WO2021214825A1 - ロータ、モータ、圧縮機および空気調和装置 - Google Patents

ロータ、モータ、圧縮機および空気調和装置 Download PDF

Info

Publication number
WO2021214825A1
WO2021214825A1 PCT/JP2020/017037 JP2020017037W WO2021214825A1 WO 2021214825 A1 WO2021214825 A1 WO 2021214825A1 JP 2020017037 W JP2020017037 W JP 2020017037W WO 2021214825 A1 WO2021214825 A1 WO 2021214825A1
Authority
WO
WIPO (PCT)
Prior art keywords
end side
width
permanent magnet
edge
gap
Prior art date
Application number
PCT/JP2020/017037
Other languages
English (en)
French (fr)
Inventor
昌弘 仁吾
勇二 廣澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022516481A priority Critical patent/JP7433420B2/ja
Priority to CN202080099259.XA priority patent/CN115398779A/zh
Priority to PCT/JP2020/017037 priority patent/WO2021214825A1/ja
Priority to EP20932353.4A priority patent/EP4142112A4/en
Priority to AU2020444066A priority patent/AU2020444066B2/en
Priority to US17/910,167 priority patent/US20230091530A1/en
Publication of WO2021214825A1 publication Critical patent/WO2021214825A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This disclosure relates to rotors, motors, compressors and air conditioners.
  • the permanent magnet is arranged in the magnet insertion hole formed in the rotor core. Protrusions for positioning the permanent magnet are provided on both sides of the magnet insertion hole (see, for example, Patent Document 1).
  • the magnetic flux from the stator may cause demagnetization of the permanent magnet.
  • the magnetic flux from the stator easily flows to the permanent magnet via the protrusions, and the permanent magnet is likely to be demagnetized.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to suppress demagnetization of a permanent magnet.
  • the rotor of the present disclosure has an outer circumference extending in the circumferential direction centered on the axis, a magnet insertion hole located inside the outer circumference in the radial direction centered on the axis, and a circumferential end of the magnet insertion hole. It has a rotor core having a connecting gap and a permanent magnet arranged in a magnet insertion hole and having a magnetic pole surface on the outer side in the radial direction.
  • the magnet insertion hole has an outer end edge of the insertion hole located on the outer side in the radial direction and an inner end edge of the insertion hole located on the inner side in the radial direction.
  • the gap has an outer edge extending from the circumferential end of the outer edge of the insertion hole toward the outer periphery, and an inner edge facing the outer edge.
  • the gap includes a first portion in which the outer edge and the inner edge face each other with a width W1 and a second portion in which the outer edge and the inner edge face each other with a width W2 wider than the width W1.
  • the second part is located between the first part and the permanent magnet. At least a part of the first portion is located outside in the radial direction with respect to the reference line extending the magnetic pole plane in the plane orthogonal to the axis line.
  • a short-circuit path of the stator magnetic flux passing through the narrow first portion of the gap W1 is formed. Since the first portion is located on the outer peripheral side of the magnetic pole surface of the permanent magnet, it is difficult for the magnetic flux flowing through the short-circuit path to reach the permanent magnet. Therefore, demagnetization of the permanent magnet can be suppressed.
  • FIG. 1 It is sectional drawing which shows the motor of Embodiment 1.
  • FIG. It is sectional drawing which shows the rotor of Embodiment 1.
  • FIG. It is sectional drawing which shows the part of the rotor of Embodiment 1 enlarged.
  • FIG. It is a figure which shows the flow of the reverse magnetic flux in the rotor of the comparative example 1.
  • FIG. It is a figure which shows the flow of the reverse magnetic flux in the rotor of the comparative example 2.
  • FIG. 1 It is sectional drawing which shows the motor of Embodiment 1.
  • FIG. It is sectional drawing which shows the rotor of Embodiment 1.
  • FIG. It is sectional drawing which shows the part of the rotor of Embodiment 1
  • FIG. 5A is a cross-sectional view showing the rotor of the fifth embodiment
  • FIG. 3B is an enlarged cross-sectional view showing a part of the rotor.
  • sectional drawing (A) which shows the rotor of Embodiment 6, and sectional drawing (B) which shows a part of the rotor enlarged.
  • sectional drawing (A) which shows the rotor of Embodiment 7, and sectional drawing (B) which shows a part of the rotor enlarged.
  • sectional drawing (A) which shows the rotor of Embodiment 8, and sectional drawing (B) which shows a part of the rotor enlarged. It is sectional drawing (A) which shows the rotor of Embodiment 9, and sectional drawing (B) which shows a part of the rotor enlarged. It is sectional drawing which shows the compressor to which the motor of each embodiment is applicable. It is a figure which shows the air conditioner which has the compressor of FIG.
  • FIG. 1 is a cross-sectional view showing the motor 100 of the first embodiment.
  • the motor 100 is a permanent magnet embedded motor in which a permanent magnet 20 is embedded in a rotor 1, and is used, for example, in a compressor 300 (FIG. 19).
  • the motor 100 has a rotatable rotor 1 and a stator 5 provided so as to surround the rotor 1.
  • An air gap of, for example, 0.3 to 1.0 mm is formed between the stator 5 and the rotor 1.
  • the stator 5 is fixed to a cylindrical shell 6 that is part of the compressor 300.
  • the direction of the axis C1 which is the rotation axis of the rotor 1 is referred to as "axial direction”.
  • the circumferential direction around the axis C1 (indicated by the arrow R1 in FIG. 1) is referred to as a “circumferential direction”.
  • the radial direction centered on the axis C1 is referred to as a "diameter direction”.
  • the stator 5 has a stator core 50, an insulating portion 54 attached to the stator core 50, and a coil 55 wound around the stator core 50 via the insulating portion 54.
  • the stator core 50 is formed by laminating steel plates in the axial direction and fixing them by caulking or the like.
  • the steel plate is, for example, an electromagnetic steel plate.
  • the plate thickness of the steel plate is, for example, 0.1 to 0.7 mm, and here 0.35 mm.
  • the stator core 50 has an annular yoke 51 centered on the axis C1 and a plurality of teeth 52 extending radially inward from the yoke 51.
  • the outer circumference of the yoke 51 is fixed to the inside of the shell 6.
  • Teeth 52 are formed at regular intervals in the circumferential direction.
  • the number of teeth 52 is 9 here, but it may be 2 or more.
  • a slot 53 for accommodating the coil 55 is formed between the adjacent teeth 52.
  • the stator core 50 has a plurality of divided cores 50A divided for each tooth 52.
  • the number of split cores 50A is, for example, 9. These split cores 50A are joined by a split surface 58 formed on the yoke 51 and are connected in the circumferential direction.
  • the stator core 50 is not limited to a configuration in which a plurality of divided cores 50A are connected.
  • the insulating portion 54 is provided between the stator core 50 and the coil 55.
  • the insulating portion 54 is composed of, for example, an insulator arranged at the axial end portion of the stator core 50 and an insulating film arranged on the inner surface of the slot 53.
  • the insulator is made of a resin such as polybutylene terephthalate (PBT).
  • the insulating film is made of a resin such as polyethylene terephthalate (PET) and has a thickness of 0.1 to 0.2 mm.
  • PET polyethylene terephthalate
  • the insulating portion 54 is not limited to such a configuration, and may be any one that can insulate the stator core 50 and the coil 55.
  • the coil 55 is composed of, for example, a magnet wire, and is wound around the teeth 52 via an insulating portion 54.
  • the wire diameter of the coil 55 is, for example, 0.8 mm.
  • the coil 55 is wound around each tooth 52 by a concentrated winding, for example, for 70 turns.
  • the wire diameter and the number of turns of the coil 55 are determined according to the required rotation speed, torque, applied voltage, or cross-sectional area of the slot 53.
  • Caulking portions 56a and 56b are formed on the yoke 51.
  • the caulking portions 56a and 56b fix a plurality of steel plates constituting the stator core 50 in the axial direction.
  • the caulking portion 56a is formed on a linear line in the radial direction passing through the circumferential center of the teeth 52, and the caulking portion 56b is formed at two positions symmetrical in the circumferential direction with the straight line interposed therebetween.
  • the number and arrangement of the crimped portions 56a and 56b can be changed as appropriate.
  • a recess 57 is formed on the outer circumference of the yoke 51.
  • a passage for the refrigerant in the compressor 300 is formed between the recess 57 and the shell 6.
  • the rotor 1 has a cylindrical rotor core 10, a permanent magnet 20 attached to the rotor core 10, and a shaft 25 fixed to a central portion of the rotor core 10.
  • the central axis of the shaft 25 is the axis C1 described above.
  • the rotor core 10 has an outer circumference 10a and an inner circumference 10b. Both the outer circumference 10a and the inner circumference 10b are annular around the axis C1.
  • the rotor core 10 is made by laminating steel plates in the axial direction and integrating them by caulking or the like.
  • the steel plate is, for example, an electromagnetic steel plate.
  • the plate thickness of the steel plate is, for example, 0.1 to 0.7 mm, and here 0.35 mm.
  • a shaft 25 is fixed to the inner circumference 10b of the rotor core 10 by shrink fitting or press fitting.
  • a plurality of magnet insertion holes 11 are formed along the outer circumference 10a of the rotor core 10.
  • the plurality of magnet insertion holes 11 are formed at equal intervals in the circumferential direction.
  • the magnet insertion hole 11 reaches from one end to the other end of the rotor core 10 in the axial direction.
  • the magnet insertion hole 11 extends linearly in a plane orthogonal to the axis C1.
  • the magnet insertion hole 11 may have a V-shape or a curved shape (see FIGS. 13 (A) and 18 (A)).
  • Each magnet insertion hole 11 corresponds to one magnetic pole.
  • the number of magnet insertion holes 11 here is 6, so the number of magnetic poles is 6.
  • the number of magnetic poles is not limited to 6, and may be 2 or more.
  • Permanent magnets 20 adjacent to each other in the circumferential direction have opposite poles on the outer side in the radial direction.
  • the permanent magnet 20 is a flat plate-shaped member, has a width in the circumferential direction of the rotor core 10, and has a thickness in the radial direction.
  • the thickness of the permanent magnet 20 is, for example, 2 mm.
  • the permanent magnet 20 is composed of, for example, a neodymium rare earth magnet containing neodymium (Nd), iron (Fe) and boron (B).
  • the permanent magnet 20 is magnetized in the thickness direction.
  • Neodymium rare earth magnets have the property that the coercive force decreases as the temperature rises.
  • the temperature of the permanent magnet 20 reaches 100 ° C. or higher, and the coercive force decreases at a rate of decrease of ⁇ 0.5 to ⁇ 0.6% / K depending on the temperature. Therefore, dysprosium (Dy) may be added to the permanent magnet 20 to improve the coercive force.
  • Dy dysprosium
  • Holes 102 and 103 serving as a passage for the refrigerant are formed inside the magnet insertion hole 11 in the radial direction.
  • the hole 102 is formed at a position corresponding to the center of the pole, and the hole 103 is formed at a position corresponding to the space between the poles.
  • the arrangement of the holes 102 and 103 can be changed as appropriate.
  • FIG. 2 is a diagram showing a region corresponding to one magnetic pole of the rotor 1, that is, a region including one magnet insertion hole 11.
  • the center of the magnet insertion hole 11 in the circumferential direction is the polar center P.
  • a straight line in the radial direction passing through the pole center P is referred to as a magnetic pole center line.
  • the space between adjacent magnetic poles is M between poles.
  • the magnet insertion hole 11 extends in a direction orthogonal to the magnetic pole center line.
  • the permanent magnet 20 has a magnetic pole surface 20a on the outer side in the radial direction, a magnetic pole surface 20b on the inner side in the radial direction, and end faces 20c on both sides in the circumferential direction.
  • the magnetic pole surface 20a is also referred to as a first magnetic pole surface
  • the magnetic pole surface 20b is also referred to as a second magnetic pole surface.
  • the magnetic pole surfaces 20a and 20b both extend in a direction orthogonal to the magnetic pole center line.
  • An extension of the magnetic pole surface 20a in a plane orthogonal to the axis C1 is defined as a reference line L1.
  • the reference line L1 is a straight line in the first embodiment, but is not limited to the straight line (see FIG. 18 (A)).
  • the magnet insertion hole 11 has an outer end side 11a on the outer side in the radial direction and an inner end side 11b on the inner side in the radial direction.
  • the outer edge 11a is also referred to as the outer edge of the insertion hole.
  • the inner edge 11b is also referred to as the inner edge of the insertion hole.
  • the outer end side 11a of the magnet insertion hole 11 faces the magnetic pole surface 20a of the permanent magnet 20, and the inner end side 11b of the magnet insertion hole 11 faces the magnetic pole surface 20b of the permanent magnet 20.
  • Voids 12 are formed on both sides of the magnet insertion hole 11 in the circumferential direction.
  • the gap 12 is provided to suppress leakage of magnetic flux between adjacent magnetic poles.
  • protrusions 14 that come into contact with the end faces 20c of the permanent magnet 20 are formed on both sides of the magnet insertion hole 11 in the circumferential direction.
  • the protrusion 14 is formed so as to abut the end surface 20c of the permanent magnet 20 on the end side portion 123 (FIG. 3) of the inner end side 12b described later of the gap 12.
  • the protrusion 14 has a tip 14a on the outer side in the radial direction, a side end 14b that abuts on the end surface 20c of the permanent magnet 20, and a side end 14c on the opposite side to the side end 14b.
  • the side end 14b of the protrusion 14 comes into contact with the end surface 20c of the permanent magnet 20, the permanent magnet 20 is positioned so as not to move in the magnet insertion hole 11.
  • FIG. 3 is an enlarged view of a part of the rotor 1.
  • a slit 101 is formed on the radial outer side of the magnet insertion hole 11.
  • the slit 101 has a side 111 extending along the outer circumference 10a of the rotor core 10, a side 112 extending along the magnet insertion hole 11, and sides 113, 114 inclined so as to approach the polar center P toward the outer side in the radial direction. And have.
  • Two slits 101 (FIG. 2) symmetrical with respect to the pole center P are formed on each magnetic pole.
  • the slit 101 is for smoothing the distribution of magnetic flux from the permanent magnet 20 toward the stator 5 and suppressing torque pulsation.
  • the number, arrangement and shape of the slits 101 are arbitrary.
  • the rotor core 10 does not necessarily have to have the slit 101.
  • the gap 12 is connected to the circumferential end of the magnet insertion hole 11.
  • the portion into which the permanent magnet 20 is inserted is the magnet insertion hole 11, and the portion located outside the permanent magnet 20 in the circumferential direction is the void 12.
  • the gap 12 extends along the reference line L1 from the circumferential end of the magnet insertion hole 11, and further extends radially outward, that is, toward the outer circumference 10a of the rotor core 10, beyond the above-mentioned reference line L1. Exists.
  • the gap 12 includes an outer end 12a extending from the outer end 11a of the magnet insertion hole 11, an inner end 12b extending from the inner end 11b of the magnet insertion hole 11, and a rotor core 10. It has a peripheral end side 12c extending along the outer circumference 10a of the magnet.
  • the outer end side 12a has an end side portion 121 located on an extension line of the outer end side 11a of the magnet insertion hole 11 and an end side portion 122 extending from the end of the end side portion 121 toward the outer circumference 10a.
  • the end edge portion 121 is also referred to as a first end edge portion.
  • the end edge portion 122 is also referred to as a second end edge portion.
  • the inner end side 12b has an end side portion 123 located on an extension line of the inner end side 11b of the magnet insertion hole 11 and an end side portion 124 extending from the end of the end side portion 123 toward the outer circumference 10a.
  • the end edge portion 123 is also referred to as a first end edge portion.
  • the end edge portion 124 is also referred to as a second end edge portion.
  • the outer edge 12a is located closer to the pole center P, and the inner edge 12b is located closer to the interpole M.
  • the outer edge 12a and the inner edge 12b face each other. More specifically, the end side portion 121 of the outer end side 12a and the end side portion 123 of the inner end side 12b face each other, and the end side portion 122 of the outer end side 12a and the end side portion 124 of the inner end side 12b Are opposed to each other.
  • the edge portions 121 and 123 are parallel to each other, and the end edge portions 122 and 124 are parallel to each other, but they do not necessarily have to be parallel to each other.
  • the peripheral end side 12c connects the radial outer end portion of the outer end side 12a and the radial outer end portion of the inner end side 12b.
