WO2021217905A1 - 一种包层组分优化的大有效模面积低损耗光纤 - Google Patents

一种包层组分优化的大有效模面积低损耗光纤 Download PDF

Info

Publication number
WO2021217905A1
WO2021217905A1 PCT/CN2020/102938 CN2020102938W WO2021217905A1 WO 2021217905 A1 WO2021217905 A1 WO 2021217905A1 CN 2020102938 W CN2020102938 W CN 2020102938W WO 2021217905 A1 WO2021217905 A1 WO 2021217905A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
cladding
optical fiber
phosphorus
Prior art date
Application number
PCT/CN2020/102938
Other languages
English (en)
French (fr)
Inventor
王龙飞
李凡
眭立洪
Original Assignee
江苏永鼎光纤科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏永鼎光纤科技有限公司 filed Critical 江苏永鼎光纤科技有限公司
Priority to US17/922,135 priority Critical patent/US20230176277A1/en
Publication of WO2021217905A1 publication Critical patent/WO2021217905A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03655Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03683Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - - + +
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles

Definitions

  • This application belongs to the field of communication transmission technology, and in particular relates to a large effective mode area and low loss optical fiber with optimized cladding composition.
  • the most direct way to improve the nonlinear threshold and signal-to-noise ratio is to increase the effective area of the fiber, and the increase in the effective mode field area will result in the deterioration of the fiber's bending resistance. Therefore, it is generally necessary to add a low refractive index to the fiber cladding. Cladding to improve its bending resistance.
  • the so-called low refractive index cladding usually means that the refractive index of the cladding is lower than that of pure silica, which can be achieved by doping with fluorine or boron. However, the doping of boron will cause the dispersion of the fiber to deteriorate and the loss to increase.
  • the industry basically realizes the low-refractive-index cladding by doping fluorine.
  • the incorporation of fluorine will cause the low-refractive index cladding and the core to have a mismatch in high-temperature viscosity, softening temperature and expansion.
  • it will generate residual stress in the preform and the optical fiber, and on the other hand, it will cause low refraction during the drawing process.
  • the increase in the rate layer interruption bond will eventually lead to an increase in the transmission loss of the optical fiber and a deterioration in the mechanical strength.
  • Patent CN106458696A discloses a method of using thermal diffusion to diffuse alkali metal elements into the optical fiber to obtain a lower attenuation optical fiber, but single-doped alkali metal will cause an increase in hydrogen loss, which is not conducive to the long-term working stability of the optical fiber.
  • Patent CN109445023A discloses that the co-doping of phosphorus, fluorine and alkali metals in the core and cladding can achieve the viscosity matching of the core package and avoid the increase of attenuation under hydrogen treatment caused by single metal doping.
  • this method requires the doping of phosphorus
  • the three elements of fluorine, fluorine and alkali metal have many components, complicated process, difficult preparation, low repeatability, and are not conducive to cost reduction.
  • the layer closest to the axis is defined as the core layer, and the outermost layer of the optical fiber, the pure silica layer, is defined as the outer cladding layer of the optical fiber.
  • the relative refractive index difference ⁇ n i of each layer of the optical fiber is defined by the following equation:
  • n i is the refractive index of the core or cladding
  • n s is the refractive index of pure silica
  • germanium doping in the fiber core layer to the refractive index difference ⁇ Ge is defined by the following equation:
  • nGe is the change in the refractive index of the glass caused when germanium is incorporated into the quartz glass alone.
  • the fluorine-doped refractive index difference contribution ⁇ F in the fiber cladding is defined as follows:
  • nF is the change in refractive index of the glass caused when fluorine alone is doped into silica glass.
  • nAlP is the change in refractive index of the glass caused by the presence of [AlPO 4] tetrahedron alone in silica glass.
  • the technical problem to be solved by the present invention is that in order to solve the problem that single-doped alkali metal elements in the prior art will increase the hydrogen loss of the optical fiber and degrade the long-term working stability of the optical fiber, phosphorus, fluorine and alkali are carried out in the core and cladding. Metal co-doping results in many elements involved, complicated process, difficult preparation, low repeatability, and is not conducive to cost reduction, thereby providing a low-loss optical fiber with a large effective area with optimized cladding composition .
  • the technical solution adopted by the present invention to solve the above-mentioned problems is to provide a low-loss optical fiber with a large effective mode area and optimized cladding composition, including a core layer and a cladding layer, and the cladding layer includes a first The sagging layer, the second sagging layer and the outer cladding layer, of which,
  • the second depressed layer is a multi-element doped quartz inner cladding.
  • the dopants include fluorine, aluminum and phosphorus.
  • the doping amount of aluminum and phosphorus is 0-10 mol.%, and they are continuously distributed.
  • the molar ratio of aluminum and phosphorus is 0.7 ⁇ 1.3:1, the co-doping of aluminum and phosphorus forms a [AlPO4] tetrahedron in the glass, and the contribution of [AlPO 4 ] tetrahedron to the refractive index of the second sag layer is -0.8% ⁇ 0.
  • Fluorine contributes to the second sag
  • the refractive index contribution of the layer is -0.05% to 0, the relative refractive index difference ⁇ n2 of the second depressed layer is -0.85% to 0, and the radius R2 of the second depressed layer is 8 to 35 ⁇ m.
  • the first depressed layer is a pure quartz layer or a multi-element doped quartz inner cladding layer.
  • the dopants include fluorine, aluminum and phosphorus, wherein , The doping amount of aluminum and phosphorus is 0-5 mol%, and they are continuously distributed, the molar ratio of aluminum and phosphorus is 0.8-1.2:1, the co-doping of aluminum and phosphorus in the glass forms [AlPO 4 ] tetrahedron, [ The contribution of AlPO 4 ] tetrahedron to the refractive index of the first depressed layer is -0.4% to 0, and the contribution of fluorine to the refractive index of the first depressed layer is -0.05% to 0, and the relative refractive index difference of the first depressed layer is ⁇ n1 is -0.55% to 0, and the radius R1 of the first depression layer is 6 to 20 ⁇ m.
