WO2021217566A1 - 鞘管、手术组件及其使用方法 - Google Patents

鞘管、手术组件及其使用方法 Download PDF

Info

Publication number
WO2021217566A1
WO2021217566A1 PCT/CN2020/088150 CN2020088150W WO2021217566A1 WO 2021217566 A1 WO2021217566 A1 WO 2021217566A1 CN 2020088150 W CN2020088150 W CN 2020088150W WO 2021217566 A1 WO2021217566 A1 WO 2021217566A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
layer structure
frame body
inner layer
sheath
Prior art date
Application number
PCT/CN2020/088150
Other languages
English (en)
French (fr)
Inventor
严航
郑忠伟
刘洛斌
刘运栋
Original Assignee
上海英诺伟医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海英诺伟医疗器械有限公司 filed Critical 上海英诺伟医疗器械有限公司
Priority to PCT/CN2020/088150 priority Critical patent/WO2021217566A1/zh
Priority to US17/609,976 priority patent/US20220202408A1/en
Priority to JP2021558702A priority patent/JP7246517B2/ja
Priority to EP20933766.6A priority patent/EP4008387A4/en
Publication of WO2021217566A1 publication Critical patent/WO2021217566A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3439Cannulas with means for changing the inner diameter of the cannula, e.g. expandable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0293Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors with ring member to support retractor elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • A61B2017/3425Access ports, e.g. toroid shape introducers for instruments or hands for internal organs, e.g. heart ports

