WO2021218141A1 - 空调室外机 - Google Patents

空调室外机 Download PDF

Info

Publication number
WO2021218141A1
WO2021218141A1 PCT/CN2020/131861 CN2020131861W WO2021218141A1 WO 2021218141 A1 WO2021218141 A1 WO 2021218141A1 CN 2020131861 W CN2020131861 W CN 2020131861W WO 2021218141 A1 WO2021218141 A1 WO 2021218141A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
compressor
accumulator
mounting plate
heat conduction
Prior art date
Application number
PCT/CN2020/131861
Other languages
English (en)
French (fr)
Inventor
周学明
Original Assignee
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020670439.6U external-priority patent/CN212108745U/zh
Priority claimed from CN202010344930.4A external-priority patent/CN111396998A/zh
Priority claimed from CN202020785683.7U external-priority patent/CN212319924U/zh
Priority claimed from CN202010398646.5A external-priority patent/CN111536600A/zh
Application filed by 海信(广东)空调有限公司 filed Critical 海信(广东)空调有限公司
Publication of WO2021218141A1 publication Critical patent/WO2021218141A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/10Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • the present disclosure relates to the technical field of air conditioning equipment, and in particular to an outdoor unit of an air conditioner.
  • the outdoor unit of the air conditioner in the related art generates a large amount of heat during the compressor working process.
  • a compressor built-in or external protector is often used, and the protector presets the protection temperature. Collect the current temperature through the temperature sensor, and stop the compressor when it reaches the preset protection temperature.
  • This compressor overheating protection method requires the compressor to be stopped repeatedly, which shortens the service life of the compressor, and when the compressor is stopped, the cooling or heating process is interrupted, which affects comfort.
  • an objective of the present disclosure is to provide an air conditioner outdoor unit, which can protect the compressor from overheating, and has the advantages of long service life, high comfort, prevention of liquid strike, and high energy efficiency.
  • an outdoor unit of an air conditioner including: a housing; a compressor installed in the housing; and an accumulator installed in the housing and connected to the housing.
  • the air return port of the compressor is in communication; a heat pipe, the heat pipe has an evaporating part and a condensing part, the evaporating part is in contact with the compressor to conduct heat, and the condensing part is in contact with the accumulator to conduct heat.
  • the outdoor unit of the air conditioner according to the embodiment of the present disclosure can protect the compressor from overheating, and has the advantages of long service life, high comfort, prevention of liquid hammer, and high energy efficiency.
  • the air conditioner outdoor unit further includes: a thermally conductive mounting plate, the thermally conductive mounting plate is attached to the compressor and the accumulator, and the heat pipe is mounted on the thermally conductive mounting plate , The heat-conducting mounting plate presses the evaporation part to the compressor and presses the condensing part to the accumulator.
  • the surface of the heat-conducting mounting plate facing the compressor is configured with a first pipe groove, and at least a part of the evaporating part is assembled in the first pipe groove;
  • the heat-conducting mounting plate The surface facing the reservoir is configured with a second pipe groove, and at least a part of the condensing part is assembled in the second pipe groove.
  • the air conditioner outdoor unit further includes: at least one fixing hoop connected to the heat-conducting mounting plate, and a compressor is defined between the fixing hoop and the heat-conducting mounting plate The fixed space and the accumulator fixed space, the compressor is held in the compressor fixed space, and the accumulator is held in the accumulator fixed space.
  • the heat-conducting mounting plate includes a compressor heat-conducting part, a receiver heat-conducting part, and an intermediate heat-conducting part connected between the compressor heat-conducting part and the accumulator heat-conducting part;
  • the fixing hoop includes a compressor fixing part, an accumulator fixing part, and a connecting part connected between the compressor fixing part and the accumulator fixing part; wherein, the compressor fixing part and the compressor The heat-conducting parts, the fixed part of the accumulator and the heat-conducting part of the accumulator, and the connecting part and the intermediate heat-conducting part are respectively connected by threaded fasteners.
  • the compressor fixed part and The compressor heat-conducting part jointly defines the compressor fixing space
  • the accumulator fixing part and the accumulator heat-conducting part jointly define the accumulator fixing space.
  • the surface of the evaporation portion facing the compressor is configured with a first concave surface, and the first concave surface is attached to the outer peripheral surface of the compressor;
  • the surface of the reservoir is configured with a second concave surface, and the second concave surface is attached to the outer peripheral surface of the reservoir.
  • the evaporation part extends along the axial direction of the compressor; the condensing part extends along the axial direction of the accumulator.
  • the heat pipe further includes: a middle part connected between the evaporating part and the condensing part, and the height of the middle part extends from the condensing part to the condensing part. The direction of the evaporator gradually decreases.
  • thermally conductive glue is provided between the evaporation part and the compressor and between the condensing part and the accumulator, respectively.
  • the evaporation portions of the multiple heat pipes are arranged at intervals along the circumference of the compressor, and the condensation portions of the multiple heat pipes are arranged along the circumference of the accumulator. Circumferential interval setting.
  • the outdoor unit of the air conditioner further includes a heating rod, which conducts heat in contact with the accumulator.
  • the outdoor unit of the air conditioner further includes: a thermally conductive mounting plate, the thermally conductive mounting plate is attached to the compressor and the accumulator, and the heat pipe and the heating rod are mounted on the A heat-conducting mounting plate, the heat-conducting mounting plate pressing the evaporating part to the compressor and pressing the condensing part to the accumulator, and the heating rod is buried in the heat-conducting mounting plate.
  • the thermally conductive mounting plate includes: a first thermally conductive mounting plate and a second thermally conductive mounting plate, the first thermally conductive mounting plate and the second thermally conductive mounting plate are connected and define a compressor fixing Space and accumulator fixed space, the compressor is held in the compressor fixed space, the accumulator is held in the accumulator fixed space, the first heat conducting mounting plate and the Each of the second heat conducting mounting plates is provided with the heat pipe and the heating rod.
  • each of the first heat conduction mounting plate and the second heat conduction mounting plate includes a compressor heat conduction part, an accumulator heat conduction part, and is connected to the compressor heat conduction part and the accumulator heat conduction part Between the middle heat conduction part; wherein, between the compressor heat conduction part of the first heat conduction mounting plate and the compressor heat conduction part of the second heat conduction mounting plate, the accumulator heat conduction part of the first heat conduction mounting plate Are connected to the thermally conductive portion of the reservoir of the second thermally conductive mounting plate and between the intermediate thermally conductive portion of the first thermally conductive mounting plate and the intermediate thermally conductive portion of the second thermally conductive mounting plate by threaded fasteners;
  • the compressor heat conduction part of the first heat conduction mounting plate and the compressor heat conduction part of the second heat conduction mounting plate jointly define the compressor fixing space
  • the accumulator heat conduction part of the first heat conduction mounting plate and the The thermally conductive portions of the reservoir of the second thermally conductive mounting plate jointly define the
  • the evaporation part extends along the axial direction of the compressor; the condensing part and the heating rod extend along the axial direction of the accumulator.
  • the evaporation portions of the multiple heat pipes are arranged at intervals along the circumference of the compressor, and the condensation portions of the multiple heat pipes are arranged along the circumference of the accumulator.
  • the heating rods are arranged at intervals in the circumferential direction, and the heating rods are located between adjacent condensing parts.
  • Fig. 1 is a schematic structural diagram of an outdoor unit of an air conditioner according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic structural diagram of a compressor and an accumulator of an outdoor unit of an air conditioner according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic structural view from another angle of the compressor and the accumulator of the outdoor unit of the air conditioner according to the embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a fixing hoop of an outdoor unit of an air conditioner according to an embodiment of the present disclosure.
