°。
每一个透镜通过改变其形状、其折射率、或二者来改变其光学特性。在透镜各部分曝光于一次或多次照射而选择性并空间上修正其折射能力之后,照射整个透镜,分担光焦度。使得由光源100、第一透镜200、第二透镜300、第三透镜400依次设置形成的成像透镜组13具有更高的光线利用率。
请参照图5,其为本申请一实施例示出的调制传递函数曲线图。调制传递函数又称空间对比传递函数(spatial contrast transfer function)、空间频率对比敏感度函数(spatial frequencycontrast sensitivity function),可以以空间频率的函数,反映光学系统传递各种频率正弦物调制度的能力,以下简称MTF。调制传递函数可用于表示光学系统的特征,MTF越大,表示成像透镜组13的成像质量越好。
如图5中的调制传递函数曲线表示的是不同半视场角的子午方向和弧矢方向的曲线(其中最小半视场角为0°,最大半视场角为15°),如图5可知,该成像透镜组13在空间频率为1线对/毫米时的调制传递函数(MTF)基本均大于0.8,表明该成像透镜组13的成像品质高,满足成像的要求。需要说明的是,由于光源100中LED发光芯片110的尺寸为0.5mm*0.5mm,因此,只需衡量空间频率为1线对/毫米时的调制传递函数(MTF)即可。
该成像透镜组13通过控制各LED发光芯片的亮灭来实现防眩目远光照明和近光照明,为了更加形象地表明该成像透镜组13的成像效果,现以该成像透镜组形成用于近光照明的近光光形为例,对比其相比常规单个透镜的照明模组的优势。
请参照图6,其为常规单个透镜用于近光照明形成的近光光形图。图6中为单个透镜的照明模组投射在配光屏幕上的近光光形,可见该光形畸变很大,近光光形截止线(光形上边界)倾斜严重,很容易导致近光III区超亮。
请参照图7,其为本申请一实施例示出的成像透镜组13用于近光照明形成的近光光形图。图7中的成像透镜组13形成的近光光形截止线平整,即使是光形的边缘位置也没有很大的畸变。此外也能看出该成像透镜组13得到的近光光形无论是光通量还是最大值都极大程度的高于前者,因此照明性能也更优。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请公开了一种成像透镜组、车灯及车辆。成像透镜组包括:光源;第一透镜,第一透镜具有正折射光焦度,第一透镜具有第一入光面和第一出光面,第一入光面和第一出光面均为向远离光源的一侧弯曲的球面;第二透镜,第二透镜具有负折射光焦度,第二透镜具有第二入光面和第二出光面,第二入光面和第二出光面均为靠近光源的一侧弯曲的非球面;第三透镜,第三透镜具有正折射光焦度,第三透镜具有第三入光面和第三出光面,第三入光面和第三出光面均为向第三透镜的外侧凸出的非球面;孔径光阑,孔径光阑设于第三透镜上,与第三透镜的外边缘贴合,第一透镜、第二透镜和第三透镜沿光源的光线方向依次设置。成像透镜组具有良好的成像品质,光线利用率提高。
此外,可以理解的是,本申请的成像透镜组、车灯及车辆是可以重现的,并且可以应用在多种工业应用中。例如,本申请的成像透镜组可以应用于任何车辆的照明。

Claims (12)

  1. 一种成像透镜组,其特征在于,包括:
    光源;
    第一透镜,所述第一透镜具有正折射光焦度,所述第一透镜具有第一入光面和第一出光面,所述第一入光面和所述第一出光面均为向远离所述光源的一侧弯曲的球面;
    第二透镜,所述第二透镜具有负折射光焦度,所述第二透镜具有第二入光面和第二出光面,所述第二入光面和所述第二出光面均为向靠近所述光源的一侧弯曲的非球面;
    第三透镜,所述第三透镜具有正折射光焦度,所述第三透镜具有第三入光面和第三出光面,所述第三入光面和所述第三出光面均为向所述第三透镜的外侧凸出的非球面;以及
    孔径光阑,所述孔径光阑设于所述第三透镜上,且与所述第三透镜的外边缘贴合;其中,所述第一透镜、所述第二透镜和所述第三透镜沿所述光源的光线方向依次设置。
  2. 根据权利要求1所述的成像透镜组,其特征在于,所述第三出光面设有网格花纹。
  3. 根据权利要求2所述的成像透镜组,其特征在于,所述网格花纹为矩形。
  4. 根据权利要求1至3中的任一项所述的成像透镜组,其特征在于,所述成像透镜组还包括:
    增透膜,所述增透膜设于所述第一入光面和所述第一出光面的至少一者之上。
  5. 根据权利要求1至4中的任一项所述的成像透镜组,其特征在于,所述成像透镜组的总长度小于或者等于75mm。
  6. 根据权利要求1至5中的任一项所述的成像透镜组,其特征在于,所述成像透镜组的最大半视场角小于20°。
  7. 根据权利要求1至6中的任一项所述的成像透镜组,其特征在于,所述第一入光面到所述光源的距离为5mm~7mm;
    所述第二入光面到所述第一出光面的距离为5mm~8mm;
    所述第三入光面到所述第二出光面的距离为8mm~10mm。
  8. 根据权利要求1至7中的任一项所述的成像透镜组,其特征在于,所述第一透镜由耐热性高的玻璃材质制成,所述第二透镜由塑料材质制成,所述第三透镜由塑料材质制成。
  9. 根据权利要求1至8中的任一项所述的成像透镜组,其特征在于,所述第一透镜的折射率大于所述第三透镜的折射率,且小于所述第二透镜的折射率;
    所述第二透镜的阿贝系数小于所述第三透镜的阿贝系数,且小于所述第一透镜的阿贝系数。
  10. 根据权利要求1至9中的任一项所述的成像透镜组,其特征在于,所述光源包含 的发光芯片个数为30~30000。
  11. 一种车灯,其特征在于,包括根据权利要求1至10中的任一项所述的成像透镜组。
  12. 一种车辆,其特征在于,包括车体以及至少一个根据权利要求11所述的车灯,所述车灯设于所述车体上。
PCT/CN2021/132615 2021-10-25 2021-11-24 一种成像透镜组、车灯及车辆 WO2023070793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111239500.7A CN116025862A (zh) 2021-10-25 2021-10-25 一种成像透镜组、车灯及车辆
CN202111239500.7 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023070793A1 true WO2023070793A1 (zh) 2023-05-04