Definitions

  • the present invention relates to the field of medical equipment, in particular to a sheath, a surgical component and a method of use thereof.
  • the sheath can be used to form the required working channel, which can be used for percutaneous nephroscopy, biliary tract surgery, etc.
  • the percutaneous nephroscope channel of percutaneous nephroscopy Take the percutaneous nephroscope channel of percutaneous nephroscopy as an example, after the puncture is completed, The inflated balloon can be used to open the physiological channel after puncture, and at the same time, the sheath can be fed in following the inflated balloon, so that the sheath can be used to form a percutaneous nephroscope channel.
  • the inner diameter of the sheath tube does not match the outer diameter of the balloon after inflation, it will easily damage the human body and/or affect the performance of percutaneous nephroscopy.
  • the outer diameter of the balloon is too small, it will There is a gap between the tube and the balloon, which is likely to cause damage to the internal organs.
  • the sheath has to be inserted again, and the insertion process may easily cause secondary damage to the tissue.
  • the invention provides a sheath, a surgical component for percutaneous nephroscopy and a method of use thereof, to solve the problems that the working channel establishment effect, the safety in the establishment process is difficult to be effectively guaranteed, and the secondary injury is easy to cause.
  • a sheath tube comprising: a ring-shaped inner layer structure, a ring-shaped outer layer structure, and a skeleton structure, the outer layer structure being arranged around the outer side of the inner layer structure
  • the skeleton structure is arranged between the inner layer structure and the outer layer structure; the inner layer structure, the skeleton structure, and the outer layer structure can be radially expanded with the expansion of the inner balloon of the inner layer structure. expansion;
  • the radial dimension of the inner channel of the inner layer structure is at a first radial dimension, and the first radial dimension is greater than Or equal to the radial dimension of the uninflated balloon;
  • the radial dimension of the inner channel of the inner layer structure is in the second radial dimension ,
  • the second radial dimension is greater than the first radial dimension.
  • the frame structure includes at least one frame body in a ring shape, the frame body includes at least a deformation section, and the degree of deformation of the deformation section is related to the circumferential length of the frame body.
  • the deformed section assumes an arc segment or a broken line segment
  • the deformed section assumes an arc segment or a broken line segment after the frame is expanded.
  • the circumferential length of the frame body matches the degree of bending or bending of the deformed section, wherein:
  • the frame body is formed by connecting a plurality of deformable sections end to end in sequence.
  • the frame body is in a continuous sawtooth waveform
  • the frame body is a continuous sine wave.
  • the orientation of the opening of the deformation section matches the axial direction of the frame body, and the orientation of the openings of two adjacent deformation sections in the same frame body are opposite.
  • the skeleton structure further includes a reinforcing rib connected between two adjacent frame bodies, and the reinforcing rib is connected to the axial end portions of the two deformation sections along the axial direction of the frame body. , And the opening directions of the two deformable sections connected by the reinforcing ribs are opposite to each other.
  • the inner layer structure includes an inner layer film
  • the material of the inner layer film is any one of the following: PTFE, silica gel, polyurethane material;
  • the outer layer structure includes an outer layer film
  • the material of the outer layer film is any one of the following: PTFE, silica gel, polyurethane material.
  • the material of the framework structure is at least one of cobalt-based alloy, stainless steel, and platinum-chromium alloy.
  • the skeleton structure is formed by at least one of the following processes:
  • the required spiral frame is formed by mechanical processing. If the number of the spiral frame is at least multiple, one or more solder joints are selected to connect the multiple frames. Form a skeleton structure
  • a surgical assembly including the sheath, the balloon, and the balloon catheter involved in the first aspect and its alternatives, the balloon being provided on the balloon catheter, And the inner cavity of the balloon is communicated with the inner cavity of the balloon catheter.
  • a method of using the surgical component described in the second aspect including:
  • the balloon is inflated through the balloon catheter to inflate the balloon;
  • the balloon is controlled to shrink, and the balloon and the balloon catheter are taken out to use the second radial dimension in the sheath The internal channel as the currently established working channel.
  • the sheath, surgical assembly and use method thereof provided by the present invention since the radial size of the sheath is variable, it is convenient for the sheath to wrap the balloon and enter the human body when it is not expanded, and after reaching the target position With the expansion of the balloon, the expansion occurs, thereby realizing the establishment of the channel. It can be seen that when the sheath of the present invention is used, the working channel establishment effect and the safety during the establishment process can not be limited to the control of the balloon expansion size, thereby effectively ensuring the safety and the channel establishment effect.
  • the two actions of expanding and inserting the sheath can be easily converted into one action, and further, the working channel can be directly established after the expansion, which is beneficial to simplify the work process. Avoid secondary damage (such as tissue tear damage) caused by two actions, and further improve safety.
  • Figure 1 is a schematic cross-sectional structure diagram of a sheath in an embodiment of the present invention
  • Figure 2 is a first structural diagram of an embodiment of the present invention when the frame body is not expanded;
  • Fig. 3 is a second structural diagram of an embodiment of the present invention when the frame body is not expanded;
  • Fig. 4 is a structural schematic diagram 1 when the skeleton structure is not expanded in an embodiment of the present invention.
  • FIG. 5 is a second schematic diagram of the structure when the skeleton structure is not expanded in an embodiment of the present invention.
  • Fig. 6 is a first structural schematic diagram of an expanded frame in an embodiment of the present invention.
  • Fig. 7 is a second structural schematic diagram of an expanded frame in an embodiment of the present invention.
  • Fig. 8 is a structural schematic diagram 1 of an expanded skeleton structure in an embodiment of the present invention.
  • Fig. 9 is a second structural schematic diagram of an expanded skeleton structure in an embodiment of the present invention.
  • Figure 10 is a partial structural diagram of another frame in an embodiment of the present invention.
  • Figure 11 is a partial structural diagram of another frame in an embodiment of the present invention.
  • Fig. 12 is a schematic flow chart of a method of using surgical components of percutaneous nephroscopy in an embodiment of the present invention.
  • the sheath includes: a ring-shaped inner layer structure 2, a ring-shaped outer layer structure 1 and a skeleton structure 3, the outer layer structure 1 is ringed on the outer side of the inner layer structure 2, so The skeleton structure 3 is arranged between the inner layer structure 2 and the outer layer structure 1; the inner layer structure 2, the skeleton structure 3 and the outer layer structure 1 can follow the inner balloon of the inner layer structure 2
  • the expansion of causes radial expansion; in other examples, radial expansion can also occur due to the radial changes of other components inside the inner layer structure 2, and it is not limited to the balloon.
  • the radial dimension of the inner channel of the inner layer structure 2 is at the first radial dimension;
  • the absence of radial expansion may mean that the expansion of the balloon does not occur.
  • the radial dimension when the radial expansion does not occur may be the limit position where the skeleton structure 3 is compressed, or it may not be the limit position.
  • the inner layer structure 2, the skeleton structure 3, and the outer layer structure 1 undergo radial expansion, and after the balloon is removed or reduced, the radial dimension of the inner channel of the inner layer structure is at the second Radial size.
  • the first radial dimension is greater than or equal to the radial dimension of the unexpanded balloon. Furthermore, as long as the radial dimension or the range of the radial dimension meets the requirement, it can be understood as the first radial dimension referred to above.
  • the size it can be seen, it can refer to a certain value or certain specific values, and can also refer to a certain size range, and is not limited to a specific value.
  • the second radial dimension may be understood as any dimension larger than the first radial dimension, and specifically may refer to a dimension that can meet the requirements of the established working channel (for example, a percutaneous renal channel).
  • the second radial dimension may refer to a certain value or certain specific values, or may refer to a certain size range, and is not limited to a specific value.
  • the second radial dimension may be a corresponding radial dimension after the balloon is expanded, or may be a radial dimension that is reduced to a certain extent after the balloon is expanded and expanded. Regardless of the change, it does not depart from the description of the second radial dimension in the embodiment of the present invention.
  • the inner layer structure 2 can be understood to be any structure that is annular, can be adapted to contact with the balloon, and can expand the surface area as the balloon expands.
  • the outer layer structure 1 can be understood as any structure that is annular, can be adapted to contact with the physiological channel, and can indirectly expand the surface area as the balloon expands.
  • the skeleton structure 3 can be understood as a structure that can be forced to expand radially and can maintain the expansion result, that is, it can provide sufficient radial support during expansion and can be used as a stable working channel (such as percutaneous kidney aisle).
  • the ability to undergo radial expansion under force and the ability to maintain the expansion result may be determined by the structural principle of the skeleton structure 3 and/or the material used.
  • the radial size of the sheath is variable, it can be convenient for the sheath to wrap the balloon and enter the human body when it is not expanded, and expand with the expansion of the balloon after reaching the target position, thereby realizing the establishment of the channel . It can be seen that when the sheath involved in the embodiment of the present invention is used, the working channel establishment effect and the safety during the establishment process may not be limited to the control of the balloon inflation size, thereby effectively ensuring the safety and the channel establishment effect .
  • the skeleton structure 3 can be prevented from directly acting on the human body and the balloon, ensuring safety, and smoothly in and out of the sheath and balloon.
  • the inner layer structure 2 includes an inner layer film, and the inner layer film is a stretchable polymer film. Through the polymer film, it can be tightly wrapped on the outer wall of the balloon, and the balloon can be inflated simultaneously while the balloon is inflated, and the inner film can maintain close contact with the outer wall of the balloon during the balloon inflation process.