  • the outer cladding layer is a pure quartz cladding layer or a multi-element doped quartz cladding layer.
  • the doping elements are fluorine, aluminum and phosphorus, and the doping of aluminum and phosphorus in an amount of 0 ⁇ 5mol%, a continuous distribution, and the molar ratio of aluminum to phosphorus of 0.9 to 1.1: 1,
  • the refractive index contribution of fluorine to the cladding is -0.02% ⁇ 0, [AlPO 4 ] tetrahedra outer layer
  • the refractive index contribution is -0.4% to 0, the relative refractive index difference ⁇ n4 of the outer cladding layer is -0.42% to 0, and the outer cladding layer radius R4 is 62.5 ⁇ m.
  • the core layer is a multi-element doped silica core layer
  • the dopants include germanium and fluorine, wherein the contribution of germanium to the refractive index of the core layer is 0-0.3%, and the contribution of fluorine to the refractive index of the core layer The amount is -0.05% to 0, which is continuously distributed in the core layer, the relative refractive index difference ⁇ n0 of the core layer is 0 to 0.25%, and the core layer radius R0 is 5 to 8 ⁇ m.
  • the dopants in the first depressed layer and the second depressed layer include fluorine, aluminum, and phosphorus, respectively.
  • the doping amount of aluminum in the first depressed layer and the second depressed layer cannot be at the same time. 0 mol%, and the doping amount of phosphorus is not 0 mol% at the same time.
  • fluorine is introduced through freon or silicon tetrafluoride
  • phosphorus is phosphorus peroxy pentoxide
  • aluminum is introduced through aluminum chloride raw material.
  • the above-mentioned low-loss optical fiber with optimized cladding composition wherein the cladding further includes a third depressed layer, and the third depressed layer is located between the second depressed layer and the outer cladding layer. between.
  • the third depressed layer is a multi-element doped quartz inner cladding, and the dopants include fluorine, aluminum and phosphorus, wherein the doping amount of aluminum and phosphorus is 0-5 mol%, and they are continuously distributed.
  • the molar ratio is 0.7 to 1.3:1, the contribution of fluorine to the refractive index of the third depressed layer is -0.05% to 0, and the contribution of [AlPO 4 ] tetrahedron to the refractive index of the third depressed layer is -0.4% to 0,
  • the relative refractive index difference ⁇ n3 of the third depressed layer is -0.45% to 0, and the radius R3 of the third depressed layer is 8-62.5 ⁇ m.
  • the attenuation of the optical fiber at a wavelength of 1550 nm is less than or equal to 0.18 dB/km, preferably, less than or equal to 0.17 dB/km, and more preferably, less than or equal to 0.16 dB/km.
  • the optical fiber is reacted at 70°C and 0.01% H2 volume concentration for at least 16 hours, and the attenuation change value of the optical fiber at a wavelength of 1550nm is less than or equal to 0.01dB/km, more preferably, less than or equal to 0.002dB/km;
  • the said 0.01% H2 means that the volume concentration of H2 in the mixed gas of H2 and He is 0.01%.
  • a large effective mode area low loss optical fiber with optimized cladding composition which includes a core layer and a cladding layer, and the cladding layer includes a first depressed layer from the inside to the outside.
  • the second sag layer optionally including or not including the third sag layer, and the outer cladding layer, wherein,
  • the core layer is a multi-element doped silica core layer
  • the dopants include germanium, fluorine, etc., wherein the contribution of germanium to the refractive index of the core layer is 0-0.3%, and the contribution of fluorine to the refractive index of the core layer is -0.05 % ⁇ 0, which is continuously distributed in the core layer, the relative refractive index difference of the core layer ⁇ n0 is 0 ⁇ 0.25%, and the core layer radius R0 is 5 ⁇ 8 ⁇ m;
  • the first depressed layer is a pure quartz layer or a multi-element doped quartz inner cladding.
  • the dopants include fluorine, aluminum and phosphorus, among which aluminum and phosphorus are doped
  • the impurity content is 0-10 mol%, and it is continuously distributed.
  • the molar ratio of aluminum and phosphorus is 0.8-1.2:1.
  • the co-doping of aluminum and phosphorus can form a [AlPO 4 ] tetrahedron in the glass, the [AlPO4] tetrahedron It can effectively reduce the refractive index of the glass.
  • the contribution of fluorine to the refractive index of the first depressed layer is -0.05% to 0, and the contribution of [AlPO 4 ] tetrahedron to the refractive index of the first depressed layer is -0.8% to 0.
  • the relative refractive index difference ⁇ n1 of the depressed layer is -0.85% to 0, and the radius R1 of the first depressed layer is 6-20 ⁇ m;
  • the second depressed layer is a multi-element doped quartz inner cladding.
  • the dopants include fluorine, aluminum and phosphorus.
  • the doping amount of aluminum and phosphorus is 0-10 mol%, and they are continuously distributed.
  • the molar ratio of aluminum to phosphorus is 0.7 ⁇ 1.3:1, the contribution of fluorine to the refractive index of the second depressed layer is -0.05% ⁇ 0, the contribution of [AlPO 4 ] tetrahedron to the refractive index of the second depressed layer is -0.8% ⁇ 0, the second depressed layer
  • the relative refractive index difference ⁇ n2 is -0.85% ⁇ 0, and the radius of the second depressed cladding layer R2 is 8 ⁇ 35 ⁇ m;
  • the third depressed layer is a multi-element doped quartz inner cladding layer, and the dopants include fluorine, aluminum and phosphorus, wherein the doping amount of aluminum and phosphorus is 0-5 mol%, and they are continuously distributed.
  • the molar ratio is 0.7 to 1.3:1, the contribution of fluorine to the refractive index of the third depressed layer is -0.05% to 0, and the contribution of [AlPO4] tetrahedron to the refractive index of the third depressed layer is -0.4% to 0.
  • the relative refractive index difference ⁇ n3 of the three depressed layers is -0.45% ⁇ 0, and the radius R3 of the third depressed layer is 8 ⁇ 62.5 ⁇ m;
  • the outer cladding is a pure quartz cladding or a multi-element doped quartz cladding.
  • the doping elements are fluorine, aluminum and phosphorus, and the doping amount of aluminum and phosphorus is 0-5 mol %, showing a continuous distribution, the molar ratio of aluminum to phosphorus is 0.9 ⁇ 1.1:1, the contribution of fluorine to the refractive index of the cladding is -0.02% ⁇ 0, and the contribution of [AlPO 4 ] tetrahedron to the refractive index of the cladding is -0.4% ⁇ 0, the relative refractive index difference ⁇ n4 of the outer cladding layer is -0.42% ⁇ 0, and the radius R4 of the outer cladding layer is 62.5 ⁇ m;