Family

ID=86089869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132615 WO2023070793A1 (zh) 2021-10-25 2021-11-24 一种成像透镜组、车灯及车辆

Country Status (2)

Country Link
CN (1) CN116025862A (zh)
WO (1) WO2023070793A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2504332A (en) * 2012-07-26 2014-01-29 Sharp Kk Headlight system incorporating adaptive beam function
TW201502582A (zh) * 2013-07-15 2015-01-16 Hon Hai Prec Ind Co Ltd 透鏡及其光源模組
CN112443811A (zh) * 2019-09-04 2021-03-05 华域视觉科技(上海)有限公司 一种车灯初级光学元件、车灯模组、车灯及车辆
CN212929875U (zh) * 2020-07-07 2021-04-09 广州光联电子科技有限公司 一种汽车前照灯照明系统
CN213019455U (zh) * 2019-02-25 2021-04-20 华域视觉科技(上海)有限公司 远近光一体车灯照明装置、车灯及车辆
CN214009109U (zh) * 2020-11-27 2021-08-20 华域视觉科技(上海)有限公司 像素照明模块、车辆照明装置及车辆
CN214064802U (zh) * 2020-11-27 2021-08-27 华域视觉科技(上海)有限公司 像素照明模块、车辆照明装置及车辆
CN214064803U (zh) * 2020-11-27 2021-08-27 华域视觉科技(上海)有限公司 一种像素照明模块、车辆照明装置及车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2504332A (en) * 2012-07-26 2014-01-29 Sharp Kk Headlight system incorporating adaptive beam function
TW201502582A (zh) * 2013-07-15 2015-01-16 Hon Hai Prec Ind Co Ltd 透鏡及其光源模組
CN213019455U (zh) * 2019-02-25 2021-04-20 华域视觉科技(上海)有限公司 远近光一体车灯照明装置、车灯及车辆
CN112443811A (zh) * 2019-09-04 2021-03-05 华域视觉科技(上海)有限公司 一种车灯初级光学元件、车灯模组、车灯及车辆
CN212929875U (zh) * 2020-07-07 2021-04-09 广州光联电子科技有限公司 一种汽车前照灯照明系统
CN214009109U (zh) * 2020-11-27 2021-08-20 华域视觉科技(上海)有限公司 像素照明模块、车辆照明装置及车辆
CN214064802U (zh) * 2020-11-27 2021-08-27 华域视觉科技(上海)有限公司 像素照明模块、车辆照明装置及车辆
CN214064803U (zh) * 2020-11-27 2021-08-27 华域视觉科技(上海)有限公司 一种像素照明模块、车辆照明装置及车辆

Also Published As

Publication number Publication date
CN116025862A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US10655812B2 (en) Vehicle lamp
CN107085282B (zh) 用于投影至少一个光源的透镜系统
US11408576B2 (en) High and low beam integrated vehicle lamp lighting device, vehicle lamp, and vehicle
WO2020244228A1 (zh) 车灯光学元件、车灯模组及车辆
WO2021147733A1 (zh) 近光光学模组、近光照明模组、车灯及车辆
CN212005550U (zh) 一种具备照明和投影功能的汽车迎宾灯
CN114270097A (zh) 前照灯模块和前照灯装置
CN214009109U (zh) 像素照明模块、车辆照明装置及车辆
CN214064802U (zh) 像素照明模块、车辆照明装置及车辆
WO2021196489A1 (zh) 一种车载的小型投影灯系统
CN210219619U (zh) 一种近光iii区照明模块、遮光板、照明装置及车辆
WO2023070793A1 (zh) 一种成像透镜组、车灯及车辆
RU2720480C1 (ru) Модуль фары
CN205080354U (zh) 一种桌面超短焦光学模组
CN110553213B (zh) 光源模组
CN210740279U (zh) 反光元件、前照灯模组及车灯
TWI782827B (zh) 車用投影鏡頭及車用投影機
WO2023015531A1 (zh) 一种车辆像素化照明装置、车灯及车辆
WO2018126564A1 (zh) 用于车灯的透镜、汽车前照灯及汽车
CN212929874U (zh) 一种应用于汽车前照灯的多透镜装置及其照明系统
CN212929873U (zh) 一种透镜装置及其汽车前照灯照明系统
TWI811987B (zh) 光學鏡頭
CN211780842U (zh) 一种车载的小型投影灯系统
CN211575020U (zh) 透镜及车灯照明系统
CN220958053U (zh) 反射式造型的展宽光学系统、照明装置、车灯及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962137

Country of ref document: EP

Kind code of ref document: A1