  • a thin-walled portion is formed between the peripheral edge 12c and the outer circumference 10a of the rotor core 10. It is desirable that the width of the thin portion is as narrow as possible in order to suppress the leakage flux between the adjacent magnetic poles.
  • the width of the thin portion is the same as the thickness of the steel plate of the rotor core 10.
  • the inner end side 12b is formed with a convex portion 13 projecting toward the outer end side 12a.
  • the convex portion 13 projects from the end side portion 124 of the inner end side 12b toward the end side portion 122 of the outer end side 12a.
  • the convex portion 13 has a tip 13a facing the outer end side 12a of the gap 12, a side end 13b facing the peripheral end side 12c, and a side end 13c facing the end face 20c of the permanent magnet 20.
  • a part of the tip 13a of the convex portion 13 is located radially outside the reference line L1. However, the entire tip 13a of the convex portion 13 may be located radially outside the reference line L1. That is, at least a part of the tip 13a of the convex portion 13 may be located radially outside the reference line L1.
  • the region between the outer edge 12a of the gap 12 and the tip 13a of the convex portion 13 is defined as the first portion A1.
  • the first portion A1 is, here, a region between the end edge portion 122 of the outer edge portion 12a and the tip end 13a of the convex portion 13.
  • the width of the first portion A1, that is, the shortest distance between the outer edge 12a of the gap 12 and the tip 13a of the convex portion 13 is defined as the width W1.
  • the region on the permanent magnet 20 side of the first portion A1 where the distance between the outer end side 12a and the inner end side 12b is the shortest is the end side portion 121 of the outer end side 12a and the tip of the protrusion 14. This is the area with 14a. This region is defined as the second part A2.
  • the width of the second portion A2, that is, the shortest distance between the outer edge 12a of the gap 12 and the tip 14a of the protrusion 14 is defined as the width W2.
  • the void 12 also has a third portion A3 having a width W3 wider than the width W1 on the outer circumference 10a side of the first portion A1.
  • the width W3 is the shortest distance between the outer edge 12a and the inner edge 12b on the outer circumference 10a side of the first portion A1.
  • the width W3 is wider than the width W2 (W2 ⁇ W3).
  • the width W2 and the width W3 may be equal.
  • the void 12 includes a first portion A1 having a width W1, a second portion A2 having a width W2 wider than the width W1, and a third portion A3 having a width W3 wider than the width W1.
  • the second portion A2 is located on the permanent magnet 20 side of the first portion A1, that is, between the first portion A1 and the permanent magnet 20.
  • the third portion A3 is located on the outer circumference 10a side of the first portion A1, that is, between the first portion A1 and the outer circumference 10a.
  • a part of the first portion A1 of the gap 12 is located on the outer circumference 10a side, that is, on the outer side in the radial direction with respect to the reference line L1.
  • the entire first portion A1 of the gap 12 may be located radially outside the reference line L1. That is, at least a part of the first portion A1 may be located radially outside the reference line L1.
  • the shortest distance from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is defined as the distance D1.
  • This distance D1 is equal to or greater than the width W1 of the first portion A1 of the gap 12 (D1 ⁇ W1).
  • FIG. 4 is a diagram showing a rotor 1I of Comparative Example 1.
  • the rotor 1I of Comparative Example 1 is different from the rotor 1 of the first embodiment in that the gap 12 is not provided with the convex portion 13 (FIGS. 2 and 3).
  • the rotor 1I of Comparative Example 1 is configured in the same manner as the rotor 1 of the first embodiment.
  • a larger current may flow through the coil 55 of the stator 5 than in normal operation. For example, when the load of the motor 100 is large, the operation of the motor 100 is locked, when the motor 100 is started, or when the coil 55 of the stator 5 is short-circuited.
  • FIG. 5 is a diagram showing the flow of the reverse magnetic flux from the stator 5 in the rotor 1I. Since the reverse magnetic flux flowing into the rotor core 10 tries to flow through a portion having a small magnetic resistance, it bypasses the magnet insertion hole 11 and the gap 12 having a large magnetic resistance, and is between the outer circumference 10a of the rotor core 10 and the gap 12. Head to the thin part. However, since the magnetic path is narrow in the thin-walled portion, magnetic saturation occurs when a constant magnetic flux flows, and the magnetic flux does not flow. Since the magnet insertion hole 11 and the gap 12 are hollow inside, the magnetic resistance is large, but the width of the gap 12 is narrowed in the portion where the protrusion 14 is formed, so that the magnetic resistance is locally reduced.
  • the reverse magnetic flux from the stator 5 flows concentrated on the protrusion 14 as shown by the arrow F. Since the protrusion 14 is in contact with the end face 20c of the permanent magnet 20, when the reverse magnetic flux is concentrated on the protrusion 14, demagnetization occurs on the end face 20c of the permanent magnet 20.
  • FIG. 6 is a diagram showing a rotor 1J of Comparative Example 2.
  • the rotor 1J of Comparative Example 2 is different from the rotor 1I of Comparative Example 1 (FIGS. 4 and 5) in that a protrusion 9 is provided on the outer end side 12a of the gap 12. The protrusion 9 projects toward the protrusion 14 and faces the protrusion 14.
  • FIG. 7 is a diagram showing the flow of the reverse magnetic flux from the stator 5 in the rotor 1J of Comparative Example 2.
  • a protrusion 9 is provided on the outer end side 12a of the gap 12, and the outer peripheral region of the rotor core 10 and the protrusion 9 are continuous. At the portion of the gap 12 where the protrusions 9 and 14 face each other, the magnetic resistance is locally reduced.
  • the reverse magnetic flux from the stator 5 flows from the outer peripheral region of the rotor core 10 to the protrusion 14 via the protrusion 9 as shown by the arrow F.
  • the reverse magnetic flux is concentrated on the protrusion 14, demagnetization occurs on the end face 20c of the permanent magnet 20 as in Comparative Example 1.
  • magnetic saturation occurs in the protrusion 9, magnetic flux flows in the permanent magnet 20 close to the protrusion 9, and demagnetization occurs in the end face 20c of the permanent magnet 20.
  • FIG. 8 is a diagram showing the flow of the reverse magnetic flux from the stator 5 in the rotor 1 of the first embodiment.
  • the void 12 includes a first portion A1 having a width W1 and a second portion A2 having a width W2.
  • the second portion A2 of the void 12 is the narrowest portion on the permanent magnet 20 side of the first portion A1. Further, the width W2 of the second portion A2 is wider than the width W1 of the first portion A1. In other words, the permanent magnet 20 side of the gap 12 is wider than the first portion A1 and therefore has a higher magnetoresistance than the first portion A1.
  • the reverse magnetic flux from the stator 5 flows from the outer peripheral region of the rotor core 10 via the first portion A1 of the gap 12. That is, a short-circuit path of the reverse magnetic flux passing through the first portion A1 is formed.
  • At least a part of the first portion A1 is located radially outside the reference line L1 extending the magnetic pole surface 20a of the permanent magnet 20. Therefore, the reverse magnetic flux flowing through the short-circuit path passing through the first portion A1 goes in the direction away from the permanent magnet 20. As a result, the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • the distance D1 from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is set to the width W1 or more.
  • the distance D1 is, for example, 1.5 mm.
  • the protrusion 14 is provided in the gap 12 here, a configuration in which the protrusion 14 is not provided is also possible.
  • the shortest distance between the end side portion 121 of the outer end side 12a of the gap 12 and the end side portion 123 of the inner end side 12b is the width W2.
  • FIG. 9 is a graph showing the demagnetization characteristics of the permanent magnet 20 in comparison with the first embodiment and the first and second comparative examples.
  • the horizontal axis represents the current value of the current flowing through the coil 55.
  • the vertical axis shows the demagnetization rate of the permanent magnet 20.
  • the demagnetization rate is represented by the reduction rate of the amount of magnetic flux interlinking with the coil 55 (amount of interlinking magnetic flux).
  • amount of interlinkage magnetic flux when the rotor 1 is rotated by external power without passing a current through the coil 55 is used as a reference value, and the reduction rate of the amount of interlinkage magnetic flux with respect to the reference value is used as the demagnetization rate. Therefore, the demagnetization rate becomes a negative value.
  • the permanent magnet 20 When the current value of the coil 55 is small, the permanent magnet 20 is not demagnetized, so the demagnetization rate is 0. As the current value increases, the amount of interlinkage magnetic flux to the coil 55 decreases due to the demagnetization of the permanent magnet 20.
  • the demagnetization of the permanent magnet 20 leads to a decrease in the output of the motor 100, which causes a decrease in the performance of the compressor 300 or the air conditioner 400. Further, since the induced voltage generated by the interlinking of the magnetic flux to the coil 55 changes, the controllability of the motor 100 may be affected.
  • the demagnetization rate of the motor 100 is required to be suppressed to 1% or less. Therefore, the inverter circuit that controls the motor 100 is provided with a current cutoff circuit or a current cutoff circuit before the demagnetization rate reaches 1%.
  • the current value when the demagnetization rate is 1% is 14.7 A in Comparative Example 1 and 15.6 A in Comparative Example 2, whereas it increases to 17.0 A in the first embodiment. doing.
  • a larger current can be passed without causing demagnetization of the permanent magnet 20, so that the motor efficiency can be improved.
  • the residual magnetic flux density of the permanent magnet 20 can be increased.
  • the magnet torque can be increased and the current value required to generate the same output can be reduced. That is, the copper loss generated in the coil 55 can be reduced and the motor efficiency can be improved.
  • width W1 of the first portion A1 of the gap 12 In order to efficiently guide the reverse magnetic flux from the stator 5 to the short-circuit path passing through the first portion A1 of the gap 12, it is desirable that the width W1 of the first portion A1 is narrow. On the other hand, if the width W1 of the first portion A1 is too narrow, the magnetic flux generated from the permanent magnet 20 may be short-circuited at the first portion A1. That is, for example, the magnetic pole emitted from the magnetic pole surface 20a may return to the magnetic pole surface 20b through the first portion A1.
  • FIG. 10 is a graph showing the relationship between the width W1 of the first portion A1 and the amount of interlinkage magnetic flux to the coil 55.
  • the horizontal axis is a value obtained by dividing the width W1 of the first portion A1 by the thickness T of the permanent magnet 20, that is, W1 / T.
  • the vertical axis shows the amount of interlinkage magnetic flux to the coil 55 when no current is flowing through the coil 55.
  • W1 / T is set to 0.2 ⁇ W1 / T ⁇ 0. It is desirable that it is in the range of 5.
  • the gap 12 has an outer edge 12a extending radially outward from the circumferential end of the outer edge 11a of the magnet insertion hole 11 and an outer edge. It has an inner end side 12b facing 12a. Further, in the first portion A1 of the gap 12, the outer end side 12a and the inner end side 12b (more specifically, the tip 13a of the convex portion 13) face each other with a width W1 in between, and in the second portion A2, the outer side. The end side 12a and the inner end side 12b face each other with a width W2 wider than the width W1.
  • the second portion A2 is located between the first portion A1 and the permanent magnet 20. At least a part of the first portion A1 is located radially outside the reference line L1 extending the magnetic pole surface 20a of the permanent magnet 20.
  • the reverse magnetic flux from the stator 5 flows through the short-circuit path through the first portion A1 of the void 12. Since at least a part of the first portion A1 is located radially outside the reference line L1, the reverse magnetic flux flowing through the short-circuit path tends away from the permanent magnet 20. As a result, the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • the third portion A3 having a width W3 wider than the width W1 is provided on the outer circumference 10a side of the first portion A1, that is, on the outer side in the radial direction, the circumference of the thin portion between the gap 12 and the outer circumference 10a is provided.
  • the length in the direction can be increased. As a result, magnetic flux leakage between adjacent magnetic poles can be suppressed.
  • the convex portion 13 is formed on the inner end side 12b of the gap 12, the outer peripheral region of the rotor core 10 and the convex portion 13 are not continuous. Therefore, the reverse magnetic flux from the stator 5 is less likely to flow to the permanent magnet 20 via the convex portion 13, and the effect of suppressing demagnetization of the permanent magnet 20 can be enhanced.
  • the distance D1 from the end face 20c in the circumferential direction of the permanent magnet 20 to the first portion A1 is equal to or greater than the width W1 of the first portion A1 of the gap 12, magnetic saturation occurs in the short-circuit path including the first portion A1. Even in this case, it is difficult for the reverse magnetic flux to reach the permanent magnet 20. Therefore, the effect of suppressing the demagnetization of the permanent magnet 20 can be enhanced.
  • width W1 of the first portion A1 of the gap 12 and the thickness T of the permanent magnet 20 satisfy 0.2 ⁇ W1 / T ⁇ 0.5, a short circuit of the magnetic flux generated from the permanent magnet 20 is suppressed. At the same time, demagnetization of the permanent magnet 20 can be suppressed.
  • the protrusion 14 for positioning the permanent magnet 20 is provided in the gap 12, the movement of the permanent magnet 20 in the magnet insertion hole 11 can be restricted, and vibration and noise can be suppressed.
  • FIG. 11A is a diagram showing the rotor 1A of the second embodiment.
  • the circumferential length of the protrusion 15 for positioning the permanent magnet 20 is longer than the circumferential length of the protrusion 14 of the first embodiment.
  • the shape of the outer edge 12a of the gap 12 is the same as that of the first embodiment.
  • a protrusion 15 is formed on the inner end side 12b of the gap 12.
  • the protrusion 15 has a tip 15a that faces outward in the radial direction and a side end 15b that abuts on the end face 20c of the permanent magnet 20.
  • FIG. 11B is an enlarged view of a part of the rotor 1A of the second embodiment.
  • the void 12 has an outer end side 12a, an inner end side 12b, and a peripheral end side 12c. Further, the outer end side 12a has end side portions 121 and 122, and the inner end side 12b has end side portions 123 and 124.
  • the tip 15a of the protrusion 15 extends parallel to the end side 121 of the outer end 12a and extends to the end 124 of the inner end 12b. That is, the end edge portion 123 of the inner end edge 12b is composed of the tip end 15a of the protrusion 15. The end side portion 124 of the inner end side 12b extends radially outward from the end of the end side portion 123.
  • the end side portion 124 of the inner end side 12b is formed with a convex portion 13 projecting toward the end side portion 122 of the outer end side 12a. At least a part of the tip 13a of the convex portion 13 is located radially outside the reference line L1 described above.
  • the region between the end edge portion 122 of the outer end edge 12a and the tip end 13a of the convex portion 13 is defined as the first portion A1.
  • the width of the first portion A1 that is, the shortest distance between the outer edge 12a of the gap 12 and the tip 13a of the convex portion 13, is the width W1.
  • the region between the end edge portion 121 of the outer end edge 12a and the tip end 15a of the protrusion 15 is defined as the second portion A2.
  • the width of the second portion A2 is the width W2 (> W1).
  • the void 12 includes a first portion A1 having a width W1 and a second portion A2 having a width W2 wider than the width W1, and the second portion A2 is located closer to the permanent magnet 20 than the first portion A1. do. At least a part of the first portion A1 is located radially outside the reference line L1.
  • the reverse magnetic flux from the stator 5 flows in the direction away from the permanent magnet 20 via the short-circuit path passing through the first portion A1.
  • the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • a third portion A3 having a width W3 wider than the width W1 is provided outside the first portion A1 of the gap 12 in the radial direction. Therefore, the length of the thin-walled portion between the gap 12 and the outer peripheral portion 10a in the circumferential direction can be lengthened, and magnetic flux leakage between adjacent magnetic poles can be suppressed.
  • the distance D1 from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is equal to or greater than the width W1 of the first portion A1. Therefore, even when magnetic saturation occurs in the short-circuit path including the first portion A1, the reverse magnetic flux reaching the permanent magnet 20 can be reduced.
  • the motor of the second embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the circumferential length of the protrusion 15 is longer than that of the protrusion 14 of the first embodiment, so that the strength of the protrusion 15 is high. Therefore, in addition to the effect of the first embodiment, the reliability of the motor 100 can be improved.
  • FIG. 12A is a diagram showing the rotor 1B of the third embodiment.
  • the outer circumference 10a side of the gap 12 has a shape protruding toward the pole center P.
  • the outer edge 12a of the void 12 of the third embodiment has a concave portion 125 extending toward the polar center P.
  • the concave portion 125 is located radially outside the convex portion 13.