  • Fig. 5 is a top view of a heat conducting mounting plate and a fixing hoop of an outdoor unit of an air conditioner according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic structural diagram of an outdoor unit of an air conditioner according to another embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a compressor and an accumulator of an outdoor unit of an air conditioner according to another embodiment of the present disclosure
  • Fig. 8 is a top view of a first heat conducting mounting plate and a second heat conducting mounting plate of an outdoor unit of an air conditioner according to another embodiment of the present disclosure
  • Fig. 9 is a schematic diagram of a refrigeration system of an outdoor unit of an air conditioner according to another embodiment of the present disclosure.
  • Air conditioner outdoor unit 1 Air conditioner outdoor unit 1,
  • Thermally conductive mounting plate 500 first thermally conductive mounting plate 601, second thermally conductive mounting plate 602, first pipe groove 510, second pipe groove 520, compressor heat conducting part 530, accumulator heat conducting part 540, intermediate heat conducting part 550,
  • Outdoor heat exchanger 800 four-way reversing valve 901, electronic expansion valve 902,
  • Heating rod 1000
  • first feature and second feature may include one or more of these features.
  • the outdoor unit 1 of the air conditioner includes a housing 100, a compressor 200, an accumulator 300 and a heat pipe 400.
  • the compressor 200 is installed in the housing 100.
  • the accumulator 300 is installed in the housing 100 and communicates with the air return port of the compressor 200.
  • the heat pipe 400 has an evaporating part 410 and a condensing part 420.
  • the evaporating part 410 contacts the compressor 200 to conduct heat
  • the condensing part 420 contacts the accumulator 300 to conduct heat.
  • the heat generated during the operation of the compressor 200 is absorbed by the heat pipe 400 through the housing of the compressor 200.
  • the medium inside the heat pipe 400 absorbs the heat and vaporizes to form the evaporator 410.
  • the steam flows to the heat pipe 400 under a slight pressure difference.
  • the heat is released and liquefied.
  • the medium inside the heat pipe 400 is recondensed into a liquid to form a condensing part 420. After liquefaction, the liquid passes through a porous material (such as a liquid wick) by capillary force. The effect flows back to the evaporation part 410.
  • the heat pipe 400 is provided, and the evaporating part 410 of the heat pipe 400 contacts the compressor 200 to conduct heat, and the condensing part 420 of the heat pipe 400 contacts the accumulator 300 to conduct heat.
  • the heat generated during the operation of the compressor 200 is continuously transferred to the accumulator 300, which effectively reduces the temperature of the compressor 200, thereby avoiding repeated shutdowns of the compressor 200, increasing the service life of the compressor 200, and during the cooling and heating process,
  • the compressor 200 does not need to be shut down for protection, and can ensure environmental comfort.
  • the heat of the compressor 200 is transferred to the accumulator 300, which can promote the conversion of the refrigerant in the accumulator 300 to a gaseous state, thereby increasing the return air temperature of the compressor 200, thereby avoiding the phenomenon of liquid hammer and improving the energy efficiency of the whole machine. And under low-temperature heating, the heating capacity can be effectively improved.
  • the air conditioner outdoor unit 1 can protect the compressor from overheating, and has the advantages of long service life, high comfort, prevention of liquid hammer, and high energy efficiency.
  • the air conditioner outdoor unit 1 further includes a heat-conducting mounting plate 500.
  • the heat-conducting mounting plate 500 is attached to the compressor 200 and the accumulator 300, the heat pipe 400 is mounted to the heat-conducting mounting plate 500, and the heat-conducting mounting plate 500 presses the evaporation part 410 to the compressor 200 and the condensing part 420 to the accumulator 300.
  • the heat-conducting mounting plate 500 can provide a mounting carrier for the heat pipe 400 and stably fix the heat pipe 400 to the compressor 200 and the accumulator 300 to ensure effective heat transfer.
  • the heat-conducting mounting board 500 has a heat-conducting function.
  • the heat-conducting mounting board 500 can be an aluminum plate, which has excellent thermal conductivity and structural strength. In this way, the heat exchange area is increased and the heat transfer efficiency is improved.
  • the surface of the heat-conducting mounting plate 500 facing the compressor 200 is configured with a first pipe groove 510, and at least a part of the evaporation portion 410 is assembled in the first pipe groove 510.
  • the surface of the thermally conductive mounting plate 500 facing the accumulator 300 is configured with a second pipe groove 520, and at least a part of the condensing part 420 is assembled in the second pipe groove 520.
  • the cross-sections of the first pipe groove 510 and the second pipe groove 520 may both be arc-shaped, the first pipe groove 510 is adapted to the outer contour of the evaporation part 410, and the second pipe groove 520 is adapted to the outer contour of the condensing part 420 ,
  • the heat pipe 400 adopts a rolling process, and is respectively press-fitted into the first pipe groove 510 and the second pipe groove 520 of the thermally conductive mounting plate 500.
  • the positions of the heat pipe 400 and the heat conducting mounting plate 500 are more stable, the first pipe groove 510 and the evaporation portion 410 have a larger contact area, and the heat transfer efficiency is higher.
  • the second tube groove 520 has a larger contact area with the condensing part 420, and the condensing part 420 is adjacent to the side of the accumulator 300, so that the heat of the condensing part 420 can be transferred to the accumulator 300 faster, thereby speeding up the compressor The speed of heat transfer between 200 and reservoir 300.
  • the air conditioner outdoor unit 1 further includes at least one fixing hoop 600.
  • the fixing hoop 600 is connected to the heat-conducting mounting plate 500.
  • the fixing hoop 600 and the heat-conducting mounting plate 500 define the compressor fixing space 610 and the accumulator 300 fixing space.
  • the compressor 200 is held in the compressor fixing space 610, and the liquid is stored.
  • the reservoir 300 is held in the fixed space of the accumulator 300.
  • the compressor fixing space 610 is compatible with the outer contour of the compressor 200, and the fixing space of the accumulator 300 is compatible with the outer contour of the accumulator 300.
  • the fixing hoop 600 and the heat conducting mounting plate 500 together serve to fix the compressor 200 and the liquid storage.
  • the heat pipe 400 is fixed to the compressor 200 and the accumulator 300 by the function of the device 300.
  • the heat conduction mounting plate 500 includes a compressor heat conduction part 530, an accumulator heat conduction part 540, and is connected between the compressor heat conduction part 530 and the accumulator heat conduction part 540.
  • the middle heat conduction part 550 is connected between the compressor heat conduction part 530 and the accumulator heat conduction part 540.
  • the fixing band 600 includes a compressor fixing part 630, an accumulator fixing part 640 and a connecting part 650 connected between the compressor fixing part 630 and the accumulator fixing part 640.
  • the compressor fixing part 630 and the compressor heat conducting part 530, the accumulator fixing part 640 and the accumulator heat conducting part 540, and the connecting part 650 and the intermediate heat conducting part 550 are respectively connected by threaded fasteners, As shown in FIG. 5, the compressor fixing part 630 and the compressor heat conducting part 530 jointly define the compressor fixing space 610, and the accumulator fixing part 640 and the accumulator heat conducting part 540 jointly define the accumulator fixing space 620.
  • the compressor heat conduction part 530 By providing the compressor heat conduction part 530, the heat of the compressor 200 can be quickly transferred to the evaporation part 410.
  • the accumulator heat conduction part 540 By providing the accumulator heat conduction part 540, the heat of the condensing part 420 can be quickly transferred to the accumulator 300.
  • the middle heat conduction part 550 connects the compressor heat conduction part 530 and the accumulator heat conduction part 540, which improves the structural strength of the heat conduction mounting board 500 and increases the heat conduction path.
  • the cross section of the heat-conducting mounting plate 500 forms two semicircular ring shapes with the same opening direction and connected, which is suitable for the installation of the compressor 200 and the accumulator 300.
  • the fixing hoop 600 and the heat-conducting mounting plate 500 are connected by threaded fasteners, so that the compressor 200 and the accumulator 300 can always be in the compressor fixing space 610 and the accumulator fixing space 620, and the compressor 200 and the accumulator 300
  • the assembly is firmer.
  • the compressor 200 is arranged adjacent to the accumulator 300 and extends in the same direction.
  • the heat-conducting mounting plate 500 and the fixing hoop 600 jointly fix the compressor 200 and the accumulator 300 at a relatively close distance, and the heat exchange efficiency is higher.
  • the surface of the evaporation portion 410 facing the compressor 200 is configured with a first concave surface 411, and the first concave surface 411 is attached to the outer peripheral surface of the compressor 200.
  • the surface of the condensing part 420 facing the accumulator 300 is configured with a second concave surface 412, and the second concave surface 412 is attached to the outer peripheral surface of the accumulator 300.
  • the heat pipe 400 forms a first concave surface 411 and a second concave surface 412 by flying surface processing.