  • the material of the inner layer film can be an elastic material such as polyurethane (TPU) or silicone, or it can be PTFE.
  • the inner layer structure 2 and the skeleton structure 3 may be fixedly connected at some points, or may not be fixedly connected.
  • the inner layer structure 2 and the skeleton structure 3 may not be fixedly connected, and vice versa, fixedly connected at some points.
  • the outer layer structure 1 includes an outer layer film, and the outer layer film is a PTFE film.
  • the outer layer film may also be silica gel, polyurethane, or the like.
  • PTFE specifically Polytetra fluoroethylene
  • polytetrafluoroethylene can be understood as polytetrafluoroethylene.
  • excellent surface smoothness of PTFE is used to reduce the withdrawal resistance of the sheath after the operation.
  • the inner and outer films can be fixed together with the skeleton structure by means of dipping, hot melting, sewing and gluing.
  • the skeleton structure 3 includes at least one frame body 31 in a ring shape. Furthermore, the expansion of the frame structure 3 can also be understood as the expansion of the frame body 31.
  • the frame body 31 includes at least a deformation section 311, and the degree of deformation of the deformation section is related to the circumferential length of the frame body.
  • the deformed section 311 is an arc segment or a broken line segment when the frame body 31 is not expanded, and the deformed section 311 is an arc line segment or a broken line segment after the frame body 31 is expanded; Among them, it can include the following possibilities: when it is not expanded and after expansion, it is a broken line segment, when it is not expanded and after expansion, it is an arc segment, when it is not expanded, it is a curved line segment and after expansion, it is a broken line segment, and it is not expanded. When it is a polyline segment and after expansion, it is an arc segment and so on.
  • the arc line segment refers to: the line segment is formed by at least one arc line portion, and the center of curvature of the at least one arc line portion is located on the same side of the arc line segment;
  • the broken line segment refers to: two line segment parts are connected together and formed.
  • the junction of the two line segment parts can form an included angle, and the included angle can have a certain chamfer.
  • the polyline segment can also be regarded as an arc segment, that is, the arc segment can also be regarded as a kind of polyline segment.
  • the deformed section 311 can be understood as a broken line section.
  • the length of the deformation section 311 in the circumferential direction of the frame body matches the degree of bending or bending of the deformation section 311. Specifically, if the deformation section is an arc segment, The larger the corresponding curvature and the smaller the radius of curvature, the higher the degree of curvature. If the deformed segment is a broken line segment, the smaller the corresponding angle, the higher the degree of curvature.
  • a radial expansion force F1 is generated on the frame 31, and at the same time, the physiological channel can generate a radial expansion force F2 on the frame 31; as the balloon expands, F1 becomes larger.
  • F1-F2 is greater than a certain degree (for example, F0)
  • the frame body 31 can be expanded, where F0 can be regarded as a threshold value associated with the material of the frame body 311;
  • the frame body 31 can be configured to change in size due to the force in both radially inward and radially outward directions. Then: the frame body of suitable material and/or structure can be selected, so that F2 can never be greater than F0, and F1 -F2 can be larger than F0 with balloon expansion. Since the resistance to deformation under different materials and/or structures is known or measurable, the F2 generated by the physiological channel and the force F1 generated by the balloon can also be determined by limited experiments or theoretical calculations. Therefore, Under the concept of the above embodiments, those skilled in the art can obtain specific technical solutions;
  • the frame body 31 can also be configured to only change its size in the radially outward direction.
  • elastic components such as springs, shrapnels, torsion springs, etc.
  • the frame body 31 can also be configured, and other components that match the elastic components to achieve corresponding functions can also be configured, and the elastic components can provide an expansion effect.
  • the force F3, furthermore, F2 needs to be greater than F3+F0 to make it radially smaller, and F1 only needs to be greater than F0-F3 to make it radially expand.
  • the frame 31 can be any metal material or any metal material that can satisfy the previous analysis of the force, so that it expands under the action of balloon inflation, and can also help enhance the structural strength, so as to maintain the shape after expansion.
  • the composite material is not limited to the following examples.
  • the frame body 31 may use at least one of metal materials such as cobalt-based alloy, stainless steel, and platinum-chromium alloy.
  • the skeleton structure 3 can be processed by processes such as laser cutting, or other processing technology can be used to form it. ⁇ ), and then weld the end to end to form a ring-shaped frame body 31.
  • processes such as laser cutting, or other processing technology can be used to form it. ⁇
  • weld the end to end to form a ring-shaped frame body 31 For multiple frame bodies 31, one or more welding points can be selected to connect together to form the frame structure 3; another example: it can be machined
  • the required spiral frame body 31 is formed in a manner of, and for multiple frames, one or more solder joints can be selected to be connected together to form the skeleton structure 3.
  • the frame body 31 is formed by connecting a plurality of deformable sections 311 end to end in turn.
  • a transition section 312 may be connected between all adjacent deformation sections 311, and the transition section 312 may be arranged along the circumference of the frame body 31, for example.
  • the frame body is in a continuous sawtooth waveform; it can be as shown in FIGS. 2-9,
  • the frame body is a continuous sine wave, which can be as shown in FIG. 11.
  • each deformation section 311 can also be understood as a waveform.
  • each waveform can correspond to a peak and a trough.
  • the peak and trough can be understood as the end of the deformation section along the axial direction. .
  • the deformed segment 311 may also be a spiral segment.
  • the deformation section adopted by a single frame body may have one type or multiple types, for example, including at least two of a broken line section, an arc line section, and a spiral section.
  • the opening direction of the deformation section 311 matches the axial direction of the frame body, that is, the deformation section 311 undulates in the axial direction, which includes the situation that the deformation section 311 undulates completely in the axial direction, and also includes When there is a certain deflection relative to the axial direction, it can avoid the influence of deformation on the radial dimension.
  • the embodiment of the present invention does not exclude implementations in which the opening of the deformable section 311 has a certain deflection in the radial direction or relative to the radial direction.
  • the orientation of the opening can be, for example, if the deformed section 311 is a polyline segment, the direction of the bisector of the acute angle of the polyline segment can represent the direction of the opening. If the deformed section 311 is an arc segment, then the arc of the arc segment (The direction of the bisecting line (less than 180 degrees of arc) can characterize the direction of the opening.
  • the opening directions of two adjacent deformation sections in the same frame body are opposite, and furthermore, the wave crests and wave troughs mentioned above can be formed.
  • the framework structure 3 further includes a reinforcing rib 32 connected between two adjacent frame bodies 31, and the reinforcing rib 32 is connected to two deformations along the axial direction of the frame body 31.
  • the end portion of the segment 311 in the axial direction, and the opening directions of the two deformed segments connected by the reinforcing rib 32 are opposite to each other.
  • the reinforcing ribs 32 may only be arranged between the partial deformation sections 311, instead of connecting the reinforcing ribs 32 between all the deforming sections 311 that meet the requirements described above. At the same time, the embodiment of the present invention does not exclude that all the deforming sections 311 are connected to the reinforcing ribs 32. ⁇
  • the deformable sections 311 are connected together by the reinforcing ribs 32, which can provide better structural stability.
  • each deformable section 311 can be elongated to a certain extent.
  • the diameter d1 is the same as the diameter d2 in FIG.
  • the circumferential length of the waveform increases with radial expansion. After the expansion, the circumferential length of the periodic waveform is D2.
  • the process of the body 31 radially expanding with the balloon expansion is similar to the process of expanding a folding umbrella.
  • the circumferential length of a single periodic waveform after expansion is greater than the circumferential length of a single periodic waveform before expansion, that is, D2>D1.
  • the inner diameter d2 of the frame body 31 after expansion may be the diameter of the balloon after expansion, and then: d2>d1.
  • the skeleton structure 3 may also adopt one or more spiral structures, which can be understood as a spiral-shaped structure with a variable spiral inner diameter, and its axis
  • the core matches the axis of the inner structure, and its material can be understood by referring to the relevant description above.
  • the embodiment of the present invention also provides a surgical assembly, including the sheath tube mentioned above, the balloon and the balloon catheter, the balloon is provided in the balloon catheter, and the inner cavity of the balloon is connected to the The inner cavity of the balloon catheter is connected.
  • the surgical component may be a surgical component of percutaneous nephroscopy. In other examples, the surgical component may also be a surgical component of biliary tract surgery.
  • an embodiment of the present invention also provides a method of using the above-mentioned surgical components, including:
  • the working channel mentioned above may be, for example, a percutaneous renal channel of percutaneous nephroscopy. If applied to other operations, it can also establish other working channels.
  • sheaths and surgical components involved in the embodiments of the present invention can also be applied to other application scenarios besides percutaneous nephroscopy.
  • the sheath, surgical assembly, and method of use provided by the embodiments of the present invention, since the radial size of the sheath is variable, it is convenient for the sheath to wrap the balloon and enter the human body when it is not expanded. After reaching the target position, the balloon expands as the balloon expands, thereby realizing the establishment of the channel. It can be seen that when the sheath of the present invention is used, the working channel establishment effect and the safety during the establishment process can not be limited to the control of the balloon inflation size, thereby effectively ensuring the safety and the channel establishment effect.
  • the two actions of expanding and inserting the sheath can be easily changed into one action, and further, the working channel can be directly established after the expansion, which is beneficial to simplify the work process. Avoid secondary damage caused by two actions, and further improve safety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Endoscopes (AREA)