  • the radial outer end of the concave portion 125 is on the extension line of the peripheral end side 12c, and the radial inner end of the concave portion 125 is on the extension line of the side end 13b of the convex portion 13.
  • FIG. 12B is an enlarged view of a part of the rotor 1B of the third embodiment.
  • the void 12 has an outer end side 12a, an inner end side 12b, and a peripheral end side 12c. Further, the outer end side 12a has end side portions 121 and 122, and the inner end side 12b has end side portions 123 and 124. A protrusion 14 for positioning the permanent magnet 20 is formed on the end side portion 123 of the inner end side 12b.
  • the end side portion 124 of the inner end side 12b is formed with a convex portion 13 projecting toward the end side portion 122 of the outer end side 12a. At least a part of the tip 13a of the convex portion 13 is located radially outside the reference line L1 described above.
  • the region between the end edge portion 122 of the outer end edge 12a and the tip end 13a of the convex portion 13 is defined as the first portion A1.
  • the width of the first portion A1 that is, the shortest distance between the outer edge 12a of the gap 12 and the tip 13a of the convex portion 13 is the width W1.
  • the region between the end edge portion 121 of the outer end edge 12a and the tip end 14a of the protrusion 14 is defined as the second portion A2.
  • the width of the second portion A2 is the width W2 (> W1).
  • the void 12 includes a first portion A1 having a width W1 and a second portion A2 having a width W2 wider than the width W1, and the second portion A2 is located closer to the permanent magnet 20 than the first portion A1. do. At least a part of the first portion A1 is located radially outside the reference line L1.
  • the reverse magnetic flux from the stator 5 flows in the direction away from the permanent magnet 20 via the short-circuit path passing through the first portion A1.
  • the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • the void 12 also has a third portion A3 having a width W3 wider than the width W1 on the outer circumference 10a side of the first portion A1.
  • the width W3 is the shortest distance between the outer edge 12a and the inner edge 12b on the outer circumference 10a side of the first portion A1.
  • the width W3 of the third portion A3 of the gap 12 is larger than the width W2 of the second portion A2. wide. Therefore, the length of the thin-walled portion between the gap 12 and the outer peripheral portion 10a in the circumferential direction can be lengthened, and magnetic flux leakage between adjacent magnetic poles can be suppressed.
  • the area sandwiched between the two voids 12 in the rotor core 10 is the area where the magnetic flux enters and exits the permanent magnet 20.
  • the circumferential width of this area is also referred to as the opening width of the magnetic pole.
  • the opening width of the magnetic pole can be set to an appropriate width by adjusting the amount of protrusion of the concave portion 125 of the outer end side 12a of the gap 12 toward the pole center P side.
  • the harmonic component of the magnetic flux distribution can be reduced to reduce the cogging torque, thereby reducing the noise of the motor.
  • the distance D1 from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is equal to or more than the width W1 of the first portion A1 as in the first embodiment. Therefore, even when magnetic saturation occurs in the short-circuit path including the first portion A1, the reverse magnetic flux reaching the permanent magnet 20 can be reduced.
  • the motor of the third embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the opening width of the magnetic pole can be set to an appropriate width. Therefore, in addition to the effect of the first embodiment, the noise of the motor can be reduced.
  • the width W3 of the third portion A3 is wider than the width W2 of the second portion A2
  • the thin portion between the third portion A3 and the outer circumference 10a can be lengthened, and the leakage flux between the adjacent magnetic poles can be increased. The effect of suppressing can be enhanced.
  • FIG. 13A is a diagram showing the rotor 1C of the fourth embodiment.
  • the rotor 1C of the fourth embodiment has a V-shaped magnet insertion hole 17 instead of the linear magnet insertion hole 11 of the rotor 1 of the first embodiment.
  • the rotor core 10 of the rotor 1C is formed with a V-shaped magnet insertion hole 17 whose circumferential center is convex toward the inner circumference 10b.
  • Two permanent magnets 20 are arranged in one magnet insertion hole 17.
  • One magnet insertion hole 17 constitutes one magnetic pole.
  • the circumferential center of the magnet insertion hole 17 corresponds to the polar center P.
  • Each permanent magnet 20 has a magnetic pole surface 20a on the outer side in the radial direction and a magnetic pole surface 20b on the inner side in the radial direction.
  • the reference line L1 is defined by the extension line of the magnetic pole surface 20a.
  • the magnet insertion hole 17 has an outer end side 17a located on the outer side in the radial direction and an inner end side 17b located on the inner side in the radial direction.
  • the outer edge 17a is also referred to as the outer edge of the insertion hole.
  • the inner edge 17b is also referred to as the inner edge of the insertion hole.
  • the outer edge 17a extends in a V shape whose center in the circumferential direction is convex toward the inner circumference 10b.
  • the inner end side 17b of the magnet insertion hole 17 extends in a V shape whose circumferential center is convex toward the inner circumference 10b side.
  • a protrusion 17c is formed at the center of the inner edge 17b in the circumferential direction.
  • the protrusion 17c is located between the two permanent magnets 20. Air gaps 12 are formed on both sides of the magnet insertion hole 17 in the circumferential direction.
  • FIG. 13B is an enlarged view of a part of the rotor 1C of the fourth embodiment.
  • the void 12 has an outer end side 12a, an inner end side 12b, and a peripheral end side 12c. Further, the outer end side 12a has end side portions 121 and 122, and the inner end side 12b has end side portions 123 and 124.
  • a protrusion 14 for positioning the permanent magnet 20 is formed on the end edge portion 123 of the inner end edge 12b.
  • Each permanent magnet 20 is sandwiched between the protrusion 17c and the protrusion 14 and is positioned in the circumferential direction.
  • the end side portion 124 of the inner end side 12b is formed with a convex portion 13 projecting toward the end side portion 122 of the outer end side 12a. At least a part of the tip 13a of the convex portion 13 is located radially outside the reference line L1.
  • the region between the end edge portion 122 of the outer end edge 12a and the tip end 13a of the convex portion 13 is defined as the first portion A1.
  • the width of the first portion A1 that is, the shortest distance between the outer edge 12a of the gap 12 and the tip 13a of the convex portion 13 is the width W1.
  • the region between the end edge portion 121 of the outer end edge 12a and the tip end 14a of the protrusion 14 is defined as the second portion A2.
  • the width of the second portion A2 is the width W2 (> W1).
  • the void 12 includes a first portion A1 having a width W1 and a second portion A2 having a width W2 wider than the width W1, and the second portion A2 is located closer to the permanent magnet 20 than the first portion A1. do. At least a part of the first portion A1 is located radially outside the reference line L1.
  • the reverse magnetic flux from the stator 5 flows in the direction away from the permanent magnet 20 via the short-circuit path passing through the first portion A1.
  • the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • a third portion A3 having a width W3 wider than the width W1 is provided outside the first portion A1 of the gap 12 in the radial direction. Therefore, the length of the thin-walled portion between the gap 12 and the outer peripheral portion 10a in the circumferential direction can be lengthened, and magnetic flux leakage between adjacent magnetic poles can be suppressed.
  • the distance D1 from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is equal to or more than the width W1 of the first portion A1 as in the first embodiment. Therefore, when magnetic saturation occurs in the short-circuit path including the first portion A1, the reverse magnetic flux reaching the permanent magnet 20 can be reduced.
  • the motor of the fourth embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • FIG. 14A is a diagram showing the rotor 1D of the fifth embodiment.
  • the rotor 1D of the fifth embodiment has a convex portion 23 protruding from the end side portion 123 of the inner end side 12b of the gap 12 instead of the convex portion 13 of the first embodiment.
  • FIG. 14B is an enlarged view of a part of the rotor 1D of the fifth embodiment.
  • the void 12 has an outer end side 12a, an inner end side 12b, and a peripheral end side 12c. Further, the outer end side 12a has end side portions 121 and 122, and the inner end side 12b has end side portions 123 and 124. A protrusion 14 for positioning the permanent magnet 20 is formed on the end side portion 123 of the inner end side 12b.
  • the convex portion 23 projects from the end side portion 123 of the inner end side 12b toward the outer end side 12a of the gap 12.
  • the convex portion 23 has a tip 23a facing the outer end side 12a of the gap 12, a side end 23b facing the outer circumference 10a, and a side end 23c facing the permanent magnet 20.
  • At least a part of the tip 23a is located radially outside the reference line L1 which is an extension of the magnetic pole surface 20a of the permanent magnet 20. Further, here, the side ends 23b and 23c of the convex portion 23 extend parallel to the end surface 20c of the permanent magnet 20. The side end 23b on the outer circumference 10a side is longer than the side end 23c on the permanent magnet 20 side.
  • the region between the end edge portion 122 of the outer end edge 12a and the tip end 23a of the convex portion 23 is defined as the first portion A1.
  • the width of the first portion A1 that is, the shortest distance between the outer edge 12a of the gap 12 and the tip 23a of the convex portion 23 is the width W1.
  • the region between the end edge portion 121 of the outer end edge 12a and the tip end 14a of the protrusion 14 is defined as the second portion A2.
  • the width of the second portion A2 is the width W2 (> W1).
  • the void 12 includes a first portion A1 having a width W1 and a second portion A2 having a width W2 wider than the width W1, and the second portion A2 is located closer to the permanent magnet 20 than the first portion A1. do. At least a part of the first portion A1 is located radially outside the reference line L1.
  • the reverse magnetic flux from the stator 5 flows in the direction away from the permanent magnet 20 via the short-circuit path passing through the first portion A1.
  • the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • a third portion A3 having a width W3 wider than the width W1 is provided on the outer circumference 10a side of the first portion A1.
  • the width W3 is the shortest distance between the outer edge 12a and the inner edge 12b on the outer circumference 10a side of the first portion A1.
  • the distance D1 from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is equal to or more than the width W1 of the first portion A1 as in the first embodiment. Therefore, even when magnetic saturation occurs in the short-circuit path including the first portion A1, the reverse magnetic flux reaching the permanent magnet 20 can be reduced.
  • the motor of the fifth embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the outer end side 12a of the gap 12 and the convex portion 23 form a first portion A1 having a narrow width W1, and a second portion having a width W2 wider on the permanent magnet 20 side than the first portion A1.
  • A2 is formed. Therefore, a short-circuit path passing through the first portion A1 is formed. Since at least a part of the first portion A1 is located radially outside the reference line L1, the reverse magnetic flux passing through the short-circuit path is unlikely to go toward the permanent magnet 20. As a result, as in the first embodiment, the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • FIG. 15A is a diagram showing the rotor 1E of the sixth embodiment.
  • the rotor 1E of the sixth embodiment has a convex portion 33 protruding from the end side portions 123 and 124 of the inner end side 12b of the gap 12 instead of the convex portion 23 of the fifth embodiment.
  • FIG. 15B is an enlarged view of a part of the rotor 1E of the sixth embodiment.
  • the void 12 has an outer end side 12a, an inner end side 12b, and a peripheral end side 12c. Further, the outer end side 12a has end side portions 121 and 122, and the inner end side 12b has end side portions 123 and 124. A protrusion 14 for positioning the permanent magnet 20 is formed on the end side portion 123 of the inner end side 12b.
  • the convex portion 33 of the rotor 1E protrudes from the end side portions 123 and 124 of the inner end side 12b of the gap 12 toward the end side portion 122 of the outer end side 12a.
  • the convex portion 33 has a tip end 33a facing the outer end side 12a, a side end 33b facing the peripheral end side 12c, and a side end 33c facing the end face 20c of the permanent magnet 20.
  • At least a part of the tip 33a is located radially outside the reference line L1 described above. Further, here, the side end 33b of the convex portion 33 extends parallel to the peripheral end side 12c, and the side end 33c extends parallel to the end surface 20c of the permanent magnet 20.
  • the area of the convex portion 33 on the plane orthogonal to the axis C1 is larger than the area of the convex portion 23 (FIG. 14 (B)) of the fifth embodiment.
  • the region between the end edge portion 122 of the outer end edge 12a and the tip end 33a of the convex portion 33 is defined as the first portion A1.
  • the width of the first portion A1 that is, the shortest distance between the outer edge 12a of the gap 12 and the tip 33a of the convex portion 33 is the width W1.
  • the region between the end edge portion 121 of the outer end edge 12a and the tip end 14a of the protrusion 14 is defined as the second portion A2.
  • the width of the second portion A2 is the width W2 (> W1).
  • the void 12 includes a first portion A1 having a width W1 and a second portion A2 having a width W2 wider than the width W1, and the second portion A2 is located closer to the permanent magnet 20 than the first portion A1. do. At least a part of the first portion A1 is located radially outside the reference line L1.
  • the reverse magnetic flux from the stator 5 flows in the direction away from the permanent magnet 20 via the short-circuit path passing through the first portion A1.
  • the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • a third portion A3 having a width W3 wider than the width W1 is provided on the outer circumference 10a side of the first portion A1.
  • the width W3 is the shortest distance between the outer edge 12a and the inner edge 12b on the outer circumference 10a side of the first portion A1.
  • the distance D1 from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is equal to or greater than the width W1 of the first portion A1. Therefore, even when magnetic saturation occurs in the short-circuit path including the first portion A1, the reverse magnetic flux reaching the permanent magnet 20 can be reduced.
  • the motor of the sixth embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the outer end side 12a of the gap 12 and the convex portion 33 form a first portion A1 having a narrow width W1, and a second portion having a width W2 wider on the permanent magnet 20 side than the first portion A1.
  • A2 is formed. Therefore, a short-circuit path passing through the first portion A1 is formed. Since at least a part of the first portion A1 is located radially outside the reference line L1, the reverse magnetic flux flowing through the short-circuit path is unlikely to go toward the permanent magnet 20. Therefore, as in the first embodiment, the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • FIG. 16A is a diagram showing the rotor 1F of the seventh embodiment.
  • the rotor 1F of the seventh embodiment has a convex portion 43 protruding from the end side portions 123 and 124 of the inner end side 12b of the gap 12 instead of the convex portion 33 of the sixth embodiment.
  • FIG. 16B is an enlarged view of a part of the rotor 1F of the seventh embodiment.
  • the void 12 has an outer end side 12a, an inner end side 12b, and a peripheral end side 12c. Further, the outer end side 12a has end side portions 121 and 122, and the inner end side 12b has end side portions 123 and 124.
  • the end side portion 121 of the outer end side 12a extends radially outward from the end of the outer end side 11a of the magnet insertion hole 11 with respect to the outer end side 11a. ..
  • the end side portion 122 of the outer end side 12a extends from the end of the end side portion 121 so as to be inclined with respect to the end side portion 121.
  • the end side portions 123 and 124 of the inner end side 12b are formed with convex portions 43 protruding toward the end side portion 122 of the outer end side 12a.
  • the convex portion 43 has a tip 43a facing the outer end side 12a, a side end 43b facing the peripheral end side 12c of the gap 12, and a side end 43c facing the end face 20c of the permanent magnet 20.
  • the entire tip 43a of the convex portion 43 is located radially outside the reference line L1 which is an extension of the magnetic pole surface 20a of the permanent magnet 20. Further, here, the side end 43b extends parallel to the end sides 11a and 11b of the magnet insertion hole 11, and the side end 43c extends parallel to the end face 20c of the permanent magnet 20.
  • the protrusion 15 formed on the inner end side 12b reaches the end side portion 124 of the inner end side 12b, similarly to the protrusion 15 (FIG. 11B) of the second embodiment.
  • the protrusion 14 (FIG. 3) described in the first embodiment may be formed.
  • the region between the outer edge 12a of the gap 12 and the tip 43a of the convex portion 43 is defined as the first portion A1.
  • the width of the first portion A1 that is, the shortest distance between the outer edge 12a of the gap 12 and the tip 43a of the convex portion 43 is the width W1.
  • the region between the end edge portion 121 of the outer end edge 12a and the tip end 15a of the protrusion 15 is defined as the second portion A2.
  • the width of the second portion A2 is the width W2 (> W1).
  • the void 12 includes a first portion A1 having a width W1 and a second portion A2 having a width W2 wider than the width W1, and the second portion A2 is located closer to the permanent magnet 20 than the first portion A1. do.
  • the entire first portion A1 of the gap 12 is located radially outside the reference line L1.
  • the reverse magnetic flux from the stator 5 flows in the direction away from the permanent magnet 20 via the short-circuit path passing through the first portion A1.
  • the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • a third portion A3 having a width W3 wider than the width W1 is provided on the outer circumference 10a side of the first portion A1.