  • the first concave surface 411 and the outer peripheral surface of the compressor 200 have a larger heat exchange area, which facilitates the evaporating part 410 to absorb the heat generated by the compressor 200.
  • the second concave surface 412 and the outer peripheral surface of the accumulator 300 have a larger heat exchange area, which facilitates the heat transfer of the condensing portion 420 to the accumulator 300, thereby improving the efficiency of heat transfer from the compressor 200 to the accumulator 300.
  • the evaporation part 410 extends along the axial direction of the compressor 200, and the condensing part 420 extends along the axial direction of the accumulator 300.
  • the heat at all points in the axial direction of the compressor 200 can be transferred to the evaporating portion 410, and the evaporating portion 410 cools the compressor 200 more uniformly.
  • the condensing part 420 can sufficiently transfer heat to the accumulator 300, so that the refrigerant in the accumulator 300 uniformly absorbs heat, and the return air temperature of the compressor 200 is increased.
  • the heat pipe 400 further includes an intermediate portion 430 connected between the evaporation portion 410 and the condensation portion 420, for example, the intermediate portion 430 is connected between the evaporation portion 410 and the condensation portion 420. Below the condensation portion 420, the height of the middle portion 430 gradually decreases along the direction from the condensation portion 420 to the evaporation portion 410.
  • the heat transfer path of the heat pipe 400 is relatively smooth, the resistance of the medium in the middle part 430 is small, and the cooled medium in the condensation part 420 acts on gravity. The downward slope returns to the evaporation part 410.
  • a thermal conductive glue is provided between the evaporation part 410 and the compressor 200 and between the condensing part 420 and the accumulator 300 respectively.
  • the thermal conductive glue is soft and can fill the gap between the evaporation part 410 and the compressor 200 and the gap between the condensing part 420 and the accumulator 300, and lift the gap between the evaporation part 410 and the compressor 200 and between the condensing part 420 and the accumulator. The heat conduction effect between the liquid container 300.
  • FIG. 2 there are multiple heat pipes 400, the evaporation portions 410 of the multiple heat pipes 400 are arranged at intervals along the circumference of the compressor 200, and the condensation portions 420 of the multiple heat pipes 400 are arranged along the storage area.
  • the liquid container 300 is arranged at intervals in the circumferential direction, and a plurality of heat pipes 400 may all be fixed by the heat conducting mounting plate 500.
  • the compressor 200 contacts the multiple evaporation parts 410 to conduct heat, and the accumulator 300 contacts the multiple condensation parts 420 to conduct heat, which further enhances the cooling effect of the evaporation part 410 on the compressor 200 and strengthens The effect of the condensing part 420 on the temperature of the return air in the accumulator 300 promotes the heat transfer between the compressor 200 and the accumulator 300.
  • the outdoor unit 1 of the air conditioner includes a housing 100, a compressor 200, an accumulator 300, a heat pipe 400, and a heating rod 1000.
  • the compressor 200 is installed in the housing 100.
  • the accumulator 300 is installed in the housing 100 and communicates with the air return port of the compressor 200.
  • the heat pipe 400 has an evaporating part 410 and a condensing part 420.
  • the evaporating part 410 contacts the compressor 200 to conduct heat
  • the condensing part 420 contacts the accumulator 300 to conduct heat.
  • the heating rod 1000 contacts the reservoir 300 to conduct heat.
  • the heat generated during the operation of the compressor 200 is absorbed by the heat pipe 400 through the housing 100 of the compressor 200.
  • the medium inside the heat pipe 400 absorbs the heat and vaporizes to form the evaporator 410.
  • the steam flows to the heat pipe under a slight pressure difference.
  • the other end of 400 exchanges heat with the cooler accumulator 300 and releases heat to liquefy.
  • the medium inside the heat pipe 400 recondenses into a liquid to form a condensing part 420. After liquefaction, the liquid contacts and conducts heat on the heating rod 1000 and the accumulator 300. Then the porous material (such as the wick) flows back to the evaporation part 410 by the action of capillary force.
  • the heat is transferred from the evaporation part 410 of the heat pipe 400 to the condensing part 420, and the heat generated by the operation of the compressor 200 is continuously transferred to the accumulator 300.
  • the compressor 200’s performance is improved.
  • the return air temperature increases the evaporation pressure during defrosting and realizes uninterrupted heating without stopping the compressor 200.
  • the refrigeration system corresponding to the outdoor unit 1 of the air conditioner includes a compressor 200, a four-way reversing valve 901, an indoor heat exchanger 700, an electronic expansion valve 902, an outdoor heat exchanger 800, and an accumulator. 300.
  • the above-mentioned components are sequentially connected to form a refrigerant circuit.
  • the electronic expansion valve 902 is fully opened, the compressor 200 is reduced in frequency, the indoor fan and the outdoor fan 110 decelerate, and the high-temperature and high-pressure refrigerant discharged from the compressor 200 flows into the outdoor heat exchanger 800 to achieve the defrosting effect.
  • the heat pipe 400 absorbs the heat of the compressor 200 and conducts it to the accumulator 300, while the heating rod 1000 works.
  • the low-temperature refrigerant inside the accumulator 300 absorbs the heat of the heat pipe 400 and the heating rod 1000, and the temperature rises, which increases the return air temperature. Increase the defrost evaporation pressure, reduce the system operating power, improve the energy efficiency of the whole system, and improve the comfort.
  • the heating rod 1000 may be an electric heating component, which is controlled by the control unit of the outdoor unit 1 of the air conditioner to be turned on during the defrosting operation.
  • the heat pipe 400 and the heating rod 1000 are provided, and the evaporating part 410 of the heat pipe 400 contacts the compressor 200 to conduct heat, and the condensing part 420 of the heat pipe 400 contacts the accumulator 300 to conduct heat.
  • the heat pipe 400 is used to continuously conduct the heat generated during the operation of the compressor 200 to the accumulator 300, and under the heating effect of the heating rod 1000, the refrigerant in the accumulator 300 is promoted to transform into a gaseous state, thereby improving the return of the compressor 200.
  • the compressor 200 When the air temperature enters and increases the defrosting evaporation pressure, the compressor 200 does not need to be shut down when the air conditioner outdoor unit 1 is in defrosting operation, so that uninterrupted heating is realized, thereby improving comfort.
  • the control logic is simpler and the cost is lower.
  • the air conditioner outdoor unit 1 can realize uninterrupted heating, non-stop defrosting, and has the advantages of high comfort, long service life, simple control, and low cost.
  • the air conditioner outdoor unit 1 further includes a heat-conducting mounting plate 500.
  • the heat-conducting mounting plate 500 is attached to the compressor 200 and the accumulator 300.
  • the heat pipe 400 and the heating rod 1000 are mounted to the heat-conducting mounting plate 500.
  • the heat-conducting mounting plate 500 presses the evaporation part 410 against the compressor 200 and presses the condensing part 420 tightly.
  • the heating rod 1000 is buried in the heat conducting mounting plate 500.
  • the heat-conducting mounting plate 500 can provide a mounting carrier for the heat pipe 400 and the heating rod 1000, and stably fix the heat pipe 400 to the compressor 200 and the accumulator 300.
  • the heating rod 1000 has a long cylindrical structure and is mostly fixed inside the heat-conducting mounting plate 500 to release The heat generated can be fully transferred to the heat conducting mounting plate 500 and the liquid reservoir 300 to ensure effective heat conduction.
  • the thermally conductive mounting plate 500 has a heat conduction function.
  • the thermally conductive mounting plate 500 can be an aluminum plate, which has excellent thermal conductivity and structural strength. In this way, the heat exchange area is increased, thereby improving the heat conduction efficiency and making the heat transfer more uniform.
  • the surface of the heat-conducting mounting plate 500 facing the compressor 200 is configured with a first pipe groove 510, and at least a part of the evaporation portion 410 is assembled in the first pipe groove 510.
  • the surface of the thermally conductive mounting plate 500 facing the accumulator 300 is configured with a second pipe groove 520, and at least a part of the condensing part 420 is assembled in the second pipe groove 520.
  • the cross-sections of the first pipe groove 510 and the second pipe groove 520 may both have a superior arc shape
  • the first pipe groove 510 is adapted to the outer contour of the evaporation part 410
  • the second pipe groove 520 is adapted to the outer contour of the condensing part 420.
  • the heat pipe 400 adopts a rolling process, and is respectively press-fitted into the first pipe groove 510 and the second pipe groove 520 of the thermally conductive mounting plate 500.
  • the positions of the heat pipe 400 and the heat conducting mounting plate 500 are more stable, the first pipe groove 510 and the evaporation portion 410 have a larger contact area, and the heat transfer efficiency is higher.