Abstract

一种鞘管、手术组件及其使用方法,鞘管包括呈环状的内层结构(2)、呈环状的外层结构(1)与骨架结构(3),内层结构(2)、骨架结构(3)与外层结构(1)能够随内层结构(2)内侧球囊的膨胀发生径向扩张;内层结构(2)、骨架结构(3)与外层结构(1)未发生径向扩张时,内层结构(2)的内部通道的径向尺寸处于第一径向尺寸,第一径向尺寸大于或等于未发生膨胀的球囊的径向尺寸;内层结构(2)、骨架结构(3)与外层结构(1)发生径向扩张,并且球囊移除或缩小后,内层结构(2)的内部通道的径向尺寸处于第二径向尺寸,第二径向尺寸大于第一径向尺寸。

Description

鞘管、手术组件及其使用方法 技术领域
本发明涉及医疗器械领域,尤其涉及一种鞘管、手术组件及其使用方法。
背景技术
在医疗器械领域,鞘管可用于形成所需的工作通道,其可用于经皮肾镜术、胆道外科手术等,以经皮肾镜术的经皮肾镜通道为例,在穿刺完成后,可利用膨胀后的球囊打开穿刺后的生理通道,同时,鞘管可跟随膨胀后的球囊被送入,从而利用鞘管形成经皮肾镜通道。
然而,若鞘管的内径与膨胀后球囊的外径尺寸未能匹配,则易于损伤人体和/或影响经皮肾镜术的进行,例如:若球囊外径过小,则会在鞘管与球囊之间产生间隙,该间隙易于对内脏造成损伤,再例如:若球囊外径过大,则鞘管无法顺利进入。可见,现有相关技术中,工作通道建立效果,以及建立过程中的安全性均依赖于对球囊膨胀尺寸的控制,难以得到有效保障。此外,基于现有技术中的手术组件,还得再次插入鞘管,插入过程会易于对组织造成二次损伤。
发明内容
本发明提供一种鞘管、经皮肾镜术的手术组件及其使用方法,以解决工作通道建立效果,以及建立过程中的安全性难以得到有效保障,以及易于造成二次损伤的问题。
根据本发明的第一方面,提供了一种鞘管,包括:呈环状的内层结构、呈环状的外层结构与骨架结构,所述外层结构环设于所述内层结构外侧,所述骨架结构设于所述内层结构与外层结构之间;所述内层结构、所述骨架结构与所述外层结构能够随所述内层结构内侧球囊的膨胀发生径向扩张;
所述内层结构、所述骨架结构与所述外层结构未发生径向扩张时,所述内层结构的内部通道的径向尺寸处于第一径向尺寸,所述第一径向尺寸大于或等于未发生膨胀的球囊的径向尺寸;
所述内层结构、所述骨架结构与所述外层结构发生径向扩张,并且所述球囊移除或缩小后,所述内层结构的内部通道的径向尺寸处于第二径向尺寸,所述第二径向尺寸大于所述第一径向尺寸。
可选的,所述骨架结构包括呈环状的至少一个架体,所述架体包括至少一段形变段,所述形变段的形变程度与所述架体周向的长度相关联。
可选的,所述形变段在所述架体未扩展时呈弧线段或折线段,所述形变段在所述架体扩后呈弧线段或折线段,所述形变段的沿所述架体周向的长度与所述形变段弯曲或弯折程度相匹配,其中:
所述架体发生所述径向扩张时,所述形变段的弯曲或弯折程度变低,所述形变段的沿所述架体周向的长度变长。
可选的,所述架体是多个形变段依次首尾连接形成的。
可选的,若所述形变段呈折线段,则所述架体呈连续的锯齿波形;
若所述形变段呈弧线段,则所述架体呈连续的正弦波形。
可选的,所述形变段的开口朝向与所述架体的轴向相匹配,同一架体中相邻两个形变段的开口朝向是相反的。
可选的,所述骨架结构还包括连接于相邻的两个架体之间的加强筋,所述加强筋沿所述架体的轴向连接于两个形变段的沿轴向的末端部位,且所述加强筋所连接的两个形变段的开口朝向是相背的。
所述内层结构包括内层膜;
所述内层膜的材料为以下任意之一:PTFE,硅胶、聚氨酯材料;
所述外层结构包括外层膜;
所述外层膜的材料为以下任意之一:PTFE、硅胶、聚氨酯材料。
可选的,所述骨架结构的材料为钴基合金、不锈钢与铂铬合金中至少之一。
所述骨架结构是通过以下至少之一工艺形成的:
激光切割而形成的;
先以机械加工的方式形成未呈闭环的正弦波或锯齿波的结构,然后将其首尾焊接形成环状的架体,再选择一个或多个焊点将多个架体焊接在一起,形成所述骨架结构;
先以机械加工的方式形成所需的螺旋状的架体,若所述螺旋状的架体的 数量为至少多个,则针对于多个架体,选择一个或多个焊点连接在一起,形成骨架结构
根据本发明的第二方面,提供了一种手术组件,包括第一方面及其可选方案涉及的鞘管、所述球囊与球囊导管,所述球囊设于所述球囊导管,且所述球囊的内腔与所述球囊导管的内腔连通。
根据本发明的第三方面,提供了一种第二方面所述的手术组件的使用方法,包括:
当所述鞘管与处于所述鞘管内的球囊均到达目标位置时,通过所述球囊导管充盈所述球囊,以使得所述球囊膨胀;
当所述鞘管随所述球囊的膨胀被扩张后,控制所述球囊缩小,并取出所述球囊与所述球囊导管,以利用所述鞘管中所述第二径向尺寸的内部通道作为当前建立完成的工作通道。
本发明提供的鞘管、手术组件及其使用方法中,由于鞘管的径向尺寸是可变的,可便于鞘管在未发生扩张时包裹着球囊一同进入人体,并在到达目标位置后随球囊的膨胀发生扩张,从而实现通道的建立。可见,在使用本发明所涉及的鞘管时,工作通道建立效果,以及建立过程中的安全性可以不受限于对球囊膨胀尺寸的控制,进而可有效保障安全性与通道建立效果。此外,基于本发明所涉及的鞘管与手术组件,可便于将扩张与放入鞘管这两次动作变为一步动作,进而,在扩张后就直接建立工作通道,从而有利于简化工作流程,避免两次动作而带来的二次损伤(例如组织撕裂损伤),进一步提高了安全性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中鞘管的剖面构造示意图;
图2是本发明一实施例中架体未扩展时的结构示意图一;
图3是本发明一实施例中架体未扩展时的结构示意图二;
图4是本发明一实施例中骨架结构未扩展时的结构示意图一;
图5是本发明一实施例中骨架结构未扩展时的结构示意图二;
图6是本发明一实施例中架体扩展后的结构示意图一;