  • the width W3 is the shortest distance between the outer edge 12a and the inner edge 12b on the outer circumference 10a side of the first portion A1.
  • the distance D1 from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is equal to or greater than the width W1 of the first portion A1. Therefore, even when magnetic saturation occurs in the short-circuit path including the first portion A1, the reverse magnetic flux reaching the permanent magnet 20 can be reduced.
  • the motor of the seventh embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the end side portion 121 of the outer end side 12a is inclined with respect to the outer end side 11a of the magnet insertion hole 11, but the outer end of the magnet insertion hole 11 is the same as the end side portion 121 of the first embodiment. It may be parallel to the side 11a.
  • the outer end side 12a of the gap 12 and the convex portion 43 form a first portion A1 having a narrow width W1, and a second portion having a width W2 wider on the permanent magnet 20 side than the first portion A1.
  • A2 is formed. Therefore, a short-circuit path passing through the first portion A1 is formed. Since the entire first portion A1 is located radially outside the reference line L1, the reverse magnetic flux flowing through the short-circuit path is more difficult to reach by the permanent magnet 20, and the effect of suppressing demagnetization of the permanent magnet 20 is suppressed. Can be enhanced.
  • FIG. 17A is a diagram showing the rotor 1G of the eighth embodiment.
  • the convex portion 13 is not formed on the inner end side 12b of the gap 12, and the convex portion 18 is formed on the outer end side 12a.
  • FIG. 17B is an enlarged view of a part of the rotor 1G of the eighth embodiment.
  • the void 12 has an outer end side 12a, an inner end side 12b, and a peripheral end side 12c. Further, the outer end side 12a has end side portions 121 and 122, and the inner end side 12b has end side portions 123 and 124.
  • the convex portion 18 of the eighth embodiment extends from the end side portion 122 of the outer end side 12a toward the end side portion 124 of the inner end side 12b.
  • the convex portion 18 has a tip 18a facing the inner end side 12b, a side end 18b facing the peripheral end side 12c, and a side end 18c facing the end face 20c of the permanent magnet 20. At least a part of the tip 18a is located radially outside the reference line L1 described above.
  • the region between the inner end side 12b of the gap 12 and the tip 18a of the convex portion 18 is defined as the first portion A1.
  • the width of the first portion A1 that is, the shortest distance between the inner end side 12b of the gap 12 and the tip 18a of the convex portion 18, is the width W1.
  • the region between the end edge portion 121 of the outer end edge 12a and the tip end 14a of the protrusion 14 is defined as the second portion A2.
  • the width of the second portion A2 is the width W2 (> W1).
  • the void 12 includes a first portion A1 having a width W1 and a second portion A2 having a width W2 wider than the width W1, and the second portion A2 is located closer to the permanent magnet 20 than the first portion A1. do.
  • the entire first portion A1 of the gap 12 is located radially outside the reference line L1.
  • the reverse magnetic flux from the stator 5 flows in the direction away from the permanent magnet 20 via the short-circuit path passing through the first portion A1.
  • the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • a third portion A3 having a width W3 wider than the width W1 is provided on the outer circumference 10a side of the first portion A1.
  • the width W3 is the shortest distance between the outer edge 12a and the inner edge 12b on the outer circumference 10a side of the first portion A1.
  • the distance D1 from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is equal to or greater than the width W1 of the first portion A1. Therefore, even when magnetic saturation occurs in the short-circuit path including the first portion A1, the reverse magnetic flux reaching the permanent magnet 20 can be reduced.
  • the motor of the eighth embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the convex portion 18 and the inner end side 12b of the gap 12 form a first portion A1 having a narrow width W1 and a second portion having a width W2 wider on the permanent magnet 20 side than the first portion A1.
  • A2 is formed. Therefore, a short-circuit path passing through the first portion A1 is formed. Since at least a part of the first portion A1 is located radially outside the reference line L1, the reverse magnetic flux flowing through the short-circuit path is unlikely to go toward the permanent magnet 20. Therefore, the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • FIG. 18A is a diagram showing the rotor 1H of the ninth embodiment.
  • the end sides 19a and 19b of the magnet insertion hole 19 have a curved shape.
  • the rotor core 10 of the rotor 1H is formed with an arc-shaped magnet insertion hole 19 whose circumferential center is convex toward the inner peripheral side.
  • One permanent magnet 20 is arranged in one magnet insertion hole 19.
  • One magnet insertion hole 19 constitutes one magnetic pole.
  • the circumferential center of the magnet insertion hole 19 corresponds to the polar center P.
  • the magnet insertion hole 19 has an outer end side 19a on the outer side in the radial direction and an inner end side 19b on the inner side in the radial direction.
  • the outer edge 19a is also referred to as the outer edge of the insertion hole.
  • the inner edge 19b is also referred to as the inner edge of the insertion hole.
  • Both the end sides 19a and 19b are formed in an arc shape whose center in the circumferential direction is convex toward the inner peripheral side.
  • Both the magnetic pole surfaces 20a and 20b of the permanent magnet 20 are formed in an arc shape whose circumferential center is convex toward the inner peripheral side, similarly to the magnet insertion hole 19.
  • the reference line L1 is defined by an arc which is an extension of the magnetic pole surface 20a.
  • the gap 12 extends from the circumferential end of the magnet insertion hole 19 toward the outer circumference 10a of the rotor core 10. As described in the first embodiment, the gap 12 has an outer end side 12a, an inner end side 12b, and a peripheral end side 12c.
  • FIG. 18B is an enlarged view of a part of the rotor 1H of the ninth embodiment.
  • the outer end side 12a of the gap 12 includes an end side portion 121 located on an extension line (arc) of the outer end side 19a of the magnet insertion hole 19 and an end extending from the end of the end side portion 121 toward the outer circumference 10a. It has a side portion 122 and.
  • the inner end 12b of the gap 12 includes an end 123 located on an extension line (arc) of the outer end 19a of the magnet insertion hole 19 and an end extending from the end of the end 123 toward the outer circumference 10a. It has a side portion 124.
  • a protrusion 14 for positioning the permanent magnet 20 is formed on the end side portion 123 of the inner end side 12b.
  • the end edge portion 124 of the inner end edge 12b is formed with a convex portion 13 projecting toward the end edge portion 122 of the outer end side 12a. At least a part of the tip 13a of the convex portion 13 is located radially outside the reference line L1.
  • the region between the outer edge 12a of the gap 12 and the tip 13a of the convex portion 13 is defined as the first portion A1.
  • the width of the first portion A1 that is, the shortest distance between the outer edge 12a of the gap 12 and the tip 13a of the convex portion 13, is the width W1.
  • the region between the end edge portion 121 of the outer end edge 12a and the tip end 14a of the protrusion 14 is defined as the second portion A2.
  • the width of the second portion A2 is the width W2 (> W1).
  • the void 12 has a first portion A1 having a width W1 and a second portion A2 having a width W2 wider than the width W1, and the second portion A2 is closer to the permanent magnet 20 than the first portion A1.
  • At least a part of the first portion A1 of the gap 12 is located radially outside the arcuate reference line L1.
  • the reverse magnetic flux from the stator 5 flows in the direction away from the permanent magnet 20 via the short-circuit path passing through the first portion A1.
  • the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • a third portion A3 having a width W3 wider than the width W1 is provided on the outer circumference 10a side of the first portion A1.
  • the width W3 is the shortest distance between the outer edge 12a and the inner edge 12b on the outer circumference 10a side of the first portion A1.
  • the distance D1 from the end face 20c of the permanent magnet 20 to the first portion A1 of the gap 12 is equal to or more than the width W1 of the first portion A1 as in the first embodiment. Therefore, even when magnetic saturation occurs in the short-circuit path including the first portion A1, the reverse magnetic flux reaching the permanent magnet 20 can be reduced.
  • the motor of the ninth embodiment is configured in the same manner as the motor 100 of the first embodiment.
  • the first portion A1 having a narrow width W1 is formed between the outer end side 12a of the gap 12 and the convex portion 13.
  • the second portion A2 having a width W2 is formed on the permanent magnet 20 side of the first portion A1. Therefore, a short-circuit path passing through the first portion A1 is formed. Since at least a part of the first portion A1 is located radially outside the reference line L1, the reverse magnetic flux flowing through the short-circuit path is unlikely to go toward the permanent magnet 20. Therefore, as in the first embodiment, the reverse magnetic flux reaching the permanent magnet 20 can be reduced, and the demagnetization of the permanent magnet 20 can be suppressed.
  • the magnet insertion holes 11 of the second, third, fifth to eighth embodiments may be V-shaped like the magnet insertion holes 17 of the fourth embodiment, or may be V-shaped like the magnet insertion holes 19 of the ninth embodiment. It may have a curved shape.
  • the protrusion 15 of the second embodiment may be provided instead of the protrusion 14.
  • the concave portion 125 of the third embodiment may be provided in the gaps 12 of the second and fourth to ninth embodiments.
  • the combination is not limited to these, and other combinations of the first to ninth embodiments are also possible.
  • FIG. 19 is a vertical cross-sectional view showing a compressor 300 to which the motors of the first to ninth embodiments can be applied.
  • the compressor 300 is a rotary compressor, and is used, for example, in an air conditioner 400 (FIG. 20).
  • the compressor 300 includes a compression mechanism unit 310, a motor 100 for driving the compression mechanism unit 310, a shaft 25 for connecting the compression mechanism unit 310 and the motor 100, and a closed container 301 for accommodating these.
  • the closed container 301 is a container made of a steel plate, and has a cylindrical shell and an upper part of the container that covers the upper part of the shell.
  • the stator 5 of the motor 100 is incorporated inside the shell of the closed container 301 by shrink fitting, press fitting, welding, or the like.
  • a discharge pipe 307 for discharging the refrigerant to the outside and a terminal 305 for supplying electric power to the motor 100 are provided on the upper part of the closed container 301. Further, an accumulator 302 for storing the refrigerant gas is attached to the outside of the closed container 301. Refrigerating machine oil that lubricates the bearing portion of the compression mechanism portion 310 is stored in the bottom portion of the closed container 301.
  • the compression mechanism unit 310 includes a cylinder 311 having a cylinder chamber 312, a rolling piston 314 fixed to a shaft 25, a vane that divides the inside of the cylinder chamber 312 into a suction side and a compression side, and both ends in the axial direction of the cylinder chamber 312. It has an upper frame 316 and a lower frame 317 that close the frame.
  • Both the upper frame 316 and the lower frame 317 have a bearing portion that rotatably supports the shaft 25.
  • An upper discharge muffler 318 and a lower discharge muffler 319 are attached to the upper frame 316 and the lower frame 317, respectively.
  • the cylinder 311 is provided with a cylindrical cylinder chamber 312 centered on the axis C1.
  • An eccentric shaft portion 25a of the shaft 25 is located inside the cylinder chamber 312.
  • the eccentric shaft portion 25a has a center eccentric with respect to the axis C1.
  • a rolling piston 314 is fitted on the outer circumference of the eccentric shaft portion 25a.
  • the cylinder 311 is formed with a suction port 313 for sucking the refrigerant gas in the cylinder chamber 312.
  • a suction pipe 303 communicating with the suction port 313 is attached to the closed container 301, and refrigerant gas is supplied from the accumulator 302 to the cylinder chamber 312 via the suction pipe 303.
  • a low-pressure refrigerant gas and a liquid refrigerant are mixedly supplied to the compressor 300 from the refrigerant circuit of the air conditioner 400 (FIG. 20), but when the liquid refrigerant flows into the compression mechanism unit 310 and is compressed. , It causes a failure of the compression mechanism unit 310. Therefore, the accumulator 302 separates the liquid refrigerant and the refrigerant gas, and supplies only the refrigerant gas to the compression mechanism unit 310.
  • refrigerant for example, R410A, R407C, R22, etc. may be used, but from the viewpoint of preventing global warming, it is desirable to use a refrigerant having a low GWP (global warming potential).
  • the low GWP refrigerant for example, the following refrigerants can be used.
  • the GWP of HFO-1234yf is 4.
  • a hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene) may be used.
  • the GWP of R1270 is 3, which is lower than HFO-1234yf but higher in flammability than HFO-1234yf.
  • a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition for example, a mixture of HFO-1234yf and R32.
  • the operation of the compressor 300 is as follows.
  • the refrigerant gas supplied from the accumulator 302 is supplied into the cylinder chamber 312 of the cylinder 311 through the suction pipe 303.
  • the shaft 25 rotates together with the rotor 1.
  • the rolling piston 314 fitted to the shaft 25 rotates eccentrically in the cylinder chamber 312, and the refrigerant is compressed in the cylinder chamber 312.
  • the compressed refrigerant passes through the discharge mufflers 318 and 319, and further rises in the closed container 301 through the holes 102 and 103 provided in the motor 100, and is discharged from the discharge pipe 307.
  • the motor 100 described in each embodiment has high motor efficiency due to the suppression of demagnetization of the permanent magnet 20. Therefore, by using the motor 100 of any of the embodiments as the drive source of the compressor 300, the operating efficiency of the compressor 300 can be improved.
  • FIG. 19 is a diagram showing the configuration of the air conditioner 400.
  • the air conditioner 400 includes a compressor 401, a condenser 402, a throttle device (decompression device) 403, and an evaporator 404.
  • the compressor 401, the condenser 402, the throttle device 403, and the evaporator 404 are connected by a refrigerant pipe 407 to form a refrigeration cycle. That is, the refrigerant circulates in the order of the compressor 401, the condenser 402, the drawing device 403, and the evaporator 404.
  • the compressor 401, the condenser 402, and the drawing device 403 are provided in the outdoor unit 410.
  • the compressor 401 is composed of the compressor 300 shown in FIG.
  • the outdoor unit 410 is provided with an outdoor blower 405 that supplies outdoor air to the condenser 402.
  • the evaporator 404 is provided in the indoor unit 420.
  • the indoor unit 420 is provided with an indoor blower 406 that supplies indoor air to the evaporator 404.
  • the operation of the air conditioner 400 is as follows.
  • the compressor 401 compresses and sends out the sucked refrigerant.
  • the condenser 402 exchanges heat between the refrigerant flowing in from the compressor 401 and the outdoor air, condenses the refrigerant, liquefies it, and sends it out to the refrigerant pipe 407.
  • the outdoor blower 405 supplies outdoor air to the condenser 402.
  • the throttle device 403 adjusts the pressure of the refrigerant flowing through the refrigerant pipe 407 by changing the opening degree.
  • the evaporator 404 exchanges heat between the refrigerant reduced to a low pressure by the throttle device 403 and the air in the room, causes the refrigerant to take away the heat of the air, evaporate (vaporize) it, and send it to the refrigerant pipe 407.
  • the indoor blower 406 supplies indoor air to the evaporator 404. As a result, the cold air whose heat has been taken away by the evaporator 404 is supplied to the room.