  • the second pipe groove 520 has a larger contact area with the condensing part 420, and the condensing part 420 is adjacent to the side of the accumulator 300, so that the heat of the condensing part 420 can be transferred to the accumulator 300 faster, thereby speeding up the compressor The speed of heat transfer between 200 and reservoir 300.
  • the thermally conductive mounting board 500 includes a first thermally conductive mounting board 601 and a second thermally conductive mounting board 602.
  • the first heat-conducting mounting plate 601 and the second heat-conducting mounting plate 602 are connected and define the compressor fixing space 610 and the accumulator fixing space 620, the compressor 200 is held in the compressor fixing space 610, and the accumulator 300 is held In the fixed space 620 of the reservoir, each of the first heat-conducting mounting plate 601 and the second heat-conducting mounting plate 602 is provided with a heat pipe 400 and a heating rod 1000.
  • the surface of the first thermally conductive mounting plate 601 that is in contact with the compressor 200 and the surface of the second thermally conductive mounting plate 602 that is in contact with the accumulator 300 are configured as arc surfaces to adapt to the compressor 200 and the accumulator 300.
  • the compressor 200 and the accumulator 300 can always be located in the compressor fixed space 610 and the accumulator fixed space 620, and the compressor 200 and the accumulator 300 can be assembled more firmly.
  • the first heat-conducting mounting plate 601 and the second heat-conducting mounting plate 602 hold the compressor 200 and the accumulator 300.
  • the heat-conducting mounting plate 500 and the outer peripheral surfaces of the compressor 200 and the accumulator 300 have a larger heat conduction area, so that The heat transfer of the compressor 200 and the accumulator 300 is more sufficient.
  • each of the first heat conduction mounting plate 601 and the second heat conduction mounting plate 602 includes a compressor heat conduction portion 530, an accumulator heat conduction portion 540, and a heat conduction portion connected to the compressor 530 And the middle heat conduction part 550 between the heat conduction part 540 of the reservoir.
  • the compressor heat conduction part 530 By providing the compressor heat conduction part 530, the heat of the compressor 200 can be quickly transferred to the evaporation part 410.
  • the accumulator heat conduction part 540 By providing the accumulator heat conduction part 540, the heat of the condensing part 420 can be quickly transferred to the accumulator 300.
  • the middle heat conduction part 550 connects the compressor heat conduction part 530 and the accumulator heat conduction part 540, which improves the structural strength of the heat conduction mounting plate 500 and increases the heat conduction path.
  • the accumulator heat conducting part 540 of the first heat conducting mounting plate 601 and the second heat conducting mounting plate 602 are respectively connected by threaded fasteners (for example, bolts).
  • the compressor heat conducting part 530 of the first heat conducting mounting plate 601 and the compressor heat conducting part 530 of the second heat conducting mounting plate 602 jointly define the compressor fixing space 610, the accumulator heat conducting part 540 of the first heat conducting mounting plate 601 and the second heat conducting part
  • the accumulator heat conducting portion 540 of the heat conducting mounting plate 602 jointly defines the accumulator fixing space 620.
  • first heat conduction mounting plate 601 and the second heat conduction mounting plate 602 are connected between the compressor heat conduction part 530, the accumulator heat conduction part 540 and the intermediate heat conduction part 550 by threaded fasteners, and the heat conduction mounting plate 500 connects
  • the compressor 200 and the accumulator 300 are fixed and have a more stable assembly structure.
  • the surface of the evaporation portion 410 facing the compressor 200 is configured with a first concave surface 411, and the first concave surface 411 is attached to the outer peripheral surface of the compressor 200.
  • the surface of the condensing part 420 facing the accumulator 300 is configured with a second concave surface 421, and the second concave surface 421 is attached to the outer peripheral surface of the accumulator 300.
  • the heat pipe 400 forms a first concave surface 411 and a second concave surface 421 by flying surface processing.
  • the first concave surface 411 and the outer peripheral surface of the compressor 200 have a larger heat exchange area, which facilitates the evaporating part 410 to absorb the heat generated by the compressor 200.
  • the second concave surface 421 and the outer peripheral surface of the accumulator 300 have a larger heat exchange area, which facilitates the heat transfer of the condensing portion 420 to the accumulator 300, thereby improving the efficiency of heat transfer from the compressor 200 to the accumulator 300.
  • the evaporation portion 410 extends along the axial direction of the compressor 200.
  • the condensing part 420 and the heating rod 1000 extend along the axial direction of the accumulator 300.
  • the heat at all points in the axial direction of the compressor 200 can be transferred to the evaporating portion 410, and the evaporating portion 410 cools the compressor 200 more uniformly.
  • the condensing part 420 can sufficiently transfer heat to the accumulator 300 so that the refrigerant in the accumulator 300 uniformly absorbs heat.
  • the heat generated by the heating rod 1000 can be transmitted to all parts in the axial direction of the accumulator 300, the refrigerant in the accumulator 300 is heated, and the return air temperature of the compressor 200 is increased.
  • the heat pipe 400 further includes a middle portion 430.
  • the middle part 430 is connected between the evaporation part 410 and the condensation part 420, and the height of the middle part 430 gradually decreases in the direction from the condensation part 420 to the evaporation part 410.
  • the heat transfer path of the heat pipe 400 is relatively smooth, the resistance of the medium in the middle part 430 is small, and the cooled medium in the condensation part 420 acts on gravity. The downward slope returns to the evaporation part 410.
  • a thermal conductive glue is provided between the evaporation part 410 and the compressor 200 and between the condensing part 420 and the accumulator 300 respectively.
  • the thermal conductive glue is soft and can fill the gap between the evaporation part 410 and the compressor 200 and the gap between the condensing part 420 and the accumulator 300, and lift the gap between the evaporation part 410 and the compressor 200 and between the condensing part 420 and the accumulator.
  • FIG. 7 there are multiple heat pipes 400, the evaporation portions 410 of the multiple heat pipes 400 are arranged at intervals along the circumference of the compressor 200, and the condensation portions 420 of the multiple heat pipes 400 are arranged along the storage area.
  • the liquid container 300 is arranged at intervals in the circumferential direction, and the heating rod 1000 is located between the adjacent condensing parts 420.
  • the plurality of heat pipes 400 may all be fixed by the thermally conductive mounting plate 500.
  • the compressor 200 contacts the multiple evaporation parts 410 to conduct heat
  • the accumulator 300 contacts the multiple condensation parts 420 to conduct heat, which further enhances the cooling effect of the evaporation part 410 on the compressor 200 and strengthens
  • the effect of the condensing part 420 on the temperature of the return air in the accumulator 300 promotes the heat transfer between the compressor 200 and the accumulator 300.
  • an air conditioner employing the outdoor unit 1 of the air conditioner in the present application performs a refrigeration cycle by using a compressor 200, a condenser, an expansion valve, and an evaporator.
  • the refrigeration cycle includes a series of processes involving compression, condensation, expansion, and evaporation, and supplies refrigerant to air that has been conditioned and heat exchanged.
  • the compressor 200 compresses the refrigerant gas in a high temperature and high pressure state and discharges the compressed refrigerant gas.
  • the discharged refrigerant gas flows into the condenser.
  • the condenser condenses the compressed refrigerant into a liquid phase, and the heat is released to the surrounding environment through the condensation process.
  • the expansion valve expands the liquid phase refrigerant in a high temperature and high pressure state condensed in the condenser into a low pressure liquid phase refrigerant.
  • the evaporator evaporates the refrigerant expanded in the expansion valve and returns the refrigerant gas in a low temperature and low pressure state to the compressor 200.
  • the evaporator can achieve a cooling effect by using the latent heat of the evaporation of the refrigerant to exchange heat with the material to be cooled.
  • the air conditioner outdoor unit 1 is an outdoor unit of an air conditioner, that is, a part of a refrigeration cycle including a compressor 200 and an outdoor heat exchanger.
  • the indoor unit includes an indoor heat exchanger, and an expansion valve may be provided in the indoor unit or the outdoor unit.
  • the indoor heat exchanger and the outdoor heat exchanger are used as condensers or evaporators. When the indoor heat exchanger is used as a condenser, the outdoor heat exchanger is used as a heater in heating mode, and when the indoor heat exchanger is used as an evaporator, the outdoor heat exchanger is used as a cooler in cooling mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种空调室外机(1),所述空调室外机(1)包括:壳体(100);压缩机(200),所述压缩机(200)安装于所述壳体(100)内;储液器(300),所述储液器(300)安装于所述壳体(100)内且与所述压缩机(200)的回气口连通;热管(400),所述热管(400)具有蒸发部(410)和冷凝部(420),所述蒸发部(410)与所述压缩机(420)接触导热,所述冷凝部(420)与所述储液器(300)接触导热。