  • fluorine is introduced through freon or silicon tetrafluoride
  • phosphorus is phosphorus pentoxide, which is introduced through phosphorus trichloride raw materials
  • aluminum is alumina, which is introduced through aluminum chloride raw materials.
  • the cladding of the optical fiber provided by the present invention is mainly co-doped with aluminum and phosphorus, and a small amount of fluorine is doped at the same time.
  • Aluminum and phosphorus form a [AlPO 4 ] tetrahedron in the glass, which can effectively reduce the refractive index of the cladding at the same time. , Can optimize the cladding viscosity, reduce the defects in the optical fiber preparation process, reduce the axial stress of the optical fiber, and further reduce the attenuation parameters of the optical fiber;
  • the doping amount of fluorine in the fiber core layer and cladding layer provided by the present invention can be less than 0.15wt.%, which greatly reduces the doping amount of fluorine, and while ensuring the better stability of the optical fiber, it also reduces The manufacturing cost is reduced, and at the same time it is conducive to environmental protection, and the process is simple and the repeatability is strong.
  • Figure 1 shows the distribution of aluminum and phosphorus in a typical optical fiber.
  • FIG. 2 is a schematic diagram of the refractive index profile of the optical fiber in Embodiment 1.
  • FIG. 3 is a schematic diagram of the refractive index profile of the optical fiber in Embodiment 2.
  • FIG. 3 is a schematic diagram of the refractive index profile of the optical fiber in Embodiment 2.
  • Fig. 4 is a schematic diagram of another refractive index profile suitable for the present invention.
  • the optical fiber includes a core layer and a cladding layer
  • the core layer radius is R0
  • the relative refractive index difference of the core layer is ⁇ n0
  • the cladding layer sequentially covers the first layer from the inside to the outside.
  • the core layer of the optical fiber contains germanium, fluorine and silicon dioxide, and is continuously distributed in the core layer.
  • the first sag layer contains fluorine, P 2 O 5 , Al 2 O 3 and silicon dioxide.
  • the content of F is 0.2 mol% and is continuously distributed.
  • the content of P 2 O 5 is 2.3 mol%, and Al 2 O 3 The content is 2.3 mol%.
  • the second depressed layer contains P 2 O 5 , Al 2 O 3 and silicon dioxide, the content of P 2 O 5 is 6.2 mol%, and the content of Al 2 O 3 is 6.5 mol%.
  • the third depressed layer contains fluorine, P 2 O 5 , Al 2 O 3 and silica, in which the F content is 0.2 mol%, and is continuously distributed, the P 2 O 5 content is 2.3 mol%, and the Al 2 O 3 content is 2.3 mol%.
  • the fiber is at 1550 nm
  • the attenuation of the fiber is 0.152dB/km. After the fiber is reacted at 70°C and 0.01% H 2 for at least 16H, the attenuation change value of the fiber at 1550nm is 0.001dB/km.
  • the core layer of the optical fiber contains germanium, fluorine, silicon dioxide, alkali metal oxide and P 2 O 5.
  • the content of alkali metal oxide is 100 ppm and is continuously distributed.
  • the content of P 2 O 5 is 100 ppm, which is present in the core layer. Continuous distribution.
  • the first depressed layer adjacent to the core layer contains germanium, fluorine, silicon dioxide, and alkali metal oxides.
  • the content of alkali metal oxide (K 2 O) is 5 ppm and is continuously distributed.
  • the content of P 2 O 5 is 20ppm, in a continuous distribution.
  • Table 1 The specific parameters are shown in Table 1.
  • the core layer of the optical fiber contains germanium, sodium, and silicon dioxide, which are continuously distributed in the core layer.
  • the first depression layer contains fluorine and silicon dioxide, and the fluorine content is 2 mol%, and the fluorine is continuously distributed.
  • the second depressed layer contains fluorine and silicon dioxide, and the content of F is 3.8 mol%, and it is continuously distributed.
  • the third submerged layer contains fluorine and silicon dioxide.
  • the fluorine content is 2mol%, and the fluorine content is continuous.
  • the attenuation of the fiber at 1550nm is 0.156dB/km. After the fiber is reacted at 70°C and 0.01% H 2 for at least 16H, The attenuation change value of the optical fiber at 1550nm is 0.008dB/km.
  • the core layer of the optical fiber contains germanium, fluorine, potassium and silicon dioxide, wherein the K content is 0.1 mol% and the F content is 1.8 mol%.
  • the first depression layer contains fluorine and silicon dioxide, and the fluorine content is 1.8 mol%, and the fluorine content is continuously distributed.
  • the second depressed layer contains fluorine and silicon dioxide, and the content of F is 3.8 mol%, and it is continuously distributed.
  • the attenuation of the fiber at 1550nm is 0.160dB/km. After the fiber is reacted at 70°C and 0.01% H 2 for at least 16H, the attenuation change value of the fiber at 1550nm is 0.01dB/km.
  • the optical fiber includes a core layer and a cladding layer.
  • the core layer of the optical fiber is doped with germanium.
  • the radius R0 is 8 ⁇ m.
  • the relative refractive index difference of the core layer is 0.15%.
  • the radius R1 of the first depressed layer is 14 ⁇ m, the relative refractive index difference ⁇ n1 is -0.8%, the radius R2 of the second depressed layer is 26 ⁇ m, the relative refractive index difference ⁇ n2 is -0.14%, and the radius of the outer cladding layer is 62.5 ⁇ m, the relative refractive index difference is -0.07%.
  • the first sag layer contains P 2 O 5 , Al 2 O 3 and silicon dioxide. The content of P 2 O 5 is 10 mol%, which is continuously distributed .
  • the content of Al 2 O 3 is 11 mol% and is continuously distributed.
  • the second sag layer contains P 2 O 5 , Al 2 O 3 and silicon dioxide, wherein the content of P 2 O 5 is 1.8 mol%, in a continuous distribution , and the content of Al 2 O 3 is 1.75 mol%, and Distributed continuously, the outer cladding layer contains 0.7mol% fluorine.
  • the third depressed layer half is R3, the relative refractive index difference ⁇ n3, the outer cladding radius R4, the core layer radius R0, and the relative refractive index difference ⁇ n0 are shown in Table 2.
  • Table 2 Fiber core layer and cladding radius and relative refractive index difference parameters prepared in the embodiment of the present invention
  • optical fiber containing other set doping parameters according to the present invention can be prepared by referring to the similar methods in the first to second embodiments of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种包层组分优化的大有效模面积低损耗光纤,包括芯层和包层,包层从内向外包括第一下陷层,第二下陷层,任选的第三下陷层,和外包层。通过在光纤包层中进行磷和铝共掺,在玻璃中形成[AlPO4]四面体,在有效降低包层折射率的同时,可优化包层粘度,且不会导致氢损的增加,工艺简单,可重复性强。