  • the air conditioner 400 has a compressor 401 whose operating efficiency is improved by applying the motor 100 described in each embodiment. Therefore, the operating efficiency of the air conditioner 400 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Compressor (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

ロータは、軸線を中心とする周方向に延在する外周と、軸線を中心とする径方向において外周よりも内側に位置する磁石挿入孔と、磁石挿入孔の周方向の端部につながる空隙とを有するロータコアと、磁石挿入孔に配置され、径方向の外側に磁極面を有する永久磁石とを有する。磁石挿入孔は、径方向の外側に位置する挿入孔外側端辺と、径方向の内側に位置する挿入孔内側端辺とを有する。空隙は、挿入孔外側端辺の周方向の端部から外周に向けて延在する外側端辺と、外側端辺に対向する内側端辺とを有する。空隙は、外側端辺と内側端辺とが幅W1を隔てて対向する第1部分と、外側端辺と内側端辺とが幅W1よりも広い幅W2を隔てて対向する第2部分とを有する。第2部分は、第1部分と永久磁石との間に位置している。第1部分の少なくとも一部は、軸線に直交する面内で磁極面を延長した基準線に対して、径方向の外側に位置している。

Description

ロータ、モータ、圧縮機および空気調和装置
 本開示は、ロータ、モータ、圧縮機および空気調和装置に関する。
 永久磁石埋込型のロータでは、ロータコアに形成された磁石挿入孔内に永久磁石が配置されている。磁石挿入孔の両側には、永久磁石を位置決めするための突起が設けられている(例えば、特許文献1参照)。
特開2009-247131号公報(図1参照)
 一方、モータの負荷が大きい場合など、ステータコイルに大きな電流が流れた場合には、ステータからの磁束によって永久磁石の減磁が生じる場合がある。上述した突起を設けると、ステータからの磁束が突起を経由して永久磁石に流れやすくなり、永久磁石の減磁が生じやすくなる。
 本開示は、上記の課題を解決するためになされたものであり、永久磁石の減磁を抑制することを目的とする。
 本開示のロータは、軸線を中心とする周方向に延在する外周と、軸線を中心とする径方向において外周よりも内側に位置する磁石挿入孔と、磁石挿入孔の周方向の端部につながる空隙とを有するロータコアと、磁石挿入孔に配置され、径方向の外側に磁極面を有する永久磁石とを有する。磁石挿入孔は、径方向の外側に位置する挿入孔外側端辺と、径方向の内側に位置する挿入孔内側端辺とを有する。空隙は、挿入孔外側端辺の周方向の端部から外周に向けて延在する外側端辺と、外側端辺に対向する内側端辺とを有する。空隙は、外側端辺と内側端辺とが幅W1を隔てて対向する第1部分と、外側端辺と内側端辺とが幅W1よりも広い幅W2を隔てて対向する第2部分とを有する。第2部分は、第1部分と永久磁石との間に位置している。第1部分の少なくとも一部は、軸線に直交する面内で磁極面を延長した基準線に対して、径方向の外側に位置している。
 本開示によれば、空隙のうち幅W1の狭い第1部分を通るステータ磁束の短絡経路が形成される。第1部分が永久磁石の磁極面よりも外周側に位置しているため、短絡経路を流れた磁束が永久磁石に到達しにくい。そのため、永久磁石の減磁を抑制することができる。
実施の形態1のモータを示す断面図である。 実施の形態1のロータを示す断面図である。 実施の形態1のロータの一部を拡大して示す断面図である。 比較例1のロータを示す断面図である。 比較例1のロータにおける逆磁束の流れを示す図である。 比較例2のロータを示す断面図である。 比較例2のロータにおける逆磁束の流れを示す図である。 実施の形態1のロータにおける逆磁束の流れを示す図である。 実施の形態1、比較例1および比較例2における減磁特性を比較して示す図である。 空隙の第1部分の幅W1と、ステータのコイルに鎖交する磁束量との関係を示すグラフである。 実施の形態2のロータを示す断面図(A)およびロータの一部を拡大して示す断面図(B)である。 実施の形態3のロータを示す断面図(A)およびロータの一部を拡大して示す断面図(B)である。 実施の形態4のロータを示す断面図(A)およびロータの一部を拡大して示す断面図(B)である。 実施の形態5のロータを示す断面図(A)およびロータの一部を拡大して示す断面図(B)である。 実施の形態6のロータを示す断面図(A)およびロータの一部を拡大して示す断面図(B)である。 実施の形態7のロータを示す断面図(A)およびロータの一部を拡大して示す断面図(B)である。 実施の形態8のロータを示す断面図(A)およびロータの一部を拡大して示す断面図(B)である。 実施の形態9のロータを示す断面図(A)およびロータの一部を拡大して示す断面図(B)である。 各実施の形態のモータが適用可能な圧縮機を示す断面図である。 図19の圧縮機を有する空気調和装置を示す図である。
実施の形態1.
<モータの構成>
 まず、実施の形態1のモータ100について説明する。図1は、実施の形態1のモータ100を示す横断面図である。モータ100は、ロータ1に永久磁石20が埋め込まれた永久磁石埋込型モータであり、例えば圧縮機300(図19)に用いられる。
 モータ100は、回転可能なロータ1と、ロータ1を囲むように設けられたステータ5とを有する。ステータ5とロータ1との間には、例えば0.3~1.0mmのエアギャップが形成されている。ステータ5は、圧縮機300の一部である円筒状のシェル6に固定されている。
 以下では、ロータ1の回転軸である軸線C1の方向を、「軸方向」と称する。軸線C1を中心とする周方向(図1に矢印R1で示す)を、「周方向」と称する。軸線C1を中心とする半径方向を、「径方向」と称する。
<ステータの構成>
 ステータ5は、ステータコア50と、ステータコア50に取り付けられた絶縁部54と、絶縁部54を介してステータコア50に巻き付けられたコイル55とを有する。
 ステータコア50は、鋼板を軸方向に積層し、カシメ等により固定したものである。鋼板は、例えば電磁鋼板である。鋼板の板厚は、例えば0.1~0.7mmであり、ここでは0.35mmである。
 ステータコア50は、軸線C1を中心とする環状のヨーク51と、ヨーク51から径方向内側に延在する複数のティース52とを有する。ヨーク51の外周は、シェル6の内側に固定されている。
 ティース52は、周方向に一定間隔で形成されている。ティース52の数は、ここでは9であるが、2以上であればよい。隣り合うティース52の間には、コイル55を収容するスロット53が形成される。
 ステータコア50は、ティース52毎に分割された複数の分割コア50Aを有する。分割コア50Aの数は、例えば9である。これらの分割コア50Aは、ヨーク51に形成された分割面58で接合され、周方向に連結されている。なお、ステータコア50は、複数の分割コア50Aを連結した構成に限定されるものではない。
 絶縁部54は、ステータコア50とコイル55との間に設けられる。絶縁部54は、例えば、ステータコア50の軸方向端部に配置されたインシュレータと、スロット53の内面に配置された絶縁フィルムとで構成される。
 インシュレータは、ポリブチレンテレフタレート(PBT)等の樹脂で形成される。絶縁フィルムは、ポリエチレンテレフタレート(PET)等の樹脂で形成され、厚さは0.1~0.2mmである。但し、絶縁部54はこのような構成に限らず、ステータコア50とコイル55とを絶縁できるものであればよい。
 コイル55は、例えばマグネットワイヤで構成され、絶縁部54を介してティース52に巻き付けられている。コイル55の線径は、例えば0.8mmである。コイル55は、各ティース52に、集中巻により例えば70ターン巻かれている。なお、コイル55の線径およびターン数は、要求される回転数、トルク、印加電圧あるいはスロット53の断面積に応じて決定される。
 ヨーク51には、カシメ部56a,56bが形成されている。カシメ部56a,56bは、ステータコア50を構成する複数の鋼板を軸方向に固定するものである。カシメ部56aは、ティース52の周方向中心を通る径方向の直線上に形成され、カシメ部56bは、当該直線を挟んで周方向に対称な2箇所に形成されている。但し、カシメ部56a,56bの数および配置は、適宜変更することができる。
 ヨーク51の外周には、凹部57が形成されている。凹部57とシェル6との間には、圧縮機300における冷媒の通路が形成される。
<ロータの構成>
 ロータ1は、円筒状のロータコア10と、ロータコア10に取り付けられた永久磁石20と、ロータコア10の中央部に固定されたシャフト25とを有する。シャフト25の中心軸線は、上述した軸線C1である。ロータコア10は、外周10aと内周10bとを有する。外周10aおよび内周10bはいずれも、軸線C1を中心とする環状である。
 ロータコア10は、鋼板を軸方向に積層し、カシメ等で一体化したものである。鋼板は、例えば電磁鋼板である。鋼板の板厚は、例えば0.1~0.7mmであり、ここでは0.35mmである。ロータコア10の内周10bには、シャフト25が焼嵌または圧入によって固定されている。
 ロータコア10の外周10aに沿って、複数の磁石挿入孔11が形成されている。複数の磁石挿入孔11は、周方向に等間隔に形成されている。磁石挿入孔11は、ロータコア10の軸方向の一端から他端まで達している。磁石挿入孔11は、軸線C1に直交する面内で直線状に延在している。但し、磁石挿入孔11は、V字状、あるいは湾曲形状であってもよい(図13(A)および図18(A)参照)。
 各磁石挿入孔11には、永久磁石20が1つずつ配置されている。各磁石挿入孔11は、1磁極に相当する。磁石挿入孔11の数は、ここでは6であり、従って磁極数は6である。但し、磁極数は6に限定されるものではなく、2以上であればよい。周方向に隣り合う永久磁石20は、径方向外側に、互いに反対の極を有する。
 永久磁石20は、平板状の部材であり、ロータコア10の周方向に幅を有し、径方向に厚さを有する。永久磁石20の厚さは、例えば2mmである。永久磁石20は、例えば、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を含有するネオジウム希土類磁石で構成されている。永久磁石20は、厚さ方向に着磁されている。
 ネオジウム希土類磁石は、温度上昇と共に保磁力が低下する性質を有する。モータ100が圧縮機300に用いられる場合、永久磁石20の温度は100℃以上に達し、保磁力は温度に応じて-0.5~-0.6%/Kの低下率で低下する。そのため、永久磁石20にディスプロシウム(Dy)を添加して、保磁力を向上してもよい。
 但し、Dyを添加すると、永久磁石20の残留磁束密度が低下する。残留磁束密度が低下すると、モータ100のマグネットトルクが低下し、所望のトルクを発生するために必要な電流が増加し、その結果、銅損が増加する。モータ効率向上のためには、Dyの添加量をできるだけ少なくすることが望ましい。
 磁石挿入孔11の径方向内側には、冷媒の通路となる穴部102,103が形成されている。穴部102は極中心に対応する位置に形成され、穴部103は極間に対応する位置に形成されている。但し、穴部102,103の配置は、適宜変更することができる。
 図2は、ロータ1の1磁極に対応する領域、すなわち1つの磁石挿入孔11を含む領域を示す図である。磁石挿入孔11の周方向の中心は、極中心Pである。極中心Pを通る径方向の直線を、磁極中心線と称する。隣り合う磁極の間は、極間Mである。
 磁石挿入孔11は、磁極中心線に直交する方向に延在している。永久磁石20は、径方向外側の磁極面20aと、径方向内側の磁極面20bと、周方向両側の端面20cとを有する。磁極面20aは第1磁極面とも称し、磁極面20bは第2磁極面とも称する。
 磁極面20a,20bは、いずれも磁極中心線に直交する方向に延在している。軸線C1に直交する面内における磁極面20aの延長線を、基準線L1と定義する。基準線L1は、実施の形態1では直線であるが、直線に限定されるものではない(図18(A)参照)。
 磁石挿入孔11は、径方向外側の外側端辺11aと、径方向内側の内側端辺11bとを有する。外側端辺11aは、挿入孔外側端辺とも称する。内側端辺11bは、挿入孔内側端辺とも称する。磁石挿入孔11の外側端辺11aは永久磁石20の磁極面20aに対向し、磁石挿入孔11の内側端辺11bは永久磁石20の磁極面20bに対向している。
 磁石挿入孔11の周方向両側には、空隙12が形成されている。空隙12は、隣り合う磁極間の磁束の漏れを抑制するために設けられる。
 また、磁石挿入孔11の周方向両側には、永久磁石20の端面20cに当接する突起14が形成されている。突起14は、空隙12の後述する内側端辺12bの端辺部123(図3)に、永久磁石20の端面20cに当接するように形成されている。
 突起14は、径方向外側の先端14aと、永久磁石20の端面20cに当接する側端14bと、側端14bと反対側の側端14cとを有する。突起14の側端14bが永久磁石20の端面20cに当接することにより、永久磁石20が磁石挿入孔11内で移動しないように位置決めされる。
 図3は、ロータ1の一部を拡大して示す図である。磁石挿入孔11の径方向外側には、スリット101が形成されている。スリット101は、ロータコア10の外周10aに沿って延在する辺111と、磁石挿入孔11に沿って延在する辺112と、径方向外側ほど極中心Pに近付くように傾斜した辺113,114とを有する。各磁極には、極中心Pに対して対称な2つのスリット101(図2)が形成されている。
 スリット101は、永久磁石20からステータ5に向かう磁束の分布を滑らかにし、トルク脈動を抑制するためのものである。但し、スリット101の数、配置および形状は任意である。また、ロータコア10は、必ずしもスリット101を有さなくても良い。
 次に、空隙12の具体的な形状について説明する。空隙12は、磁石挿入孔11の周方向端部とつながっている。永久磁石20が挿入されている部分が磁石挿入孔11であり、永久磁石20よりも周方向外側に位置する部分が空隙12である。
 空隙12は、磁石挿入孔11の周方向端部から基準線L1に沿って延在し、さらに、上述した基準線L1を超えて、径方向外側に、すなわちロータコア10の外周10aに向けて延在している。
 空隙12は、磁石挿入孔11の外側端辺11aの端部から延在する外側端辺12aと、磁石挿入孔11の内側端辺11bの端部から延在する内側端辺12bと、ロータコア10の外周10aに沿って延在する周端辺12cとを有する。
 外側端辺12aは、磁石挿入孔11の外側端辺11aの延長線上に位置する端辺部121と、端辺部121の終端から外周10aに向けて延在する端辺部122とを有する。端辺部121は、第1端辺部とも称する。端辺部122は、第2端辺部とも称する。
 内側端辺12bは、磁石挿入孔11の内側端辺11bの延長線上に位置する端辺部123と、端辺部123の終端から外周10aに向けて延在する端辺部124とを有する。端辺部123は、第1端辺部とも称する。端辺部124は、第2端辺部とも称する。
 外側端辺12aおよび内側端辺12bのうち、外側端辺12aは極中心Pに近い側に位置し、内側端辺12bは極間Mに近い側に位置する。
 外側端辺12aと内側端辺12bとは、対向している。より具体的には、外側端辺12aの端辺部121と内側端辺12bの端辺部123とが対向し、外側端辺12aの端辺部122と内側端辺12bの端辺部124とが対向する。なお、端辺部121,123は互いに平行であり、端辺部122,124は互いに平行であるが、必ずしも平行である必要はない。
 周端辺12cは、外側端辺12aの径方向外側の端部と、内側端辺12bの径方向外側の端部とをつないでいる。周端辺12cとロータコア10の外周10aとの間には、薄肉部が形成される。薄肉部の幅は、隣り合う磁極間の漏れ磁束を抑制するため、できるだけ狭いことが望ましい。ここでは、薄肉部の幅を、ロータコア10の鋼板の板厚と同じとしている。
 内側端辺12bには、外側端辺12aに向けて突出する凸部13が形成されている。ここでは、凸部13は、内側端辺12bの端辺部124から、外側端辺12aの端辺部122に向けて突出している。凸部13は、空隙12の外側端辺12aに対向する先端13aと、周端辺12cに対向する側端13bと、永久磁石20の端面20cに対向する側端13cとを有する。
 凸部13の先端13aの一部は、基準線L1よりも径方向外側に位置している。但し、凸部13の先端13aの全部が基準線L1よりも径方向外側に位置していてもよい。すなわち、凸部13の先端13aの少なくとも一部が基準線L1よりも径方向外側に位置していればよい。
 空隙12の外側端辺12aと凸部13の先端13aとの間の領域を、第1部分A1と定義する。第1部分A1は、ここでは、外側端辺12aの端辺部122と、凸部13の先端13aとの間の領域である。第1部分A1の幅、すなわち空隙12の外側端辺12aと凸部13の先端13aとの最短距離を、幅W1とする。
 空隙12のうち、第1部分A1よりも永久磁石20側で、外側端辺12aと内側端辺12bとの距離が最短になる領域は、外側端辺12aの端辺部121と突起14の先端14aとの領域である。この領域を、第2部分A2と定義する。第2部分A2の幅、すなわち空隙12の外側端辺12aと突起14の先端14aとの最短距離を、幅W2とする。
 空隙12は、また、第1部分A1よりも外周10a側に、幅W1よりも広い幅W3を有する第3部分A3を有する。幅W3は、第1部分A1よりも外周10a側における外側端辺12aと内側端辺12bとの最短距離である。
 ここでは、幅W3は幅W2よりも広い(W2<W3)。但し、幅W2と幅W3とが等しくてもよい。
 すなわち、空隙12は、幅W1を有する第1部分A1と、幅W1よりも広い幅W2を有する第2部分A2と、幅W1よりも広い幅W3を有する第3部分A3とを含む。第2部分A2は、第1部分A1よりも永久磁石20側、すなわち第1部分A1と永久磁石20との間に位置する。第3部分A3は、第1部分A1よりも外周10a側、すなわち第1部分A1と外周10aとの間に位置する。
 空隙12の第1部分A1の一部は、基準線L1よりも外周10a側すなわち径方向外側に位置する。なお、空隙12の第1部分A1の全部が基準線L1よりも径方向外側に位置していてもよい。すなわち、第1部分A1の少なくとも一部が基準線L1よりも径方向外側に位置していればよい。