Description

空调室外机 技术领域
本公开涉及空调设备技术领域,尤其是涉及一种空调室外机。
背景技术
相关技术中的空调室外机,其压缩机工作过程中会产生大量的热量,为保护其温度不会过高而烧毁,往往采用压缩机内置或外置保护器,该保护器预设保护温度。通过温度传感器采集当前温度,如达到预设保护温度时停止压缩机工作。这种压缩机过热保护方式,需要压缩机反复停机,缩短了压缩机的使用寿命,且压缩机停机状态下,制冷或制热过程中断,影响舒适性。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种空调室外机,该空调室外机能够对压缩机进行过热保护,且具有使用寿命长、舒适性高、防止液击、能效高等优点。
根据本公开实施例提出了一种空调室外机,包括:壳体;压缩机,所述压缩机安装于所述壳体内;储液器,所述储液器安装于所述壳体内且与所述压缩机的回气口连通;热管,所述热管具有蒸发部和冷凝部,所述蒸发部与所述压缩机接触导热,所述冷凝部与所述储液器接触导热。
根据本公开实施例的空调室外机,能够对压缩机进行过热保护,且具有使用寿命长、舒适性高、防止液击、能效高等优点。
根据本公开的一些具体实施例,所述空调室外机还包括:导热安装板,所述导热安装板贴设于所述压缩机和所述储液器,所述热管安装于所述导热安装板,所述导热安装板将所述蒸发部压紧于所述压缩机且将所述冷凝部压紧于所述储液器。
根据本公开的一些具体实施例,所述导热安装板的朝向所述压缩机的表面构造有第一管槽,所述蒸发部的至少一部分装配于所述第一管槽;所述导热安装板的朝向所述储液器的表面构造有第二管槽,所述冷凝部的至少一部分装配于所述第二管槽。
根据本公开的一些具体实施例,所述空调室外机还包括:至少一个固定箍,所述固定箍与所述导热安装板相连,所述固定箍与所述导热安装板之间限定出压缩机固定空 间和储液器固定空间,所述压缩机被抱持于所述压缩机固定空间,所述储液器被抱持于所述储液器固定空间。
根据本公开的一些具体实施例,所述导热安装板包括压缩机导热部、储液器导热部和连接在所述压缩机导热部和所述储液器导热部之间的中间导热部;所述固定箍包括压缩机固定部、储液器固定部和连接在所述压缩机固定部和所述储液器固定部之间的连接部;其中,所述压缩机固定部与所述压缩机导热部之间、所述储液器固定部与所述储液器导热部之间以及所述连接部与所述中间导热部之间分别通过螺纹紧固件连接,所述压缩机固定部和所述压缩机导热部共同限定出所述压缩机固定空间,所述储液器固定部和所述储液器导热部共同限定出所述储液器固定空间。
根据本公开的一些具体实施例,所述蒸发部的朝向所述压缩机的表面构造有第一凹面,所述第一凹面与所述压缩机的外周面贴合;所述冷凝部的朝向所述储液器的表面构造有第二凹面,所述第二凹面与所述储液器的外周面贴合。
根据本公开的一些具体实施例,所述蒸发部沿所述压缩机的轴向延伸;所述冷凝部沿所述储液器的轴向延伸。
根据本公开的一些具体实施例,所述热管还包括:中间部,所述中间部连接在所述蒸发部和所述冷凝部之间,所述中间部的高度沿所述冷凝部至所述蒸发部的方向逐渐降低。
根据本公开的一些具体实施例,所述蒸发部与所述压缩机之间以及所述冷凝部与所述储液器之间分别设有导热胶。
根据本公开的一些具体实施例,所述热管为多个,多个所述热管的蒸发部沿所述压缩机的周向间隔设置,多个所述热管的冷凝部沿所述储液器的周向间隔设置。
根据本公开的一些具体实施例,所述空调室外机还包括:加热棒,所述加热棒与所述储液器接触导热。
根据本公开的一些具体实施例,空调室外机还包括:导热安装板,所述导热安装板贴设于所述压缩机和所述储液器,所述热管和所述加热棒安装于所述导热安装板,所述导热安装板将所述蒸发部压紧于所述压缩机且将所述冷凝部压紧于所述储液器,所述加热棒埋设于所述导热安装板。
根据本公开的一些具体实施例,所述导热安装板包括:第一导热安装板和第二导热安装板,所述第一导热安装板和所述第二导热安装板相连且限定出压缩机固定空间和储液器固定空间,所述压缩机被抱持于所述压缩机固定空间,所述储液器被抱持于所述储液器固定空间,所述第一导热安装板和所述第二导热安装板中的每一个均设有所述热管和所述加热棒。
进一步地,所述第一导热安装板和所述第二导热安装板中的每一个包括压缩机导热部、储液器导热部和连接在所述压缩机导热部和所述储液器导热部之间的中间导热部;其中,所述第一导热安装板的压缩机导热部与所述第二导热安装板的压缩机导热部之间、所述第一导热安装板的储液器导热部与所述第二导热安装板的储液器导热部之间以及所述第一导热安装板的中间导热部与所述第二导热安装板的中间导热部之间分别通过螺纹紧固件连接;所述第一导热安装板的压缩机导热部和所述第二导热安装板的压缩机导热部共同限定出所述压缩机固定空间,所述第一导热安装板的储液器导热部和所述第二导热安装板的储液器导热部共同限定出所述储液器固定空间。
根据本公开的一些具体实施例,所述蒸发部沿所述压缩机的轴向延伸;所述冷凝部和所述加热棒沿所述储液器的轴向延伸。
根据本公开的一些具体实施例,所述热管为多个,多个所述热管的蒸发部沿所述压缩机的周向间隔设置,多个所述热管的冷凝部沿所述储液器的周向间隔设置,所述加热棒位于相邻冷凝部之间。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的空调室外机的结构示意图。
图2是根据本公开实施例的空调室外机的压缩机和储液器的结构示意图。
图3是根据本公开实施例的空调室外机的压缩机和储液器的另一个角度的结构示意图。
图4是根据本公开实施例的空调室外机的固定箍的结构示意图。
图5是根据本公开实施例的空调室外机的导热安装板和固定箍的俯视图。
图6是根据本公开另一个实施例的空调室外机的结构示意图;
图7是根据本公开另一个实施例的空调室外机的压缩机和储液器的结构示意图;
图8是根据本公开另一个实施例的空调室外机的第一导热安装板和第二导热安装板俯视图;
图9是根据本公开另一个实施例的空调室外机的制冷系统示意图。
附图标记:
空调室外机1、
壳体100、室外风扇110、
压缩机200、
储液器300、
热管400、蒸发部410、冷凝部420、第一凹面411、第二凹面412、中间部430、
导热安装板500、第一导热安装板601、第二导热安装板602、第一管槽510、第二管槽520、压缩机导热部530、储液器导热部540、中间导热部550、
固定箍600、压缩机固定空间610、储液器固定空间620、压缩机固定部630、储液器固定部640、连接部650、
室内换热器700、
室外换热器800、四通换向阀901、电子膨胀阀902、
加热棒1000。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。
在本公开的描述中,“多个”的含义是两个或两个以上,“若干”的含义是一个或多个。
下面参考附图描述根据本公开实施例的空调室外机1。
如图1-图5所示,根据本公开实施例的空调室外机1包括壳体100、压缩机200、储液器300和热管400。
压缩机200安装于壳体100内。储液器300安装于壳体100内且与压缩机200的回气口连通。热管400具有蒸发部410和冷凝部420,蒸发部410与压缩机200接触导热,冷凝部420与储液器300接触导热。
具体而言,压缩机200运行过程中产生的热量通过压缩机200的壳体被热管400 吸收,热管400内部的介质吸收热量后汽化形成蒸发部410,蒸汽在微小的压力差下流向热管400的另一端,与较冷的储液器300进行热交换后释放热量液化,热管400内部的介质重新凝结成液体形成冷凝部420,液化后液体再经多孔材料(如吸液芯)靠毛细力的作用流回到蒸发部410。如此循环不止,热量由热管400的蒸发部410传导至冷凝部420,压缩机200运行产生的热量源源不断地传导至储液器300,达到降温的目的,有效保护压缩机200,保证压缩机200持续运行,避免压缩机200温度过高而烧毁。根据本公开实施例的空调室外机1,通过设置热管400,且热管400的蒸发部410与压缩机200接触导热,热管400的冷凝部420与储液器300接触导热,这样可以利用热管400将压缩机200运行时产生的热量持续传导至储液器300,有效降低压缩机200的温度,从而避免压缩机200反复停机,提高了压缩机200的使用寿命,且在制冷和制热过程中,压缩机200无需停机保护,能够保证环境的舒适性。
并且,压缩机200的热量传导至储液器300,能够促使储液器300内的制冷剂向气态转化,从而提升压缩机200的回气温度,进而避免液击现象,并提升整机能效,且在低温制热下,能够有效提升制热能力。
因此,根据本公开实施例的空调室外机1,能够对压缩机进行过热保护,且具有使用寿命长、舒适性高、防止液击、能效高等优点。
在本公开的一些具体实施例中,如图1所示,空调室外机1还包括导热安装板500。
导热安装板500贴设于压缩机200和储液器300,热管400安装于导热安装板500,导热安装板500将蒸发部410压紧于压缩机200且将冷凝部420压紧于储液器300。导热安装板500能够为热管400提供安装载体,并将热管400稳定固定于压缩机200和储液器300,保证热量的有效传导。而且,导热安装板500具有导热功能,例如导热安装板500可以为铝板,具有优良的导热性和结构强度,如此,增加了换热面积,从而提高热传导效率。
在本公开的一些具体实施例中,如图5所示,导热安装板500的朝向压缩机200的表面构造有第一管槽510,蒸发部410的至少一部分装配于第一管槽510。导热安装板500的朝向储液器300的表面构造有第二管槽520,冷凝部420的至少一部分装配于第二管槽520。
例如,第一管槽510和第二管槽520的横截面可以均呈圆弧形,第一管槽510适应于蒸发部410的外轮廓,第二管槽520适应于冷凝部420的外轮廓,热管400采用滚压工艺,分别压装到导热安装板500的第一管槽510与第二管槽520内。由此,热管400与导热安装板500的位置更加稳定,第一管槽510与蒸发部410具有较大的接触面积,热量传递效率更高。同样地,第二管槽520与冷凝部420具有较大的接触面积, 冷凝部420邻近储液器300一侧,使冷凝部420的热量能够更快传递至储液器300,进而加快压缩机200与储液器300之间热传导的速度。
在本公开的一些具体实施例中,如图3和图4,空调室外机1还包括至少一个固定箍600。
固定箍600与导热安装板500相连,固定箍600与导热安装板500之间限定出压缩机固定空间610和储液器300固定空间,压缩机200被抱持于压缩机固定空间610,储液器300被抱持于储液器300固定空间。压缩机固定空间610与压缩机200的外轮廓相适应,储液器300固定空间与储液器300的外轮廓相适应,固定箍600和导热安装板500共同起到固定压缩机200和储液器300的作用,从而将热管400固定于压缩机200和储液器300。