图7是本发明一实施例中架体扩展后的结构示意图二;
图8是本发明一实施例中骨架结构扩展后的结构示意图一;
图9是本发明一实施例中骨架结构扩展后的结构示意图二;
图10是本发明一实施例中另一种架体的部分结构示意图;
图11是本发明一实施例中又一种架体的部分结构示意图;
图12是本发明一实施例中经皮肾镜术的手术组件的使用方法的流程示意图。
附图标记说明:
1-外层结构;
2-内层结构;
3-骨架结构;
31-架体;
311-形变段;
312-过渡段;
32-加强筋。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方 法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
请参考图1,鞘管,包括:呈环状的内层结构2、呈环状的外层结构1与骨架结构3,所述外层结构1环设于所述内层结构2外侧,所述骨架结构3设于所述内层结构2与外层结构1之间;所述内层结构2、所述骨架结构3与所述外层结构1能够随所述内层结构2内侧球囊(未图示)的膨胀发生径向扩张;在其他举例中,也可以因内层结构2内侧的其他部件的径向变化而随之发生径向扩张,而不限于球囊。
所述内层结构2、所述骨架结构3与所述外层结构1未发生径向扩张时,所述内层结构2的内部通道的径向尺寸处于第一径向尺寸;其中所指的未发生径向扩张,可以指未因球囊的膨胀作用而发生扩张,进而,未发生径向扩张时的径向尺寸可以是骨架结构3被压缩的极限位置,也可以并非是极限位置。
所述内层结构2、所述骨架结构3与所述外层结构1发生径向扩张,并且所述球囊移除或缩小后,所述内层结构的内部通道的径向尺寸处于第二径向尺寸。
其中的第一径向尺寸大于或等于未发生膨胀的球囊的径向尺寸,进而,只要满足该要求的径向尺寸,或径向尺寸范围,均可理解为以上所涉及的第一径向尺寸,可见,其可以指某个或某些特定的值,也可以指某个尺寸范围,而不限于特定的值。
其中的第二径向尺寸可理解为是大于所述第一径向尺寸的任意尺寸,具体可以指能够满足所建立工作通道(例如经皮肾通道)需求的尺寸。同时,第二径向尺寸可以指某个或某些特定的值,也可以指某个尺寸范围,而不限于特定的值。此外,第二径向尺寸可以是球囊膨胀后相应的径向尺寸,也可以是随球囊膨胀而扩张后又发生一定程度缩小的径向尺寸。不论何种变化,均不脱离本发明实施例中有关第二径向尺寸的描述。
其中的内层结构2,可理解为呈环形的,可适于与球囊接触,且能够随球囊膨胀而发生表面积伸展的任意结构。
其中的外层结构1,可理解为呈环形的,可适于与生理通道接触,且能够间接随球囊膨胀而发生表面积伸展的任意结构。
其中的骨架结构3,可理解为能够受力发生径向扩展,且能维持住扩张结果的结构,即其在扩张可提供足够的径向支撑力,能作为稳固的工作通道(例如经皮肾通道)。其中,受力发生径向扩展的能力,以及维持住扩张结果的能力,可以是骨架结构3的结构原理和/或其所采用的材质决定的。
可见,由于鞘管的径向尺寸是可变的,可便于鞘管在未发生扩张时包裹着球囊一同进入人体,并在到达目标位置后随球囊的膨胀发生扩张,从而实现通道的建立。可见,在使用本发明实施例所涉及的鞘管时,工作通道建立效果,以及建立过程中的安全性可以不受限于对球囊膨胀尺寸的控制,进而可有效保障安全性与通道建立效果。
此外,通过内层结构与外层结构,可避免骨架结构3直接作用于人体与球囊,保障了安全性,以及鞘管、球囊进出顺利实现。
还需指出,由于本发明实施例的创造性贡献之一在于:(出于建立通道过程中的实际需求)想到鞘管径向尺寸可变化这一构想,同时,还引入了三层结构落实了该构想,进而,与该创造性贡献相匹配的,不论内层结构2、外层结构1与骨架结构采用何种方式,均不脱离本发明实施例的描述。
其中一种实施方式中,所述内层结构2包括内层膜,所述内层膜为具有可伸缩性的高分子膜。通过该高分子膜,可紧紧包裹在球囊外壁上,可在球囊扩张的同时同步膨胀,球囊膨胀的过程中内层膜能够保持与球囊外壁的紧密贴合。具体举例中,内层膜的材质可以为聚氨酯(TPU)、硅胶等弹性材料,也可以为PTEE。
此外,内层结构2与骨架结构3之间可以在部分位置点实现固定连接,也可以不实现固定连接。例如:若内层膜的材质在扩张后不易于发生缩小的形变,则内层结构2与骨架结构3之间可以不实现固定连接,反之,则也可在部分位置点实现固定连接。
其中一种实施方式中,所述外层结构1包括外层膜,所述外层膜为PTFE膜,其他举例中,外层膜也可采用硅胶、聚氨酯等。
其中的PTFE,具体为Poly tetra fluoroethylene,可理解为聚四氟乙烯。进而,利用PTFE材质优异的表面顺滑性以减小手术结束后鞘管的退出阻力。
具体实施过程中,内、外层膜可通过浸涂、热熔、缝合和胶粘等方式与骨架结构固定在一起。
请参考图2至图11,其中一种实施方式中,所述骨架结构3包括呈环状的至少一个架体31,进而,骨架结构3的扩张,也可理解为架体31的扩张,所述架体31包括至少一段形变段311,所述形变段的形变程度与所述架体周向的长度相关联。
其中一种实施方式中,所述形变段311在所述架体31未扩展时呈弧线段或折线段,所述形变段311在所述架体31扩后呈弧线段或折线段;其中,可包括了以下多种可能性:未扩张时与扩张后均呈折线段、未扩张时与扩张后均呈弧线段、未扩张时呈弧线段且扩张后呈折线段、未扩张时呈折线段且扩张后呈弧线段等等。
其中的弧线段指:该线段是至少一个圆弧线部形成的,且该至少一个圆弧线部的曲率中心位于弧线段的同一侧;
其中的折线段指:两个线段部连接在一起而形成的,该两个线段部的连接处可形成夹角,该夹角可具有一定的倒角,此外,当该倒角为圆角,且圆角大小配置为一定数值后,该折线段也可视作是弧线段,即:弧线段也可视作折线段的一种。在图2至图10所示的举例中,其中的形变段311可理解为是折线段。