 永久磁石20の端面20cから空隙12の第1部分A1までの最短距離を、距離D1とする。この距離D1は、空隙12の第1部分A1の幅W1以上である(D1≧W1)。
<作用>
 ここで、実施の形態1と対比する比較例1,2について説明する。図4は、比較例1のロータ1Iを示す図である。比較例1のロータ1Iは、空隙12に凸部13(図2,3)が設けられていない点で、実施の形態1のロータ1と相違する。他の点では、比較例1のロータ1Iは、実施の形態1のロータ1と同様に構成されている。
 モータ100では、ステータ5のコイル55に通常運転時よりも大きな電流が流れる場合がある。例えば、モータ100の負荷が大きい場合、モータ100の動作がロックされた場合、モータ100の起動時、あるいはステータ5のコイル55が短絡した場合などである。
 ステータ5のコイル55に大きな電流が流れると、コイル55の電流によって発生した磁束が永久磁石20に作用する。永久磁石20に着磁方向と反対方向に流れる磁束を、逆磁束と称する。永久磁石20に逆磁束が流れると、永久磁石20の減磁が生じる可能性がある。
 特に、コイル55が集中巻で巻かれている場合、例えばU相のコイル55が巻かれたティース52から、その隣のV相のコイル55が巻かれたティース52に磁束が流れるというように、隣り合うティース52間で磁束の閉ループが生じる。そのため、両ティース52に対向するロータコア10の外周領域に、ステータ5からの逆磁束が流れ込み易い。
 図5は、ロータ1Iにおけるステータ5からの逆磁束の流れを示す図である。ロータコア10に流れ込んだ逆磁束は、少しでも磁気抵抗の小さい部分を流れようとするため、磁気抵抗の大きい磁石挿入孔11および空隙12を迂回し、ロータコア10の外周10aと空隙12との間の薄肉部に向かう。但し、薄肉部は磁路が狭いため、一定の磁束が流れると磁気飽和し、磁束が流れなくなる。磁石挿入孔11および空隙12は内側が空洞であるため磁気抵抗が大きいが、突起14が形成された部分では空隙12の幅が狭くなるため、局所的に磁気抵抗が小さくなる。
 そのため、ステータ5からの逆磁束は、矢印Fで示すように、突起14に集中して流れる。突起14は永久磁石20の端面20cに接しているため、突起14に逆磁束が集中すると、永久磁石20の端面20cに減磁が生じる。
 図6は、比較例2のロータ1Jを示す図である。比較例2のロータ1Jは、比較例1のロータ1I(図4,5)に対して、空隙12の外側端辺12aに突起9が設けられている点が異なる。突起9は突起14に向けて突出し、突起14と対向している。
 図7は、比較例2のロータ1Jにおけるステータ5からの逆磁束の流れを示す図である。比較例2のロータ1Jでは、空隙12の外側端辺12aに突起9が設けられており、ロータコア10の外周領域と突起9とが連続している。空隙12において突起9,14が対向する部分では、局所的に磁気抵抗が小さくなる。
 そのため、ステータ5からの逆磁束は、矢印Fで示すように、ロータコア10の外周領域から突起9を経由して突起14に流れる。突起14に逆磁束が集中すると、比較例1と同様に、永久磁石20の端面20cに減磁が生じる。また、突起9で磁気飽和が生じた場合には、突起9に近接する永久磁石20に磁束が流れ、永久磁石20の端面20cに減磁が生じる。
 図8は、実施の形態1のロータ1におけるステータ5からの逆磁束の流れを示す図である。実施の形態1では、空隙12は、幅W1を有する第1部分A1と、幅W2を有する第2部分A2とを含む。
 空隙12の第2部分A2は、第1部分A1よりも永久磁石20側で、最も幅の狭い部分である。また、第2部分A2の幅W2は、第1部分A1の幅W1よりも広い。言い換えると、空隙12において第1部分A1よりも永久磁石20側は、第1部分A1よりも幅が広く、従って磁気抵抗が大きい。
 そのため、矢印Fで示すように、ステータ5からの逆磁束は、ロータコア10の外周領域から空隙12の第1部分A1を経由して流れる。すなわち、第1部分A1を通る逆磁束の短絡経路が形成される。
 第1部分A1の少なくとも一部は、永久磁石20の磁極面20aを延長した基準線L1よりも径方向外側に位置する。そのため、第1部分A1を通る短絡経路を流れた逆磁束は、永久磁石20から離れる方向に向かう。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 一方、空隙12の第1部分A1を含む短絡経路で磁気飽和が生じた場合には、第1部分A1の周囲に磁束が流れやすくなる。そこで、永久磁石20の端面20cから空隙12の第1部分A1までの距離D1は、幅W1以上に設定されている。距離D1は、例えば1.5mmである。
 このように永久磁石20の端面20cから空隙12の第1部分A1までの距離D1を確保することにより、永久磁石20に磁束が到達しにくくなり、永久磁石20の減磁を抑制することができる。
 なお、ここでは空隙12に突起14を設けているが、突起14を設けない構成も可能である。その場合には、空隙12の外側端辺12aの端辺部121と内側端辺12bの端辺部123との最短距離が、幅W2となる。
<減磁特性>
 図9は、永久磁石20の減磁特性を、実施の形態1と比較例1,2とで比較して示すグラフである。横軸は、コイル55に流す電流の電流値を示す。縦軸は、永久磁石20の減磁率を示す。
 減磁率は、コイル55に鎖交する磁束量(鎖交磁束量)の減少率で表される。ここでは、コイル55に電流を流さずにロータ1を外部動力で回転させたときの鎖交磁束量を基準値とし、その基準値に対する鎖交磁束量の減少率を減磁率としている。そのため、減磁率は負の値となる。
 モータ100は140℃の雰囲気中に置かれているものとする。この温度は、モータ100が圧縮機300内で使用される場合の最高温度である。
 コイル55の電流値が小さい場合には、永久磁石20は減磁しないため、減磁率は0である。電流値が大きくなるにつれて、永久磁石20の減磁によりコイル55への鎖交磁束量が低下する。
 永久磁石20の減磁は、モータ100の出力低下につながり、圧縮機300あるいは空気調和装置400の性能低下の原因となる。また、コイル55への磁束の鎖交によって生じる誘起電圧が変化するため、モータ100の制御性に影響が及ぶ場合もある。
 一般に、モータ100の減磁率は1%以下に抑えることが求められている。そのため、モータ100を制御するインバータ回路には、減磁率が1%に達する前に電流を遮断するか電流遮断回路が設けられている。
 図9において、減磁率が1%となるときの電流値は、比較例1では14.7Aであり、比較例2では15.6Aであるのに対し、実施の形態1では17.0Aまで増加している。実施の形態1では、永久磁石20の減磁を生じさせずに、より大きな電流を流すことができるため、モータ効率を向上することができる。
 また、実施の形態1と比較例1,2とでコイル55に同じ電流を流す場合、実施の形態1では比較例1,2よりも永久磁石20の減磁が生じにくい。そのため、永久磁石20に添加するDy等の希土類元素の量を低減することができる。
 永久磁石20に含まれる希土類元素の含有量を低減し、より望ましくは0重量%とすることにより、永久磁石20の残留磁束密度を高くすることができる。これにより、マグネットトルクを大きくし、同一出力を発生するために必要な電流値を小さくすることができる。すなわち、コイル55で発生する銅損を低減し、モータ効率を向上することができる。
<空隙12の第1部分A1の幅W1の最適範囲>
 空隙12の第1部分A1を通る短絡経路にステータ5からの逆磁束を効率よく導くためには、第1部分A1の幅W1は狭い方が望ましい。一方、第1部分A1の幅W1が狭すぎると、永久磁石20から出た磁束が第1部分A1で短絡する可能性がある。すなわち、例えば磁極面20aから出た磁極が、第1部分A1を通って磁極面20bに戻ってしまう可能性がある。
 図10は、第1部分A1の幅W1と、コイル55への鎖交磁束量との関係を示すグラフである。横軸は、第1部分A1の幅W1を永久磁石20の厚さTで除算した値、すなわちW1/Tである。縦軸は、コイル55に電流を流していない状態でのコイル55への鎖交磁束量を示す。コイル55への鎖交磁束量は、W1/T=1の場合の鎖交磁束量を基準値とし、その基準値に対する変化率で表している。
 図10から、W1/Tが0.2未満の場合には、コイル55への鎖交磁束量が少ないことが分かる。これは、第1部分A1の幅W1が狭すぎることにより、第1部分A1において永久磁石20から出た磁束の短絡が生じたことによる。
 W1/Tが0.2以上に増加すると、コイル55への鎖交磁束量が増加し、一定値に収束する。但し、W1/Tが0.5を超えると、第1部分A1を含む短絡経路に逆磁束を導いて永久磁石20の減磁を抑制する作用が低下する。
 そのため、永久磁石20から出た磁束の短絡を抑制する効果と、永久磁石20の減磁を抑制する効果の両方を得るためには、W1/Tは、0.2≦W1/T≦0.5の範囲にあることが望ましい。
<実施の形態の効果>
 以上説明したように、実施の形態1のロータ1は、空隙12が、磁石挿入孔11の外側端辺11aの周方向端部から径方向外側に延在する外側端辺12aと、外側端辺12aに対向する内側端辺12bとを有する。また、空隙12の第1部分A1では、外側端辺12aと内側端辺12b(より具体的には凸部13の先端13a)とが幅W1を隔てて対向し、第2部分A2では、外側端辺12aと内側端辺12bとが幅W1よりも広い幅W2を隔てて対向する。第2部分A2は、第1部分A1と永久磁石20との間に位置する。第1部分A1の少なくとも一部は、永久磁石20の磁極面20aを延長した基準線L1に対して径方向外側に位置する。
 このように構成されているため、ステータ5からの逆磁束は、空隙12の第1部分A1を通る短絡経路を流れる。第1部分A1の少なくとも一部が基準線L1よりも径方向外側に位置しているため、短絡経路を流れた逆磁束は永久磁石20から離れる方向に向かう。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 また、第1部分A1よりも外周10a側すなわち径方向外側に、幅W1よりも広い幅W3を有する第3部分A3が設けられているため、空隙12と外周10aとの間の薄肉部の周方向の長さを長くすることができる。これにより、隣り合う磁極間の磁束漏れを抑制することができる。
 また、空隙12の内側端辺12bに凸部13が形成されているため、ロータコア10の外周領域と凸部13とが連続していない。そのため、ステータ5からの逆磁束が凸部13を経由して永久磁石20に流れにくく、永久磁石20の減磁を抑制する効果を高めることができる。
 また、永久磁石20の周方向の端面20cから第1部分A1までの距離D1が、空隙12の第1部分A1の幅W1以上であるため、第1部分A1を含む短絡経路で磁気飽和が生じた場合であっても、逆磁束が永久磁石20まで到達しにくい。そのため、永久磁石20の減磁を抑制する効果を高めることができる。
 また、空隙12の第1部分A1の幅W1と永久磁石20の厚さTとが、0.2≦W1/T≦0.5を満足するため、永久磁石20から出た磁束の短絡を抑制しながら、永久磁石20の減磁を抑制することができる。
 また、空隙12に永久磁石20を位置決めするための突起14が設けられているため、磁石挿入孔11内での永久磁石20の移動を規制し、振動および騒音を抑制することができる。
実施の形態2.
 図11(A)は、実施の形態2のロータ1Aを示す図である。実施の形態2のロータ1Aでは、永久磁石20を位置決めする突起15の周方向長さが、実施の形態1の突起14の周方向長さよりも長い。
 空隙12の外側端辺12aの形状は、実施の形態1と同様である。空隙12の内側端辺12bには、突起15が形成されている。突起15は、径方向外側を向く先端15aと、永久磁石20の端面20cに当接する側端15bとを有する。
 図11(B)は、実施の形態2のロータ1Aの一部を拡大して示す図である。実施の形態1で説明したように、空隙12は、外側端辺12aと内側端辺12bと周端辺12cとを有する。また、外側端辺12aは端辺部121,122を有し、内側端辺12bは端辺部123,124を有する。
 突起15の先端15aは、外側端辺12aの端辺部121と平行に延在し、内側端辺12bの端辺部124まで延在している。すなわち、内側端辺12bの端辺部123は、突起15の先端15aによって構成されている。内側端辺12bの端辺部124は、端辺部123の終端から径方向外側に延在している。
 実施の形態1で説明したように、内側端辺12bの端辺部124には、外側端辺12aの端辺部122に向けて突出する凸部13が形成されている。凸部13の先端13aの少なくとも一部は、上述した基準線L1よりも径方向外側に位置している。
 外側端辺12aの端辺部122と凸部13の先端13aとの間の領域を、第1部分A1と定義する。第1部分A1の幅、すなわち空隙12の外側端辺12aと凸部13の先端13aとの最短距離を、幅W1である。外側端辺12aの端辺部121と突起15の先端15aとの間の領域を、第2部分A2と定義する。第2部分A2の幅は、幅W2(>W1)である。
 すなわち、空隙12は、幅W1を有する第1部分A1と、幅W1よりも広い幅W2を有する第2部分A2とを含み、第2部分A2は第1部分A1よりも永久磁石20側に位置する。第1部分A1の少なくとも一部は、基準線L1よりも径方向外側に位置する。
 そのためステータ5からの逆磁束は、第1部分A1を通る短絡経路を経由して、永久磁石20から離れる方向に流れる。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 また、空隙12の第1部分A1よりも径方向外側に、幅W1よりも広い幅W3を有する第3部分A3が設けられている。そのため、空隙12と外周10aとの間の薄肉部の周方向の長さを長くし、隣り合う磁極間の磁束漏れを抑制することができる。
 また、永久磁石20の端面20cから空隙12の第1部分A1までの距離D1は、第1部分A1の幅W1以上である。そのため、第1部分A1を含む短絡経路で磁気飽和が生じた場合であっても、永久磁石20に到達する逆磁束を低減することができる。
 その他の点においては、実施の形態2のモータは、実施の形態1のモータ100と同様に構成されている。
 この実施の形態2では、突起15の周方向長さが実施の形態1の突起14よりも長いため、突起15の強度が高い。そのため、実施の形態1の効果に加えて、モータ100の信頼性を向上することができる。
実施の形態3.
 図12(A)は、実施の形態3のロータ1Bを示す図である。実施の形態3のロータ1Bでは、空隙12の外周10a側が極中心Pに向かって突出した形状を有している。
 実施の形態3の空隙12の外側端辺12aは、極中心Pに向かって延在する凹形状部125を有する。凹形状部125は、凸部13よりも径方向外側に位置する。ここでは、凹形状部125の径方向外側の端辺は周端辺12cの延長線上にあり、凹形状部125の径方向内側の端辺は凸部13の側端13bの延長線上にある。
 図12(B)は、実施の形態3のロータ1Bの一部を拡大して示す図である。実施の形態1で説明したように、空隙12は、外側端辺12aと内側端辺12bと周端辺12cとを有する。また、外側端辺12aは端辺部121,122を有し、内側端辺12bは端辺部123,124を有する。内側端辺12bの端辺部123には、永久磁石20を位置決めするための突起14が形成されている。
 実施の形態1で説明したように、内側端辺12bの端辺部124には、外側端辺12aの端辺部122に向けて突出する凸部13が形成されている。凸部13の先端13aの少なくとも一部は、上述した基準線L1よりも径方向外側に位置している。
 外側端辺12aの端辺部122と凸部13の先端13aとの間の領域を、第1部分A1と定義する。第1部分A1の幅、すなわち空隙12の外側端辺12aと凸部13の先端13aとの最短距離は、幅W1である。外側端辺12aの端辺部121と突起14の先端14aとの間の領域を、第2部分A2と定義する。第2部分A2の幅は、幅W2(>W1)である。
 すなわち、空隙12は、幅W1を有する第1部分A1と、幅W1よりも広い幅W2を有する第2部分A2とを含み、第2部分A2は第1部分A1よりも永久磁石20側に位置する。第1部分A1の少なくとも一部は、基準線L1よりも径方向外側に位置する。
 そのため、ステータ5からの逆磁束は、第1部分A1を通る短絡経路を経由して、永久磁石20から離れる方向に流れる。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 空隙12は、また、第1部分A1よりも外周10a側に、幅W1よりも広い幅W3を有する第3部分A3を有する。幅W3は、第1部分A1よりも外周10a側における外側端辺12aと内側端辺12bとの最短距離である。
 実施の形態3では、外側端辺12aが第1部分A1よりも外周10a側に凹形状部125を有するため、空隙12の第3部分A3の幅W3は、第2部分A2の幅W2よりも広い。そのため、空隙12と外周10aとの間の薄肉部の周方向の長さを長くし、隣り合う磁極間の磁束漏れを抑制することができる。
 図12(A)に示すように、ロータコア10において2つの空隙12に挟まれたエリアは、永久磁石20に磁束が出入りするエリアである。このエリアの周方向幅を、磁極の開口幅とも称する。
 実施の形態3では、空隙12の外側端辺12aの凹形状部125の極中心P側への突出量を調整することにより、磁極の開口幅を適切な幅に設定することができる。これにより、磁束分布の高調波成分を低減してコギングトルクを低減し、これによりモータの騒音を低減することができる。
 また、永久磁石20の端面20cから空隙12の第1部分A1までの距離D1は、実施の形態1と同様、第1部分A1の幅W1以上である。そのため、そのため、第1部分A1を含む短絡経路で磁気飽和が生じた場合であっても、永久磁石20に到達する逆磁束を低減することができる。
 その他の点においては、実施の形態3のモータは、実施の形態1のモータ100と同様に構成されている。
 この実施の形態3では、空隙12の外側端辺12aが極中心P側に突出する凹形状部125を有するため、磁極の開口幅を適切な幅に設定することができる。そのため、実施の形態1の効果に加えて、モータの騒音を低減することができる。
 また、第3部分A3の幅W3が第2部分A2の幅W2よりも広いため、第3部分A3と外周10aとの間の薄肉部を長くすることができ、隣り合う磁極間の漏れ磁束を抑制する効果を高めることができる。
実施の形態4.