Description

一种包层组分优化的大有效模面积低损耗光纤 技术领域
本申请属于通信传输技术领域,尤其是涉及一种一种包层组分优化的大有效模面积低损耗光纤。
背景技术
长距离通信具有大容量、高速率的特点,其要求光纤具有更高的非线性阈值和更低的传输损耗,而大模场低损耗光纤的提出满足了这一要求,从而引起了全球光通信研发机构和公司的广泛关注和研究。
提高非线性阈值和信噪比的最直接的方式是增大光纤的有效面积,而有效模场面积的增大会导致光纤的抗弯曲能力变差,因此一般需要在光纤包层中添加低折射率包层,以提高其抗弯曲性能。所谓的低折射率包层,通常是指该包层的折射率比纯石英的折射率低,可以通过掺入氟或硼实现,但由于硼的掺入会导致光纤的色散变差和损耗增大等问题,因此目前业界基本通过掺氟实现低折射率包层。但是氟的掺入会导致低折射率包层与纤芯的高温粘度、软化温度和膨胀不匹配,一方面会在预制棒和光纤中产生残余应力,另一方面会在拉丝过程中导致低折射率层中断键的增多,最终导致光纤的传输损耗增大,机械强度变差。因此需要对纤芯和(或)低折射率包层进行玻璃组分优化,降低纤芯和低折射率包层的高温粘度、软化温度和膨胀差异,降低光纤的传输损耗。
专利CN106458696A公开了利用热扩散的方法,将碱金属元素扩散进入光纤,得到较低衰减的光纤,但是单掺碱金属会导致氢损的增 加,不利于光纤的长期工作稳定性。
专利CN109445023A公开了通过在纤芯和包层中进行磷、氟和碱金属共掺,实现芯包的粘度匹配,避免单掺金属带来的氢气处理下的衰减增加,但是该方法需要掺入磷、氟和碱金属三种元素,组分较多,工艺复杂,制备难度大,可重复性较低,且不利于成本的降低。
发明内容
以下为本发明中涉及的一些术语的定义和说明:
mol%:摩尔百分比;
wt.%:质量百分比;
从光纤最中心的轴线开始算起,根据折射率的变化,定义为最靠近轴线的那层为纤芯层,光纤的最外层即纯二氧化硅层定义为光纤外包层。
光纤各层相对折射率差△n i由以下方程式定义:
Figure PCTCN2020102938-appb-000001
其中n i为纤芯或包层折射率,n s为纯二氧化硅折射率。
光纤芯层锗掺杂的折射率差贡献量△Ge由以下方程式定义:
Figure PCTCN2020102938-appb-000002
其中nGe为单独将锗掺入石英玻璃时,引起的玻璃折射率变化量。
光纤包层中氟掺杂的折射率差贡献量△F定义如下:
Figure PCTCN2020102938-appb-000003
其中nF为单独氟掺入石英玻璃时,引起的玻璃折射率变化量。
光纤包层中[AlPO 4]的折射率差贡献量△AlP定义如下:
Figure PCTCN2020102938-appb-000004
其中nAlP为石英玻璃中单独存在[AlPO 4]四面体时引起的玻璃折射率变化量。
本发明要解决的技术问题是,为解决现有技术中单掺碱金属元素会导致光纤的氢损增加,劣化光纤的长期工作稳定性,而在纤芯和包层中进行磷、氟和碱金属共掺导致所涉及的元素较多,工艺复杂,制备难度大,可重复性低,且不利于成本的降低的不足,从而提供了一种包层组分优化的大有效面积的低损耗光纤。
本发明为解决上述提出的问题所采用的技术方案为:提供了一种包层组分优化的大有效模面积低损耗光纤,包括芯层和包层,所述包层从内向外包括第一下陷层,第二下陷层和外包层,其中,
第二下陷层为多元掺杂石英内包层,掺杂物包括氟,铝和磷,其中,铝和磷的掺杂量为0~10mol.%,且成连续分布,铝和磷的摩尔比为0.7~1.3:1,铝和磷的共掺在玻璃中形成[AlPO4]四面体,[AlPO 4]四面体对第二下陷层的折射率贡献量为-0.8%~0,氟对第二下陷层的折射率贡献量为-0.05%~0,第二下陷层的相对折射率差△n2为-0.85%~0,第二下陷层半径R2为8~35μm。
上述方案中,优选地,所述第一下陷层为纯石英层或多元掺杂石英内包层,当第一下陷层为多元掺杂石英内包层时,掺杂物包括氟,铝和磷,其中,铝和磷的掺杂量为0~5mol%,且成连续分布,铝和磷的摩尔比为0.8~1.2:1,铝和磷的共掺在玻璃中形成[AlPO 4]四面体, [AlPO 4]四面体对第一下陷层的折射率贡献量为-0.4%~0,氟对第一下陷层的折射率贡献量为-0.05%~0,第一下陷层的相对折射率差△n1为-0.55%~0,第一下陷层半径R1为6~20μm。
进一步优选地,所述外包层为纯石英包层或多元掺杂石英包层,当外包层为多元掺杂石英包层时,掺杂元素为氟、铝和磷,其中铝和磷的掺杂量为0~5mol%,呈连续分布,铝和磷的摩尔比为0.9~1.1:1,氟对外包层的折射率贡献量为-0.02%~0,[AlPO 4]四面体对外包层的折射率贡献量为-0.4%~0,外包层的相对折射率差△n4为-0.42%~0,外包层半径R4为62.5μm。