请参考图2至图11,所述形变段311的沿所述架体周向的长度与所述形变段311的弯曲程度或弯折程度相匹配,具体的,若形变段呈弧线段,则其对应的曲率越大、曲率半径越小,表示弯曲程度越高,若形变段呈折线段,则其对应的夹角越小,表示弯曲程度越高。
所述架体31发生所述径向扩张时,所述形变段311的弯曲程度或弯折程度变低,所述形变段311的沿所述架体31周向的长度变长。
当球囊膨胀时,对架体31产生径向扩张的作用力F1,同时,生理通道对架体31可产生径向限制扩张的作用力F2;随着球囊的膨胀,F1随之变大,当F1-F2的作用力差大于一定程度(例如F0)时,可使得架体31发生扩张,其中的F0可视作与架体311的材质相关联的阈值;
架体31可被配置为沿径向向内与径向向外均可因作用力发生尺寸变化,则:可选择合适材质和/或结构的架体,从而使得F2始终无法大于F0,且F1-F2可以随球囊的膨胀大于F0。由于不同材质和/或结构下的抗形变的能力是已知或可测定的,生理通道所产生的F2、球囊所能产生的作用力F1也可经有限次实验或理论推算确定,故而,在以上实施方式的构思下,本领域技术人员可以得到具体的技术方案;
架体31也可被配置为仅能沿径向向外发生尺寸变化。
在其他举例中,也可在架体31中配置弹性部件(例如弹簧、弹片、扭簧等等),还可配置有匹配于弹性部件实现相应作用的其他部件,该弹性部件可提供扩张的作用力F3,进而,F2需大于F3+F0才能使其径向变小,F1仅需大于F0-F3就能使其径向扩张。
其中的架体31,可以为能满足前文对受力的相关分析,从而在球囊膨胀的作用下发生扩张,还能够有利于增强结构强度,从而在扩张后能维持住形状的任意金属材料或复合材料,并不限于以下的举例。
在具体举例中,架体31可采用钴基合金、不锈钢与铂铬合金等金属材料中至少之一。
在具体举例中,骨架结构3可以由激光切割等过程加工而成,也可采用其他加工工艺来成型,例如:可以先以机械加工的方式形成未呈闭环的结构(例如呈正弦波、锯齿波的结构),然后将其首尾焊接形成环状的架体31,针对于多个架体31,可选择一个或多个焊点连接在一起,从而形成骨架结构3;再例如:可以以机械加工的方式形成所需的螺旋状的架体31,针对于多个架体,可选择一个或多个焊点连接在一起,从而形成骨架结构3。
其中一种实施方式中,如图2至图9,以及图11所示,所述架体31是多个形变段311依次首尾连接形成的,在其他实施方式中,以图10为例,部分或全部相邻的形变段311之间可连接有过渡段312,过渡段312可例如是沿架体31周向设置的。
若所述形变段311呈折线段,则所述架体呈连续的锯齿波形;其可如图2至图9所示,
若所述形变段311呈弧线段,则所述架体呈连续的正弦波形,其可如图11所示。
因其能形成连续的波形,故而,每个形变段311也可理解为一个波形,进而,每个波形可对应具有波峰与波谷,该波峰与波谷可理解为形变段的沿轴向的末端部位。
除了图1至图10所示的折线段与弧线段,形变段311也可以是螺旋段。同时,单个架体所采用的形变段可以具有一种,也可以具有多种,例如包括折线段、弧线段、螺旋段中至少之二。
其中一种实施方式中,所述形变段311的开口朝向与所述架体的轴向相匹配,即:形变段311是沿轴向起伏的,其包括完全沿轴向起伏的情形,也包括相对轴向具有一定偏转的情形,其可避免形变对径向尺寸造成影响。同时,本发明实施例也不排除形变段311的开口朝向沿径向或相对径向有一定偏转的实施方式。
其中的开口朝向,可例如:若形变段311为折线段,则折线段的锐角的角平分线的指向能够表征出该开口朝向,若形变段311为弧线段,则弧线段的弧度(小于180度的弧度)平分线的指向能够表征出该开口朝向。
其中一种实施方式中,同一架体中相邻两个形变段的开口朝向是相反的,进而,可形成前文所涉及的波峰与波谷。
其中一种实施方式中,所述骨架结构3还包括连接于相邻的两个架体31之间的加强筋32,所述加强筋32沿所述架体31的轴向连接于两个形变段311的沿轴向的末端部位,且所述加强筋32所连接的两个形变段的开口朝向是相背的。
加强筋32可仅设置于部分形变段311之间,而非所有满足以上描述的形变段311之间均连接加强筋32,同时,本发明实施例也不排除所有形变段311均连接加强筋32的实施方式。
通过加强筋32将形变段311连接在一起,可提供较佳的结构稳定性。
参考图2、图3中的周向长度D1与图6、图7中的周向长度D2可知,每个形变段311的周向长度均可在一定程度上被拉长,参考图4中的直径d1与图8中的直径d2,整个架体31的径向尺寸可因周向长度的拉长而使得径向尺寸变大。
具体的,若将连续的形变段视作波形,一次起伏视作一个周期的波形,则波形的周向长度随着径向扩张而增大,扩张后一个周期波形的周向长度为 D2,架体31随球囊扩张而径向膨胀的过程类似于折叠式雨伞被撑开的过程,扩张后单个周期波形的周向长度大于扩张前单个周期波形的周向长度,即D2>D1。架体31扩张后内径d2可以是球囊膨胀后的直径,则有:d2>d1。
除了图1至图10所示的骨架结构3,在其他实施方式中,骨架结构3也可例如采用一个或多个螺旋结构,其可理解为呈螺旋状的可变化螺旋内径的结构,其轴心与内层结构的轴心相匹配,其材质可参照前文的相关描述理解。
本发明实施例还提供了一种手术组件,包括以上所涉及的鞘管、所述球囊与球囊导管,所述球囊设于所述球囊导管,且所述球囊的内腔与所述球囊导管的内腔连通。
一种举例中,该手术组件可以是经皮肾镜术的手术组件,其他举例中,该手术组件也可以是胆道外科手术的手术组件。
请参考图12,本发明实施例还提供了一种以上所涉及的手术组件的使用方法,包括:
S401:当所述鞘管与处于所述鞘管内的球囊均到达目标位置时,通过所述球囊导管充盈所述球囊,以使得所述球囊膨胀;
S402:当所述鞘管随所述球囊的膨胀被扩张后,控制所述球囊缩小,并取出所述球囊与所述球囊导管,以利用所述鞘管中所述第二径向尺寸的内部通道作为当前建立完成的工作通道。