 図13(A)は、実施の形態4のロータ1Cを示す図である。実施の形態4のロータ1Cは、実施の形態1のロータ1の直線状の磁石挿入孔11の代わりに、V字形状の磁石挿入孔17を有する。
 ロータ1Cのロータコア10には、周方向中心が内周10b側に凸となるV字状の磁石挿入孔17が形成されている。1つの磁石挿入孔17には、2つの永久磁石20が配置されている。1つの磁石挿入孔17は、1磁極を構成する。磁石挿入孔17の周方向中心は、極中心Pに相当する。
 各永久磁石20は、径方向外側に磁極面20aを有し、径方向内側に磁極面20bを有する。軸線C1に直交する面内において、磁極面20aの延長線により、基準線L1が規定される。
 磁石挿入孔17は、径方向外側に位置する外側端辺17aと、径方向内側に位置する内側端辺17bとを有する。外側端辺17aは、挿入孔外側端辺とも称する。内側端辺17bは、挿入孔内側端辺とも称する。外側端辺17aは、周方向中心が内周10b側に凸となるV字状に延在する。
 磁石挿入孔17の内側端辺17bは、外側端辺17aと同様、周方向中心が内周10b側に凸となるV字状に延在する。内側端辺17bの周方向中心には、突起17cが形成されている。突起17cは、2つの永久磁石20の間に位置する。磁石挿入孔17の周方向両側には、空隙12が形成されている。
 図13(B)は、実施の形態4のロータ1Cの一部を拡大して示す図である。実施の形態1で説明したように、空隙12は、外側端辺12aと内側端辺12bと周端辺12cとを有する。また、外側端辺12aは端辺部121,122を有し、内側端辺12bは端辺部123,124を有する。
 内側端辺12bの端辺部123には、永久磁石20を位置決めするための突起14が形成されている。各永久磁石20は、突起17cと突起14とに挟まれて周方向に位置決めされる。
 実施の形態1で説明したように、内側端辺12bの端辺部124には、外側端辺12aの端辺部122に向けて突出する凸部13が形成されている。凸部13の先端13aの少なくとも一部は、基準線L1よりも径方向外側に位置している。
 外側端辺12aの端辺部122と凸部13の先端13aとの間の領域を、第1部分A1と定義する。第1部分A1の幅、すなわち空隙12の外側端辺12aと凸部13の先端13aとの最短距離は、幅W1である。外側端辺12aの端辺部121と突起14の先端14aとの間の領域を、第2部分A2と定義する。第2部分A2の幅は、幅W2(>W1)である。
 すなわち、空隙12は、幅W1を有する第1部分A1と、幅W1よりも広い幅W2を有する第2部分A2とを含み、第2部分A2は第1部分A1よりも永久磁石20側に位置する。第1部分A1の少なくとも一部は、基準線L1よりも径方向外側に位置する。
 そのためステータ5からの逆磁束は、第1部分A1を通る短絡経路を経由して、永久磁石20から離れる方向に流れる。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 また、空隙12の第1部分A1よりも径方向外側に、幅W1よりも広い幅W3を有する第3部分A3が設けられている。そのため、空隙12と外周10aとの間の薄肉部の周方向の長さを長くし、隣り合う磁極間の磁束漏れを抑制することができる。
 また、永久磁石20の端面20cから空隙12の第1部分A1までの距離D1は、実施の形態1と同様、第1部分A1の幅W1以上である。そのため、第1部分A1を含む短絡経路で磁気飽和が生じた場合に、永久磁石20に到達する逆磁束を低減することができる。
 その他の点においては、実施の形態4のモータは、実施の形態1のモータ100と同様に構成されている。
 この実施の形態4では、V字状の磁石挿入孔17に2つの永久磁石20が配置されたロータ1Cにおいて、空隙12の外側端辺12aと凸部13とによって幅W1の狭い第1部分A1が形成され、第1部分A1よりも永久磁石20側に幅W2の広い第2部分A2が形成される。そのため、第1部分A1を通る短絡経路が形成される。第1部分A1の少なくとも一部が基準線L1よりも径方向外側に位置しているため、短絡経路を経由した逆磁束が永久磁石20に向かいにくい。これにより、実施の形態1と同様、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
実施の形態5.
 図14(A)は、実施の形態5のロータ1Dを示す図である。実施の形態5のロータ1Dは、実施の形態1の凸部13の代わりに、空隙12の内側端辺12bの端辺部123から突出する凸部23を有する。
 図14(B)は、実施の形態5のロータ1Dの一部を拡大して示す図である。実施の形態1で説明したように、空隙12は、外側端辺12aと内側端辺12bと周端辺12cとを有する。また、外側端辺12aは端辺部121,122を有し、内側端辺12bは端辺部123,124を有する。内側端辺12bの端辺部123には、永久磁石20を位置決めするための突起14が形成されている。
 凸部23は、内側端辺12bの端辺部123から、空隙12の外側端辺12aに向けて突出している。凸部23は、空隙12の外側端辺12aに対向する先端23aと、外周10aに対向する側端23bと、永久磁石20に対向する側端23cとを有する。
 先端23aの少なくとも一部は、永久磁石20の磁極面20aの延長線である基準線L1よりも径方向外側に位置している。また、ここでは、凸部23の側端23b,23cは、永久磁石20の端面20cと平行に延在している。外周10a側の側端23bは、永久磁石20側の側端23cよりも長い。
 外側端辺12aの端辺部122と凸部23の先端23aとの間の領域を、第1部分A1と定義する。第1部分A1の幅、すなわち空隙12の外側端辺12aと凸部23の先端23aとの最短距離は、幅W1である。外側端辺12aの端辺部121と突起14の先端14aとの間の領域を、第2部分A2と定義する。第2部分A2の幅は、幅W2(>W1)である。
 すなわち、空隙12は、幅W1を有する第1部分A1と、幅W1よりも広い幅W2を有する第2部分A2とを含み、第2部分A2は第1部分A1よりも永久磁石20側に位置する。第1部分A1の少なくとも一部は、基準線L1よりも径方向外側に位置する。
 そのため、ステータ5からの逆磁束は、第1部分A1を通る短絡経路を経由して、永久磁石20から離れる方向に流れる。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 また、第1部分A1よりも外周10a側に、幅W1よりも広い幅W3を有する第3部分A3が設けられている。幅W3は、第1部分A1よりも外周10a側における外側端辺12aと内側端辺12bとの最短距離である。これにより、空隙12と外周10aとの間の薄肉部の周方向の長さを長くし、隣り合う磁極間の磁束漏れを抑制することができる。
 また、永久磁石20の端面20cから空隙12の第1部分A1までの距離D1は、実施の形態1と同様、第1部分A1の幅W1以上である。そのため、第1部分A1を含む短絡経路で磁気飽和が生じた場合であっても、永久磁石20に到達する逆磁束を低減することができる。
 その他の点においては、実施の形態5のモータは、実施の形態1のモータ100と同様に構成されている。
 この実施の形態5では、空隙12の外側端辺12aと凸部23とによって幅W1の狭い第1部分A1が形成され、第1部分A1よりも永久磁石20側に幅W2の広い第2部分A2が形成される。そのため、第1部分A1を通る短絡経路が形成される。第1部分A1の少なくとも一部が基準線L1よりも径方向外側に位置しているため、短絡経路を経由した逆磁束が永久磁石20に向かいにくい。これにより、実施の形態1と同様、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
実施の形態6.
 図15(A)は、実施の形態6のロータ1Eを示す図である。実施の形態6のロータ1Eは、実施の形態5の凸部23の代わりに、空隙12の内側端辺12bの端辺部123,124から突出する凸部33を有する。
 図15(B)は、実施の形態6のロータ1Eの一部を拡大して示す図である。実施の形態1で説明したように、空隙12は、外側端辺12aと内側端辺12bと周端辺12cとを有する。また、外側端辺12aは端辺部121,122を有し、内側端辺12bは端辺部123,124を有する。内側端辺12bの端辺部123には、永久磁石20を位置決めするための突起14が形成されている。
 ロータ1Eの凸部33は、空隙12の内側端辺12bの端辺部123,124から、外側端辺12aの端辺部122に向けて突出している。凸部33は、外側端辺12aに対向する先端33aと、周端辺12cに対向する側端33bと、永久磁石20の端面20cに対向する側端33cとを有する。
 先端33aの少なくとも一部は、上述した基準線L1よりも径方向外側に位置している。また、ここでは、凸部33の側端33bは周端辺12cと平行に延在し、側端33cは永久磁石20の端面20cと平行に延在している。軸線C1に直交する面における凸部33の面積は、実施の形態5の凸部23(図14(B))の面積よりも広い。
 外側端辺12aの端辺部122と凸部33の先端33aとの間の領域を、第1部分A1と定義する。第1部分A1の幅、すなわち空隙12の外側端辺12aと凸部33の先端33aとの最短距離は、幅W1である。外側端辺12aの端辺部121と突起14の先端14aとの間の領域を、第2部分A2と定義する。第2部分A2の幅は、幅W2(>W1)である。
 すなわち、空隙12は、幅W1を有する第1部分A1と、幅W1よりも広い幅W2を有する第2部分A2とを含み、第2部分A2は第1部分A1よりも永久磁石20側に位置する。第1部分A1の少なくとも一部は、基準線L1よりも径方向外側に位置する。
 そのため、ステータ5からの逆磁束は、第1部分A1を通る短絡経路を経由して、永久磁石20から離れる方向に流れる。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 また、第1部分A1よりも外周10a側に、幅W1よりも広い幅W3を有する第3部分A3が設けられている。幅W3は、第1部分A1よりも外周10a側における外側端辺12aと内側端辺12bとの最短距離である。これにより、空隙12と外周10aとの間の薄肉部の周方向の長さを長くし、隣り合う磁極間の磁束漏れを抑制することができる。
 また、永久磁石20の端面20cから空隙12の第1部分A1までの距離D1は、第1部分A1の幅W1以上である。そのため、第1部分A1を含む短絡経路で磁気飽和が生じた場合であっても、永久磁石20に到達する逆磁束を低減することができる。
 その他の点においては、実施の形態6のモータは、実施の形態1のモータ100と同様に構成されている。
 この実施の形態6では、空隙12の外側端辺12aと凸部33とによって幅W1の狭い第1部分A1が形成され、第1部分A1よりも永久磁石20側に幅W2の広い第2部分A2が形成される。そのため、第1部分A1を通る短絡経路が形成される。第1部分A1の少なくとも一部が基準線L1よりも径方向外側に位置しているため、短絡経路を流れた逆磁束が永久磁石20に向かいにくい。そのため、実施の形態1と同様、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
実施の形態7.
 図16(A)は、実施の形態7のロータ1Fを示す図である。実施の形態7のロータ1Fは、実施の形態6の凸部33の代わりに、空隙12の内側端辺12bの端辺部123,124から突出する凸部43を有する。
 図16(B)は、実施の形態7のロータ1Fの一部を拡大して示す図である。実施の形態1で説明したように、空隙12は、外側端辺12aと内側端辺12bと周端辺12cとを有する。また、外側端辺12aは端辺部121,122を有し、内側端辺12bは端辺部123,124を有する。
 実施の形態7では、外側端辺12aの端辺部121が、磁石挿入孔11の外側端辺11aの端部から、外側端辺11aに対して径方向外側に傾斜して延在している。外側端辺12aの端辺部122は、端辺部121の終端から、端辺部121に対して傾斜して延在している。
 内側端辺12bの端辺部123,124には、外側端辺12aの端辺部122に向けて突出する凸部43が形成されている。凸部43は、外側端辺12aに対向する先端43aと、空隙12の周端辺12cに対向する側端43bと、永久磁石20の端面20cに対向する側端43cとを有する。
 凸部43の先端43aは、その全体が、永久磁石20の磁極面20aの延長線である基準線L1よりも径方向外側に位置している。また、ここでは、側端43bは磁石挿入孔11の端辺11a,11bと平行に延在し、側端43cは永久磁石20の端面20cと平行に延在している。
 内側端辺12bに形成される突起15は、実施の形態2の突起15(図11(B))と同様、内側端辺12bの端辺部124まで到達している。但し、突起15の代わりに、実施の形態1で説明した突起14(図3)を形成してもよい。
 空隙12の外側端辺12aと凸部43の先端43aとの間の領域を、第1部分A1と定義する。第1部分A1の幅、すなわち空隙12の外側端辺12aと凸部43の先端43aとの最短距離は、幅W1である。外側端辺12aの端辺部121と突起15の先端15aとの間の領域を、第2部分A2と定義する。第2部分A2の幅は、幅W2(>W1)である。
 すなわち、空隙12は、幅W1を有する第1部分A1と、幅W1よりも広い幅W2を有する第2部分A2とを含み、第2部分A2は第1部分A1よりも永久磁石20側に位置する。空隙12の第1部分A1は、その全体が基準線L1よりも径方向外側に位置する。
 そのため、ステータ5からの逆磁束は、第1部分A1を通る短絡経路を経由して、永久磁石20から離れる方向に流れる。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 また、第1部分A1よりも外周10a側に、幅W1よりも広い幅W3を有する第3部分A3が設けられている。幅W3は、第1部分A1よりも外周10a側における外側端辺12aと内側端辺12bとの最短距離である。これにより、空隙12と外周10aとの間の薄肉部の周方向の長さを長くし、隣り合う磁極間の磁束漏れを抑制することができる。
 また、永久磁石20の端面20cから空隙12の第1部分A1までの距離D1は、第1部分A1の幅W1以上である。そのため、第1部分A1を含む短絡経路で磁気飽和が生じた場合であっても、永久磁石20に到達する逆磁束を低減することができる。
 その他の点においては、実施の形態7のモータは、実施の形態1のモータ100と同様に構成されている。
 なお、外側端辺12aの端辺部121は、磁石挿入孔11の外側端辺11aに対して傾斜しているが、実施の形態1の端辺部121と同様、磁石挿入孔11の外側端辺11aと平行であってもよい。
 この実施の形態7では、空隙12の外側端辺12aと凸部43とによって幅W1の狭い第1部分A1が形成され、第1部分A1よりも永久磁石20側に幅W2の広い第2部分A2が形成される。そのため、第1部分A1を通る短絡経路が形成される。第1部分A1の全体が基準線L1よりも径方向外側に位置しているため、短絡経路を流れた逆磁束が永久磁石20により一層到達しにくくなり、永久磁石20の減磁を抑制する効果を高めることができる。
実施の形態8.