进一步的,所述芯层为多元掺杂二氧化硅芯层,掺杂物包括锗和氟,其中,锗对芯层的折射率贡献量为0~0.3%,氟对芯层的折射率贡献量为-0.05%~0,在芯层中呈连续分布,芯层的相对折射率差△n0为0~0.25%,芯层半径R0为5~8μm。
上述方法中,所述第一下陷层和第二下陷层中的掺杂物分别包括氟,铝和磷,优选地,其中,第一下陷层和第二下陷层中铝掺杂量不能同时为0mol%,并且其中磷的掺杂量不同时为0mol%。
进一步的,上述方案中,优选地,氟通过氟利昂或四氟化硅引入,磷为过五氧化二磷,通过三氯化磷原料引入,铝为氧化铝,通过氯化铝原料引入。
在本发明的另一个优选实施方式中,上述包层组分优化的低损耗光纤,其中,所述包层还包括第三下陷层,所述第三下陷层位于第二下陷层和外包层之间。
进一步的优选,第三下陷层为多元掺杂石英内包层,掺杂物包括氟,铝和磷,其中,铝和磷的掺杂量为0~5mol%,且成连续分布,铝和磷的摩尔比为0.7~1.3:1,氟对第三下陷层的折射率贡献量为-0.05%~0,[AlPO 4]四面体对第三下陷层的折射率贡献量为-0.4%~0,第三下陷层的相对折射率差△n3为-0.45%~0,第三下陷层半径R3为8~62.5μm。
进一步的,所述光纤在1550nm波长处的衰减小于或等于0.18dB/km,优选地,小于或等于0.17dB/km,更优选地,小于或等于0.16dB/km。
进一步的,所述光纤在70℃、0.01%H2体积浓度中反应至少16小时,光纤在1550nm波长处衰减变化值小于或等于0.01dB/km,更优地,小于或等于0.002dB/km;其中,所述0.01%H2是指H2与He的混合气体中,H2的体积浓度为0.01%。
在本发明的另一个更具体的实施方式中,提供了一种包层组分优化的大有效模面积低损耗光纤,包括芯层和包层,所述包层从内向外包括第一下陷层,第二下陷层,任选的包括或不包括第三下陷层,和外包层,其中,
芯层为多元掺杂二氧化硅芯层,掺杂物包括锗、氟等,其中,锗对芯层的折射率贡献量为0~0.3%,氟对芯层的折射率贡献量为-0.05%~0,在芯层中呈连续分布,芯层的相对折射率差△n0为0~0.25%,芯层半径R0为5~8μm;
第一下陷层为纯石英层,也可为多元掺杂石英内包层,当第一下 陷层为多元掺杂石英内包层时,掺杂物包括氟,铝和磷,其中,铝和磷的掺杂量为0~10mol%,且成连续分布,铝和磷的摩尔比为0.8~1.2:1,铝和磷的共掺可在玻璃中形成[AlPO 4]四面体,该[AlPO4]四面体可有效降低玻璃折射率,氟对第一下陷层的折射率贡献量为-0.05%~0,[AlPO 4]四面体对第一下陷层的折射率贡献量为-0.8%~0,第一下陷层的相对折射率差△n1为-0.85%~0,第一下陷层半径R1为6~20μm;
第二下陷层为多元掺杂石英内包层,掺杂物包括氟,铝和磷,其中,铝和磷的掺杂量为0~10mol%,且成连续分布,铝和磷的摩尔比为0.7~1.3:1,氟对第二下陷层的折射率贡献量为-0.05%~0,[AlPO 4]四面体对第二下陷层的折射率贡献量为-0.8%~0,第二下陷层的相对折射率差△n2为-0.85%~0,第二下陷包层半径R2为8~35μm;
任选的,第三下陷层为多元掺杂石英内包层,掺杂物包括氟,铝和磷,其中,铝和磷的掺杂量为0~5mol%,且成连续分布,铝和磷的摩尔比为0.7~1.3:1,氟对第三下陷层的折射率贡献量为-0.05%~0,[AlPO4]四面体对第三下陷层的折射率贡献量为-0.4%~0,第三下陷层的相对折射率差△n3为-0.45%~0,第三下陷层半径R3为8~62.5μm;
外包层为纯石英包层或为多元掺杂石英包层,当外包层为多元掺杂石英包层时,掺杂元素为氟、铝和磷,其中铝和磷的掺杂量为0~5mol%,呈连续分布,铝和磷的摩尔比为0.9~1.1:1,氟对外包层的折射率贡献量为-0.02%~0,[AlPO 4]四面体对外包层的折射率贡献量为-0.4%~0,外包层的相对折射率差△n4为-0.42%~0,外包层半径R4为62.5μm;
其中,氟通过氟利昂或四氟化硅等引入,磷为五氧化二磷,通过三氯化磷原料引入,铝为氧化铝,通过氯化铝原料引入。
本发明的有益效果是:
第一,本发明所提供的光纤其包层主要采用铝和磷共掺,同时掺入少量的氟,铝和磷在玻璃中形成[AlPO 4]四面体,在有效降低包层折射率的同时,可优化包层粘度,减少光纤制备过程中的缺陷,减少了光纤的轴向应力,从而进一步降低光纤的衰减参数;
第二、无碱金属掺杂,避免了氢损带来的额外损耗,保证了光纤长期工作稳定性。
第三、本发明提供的纤维芯层和包层中氟的掺杂量可低于0.15wt.%,大幅度降低了氟的掺杂量,在保证了光纤更好的稳定性的同时,降低了制造成本,同时有利于环境保护,并且工艺简单,可重复性强。
附图说明
下面结合附图和实施例对本申请的技术方案进一步说明。