以上所涉及的工作通道,可例如是经皮肾镜术的经皮肾通道。若应用于其他手术,其也可建立完成其他工作通道。
可见,本发明实施例所涉及的鞘管与手术组件,也可应用于经皮肾镜术之外的其他应用场景。
综上,本发明实施例提供的鞘管、手术组件及其使用方法中,由于鞘管的径向尺寸是可变的,可便于鞘管在未发生扩张时包裹着球囊一同进入人体,并在到达目标位置后随球囊的膨胀发生扩张,从而实现通道的建立。可见,在使用本发明所涉及的鞘管时,工作通道建立效果,以及建立过程中的安全性可以不受限于对球囊膨胀尺寸的控制,进而可有效保障安全性与通道建立效果。此外,基于本发明所涉及的鞘管与手术组件,可便于将扩张与放入鞘管这两次动作变为一步动作,进而,在扩张后就直接建立工作通道,从而有利于简化工作流程,避免两次动作而带来的二次损伤,进一步提高了安 全性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种鞘管,其特征在于,包括:呈环状的内层结构、呈环状的外层结构与骨架结构,所述外层结构环设于所述内层结构外侧,所述骨架结构设于所述内层结构与外层结构之间;所述内层结构、所述骨架结构与所述外层结构能够随所述内层结构内侧球囊的膨胀发生径向扩张;
    所述内层结构、所述骨架结构与所述外层结构未发生径向扩张时,所述内层结构的内部通道的径向尺寸处于第一径向尺寸,所述第一径向尺寸大于或等于未发生膨胀的球囊的径向尺寸;
    所述内层结构、所述骨架结构与所述外层结构发生径向扩张,并且所述球囊移除或缩小后,所述内层结构的内部通道的径向尺寸处于第二径向尺寸,所述第二径向尺寸大于所述第一径向尺寸。
  2. 根据权利要求1所述的鞘管,其特征在于,所述骨架结构包括呈环状或螺旋状的至少一个架体,所述架体包括至少一段形变段,所述形变段的形变程度与所述架体周向的长度相关联。
  3. 根据权利要求2所述的鞘管,其特征在于,所述形变段在所述架体未扩展时呈弧线段或折线段,所述形变段在所述架体扩后呈弧线段或折线段,所述形变段的沿所述架体周向的长度与所述形变段的弯曲程度或弯折程度相匹配,其中:
    所述架体发生所述径向扩张时,所述形变段的弯曲程度或弯折程度变低,所述形变段的沿所述架体周向的长度变长。
  4. 根据权利要求3所述的鞘管,其特征在于,所述架体是多个形变段依次首尾连接形成的;
    若所述形变段呈折线段,则所述架体呈连续的锯齿波形;
    若所述形变段呈弧线段,则所述架体呈连续的正弦波形。
  5. 根据权利要求3或4所述的鞘管,其特征在于,所述形变段的开口朝向与所述架体的轴向相匹配,同一架体中相邻两个形变段的开口朝向是相反的。
  6. 根据权利要求5所述的鞘管,其特征在于,所述骨架结构还包括连接于相邻的两个架体之间的加强筋,所述加强筋沿所述架体的轴向连接于两个形变段的沿轴向的末端部位,且所述加强筋所连接的两个形变段的开口朝向 是相背的。
  7. 根据权利要求1至4任一项所述的鞘管,其特征在于,所述内层结构包括内层膜,所述内层膜的材料为以下任意之一:PTFE,硅胶、聚氨酯材料;
    所述外层结构包括外层膜,所述外层膜的材料为以下任意之一:PTFE、硅胶、聚氨酯材料。
  8. 根据权利要求2至4任一项所述的鞘管,其特征在于,所述骨架结构的材料为钴基合金、不锈钢与铂铬合金中至少之一;
    所述骨架结构是通过以下至少之一工艺形成的:
    激光切割而形成的;
    先以机械加工的方式形成未呈闭环的正弦波或锯齿波的结构,然后将其首尾焊接形成环状的架体,再选择一个或多个焊点将多个架体焊接在一起,形成所述骨架结构;
    先以机械加工的方式形成所需的螺旋状的架体,若所述螺旋状的架体的数量为至少多个,则针对于多个架体,选择一个或多个焊点连接在一起,形成骨架结构。
  9. 一种手术组件,其特征在于,包括权利要求1至8任一项所述的鞘管、所述球囊与球囊导管,所述球囊设于所述球囊导管,且所述球囊的内腔与所述球囊导管的内腔连通。
  10. 一种权利要求9所述的手术组件的使用方法,其特征在于,包括:
    当所述鞘管与处于所述鞘管内的球囊均到达目标位置时,通过所述球囊导管充盈所述球囊,以使得所述球囊膨胀;
    当所述鞘管随所述球囊的膨胀被扩张后,控制所述球囊缩小,并取出所述球囊与所述球囊导管,以利用所述鞘管中所述第二径向尺寸的内部通道作为当前建立完成的工作通道。
PCT/CN2020/088150 2020-04-30 2020-04-30 鞘管、手术组件及其使用方法 WO2021217566A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/088150 WO2021217566A1 (zh) 2020-04-30 2020-04-30 鞘管、手术组件及其使用方法
US17/609,976 US20220202408A1 (en) 2020-04-30 2020-04-30 Sheath, surgical assembly and method of using the same
JP2021558702A JP7246517B2 (ja) 2020-04-30 2020-04-30 シース管及び手術部品
EP20933766.6A EP4008387A4 (en) 2020-04-30 2020-04-30 SHEATH, AND SURGICAL ASSEMBLY AND METHOD OF USE THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088150 WO2021217566A1 (zh) 2020-04-30 2020-04-30 鞘管、手术组件及其使用方法