在本公开的一些具体实施例中,如图2所示,导热安装板500包括压缩机导热部530、储液器导热部540和连接在压缩机导热部530和储液器导热部540之间的中间导热部550。
如图3和图4所示,固定箍600包括压缩机固定部630、储液器固定部640和连接在压缩机固定部630和储液器固定部640之间的连接部650。
其中,压缩机固定部630与压缩机导热部530之间、储液器固定部640与储液器导热部540之间以及连接部650与中间导热部550之间分别通过螺纹紧固件连接,如图5所示,压缩机固定部630和压缩机导热部530共同限定出压缩机固定空间610,储液器固定部640和储液器导热部540共同限定出储液器固定空间620。
通过设置压缩机导热部530,使压缩机200的热量可以快速传递至蒸发部410。通过设置储液器导热部540,使冷凝部420的热量可以快速传递至储液器300。中间导热部550将压缩机导热部530和储液器导热部540相连接,提高了导热安装板500的结构强度,且增加了热传导的途径。导热安装板500的横截面形成开口方向相同且相连的两个半圆环形状,适应于压缩机200和储液器300的安装。固定箍600与导热安装板500通过螺纹紧固件连接,使压缩机200和储液器300能够始终处于压缩机固定空间610和储液器固定空间620内,压缩机200和储液器300的装配更加牢固。压缩机200与储液器300相邻设置且延伸方向相同。导热安装板500和固定箍600共同将压缩机200和储液器300固定在距离较近的位置,换热效率更高。
在本公开的一些具体实施例中,如图3所示,蒸发部410的朝向压缩机200的表面构造有第一凹面411,第一凹面411与压缩机200的外周面贴合。冷凝部420的朝向储液器300的表面构造有第二凹面412,第二凹面412与储液器300的外周面贴合。
例如,热管400通过飞面加工形成第一凹面411和第二凹面412,第一凹面411与 压缩机200的外周面具有更大的换热面积,利于蒸发部410吸收压缩机200产生的热量。第二凹面412与储液器300的外周面具有更大的换热面积,利于冷凝部420将热量传递至储液器300,进而提高了压缩机200向储液器300传递热量的效率。
在本公开的一些具体实施例中,如图2所示,蒸发部410沿压缩机200的轴向延伸,冷凝部420沿储液器300的轴向延伸。
由此,压缩机200轴向的各处的热量均能够传递至蒸发部410,进而蒸发部410对压缩机200冷却更均匀。冷凝部420能够充分将热量传递至储液器300,使储液器300内的制冷剂均匀吸收热量,进而压缩机200的回气温度得到提升。
在本公开的一些具体实施例中,如图2所示,热管400还包括中间部430,中间部430连接在蒸发部410和冷凝部420之间,例如,中间部430连接在蒸发部410和冷凝部420的下方,中间部430的高度沿冷凝部420至蒸发部410的方向逐渐降低。
由于中间部430的高度沿冷凝部420至蒸发部410的方向逐渐降低,热管400的热量传输路径较为平缓,介质在中间部430传递阻力较小,且冷凝部420中冷却后的介质在重力作用下斜度回流至蒸发部410。
在本公开的一些具体实施例中,蒸发部410与压缩机200之间以及冷凝部420与储液器300之间分别设有导热胶。导热胶质地较软,能够填充蒸发部410与压缩机200之间的间隙以及冷凝部420与储液器300之间的间隙,提升蒸发部410与压缩机200之间以及冷凝部420与储液器300之间的导热效果。
在本公开的一些具体实施例中,如图2所示,热管400为多个,多个热管400的蒸发部410沿压缩机200的周向间隔设置,多个热管400的冷凝部420沿储液器300的周向间隔设置,多个热管400可以均由导热安装板500固定。
通过设置多个热管400,使压缩机200与多个蒸发部410接触导热,储液器300与多个冷凝部420接触导热,进一步加强了蒸发部410对压缩机200的冷却效果,并加强了冷凝部420对储液器300中的回气温度的提升效果,促进压缩机200和储液器300之间的热量传递。
下面参考附图描述根据本公开另一个实施例的空调室外机1。
如图6-图9所示,根据本公开实施例的空调室外机1包括壳体100、压缩机200、储液器300、热管400和加热棒1000。
压缩机200安装于壳体100内。储液器300安装于壳体100内且与压缩机200的回气口连通。热管400具有蒸发部410和冷凝部420,蒸发部410与压缩机200接触导热,冷凝部420与储液器300接触导热。加热棒1000与储液器300接触导热。
举例而言,压缩机200运行过程中产生的热量通过压缩机200的壳体100被热管 400吸收,热管400内部的介质吸收热量后汽化形成蒸发部410,蒸汽在微小的压力差下,流向热管400的另一端,与较冷的储液器300进行热交换后释放热量液化,热管400内部的介质重新凝结成液体形成冷凝部420,液化后液体在加热棒1000与储液器300接触导热,再经多孔材料(如吸液芯)靠毛细力的作用流回到蒸发部410。如此循环不止,热量由热管400的蒸发部410传导至冷凝部420,压缩机200运行产生的热量源源不断地传导至储液器300,并结合加热棒1000的加热作用,提高了压缩机200的回气温度,提升除霜时的蒸发压力,实现不间断制热,压缩机200无需停机。
具体地,如图9所示,空调室外机1所对应的制冷系统包括压缩机200、四通换向阀901、室内换热器700、电子膨胀阀902、室外换热器800和储液器300,上述部件依次连接成制冷剂回路。
除霜运行时,电子膨胀阀902全开,压缩机200降频,室内风扇、室外风扇110减速转动,压缩机200排出的高温高压制冷剂通入室外换热器800起到除霜的效果,热管400吸收压缩机200的热量并传导至储液器300,同时加热棒1000工作,储液器300内部低温制冷剂吸收热管400和加热棒1000的热量,温度升高,提升了回气温度,提高除霜蒸发压力,减少系统运行功率,提高整机系统能效、提高舒适性。
其中,加热棒1000可以为电加热部件,由空调室外机1的控制单元控制,以在除霜运行时开启。
根据本公开实施例的空调室外机1,通过设置热管400和加热棒1000,且热管400的蒸发部410与压缩机200接触导热,热管400的冷凝部420与储液器300接触导热,这样可以利用热管400将压缩机200运行时产生的热量持续传导至储液器300,在结合加热棒1000的加热作用下,促使储液器300内的制冷剂向气态转化,从而提升压缩机200的回气温度,进入提高除霜蒸发压力,由此,空调室外机1在除霜运行时,压缩机200无需停机,实现不间断制热,从而提高舒适性。并且相比相关技术中的双蒸发器交替除霜、多个旁通电磁阀和蓄热器等方案,控制逻辑更加简单、成本更低。
因此,根据本公开实施例的空调室外机1能够实现不间断制热,不停机除霜,具有舒适性高、使用寿命长、控制简单、成本较低等优点。
在本公开的一些具体实施例中,如图7所示,空调室外机1还包括导热安装板500。导热安装板500贴设于压缩机200和储液器300,热管400和加热棒1000安装于导热安装板500,导热安装板500将蒸发部410压紧于压缩机200且将冷凝部420压紧于储液器300,加热棒1000埋设于导热安装板500。
导热安装板500能够为热管400和加热棒1000提供安装载体,并将热管400稳定固定于压缩机200和储液器300,加热棒1000构造成长圆柱且大部分固定于导热安装 板500内部,释放出的热量能够充分传递至导热安装板500和储液器300,保证热量的有效传导。而且导热安装板500具有导热功能,例如导热安装板500可以为铝板,具有优良的导热性和结构强度,如此,增加了换热面积,从而提高热传导效率,使热量的传递更加均匀。
进一步地,如图8所示,导热安装板500的朝向压缩机200的表面构造有第一管槽510,蒸发部410的至少一部分装配于第一管槽510。导热安装板500的朝向储液器300的表面构造有第二管槽520,冷凝部420的至少一部分装配于第二管槽520。
例如,第一管槽510和第二管槽520的横截面可以均呈优弧形,第一管槽510适应于蒸发部410的外轮廓,第二管槽520适应于冷凝部420的外轮廓,热管400采用滚压工艺,分别压装到导热安装板500的第一管槽510与第二管槽520内。由此,热管400与导热安装板500的位置更加稳定,第一管槽510与蒸发部410具有较大的接触面积,热量传递效率更高。同样地,第二管槽520与冷凝部420具有较大的接触面积,冷凝部420邻近储液器300一侧,使冷凝部420的热量能够更快传递至储液器300,进而加快压缩机200与储液器300之间热传导的速度。
在本公开的一些具体实施例中,如图7和图8所示,导热安装板500包括第一导热安装板601和第二导热安装板602。
第一导热安装板601和第二导热安装板602相连且限定出压缩机固定空间610和储液器固定空间620,压缩机200被抱持于压缩机固定空间610,储液器300被抱持于储液器固定空间620,第一导热安装板601和第二导热安装板602中的每一个均设有热管400和加热棒1000。
具体地,第一导热安装板601的与压缩机200接触的表面以及第二导热安装板602的与储液器300接触的表面构造成圆弧面,以适应于压缩机200和储液器300的安装,压缩机200和储液器300能够始终处于压缩机固定空间610和储液器固定空间620内,压缩机200和储液器300的装配更加牢固。并且第一导热安装板601和第二导热安装板602与压缩机200和储液器300抱持,导热安装板500与压缩机200和储液器300的外周面具有更大的导热面积,使压缩机200和储液器300的热量传导更充分。
进一步地,如图7和图8所示,第一导热安装板601和第二导热安装板602中的每一个包括压缩机导热部530、储液器导热部540和连接在压缩机导热部530和储液器导热部540之间的中间导热部550。
通过设置压缩机导热部530,使压缩机200的热量可以快速传递至蒸发部410。通过设置储液器导热部540,使冷凝部420的热量可以快速传递至储液器300。中间导热部550将压缩机导热部530和储液器导热部540相连接,提高了导热安装板500的结 构强度,且增加了热传导的途径。
其中,第一导热安装板601的压缩机导热部530与第二导热安装板602的压缩机导热部530之间、第一导热安装板601的储液器导热部540与第二导热安装板602的储液器导热部540之间以及第一导热安装板601的中间导热部550与第二导热安装板602的中间导热部550之间分别通过螺纹紧固件(例如螺栓)连接。