图1为典型的光纤中铝和磷含量分布图。
图2为实施例1中的光纤折射率剖面示意图。
图3为实施例2中的光纤折射率剖面示意图。
图4为适用于本发明的其他折射率剖面示意图。
具体实施方式
以下结合具体实施例对本发明的内容做进一步的阐释和说明,需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特 征可以相互组合。
在以下实施例1及对比例1~3中,所述的光纤包括芯层和包层,芯层半径为R0,芯层相对折射率差为△n0,包层从内向外依次包覆第一下陷层、第二下陷层,第三下陷层和外包层,所述的第一下陷层半径为R1,相对折射率差为△n1,所述的第二下陷层半径为R2,相对折射率差为△n2,所述的第三下陷层半径为R3,相对折射率差为△n3,所述外包层半径为R4,为纯石英包层。
实施例1
光纤芯层包含锗、氟和二氧化硅,在芯层中呈连续分布。第一下陷层中,包含氟,P 2O 5,Al 2O 3和二氧化硅,其中F含量为0.2mol%,且呈连续分布,P 2O 5含量为2.3mol%,Al 2O 3含量为2.3mol%。第二下陷层中包含P 2O 5,Al 2O 3和二氧化硅,P 2O 5含量为6.2mol%,Al 2O 3含量为6.5mol%,第三下陷层中,包含氟,P 2O 5,Al 2O 3和二氧化硅,其中F含量为0.2mol%,且呈连续分布,P 2O 5含量为2.3mol%,Al 2O 3含量为2.3mol%,该光纤在1550nm处衰减为0.152dB/km,光纤在70℃,0.01%H 2中反应至少16H后,光纤在1550nm衰减变化值为0.001dB/km。
对比例1
光纤芯层包含锗、氟、二氧化硅、碱金属氧化物及P 2O 5,其中碱金属氧化物的含量为100ppm,且呈连续分布,P 2O 5含量为100ppm,在芯层中呈连续分布。紧邻芯层的第一下陷层中,包含锗、氟、二 氧化硅、碱金属氧化物,其中碱金属氧化物(K 2O)的含量为5ppm,且呈连续分布,P 2O 5含量为20ppm,呈连续分布。该光纤在1550nm处衰减为0.155dB/km,光纤在70℃,0.01%H 2中反应至少16H后,光纤在1550nm衰减变化值=0.004dB/km。具体参数见表1。
对比例2
光纤芯层包含锗、钠和二氧化硅,在芯层中连续分布。第一下陷层中,包含氟和二氧化硅,其中氟含量2mol%,且呈连续分布。第二下陷层中包含氟和二氧化硅,其中F含量为3.8mol%,且呈连续分布。第三下陷层中,包含氟和二氧化硅,其中氟含量2mol%,且呈连续分布该光纤在1550nm处衰减为0.156dB/km,光纤在70℃,0.01%H 2中反应至少16H后,光纤在1550nm衰减变化值为0.008dB/km。
对比例3
光纤芯层包含锗、氟、钾和二氧化硅,其中K含量0.1mol%,F含量1.8mol%。第一下陷层中,包含氟和二氧化硅,其中氟含量1.8mol%,且呈连续分布。第二下陷层中包含氟和二氧化硅,其中F含量为3.8mol%,且呈连续分布。该光纤在1550nm处衰减为0.160dB/km,光纤在70℃,0.01%H 2中反应至少16H后,光纤在1550nm衰减变化值为0.01dB/km。
实施例2
光纤包括芯层和包层,光纤芯层掺锗,半径R0为8μm,芯层相对折射率差Δn0为0.15%,芯层从内向外依次为第一下陷层、第二下陷层和外包层,所述的第一下陷层半径R1为14μm,相对折射率差Δn1为-0.8%,所述的第二下陷层半径R2为26μm,相对折射率差Δn2为-0.14%,所述外包层半径62.5μm,相对折射率差为-0.07%。第一下陷层中,包含P 2O 5,Al 2O 3和二氧化硅,其中,P 2O 5含量为10mol%,呈连续分布其中Al 2O 3的含量为11mol%,且呈连续分布,第二下陷层中,包含P 2O 5,Al 2O 3和二氧化硅,其中,P 2O 5含量为1.8mol%,呈连续分布其中Al 2O 3的含量为1.75mol%,且呈连续分布,外包层中包含0.7mol%的氟,该光纤在1550nm处衰减为0.154dB/km,光纤在70℃,0.01%H 2中反应至少16H后,光纤在1550nm衰减变化值=0.0015dB/km。
上述实施例1~2以及对比例1~3制备的光纤掺杂参数见表1。
表1:本发明实施例制备的光纤掺杂参数
Figure PCTCN2020102938-appb-000005
Figure PCTCN2020102938-appb-000006
上述实施例1,实施例2,以及对比例1,2和3制备的光纤,其中第一下陷层半径R1,相对折射率差△n1,第二下陷层半径R2,相对折射率差△n2,第三下陷层半为R3,相对折射率差△n3,外包层半径R4,所述芯层半径R0,相对折射率差△n0的数值见表2。