Publications (1)

Publication Number Publication Date
WO2021217566A1 true WO2021217566A1 (zh) 2021-11-04

Family

ID=78331658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088150 WO2021217566A1 (zh) 2020-04-30 2020-04-30 鞘管、手术组件及其使用方法

Country Status (4)

Country Link
US (1) US20220202408A1 (zh)
EP (1) EP4008387A4 (zh)
JP (1) JP7246517B2 (zh)
WO (1) WO2021217566A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080300544A1 (en) * 2007-05-29 2008-12-04 Cordis Corporation Expandable sheath introducer
CN104706458A (zh) * 2015-03-25 2015-06-17 上海英诺伟医疗器械有限公司 一种组合式造瘘管
CN105832368A (zh) * 2016-03-17 2016-08-10 中国人民解放军第三军医大学第二附属医院 一种医用操作通道支架
CN106473839A (zh) * 2016-09-23 2017-03-08 杭州启明医疗器械有限公司 一种可扩导管鞘和介入器械输送装置
CN107280718A (zh) * 2017-07-27 2017-10-24 天津大学 一种用于自然腔道手术的折展变刚度器械臂及其应用方法
CN110051918A (zh) * 2018-01-19 2019-07-26 美敦力股份有限公司 可拆分式鞘套

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9241735B2 (en) * 2003-12-05 2016-01-26 Onset Medical Corporation Expandable percutaneous sheath
US7892203B2 (en) 2004-09-09 2011-02-22 Onset Medical Corporation Expandable transluminal sheath
US8372131B2 (en) * 2007-07-16 2013-02-12 Power Ten , LLC Surgical site access system and deployment device for same
US9498249B2 (en) * 2012-11-21 2016-11-22 P Tech, Llc Expandable access systems and methods
US9555214B2 (en) 2013-12-12 2017-01-31 RG Innovation, LLC Expandable introducer sheath and related methods
WO2017120313A1 (en) * 2016-01-06 2017-07-13 Boston Scientific Scimed, Inc. Percutaneous access device
CN112105318B (zh) 2018-04-09 2024-04-16 爱德华兹生命科学公司 可扩张护套

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080300544A1 (en) * 2007-05-29 2008-12-04 Cordis Corporation Expandable sheath introducer
CN104706458A (zh) * 2015-03-25 2015-06-17 上海英诺伟医疗器械有限公司 一种组合式造瘘管
CN105832368A (zh) * 2016-03-17 2016-08-10 中国人民解放军第三军医大学第二附属医院 一种医用操作通道支架
CN106473839A (zh) * 2016-09-23 2017-03-08 杭州启明医疗器械有限公司 一种可扩导管鞘和介入器械输送装置
CN107280718A (zh) * 2017-07-27 2017-10-24 天津大学 一种用于自然腔道手术的折展变刚度器械臂及其应用方法
CN110051918A (zh) * 2018-01-19 2019-07-26 美敦力股份有限公司 可拆分式鞘套

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4008387A4 *

Also Published As

Publication number Publication date
EP4008387A4 (en) 2022-11-09
EP4008387A1 (en) 2022-06-08
US20220202408A1 (en) 2022-06-30
JP7246517B2 (ja) 2023-03-27
JP2022534173A (ja) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2019199692A1 (en) Expandable sheath
US5053097A (en) Method of joining tubes having a corrugated wall of plastic material
US20130140739A1 (en) Tool and method for expanding a pipe end
US20170007805A1 (en) Balloon catheter and method for manufacturing balloon
CA2436835A1 (en) Connector, applicator and method for mechanically connecting hollow structures, in particular small blood vessels, as well as auxiliary devices
CN112545643B (zh) 电极、球囊导管及消融系统
JP5491084B2 (ja) 内視鏡装置
WO2021217566A1 (zh) 鞘管、手术组件及其使用方法
EP3733127A1 (en) Luminal stent
US20170128099A1 (en) Apparatus for providing and maintaining access to a surgical site
EP3295885A1 (en) Corrugated radiofrequency ablation catheter having wall-attaching adjustment wires and apparatus thereof
US11969184B2 (en) Balloon catheter with selectively positionable scoring element
JP2010528746A (ja) コラプシブルステント
CN111419301A (zh) 鞘管、手术组件及其使用方法
CN115120395B (zh) 一种颅内动脉闭塞病变专用血管支架和球囊导管
JPWO2018100605A1 (ja) 内視鏡システム
US20110297735A1 (en) Method and apparatus for stent manufacturing assembly
WO2020235352A1 (ja) バルーンカテーテル、バルーンカテーテルのバルーンの折り畳み方法及びバルーン成形装置
CN216317739U (zh) 一种折叠鞘管
WO2023021935A1 (ja) カテーテル用バルーン
CN219207537U (zh) 一种推进结构及具有其的导管
JP6955189B2 (ja) ステントデリバリカテーテルおよびステントデリバリカテーテルの製造方法
RU165534U1 (ru) Расправляемый внутрисосудистый стент
WO2018062116A1 (ja) バルーンカテーテル
JP6026775B2 (ja) ステントデリバリカテーテル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021558702

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020933766

Country of ref document: EP

Effective date: 20211214

NENP Non-entry into the national phase

Ref country code: DE