第一导热安装板601的压缩机导热部530和第二导热安装板602的压缩机导热部530共同限定出压缩机固定空间610,第一导热安装板601的储液器导热部540和第二导热安装板602的储液器导热部540共同限定出储液器固定空间620。
由此,第一导热安装板601和第二导热安装板602在压缩机导热部530、储液器导热部540和中间导热部550之间均通过螺纹紧固件连接,通过导热安装板500将压缩机200和储液器300固定,具有更稳定的装配结构。
在本公开的一些具体实施例中,如图7所示,蒸发部410的朝向压缩机200的表面构造有第一凹面411,第一凹面411与压缩机200的外周面贴合。冷凝部420的朝向储液器300的表面构造有第二凹面421,第二凹面421与储液器300的外周面贴合。
例如,热管400通过飞面加工形成第一凹面411和第二凹面421,第一凹面411与压缩机200的外周面具有更大的换热面积,利于蒸发部410吸收压缩机200产生的热量。第二凹面421与储液器300的外周面具有更大的换热面积,利于冷凝部420将热量传递至储液器300,进而提高了压缩机200向储液器300传递热量的效率。
在本公开的一些具体实施例中,如图7所示,蒸发部410沿压缩机200的轴向延伸。冷凝部420和加热棒1000沿储液器300的轴向延伸。
由此,压缩机200轴向的各处的热量均能够传递至蒸发部410,进而蒸发部410对压缩机200冷却更均匀。冷凝部420能够充分将热量传递至储液器300,使储液器300内的制冷剂均匀吸收热量。同时加热棒1000发热能够传递至储液器300轴向的各处,储液器300内的制冷剂得到了加热,进而压缩机200的回气温度得到提升。
在本公开的一些具体实施例中,如图7所示,热管400还包括中间部430。
中间部430连接在蒸发部410和冷凝部420之间,中间部430的高度沿冷凝部420至蒸发部410的方向逐渐降低。
由于中间部430的高度沿冷凝部420至蒸发部410的方向逐渐降低,热管400的热量传输路径较为平缓,介质在中间部430传递阻力较小,且冷凝部420中冷却后的介质在重力作用下斜度回流至蒸发部410。
在本公开的一些具体实施例中,蒸发部410与压缩机200之间以及冷凝部420与储液器300之间分别设有导热胶。
导热胶质地较软,能够填充蒸发部410与压缩机200之间的间隙以及冷凝部420与储液器300之间的间隙,提升蒸发部410与压缩机200之间以及冷凝部420与储液器300之间的导热效果。
在本公开的一些具体实施例中,如图7所示,热管400为多个,多个热管400的蒸发部410沿压缩机200的周向间隔设置,多个热管400的冷凝部420沿储液器300的周向间隔设置,加热棒1000位于相邻冷凝部420之间。
多个热管400可以均由导热安装板500固定。通过设置多个热管400,使压缩机200与多个蒸发部410接触导热,储液器300与多个冷凝部420接触导热,进一步加强了蒸发部410对压缩机200的冷却效果,并加强了冷凝部420对储液器300中的回气温度的提升效果,促进压缩机200和储液器300之间的热量传递。
根据本公开实施例的空调室外机1的其他构成例如室外换热器800和室内换热器700等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
例如,采用本申请中空调室外机1的空调器,通过使用压缩机200、冷凝器、膨胀阀和蒸发器来执行制冷循环。制冷循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向已被调节和热交换的空气供应制冷剂。
压缩机200压缩处于高温高压状态的制冷剂气体并排出压缩后的制冷剂气体。所排出的制冷剂气体流入冷凝器。冷凝器将压缩后的制冷剂冷凝成液相,并且热量通过冷凝过程释放到周围环境。
膨胀阀使在冷凝器中冷凝的高温高压状态的液相制冷剂膨胀为低压的液相制冷剂。蒸发器蒸发在膨胀阀中膨胀的制冷剂,并使处于低温低压状态的制冷剂气体返回到压缩机200。蒸发器可以通过利用制冷剂的蒸发的潜热与待冷却的材料进行热交换来实现制冷效果。
空调室外机1为空调器的室外单元,即制冷循环的包括压缩机200和室外热交换器的部分,室内单元包括室内热交换器,并且膨胀阀可以提供在室内单元或室外单元中。室内热交换器和室外热交换器用作冷凝器或蒸发器。当室内热交换器用作冷凝器时,室外热交换器用作制热模式的加热器,当室内热交换器用作蒸发器时,室外热交换器用作制冷模式的冷却器。
在本说明书的描述中,参考术语“具体实施例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公 开的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种空调室外机,其特征在于,包括:
    壳体;
    压缩机,所述压缩机安装于所述壳体内;
    储液器,所述储液器安装于所述壳体内且与所述压缩机的回气口连通;
    热管,所述热管具有蒸发部和冷凝部,所述蒸发部与所述压缩机接触导热,所述冷凝部与所述储液器接触导热。
  2. 根据权利要求1所述的空调室外机,其特征在于,还包括:
    导热安装板,所述导热安装板贴设于所述压缩机和所述储液器,所述热管安装于所述导热安装板,所述导热安装板将所述蒸发部压紧于所述压缩机且将所述冷凝部压紧于所述储液器。
  3. 根据权利要求2所述的空调室外机,其特征在于,所述导热安装板的朝向所述压缩机的表面构造有第一管槽,所述蒸发部的至少一部分装配于所述第一管槽;
    所述导热安装板的朝向所述储液器的表面构造有第二管槽,所述冷凝部的至少一部分装配于所述第二管槽。
  4. 根据权利要求2所述的空调室外机,其特征在于,还包括:
    至少一个固定箍,所述固定箍与所述导热安装板相连,所述固定箍与所述导热安装板之间限定出压缩机固定空间和储液器固定空间,所述压缩机被抱持于所述压缩机固定空间,所述储液器被抱持于所述储液器固定空间。
  5. 根据权利要求4所述的空调室外机,其特征在于,所述导热安装板包括压缩机导热部、储液器导热部和连接在所述压缩机导热部和所述储液器导热部之间的中间导热部;
    所述固定箍包括压缩机固定部、储液器固定部和连接在所述压缩机固定部和所述储液器固定部之间的连接部;
    其中,所述压缩机固定部与所述压缩机导热部之间、所述储液器固定部与所述储液器导热部之间以及所述连接部与所述中间导热部之间分别通过螺纹紧固件连接,所述压缩机固定部和所述压缩机导热部共同限定出所述压缩机固定空间,所述储液器固定部和所述储液器导热部共同限定出所述储液器固定空间。
  6. 根据权利要求1所述的空调室外机,其特征在于,所述蒸发部的朝向所述压缩机的表面构造有第一凹面,所述第一凹面与所述压缩机的外周面贴合;
    所述冷凝部的朝向所述储液器的表面构造有第二凹面,所述第二凹面与所述储液器 的外周面贴合。
  7. 根据权利要求1所述的空调室外机,其特征在于,所述蒸发部沿所述压缩机的轴向延伸;
    所述冷凝部沿所述储液器的轴向延伸。
  8. 根据权利要求1所述的空调室外机,其特征在于,所述热管还包括:
    中间部,所述中间部连接在所述蒸发部和所述冷凝部之间,所述中间部的高度沿所述冷凝部至所述蒸发部的方向逐渐降低。
  9. 根据权利要求1所述的空调室外机,其特征在于,所述蒸发部与所述压缩机之间以及所述冷凝部与所述储液器之间分别设有导热胶。
  10. 根据权利要求1-9中任一项所述的空调室外机,其特征在于,所述热管为多个,多个所述热管的蒸发部沿所述压缩机的周向间隔设置,多个所述热管的冷凝部沿所述储液器的周向间隔设置。
  11. 根据权利要求1所述的空调室外机,其特征在于,还包括包括:
    加热棒,所述加热棒与所述储液器接触导热。
  12. 根据权利要求11所述的空调室外机,其特征在于,还包括:
    导热安装板,所述导热安装板贴设于所述压缩机和所述储液器,所述热管和所述加热棒安装于所述导热安装板,所述导热安装板将所述蒸发部压紧于所述压缩机且将所述冷凝部压紧于所述储液器,所述加热棒埋设于所述导热安装板。
  13. 根据权利要求12所述的空调室外机,其特征在于,所述导热安装板包括:
    第一导热安装板和第二导热安装板,所述第一导热安装板和所述第二导热安装板相连且限定出压缩机固定空间和储液器固定空间,所述压缩机被抱持于所述压缩机固定空间,所述储液器被抱持于所述储液器固定空间,所述第一导热安装板和所述第二导热安装板中的每一个均设有所述热管和所述加热棒。
  14. 根据权利要求13所述的空调室外机,其特征在于,所述第一导热安装板和所述第二导热安装板中的每一个包括压缩机导热部、储液器导热部和连接在所述压缩机导热部和所述储液器导热部之间的中间导热部;
    其中,所述第一导热安装板的压缩机导热部与所述第二导热安装板的压缩机导热部之间、所述第一导热安装板的储液器导热部与所述第二导热安装板的储液器导热部之间以及所述第一导热安装板的中间导热部与所述第二导热安装板的中间导热部之间分别通过螺纹紧固件连接;
    所述第一导热安装板的压缩机导热部和所述第二导热安装板的压缩机导热部共同限定出所述压缩机固定空间,所述第一导热安装板的储液器导热部和所述第二导热安 装板的储液器导热部共同限定出所述储液器固定空间。
  15. 根据权利要求11所述的空调室外机,其特征在于,所述蒸发部沿所述压缩机的轴向延伸;
    所述冷凝部和所述加热棒沿所述储液器的轴向延伸。
  16. 根据权利要求11-15中任一项所述的空调室外机,其特征在于,所述热管为多个,多个所述热管的蒸发部沿所述压缩机的周向间隔设置,多个所述热管的冷凝部沿所述储液器的周向间隔设置,所述加热棒位于相邻冷凝部之间。
PCT/CN2020/131861 2020-04-27 2020-11-26 空调室外机 WO2021218141A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202020670439.6 2020-04-27
CN202010344930.4 2020-04-27
CN202020670439.6U CN212108745U (zh) 2020-04-27 2020-04-27 空调室外机
CN202010344930.4A CN111396998A (zh) 2020-04-27 2020-04-27 空调室外机
CN202020785683.7U CN212319924U (zh) 2020-05-12 2020-05-12 空调室外机
CN202010398646.5 2020-05-12
CN202020785683.7 2020-05-12
CN202010398646.5A CN111536600A (zh) 2020-05-12 2020-05-12 空调室外机