表2:本发明实施例制备的光纤芯层和包层半径及相对折射率差参数
Figure PCTCN2020102938-appb-000007
Figure PCTCN2020102938-appb-000008
可以参照本发明实施例1~2类似方法制备本发明所述的含有其他设定的掺杂参数的光纤。
以上述依据本申请的理想实施例为启示,通过上述的说明内容和实施例相关内容,本领域相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种包层组分优化的大有效模面积低损耗光纤,包括芯层和包层,所述包层从内向外包括第一下陷层,第二下陷层和外包层,其特征在于,
    第二下陷层为多元掺杂石英内包层,掺杂物包括氟,铝和磷,其中,铝和磷的掺杂量为0~10mol%,且成连续分布,铝和磷的摩尔比为0.7~1.3:1,铝和磷的共掺在玻璃中形成[AlPO 4]四面体,[AlPO 4]]四面体对第二下陷层的折射率贡献量为-0.8%~0,氟对第二下陷层的折射率贡献量为-0.05%~0,第二下陷层的相对折射率差△n2为-0.85%~0,第二下陷层半径R2为8~35μm。
  2. 根据权利要求1所述光纤,其特征在于,第一下陷层为纯石英层或多元掺杂石英内包层,当第一下陷层为多元掺杂石英内包层时,掺杂物包括氟,铝和磷,其中,铝和磷的掺杂量为0~10mol%,且成连续分布,铝和磷的摩尔比为0.8~1.2:1,铝和磷的共掺在玻璃中形成[AlPO 4]]四面体,[AlPO 4]四面体对第一下陷层的折射率贡献量为-0.8%~0,氟对第一下陷层的折射率贡献量为-0.05%~0,第一下陷层的相对折射率差△n1为-0.85%~0,第一下陷层半径R1为6~20μm。
  3. 根据权利要求1所述光纤,其特征在于,外包层为纯石英包层或多元掺杂石英包层,当外包层为多元掺杂石英包层时,掺杂元素为氟、铝和磷,其中铝和磷的掺杂量为0~5mol%,呈连续分布,铝和磷的摩尔比为0.9~1.1:1,氟对外包层的折射率贡献量为-0.02%~0,[AlPO 4]四面体对外包层的折射率贡献量为-0.4%~0,外包层的相对折射率差△n4为-0.42%~0,外包层半径R4为62.5μm。
  4. 根据权利要求1所述光纤,其特征在于,芯层为多元掺杂二氧化硅芯层,掺杂物包括锗和氟,其中,锗对芯层的折射率贡献量为0~0.3%,氟对芯层的折射率贡献量为-0.05%~0,在芯层中呈连续分布,芯层的相对折射率差△n0为0~0.25%,芯层半径R0为5~8μm。
  5. 根据权利要求1~4任一项所述光纤,其特征在于,氟通过氟利昂或四氟化硅引入,磷为过五氧化二磷,通过三氯化磷原料引入,铝为氧化铝,通过氯化铝原料引入。
  6. 根据权利要求1~4任一项所述光纤,其特征在于,所述包层还包括第三下陷层,所述第三下陷层位于第二下陷层和外包层之间。
  7. 根据权利要求6所述光纤,其特征在于,第三下陷层为多元掺杂石英内包层,掺杂物包括氟,铝和磷,其中,铝和磷的掺杂量为0~5mol%,且成连续分布,铝和磷的摩尔比为0.7~1.3:1,氟对第三下陷层的折射率贡献量为-0.05%~0,[AlPO 4]四面体对第三下陷层的折射率贡献量为-0.4%~0,第三下陷层的相对折射率差△n3为-0.45%~0,第三下陷层半径R3为8~62.5μm。
  8. 根据权利要求1~3任一项所述光纤,其特征在于,所述光纤在1550nm波长处的衰减小于或等于0.18dB/km。
  9. 根据权利要求1~3任一项所述光纤,其特征在于,所述光纤在1550nm波长处的衰减小于或等于0.16dB/km。
  10. 根据权利要求1~3任一项所述光纤,其特征在于,所述光纤在70℃、0.01%H2体积浓度中反应至少16小时,光纤在1550nm波长处衰减变化值小于或等于0.01dB/km。
PCT/CN2020/102938 2020-04-30 2020-07-20 一种包层组分优化的大有效模面积低损耗光纤 WO2021217905A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/922,135 US20230176277A1 (en) 2020-04-30 2020-07-20 Large-effective-mode-area low-loss optical fiber with optimized cladding components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010360880.9 2020-04-30
CN202010360880.9A CN111562648B (zh) 2020-04-30 2020-04-30 一种包层组分优化的大有效模面积低损耗光纤