Publications (1)

Publication Number Publication Date
WO2021218141A1 true WO2021218141A1 (zh) 2021-11-04

Family

ID=78332297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131861 WO2021218141A1 (zh) 2020-04-27 2020-11-26 空调室外机

Country Status (1)

Country Link
WO (1) WO2021218141A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989311A (ja) * 1995-09-26 1997-04-04 Mitsubishi Heavy Ind Ltd エンジン駆動式空気調和機
CN1888748A (zh) * 2005-06-27 2007-01-03 海尔集团公司 低温热泵空调及其自动除霜方法
CN202195551U (zh) * 2011-08-23 2012-04-18 珠海格力电器股份有限公司 热泵空调器
CN203605361U (zh) * 2013-11-14 2014-05-21 广东美的制冷设备有限公司 空调器及空调器室外机
CN203857539U (zh) * 2014-02-17 2014-10-01 海尔集团公司 一种具有压缩机余热回收功能的空调系统
CN205330920U (zh) * 2015-12-18 2016-06-22 华南理工大学 强化冰箱压缩机壳体散热性能的装置
CN110595119A (zh) * 2019-10-16 2019-12-20 珠海格力电器股份有限公司 压缩机的回液处理装置及空调器
CN111396998A (zh) * 2020-04-27 2020-07-10 海信(广东)空调有限公司 空调室外机
CN111503944A (zh) * 2020-05-18 2020-08-07 青岛海尔空调电子有限公司 用于空调的散热系统、空调
CN111536600A (zh) * 2020-05-12 2020-08-14 海信(广东)空调有限公司 空调室外机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989311A (ja) * 1995-09-26 1997-04-04 Mitsubishi Heavy Ind Ltd エンジン駆動式空気調和機
CN1888748A (zh) * 2005-06-27 2007-01-03 海尔集团公司 低温热泵空调及其自动除霜方法
CN202195551U (zh) * 2011-08-23 2012-04-18 珠海格力电器股份有限公司 热泵空调器
CN203605361U (zh) * 2013-11-14 2014-05-21 广东美的制冷设备有限公司 空调器及空调器室外机
CN203857539U (zh) * 2014-02-17 2014-10-01 海尔集团公司 一种具有压缩机余热回收功能的空调系统
CN205330920U (zh) * 2015-12-18 2016-06-22 华南理工大学 强化冰箱压缩机壳体散热性能的装置
CN110595119A (zh) * 2019-10-16 2019-12-20 珠海格力电器股份有限公司 压缩机的回液处理装置及空调器
CN111396998A (zh) * 2020-04-27 2020-07-10 海信(广东)空调有限公司 空调室外机
CN111536600A (zh) * 2020-05-12 2020-08-14 海信(广东)空调有限公司 空调室外机
CN111503944A (zh) * 2020-05-18 2020-08-07 青岛海尔空调电子有限公司 用于空调的散热系统、空调

Similar Documents

Publication Publication Date Title
US6666043B2 (en) Dewfall preventing device of refrigerator
US10578344B2 (en) Reversible liquid suction gas heat exchanger
CN212108745U (zh) 空调室外机
WO2021218141A1 (zh) 空调室外机
CN111811157A (zh) 换热设备、热水器和空调
JP2012102992A (ja) 室外機のパラレルフロー多段凝縮過冷却器
KR101116138B1 (ko) 분리형 히트 파이프를 이용한 냉방 장치
CN111396998A (zh) 空调室外机
CN115014003B (zh) 回热器、制冷系统和制冷设备
CN111536600A (zh) 空调室外机
KR20140093833A (ko) 공기조화기
US7814761B2 (en) Air conditioner
CN105264304A (zh) 空气调节机
CN212319924U (zh) 空调室外机
CN114216166A (zh) 一种空调器
CN110686430A (zh) 一种稳定的圆管冷凝器隔片
KR20090125312A (ko) 냉난방 냉온수 시스템
CN217876738U (zh) 一种冰箱
CN104296417A (zh) 热管制冷器
CN212481494U (zh) 一种空调器
KR101309193B1 (ko) 열전소자를 이용한 차량 냉방시스템
CN212481495U (zh) 一种空调器
CN215637633U (zh) 空调室外机
KR101389973B1 (ko) 냉동사이클의 모세관 열교환 구조
CN110849021B (zh) 一种持续式制热免化霜冷暖空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC - (EPO FORM 1205A) - 17.03.2023

122 Ep: pct application non-entry in european phase

Ref document number: 20933830

Country of ref document: EP

Kind code of ref document: A1