Publications (1)

Publication Number Publication Date
WO2021217905A1 true WO2021217905A1 (zh) 2021-11-04

Family

ID=72071760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102938 WO2021217905A1 (zh) 2020-04-30 2020-07-20 一种包层组分优化的大有效模面积低损耗光纤

Country Status (3)

Country Link
US (1) US20230176277A1 (zh)
CN (1) CN111562648B (zh)
WO (1) WO2021217905A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488390A (zh) * 2022-03-21 2022-05-13 创昇光电科技(苏州)有限公司 渐变式中心凹陷光纤

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122017A (zh) * 2010-10-13 2011-07-13 成都亨通光通信有限公司 玻璃光纤
CN102396119A (zh) * 2009-06-12 2012-03-28 J-纤维有限公司 包括掺杂的玻璃纤维芯和包围玻璃纤维芯的包层的光导纤维、特别是激光纤维
CN104865634A (zh) * 2015-06-11 2015-08-26 长飞光纤光缆股份有限公司 一种掺镱光纤及其制备方法
CN104898201A (zh) * 2015-06-25 2015-09-09 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN105866879A (zh) * 2016-06-14 2016-08-17 长飞光纤光缆股份有限公司 一种超低衰减大有效面积单模光纤
JP6022822B2 (ja) * 2012-06-22 2016-11-09 三菱電線工業株式会社 光ファイバ
CN109154699A (zh) * 2016-05-25 2019-01-04 司浦爱激光技术英国有限公司 光纤和光纤器件
CN109655961A (zh) * 2018-12-14 2019-04-19 通鼎互联信息股份有限公司 一种低损耗大有效面积单模光纤及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079749B2 (en) * 2003-01-27 2006-07-18 Peter Dragic Waveguide configuration
EP1930753B1 (en) * 2006-12-04 2015-02-18 Draka Comteq B.V. Optical fiber with high Brillouin threshold power and low bending losses
CN101663604A (zh) * 2007-02-28 2010-03-03 康宁股份有限公司 具有大有效面积的光纤
US7853110B2 (en) * 2007-11-28 2010-12-14 Corning Incorporated Large effective area optical fiber
CN103323910B (zh) * 2013-06-21 2015-04-08 长飞光纤光缆股份有限公司 一种双包层光纤
CN104932054B (zh) * 2015-07-20 2018-02-23 富通集团有限公司 一种三包层掺铥光纤及其制备方法
CN109445023B (zh) * 2018-11-07 2020-06-16 长飞光纤光缆股份有限公司 一种掺杂优化的超低衰减单模光纤
CN110045456B (zh) * 2019-03-01 2020-10-27 江苏永鼎股份有限公司 一种超低损耗大有效面积的单模光纤及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102396119A (zh) * 2009-06-12 2012-03-28 J-纤维有限公司 包括掺杂的玻璃纤维芯和包围玻璃纤维芯的包层的光导纤维、特别是激光纤维
CN102122017A (zh) * 2010-10-13 2011-07-13 成都亨通光通信有限公司 玻璃光纤
JP6022822B2 (ja) * 2012-06-22 2016-11-09 三菱電線工業株式会社 光ファイバ
CN104865634A (zh) * 2015-06-11 2015-08-26 长飞光纤光缆股份有限公司 一种掺镱光纤及其制备方法
CN104898201A (zh) * 2015-06-25 2015-09-09 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN109154699A (zh) * 2016-05-25 2019-01-04 司浦爱激光技术英国有限公司 光纤和光纤器件
CN105866879A (zh) * 2016-06-14 2016-08-17 长飞光纤光缆股份有限公司 一种超低衰减大有效面积单模光纤
CN109655961A (zh) * 2018-12-14 2019-04-19 通鼎互联信息股份有限公司 一种低损耗大有效面积单模光纤及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114488390A (zh) * 2022-03-21 2022-05-13 创昇光电科技(苏州)有限公司 渐变式中心凹陷光纤

Also Published As

Publication number Publication date
CN111562648A (zh) 2020-08-21
CN111562648B (zh) 2022-12-16
US20230176277A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2019218525A1 (zh) 一种超低损耗大有效面积单模光纤及其制造方法
CN107710041B (zh) 具有应力消除层的低衰减光纤、其预成形件及其制造方法
EP1813581B1 (en) Method for manufacturing an optical fiber preform, optical fiber preform and optical fiber
US10571628B2 (en) Low loss optical fiber with core codoped with two or more halogens
KR102034362B1 (ko) 도핑 최적화된 최저 감쇠 단일모드 광섬유
WO2017020456A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
CN109839694B (zh) 一种截止波长位移单模光纤
WO2011020315A1 (zh) 一种抗弯曲多模光纤及其制造方法
WO2011088706A1 (zh) 一种高带宽多模光纤
WO2013177996A1 (zh) 一种渐变折射率抗弯曲多模光纤
CN109298482B (zh) 一种低衰减和低弯曲损耗的大有效面积单模光纤
KR102019579B1 (ko) 초저감쇠 굴곡 강화 단일모드 광섬유
WO2020119439A1 (zh) 一种低损耗大有效面积单模光纤及其制备方法
CN110045456B (zh) 一种超低损耗大有效面积的单模光纤及其制备方法
CN111801609B (zh) 光纤
WO2021217905A1 (zh) 一种包层组分优化的大有效模面积低损耗光纤
WO2020119244A1 (zh) 光纤及其制备方法
KR100345358B1 (ko) 광파이버모재용 석영유리관 및 그 제조방법
US11378738B2 (en) Optical fiber
JP7455079B2 (ja) 光ファイバ
JP2004126141A (ja) 光ファイバとその製造方法
US8792762B2 (en) Low loss aluminum doped optical fiber for UV applications
JPS5838368B2 (ja) 光フアイバの製造方法
WO2024048118A1 (ja) 光ファイバ
CN115437060A (zh) 一种低损抗弯单模光纤及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934143

Country of ref document: EP

Kind code of ref document: A1