 図17(A)は、実施の形態8のロータ1Gを示す図である。実施の形態8のロータ1Gでは、空隙12の内側端辺12bに凸部13が形成されておらず、外側端辺12aに凸部18が形成されている。
 図17(B)は、実施の形態8のロータ1Gの一部を拡大して示す図である。実施の形態1で説明したように、空隙12は、外側端辺12aと内側端辺12bと周端辺12cとを有する。また、外側端辺12aは端辺部121,122を有し、内側端辺12bは端辺部123,124を有する。
 実施の形態8の凸部18は、外側端辺12aの端辺部122から内側端辺12bの端辺部124に向かって延在している。凸部18は、内側端辺12bに対向する先端18aと、周端辺12cに対向する側端18bと、永久磁石20の端面20cに対向する側端18cとを有する。先端18aの少なくとも一部は、上述した基準線L1よりも径方向外側に位置している。
 空隙12の内側端辺12bと凸部18の先端18aとの間の領域を、第1部分A1と定義する。第1部分A1の幅、すなわち空隙12の内側端辺12bと凸部18の先端18aとの最短距離は、幅W1である。外側端辺12aの端辺部121と突起14の先端14aとの間の領域を、第2部分A2と定義する。第2部分A2の幅は、幅W2(>W1)である。
 すなわち、空隙12は、幅W1を有する第1部分A1と、幅W1よりも広い幅W2を有する第2部分A2とを含み、第2部分A2は第1部分A1よりも永久磁石20側に位置する。空隙12の第1部分A1は、その全体が基準線L1よりも径方向外側に位置する。
 そのため、ステータ5からの逆磁束は、第1部分A1を通る短絡経路を経由して、永久磁石20から離れる方向に流れる。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 また、第1部分A1よりも外周10a側に、幅W1よりも広い幅W3を有する第3部分A3が設けられている。幅W3は、第1部分A1よりも外周10a側における外側端辺12aと内側端辺12bとの最短距離である。これにより、空隙12と外周10aとの間の薄肉部の周方向の長さを長くし、隣り合う磁極間の磁束漏れを抑制することができる。
 また、永久磁石20の端面20cから空隙12の第1部分A1までの距離D1は、第1部分A1の幅W1以上である。そのため、第1部分A1を含む短絡経路で磁気飽和が生じた場合であっても、永久磁石20に到達する逆磁束を低減することができる。
 その他の点においては、実施の形態8のモータは、実施の形態1のモータ100と同様に構成されている。
 この実施の形態8では、凸部18と空隙12の内側端辺12bとによって幅W1の狭い第1部分A1が形成され、第1部分A1よりも永久磁石20側に幅W2の広い第2部分A2が形成される。そのため、第1部分A1を通る短絡経路が形成される。第1部分A1の少なくとも一部が基準線L1よりも径方向外側に位置しているため、短絡経路を流れた逆磁束が永久磁石20に向かいにくい。そのため、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
実施の形態9.
 図18(A)は、実施の形態9のロータ1Hを示す図である。実施の形態9のロータ1Hでは、磁石挿入孔19の端辺19a,19bが湾曲した形状を有する。
 ロータ1Hのロータコア10には、周方向中心が内周側に凸となる円弧状の磁石挿入孔19が形成されている。1つの磁石挿入孔19には、1つの永久磁石20が配置されている。1つの磁石挿入孔19は、1磁極を構成する。磁石挿入孔19の周方向中心は、極中心Pに相当する。
 磁石挿入孔19は、径方向外側の外側端辺19aと、径方向内側の内側端辺19bとを有する。外側端辺19aは、挿入孔外側端辺とも称する。内側端辺19bは、挿入孔内側端辺とも称する。端辺19a,19bはいずれも、周方向中心が内周側に凸となる円弧状に形成されている。永久磁石20の磁極面20a,20bはいずれも、磁石挿入孔19と同様に、周方向中心が内周側に凸となる円弧状に形成されている。軸線C1に直交する面内において、磁極面20aの延長線である円弧により、基準線L1が規定される。
 磁石挿入孔19の周方向端部からロータコア10の外周10aに向けて、空隙12が延在している。空隙12は、実施の形態1で説明したように、外側端辺12aと内側端辺12bと周端辺12cとを有する。
 図18(B)は、実施の形態9のロータ1Hの一部を拡大して示す図である。空隙12の外側端辺12aは、磁石挿入孔19の外側端辺19aの延長線(円弧)上に位置する端辺部121と、端辺部121の終端から外周10aに向かって延在する端辺部122とを有する。
 空隙12の内側端辺12bは、磁石挿入孔19の外側端辺19aの延長線(円弧)上に位置する端辺部123と、端辺部123の終端から外周10aに向かって延在する端辺部124とを有する。内側端辺12bの端辺部123には、永久磁石20を位置決めするための突起14が形成されている。
 内側端辺12bの端辺部124には、外側端辺12aの端辺部122に向けて突出する凸部13が形成されている。凸部13の先端13aの少なくとも一部は、基準線L1よりも径方向外側に位置している。
 空隙12の外側端辺12aと凸部13の先端13aとの間の領域を、第1部分A1と定義する。第1部分A1の幅、すなわち空隙12の外側端辺12aと凸部13の先端13aとの最短距離を、幅W1である。外側端辺12aの端辺部121と突起14の先端14aとの間の領域を、第2部分A2と定義する。第2部分A2の幅は、幅W2(>W1)である。
 すなわち、空隙12は、幅W1を有する第1部分A1と、幅W1よりも広い幅W2を有する第2部分A2とを有し、第2部分A2は第1部分A1よりも永久磁石20側に位置する。空隙12の第1部分A1の少なくとも一部は、円弧状の基準線L1よりも径方向外側に位置する。
 そのため、ステータ5からの逆磁束は、第1部分A1を通る短絡経路を経由して、永久磁石20から離れる方向に流れる。これにより、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 また、第1部分A1よりも外周10a側に、幅W1よりも広い幅W3を有する第3部分A3が設けられている。幅W3は、第1部分A1よりも外周10a側における外側端辺12aと内側端辺12bとの最短距離である。これにより、空隙12と外周10aとの間の薄肉部の周方向の長さを長くし、隣り合う磁極間の磁束漏れを抑制することができる。
 また、永久磁石20の端面20cから空隙12の第1部分A1までの距離D1は、実施の形態1と同様、第1部分A1の幅W1以上である。そのため、第1部分A1を含む短絡経路で磁気飽和が生じた場合であっても、永久磁石20に到達する逆磁束が低減することができる。
 その他の点においては、実施の形態9のモータは、実施の形態1のモータ100と同様に構成されている。
 この実施の形態9では、湾曲形状の磁石挿入孔19に永久磁石20が配置されたロータ1Hにおいて、空隙12の外側端辺12aと凸部13との間に幅W1の狭い第1部分A1が形成され、第1部分A1よりも永久磁石20側に幅W2の広い第2部分A2が形成される。そのため、第1部分A1を通る短絡経路が形成される。第1部分A1の少なくとも一部が基準線L1よりも径方向外側に位置しているため、短絡経路を流れた逆磁束が永久磁石20に向かいにくい。そのため、実施の形態1と同様、永久磁石20に到達する逆磁束を低減し、永久磁石20の減磁を抑制することができる。
 上述した実施の形態1~9は、組み合わせることが可能である。例えば、実施の形態2,3,5~8の磁石挿入孔11を、実施の形態4の磁石挿入孔17のようにV字形状としてもよく、あるいは実施の形態9の磁石挿入孔19のように湾曲形状としてもよい。
 また、実施の形態3~6,8,9において、突起14の代わりに、実施の形態2の突起15を設けてもよい。また、実施の形態2,4~9の空隙12に、実施の形態3の凹形状部125を設けてもよい。また、これらの組み合わせに限らず、実施の形態1~9の他の組み合わせも可能である。
<圧縮機>
 次に、実施の形態1~9のモータが適用可能な圧縮機300について説明する。図19は、実施の形態1~9のモータが適用可能な圧縮機300を示す縦断面図である。圧縮機300は、ロータリ圧縮機であり、例えば空気調和装置400(図20)に用いられる。
 圧縮機300は、圧縮機構部310と、圧縮機構部310を駆動するモータ100と、圧縮機構部310とモータ100とを連結するシャフト25と、これらを収容する密閉容器301とを備える。
 密閉容器301は、鋼板で形成された容器であり、円筒状のシェルと、シェルの上部を覆う容器上部とを有する。モータ100のステータ5は、焼き嵌め、圧入または溶接等により、密閉容器301のシェルの内側に組み込まれている。
 密閉容器301の容器上部には、冷媒を外部に吐出する吐出管307と、モータ100に電力を供給するための端子305とが設けられている。また、密閉容器301の外部には、冷媒ガスを貯蔵するアキュムレータ302が取り付けられている。密閉容器301の底部には、圧縮機構部310の軸受部を潤滑する冷凍機油が貯留されている。
 圧縮機構部310は、シリンダ室312を有するシリンダ311と、シャフト25に固定されたローリングピストン314と、シリンダ室312の内部を吸入側と圧縮側に分けるベーンと、シリンダ室312の軸方向両端部を閉鎖する上部フレーム316および下部フレーム317とを有する。
 上部フレーム316および下部フレーム317は、いずれも、シャフト25を回転可能に支持する軸受部を有する。上部フレーム316および下部フレーム317には、上部吐出マフラ318および下部吐出マフラ319がそれぞれ取り付けられている。
 シリンダ311には、軸線C1を中心とする円筒状のシリンダ室312が設けられている。シリンダ室312の内部には、シャフト25の偏心軸部25aが位置している。偏心軸部25aは、軸線C1に対して偏心した中心を有する。偏心軸部25aの外周には、ローリングピストン314が嵌合している。モータ100が回転すると、偏心軸部25aおよびローリングピストン314がシリンダ室312内で偏心回転する。
 シリンダ311には、シリンダ室312内に冷媒ガスを吸入する吸入口313が形成されている。密閉容器301には、吸入口313に連通する吸入管303が取り付けられ、この吸入管303を介してアキュムレータ302からシリンダ室312に冷媒ガスが供給される。
 圧縮機300には、空気調和装置400(図20)の冷媒回路から低圧の冷媒ガスと液冷媒とが混在して供給されるが、液冷媒が圧縮機構部310に流入して圧縮されると、圧縮機構部310の故障の原因となる。そのため、アキュムレータ302で液冷媒と冷媒ガスとを分離し、冷媒ガスのみを圧縮機構部310に供給する。
 冷媒としては、例えば、R410A、R407CまたはR22等を用いてもよいが、地球温暖化防止の観点からは、GWP(地球温暖化係数)の低い冷媒を用いることが望ましい。低GWPの冷媒としては、例えば、以下の冷媒を用いることができる。
(1)まず、組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CFCF=CH)を用いることができる。HFO-1234yfのGWPは4である。
(2)また、組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)また、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32またはR41との混合物を用いることが実用上は望ましい。
 圧縮機300の動作は、以下の通りである。アキュムレータ302から供給された冷媒ガスは、吸入管303を通ってシリンダ311のシリンダ室312内に供給される。モータ100が駆動されてロータ1が回転すると、ロータ1と共にシャフト25が回転する。そして、シャフト25に嵌合するローリングピストン314がシリンダ室312内で偏心回転し、シリンダ室312内で冷媒が圧縮される。圧縮された冷媒は、吐出マフラ318,319を通り、さらにモータ100に設けられた穴部102,103等を通って密閉容器301内を上昇し、吐出管307から吐出される。
 各実施の形態で説明したモータ100は、永久磁石20の減磁の抑制により、高いモータ効率を有する。そのため、そのため、圧縮機300の駆動源に各実施の形態のいずれかのモータ100を用いることで、圧縮機300の運転効率を向上することができる。
<空気調和装置>
 次に、図19の圧縮機300を備えた冷凍サイクル装置としての空気調和装置400について説明する。図19は、空気調和装置400の構成を示す図である。空気調和装置400は、圧縮機401と、凝縮器402と、絞り装置(減圧装置)403と、蒸発器404とを備える。
 圧縮機401、凝縮器402、絞り装置403および蒸発器404は、冷媒配管407によって連結され、冷凍サイクルを構成している。すなわち、圧縮機401、凝縮器402、絞り装置403および蒸発器404の順に、冷媒が循環する。
 圧縮機401、凝縮器402および絞り装置403は、室外機410に設けられている。圧縮機401は、図19に示した圧縮機300で構成されている。室外機410には、凝縮器402に室外の空気を供給する室外送風機405が設けられている。蒸発器404は、室内機420に設けられている。この室内機420には、蒸発器404に室内の空気を供給する室内送風機406が設けられている。
 空気調和装置400の動作は、次の通りである。圧縮機401は、吸入した冷媒を圧縮して送り出す。凝縮器402は、圧縮機401から流入した冷媒と室外の空気との熱交換を行い、冷媒を凝縮して液化させて冷媒配管407に送り出す。室外送風機405は、凝縮器402に室外の空気を供給する。絞り装置403は、開度を変化させることによって、冷媒配管407を流れる冷媒の圧力等を調整する。
 蒸発器404は、絞り装置403により低圧状態にされた冷媒と室内の空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発(気化)させて、冷媒配管407に送り出す。室内送風機406は、蒸発器404に室内の空気を供給する。これにより、蒸発器404で熱が奪われた冷風が、室内に供給される。
 空気調和装置400は、各実施の形態で説明したモータ100の適用により運転効率を向上した圧縮機401を有している。そのため、空気調和装置400の運転効率を向上することができる。
 以上、望ましい実施の形態について具体的に説明したが、上記の実施の形態に基づき、各種の改良または変形を行なうことができる。
 1,1A,1B,1C,1D,1E,1F,1G,1H ロータ、 5 ステータ、 8 突起、 9 突起、 10 ロータコア、 10a 外周、 10b 内周、 11 磁石挿入孔、 11a 外側端辺(挿入孔外側端辺)、 11b 内側端辺(挿入孔内側端辺)、 12 空隙、 12a 外側端辺、 12b 内側端辺、 12c 周端辺、 13 凸部、 13a 先端、 13b,13b 側端、 14 突起、 14a 先端、 14b,14c 側端、 15 突起、 15a 先端、 15b 側端、 17 磁石挿入孔、 17a 外側端辺、 17b 内側端辺、 17c 突起、 20 永久磁石、 20a 磁極面、 20b 磁極面、 20c 端面、 23 凸部、 23a 先端、 23b,23c 側端、 33 凸部、 33a 先端、 33b,33c 側端、 43 凸部、 43a 先端、 43b,43c 側端、 50 ステータコア、 55 コイル、 100 モータ、 121,123 端辺部(第1端辺部)、 122,124 端辺部(第2端辺部)、 125 凹形状部、 300 圧縮機、 301 密閉容器、 310 圧縮機構部、 330 凸部、 331 先端、 43b,333 側端、 400 空気調和装置、 401 圧縮機、 402 凝縮器、 403 絞り装置、 404 蒸発器、 407 冷媒配管、 A1 第1部分、 A2 第2部分、 L1 基準線。

Claims (18)

  1.  軸線を中心とする周方向に延在する外周と、前記軸線を中心とする径方向において前記外周よりも内側に位置する磁石挿入孔と、前記磁石挿入孔の前記周方向の端部につながる空隙とを有するロータコアと、
     前記磁石挿入孔に配置され、前記径方向の外側に磁極面を有する永久磁石と
     を有し、
     前記磁石挿入孔は、前記径方向の外側に位置する挿入孔外側端辺と、前記径方向の内側に位置する挿入孔内側端辺とを有し、
     前記空隙は、前記挿入孔外側端辺の前記周方向の端部から前記外周に向けて延在する外側端辺と、前記外側端辺に対向する内側端辺とを有し、
     前記空隙は、前記外側端辺と前記内側端辺とが幅W1を隔てて対向する第1部分と、前記外側端辺と前記内側端辺とが前記幅W1よりも広い幅W2を隔てて対向する第2部分とを有し、
     前記第2部分は、前記第1部分と前記永久磁石との間に位置し、
     前記第1部分の少なくとも一部が、前記軸線に直交する面内で前記磁極面を延長した基準線に対して、前記径方向の外側に位置している
     ロータ。
  2.  前記空隙は、前記第1部分よりも前記径方向の外側に、前記外側端辺と前記内側端辺とが前記幅W1よりも広い幅W3を隔てて対向する第3部分を有する
     請求項1に記載のロータ。
  3.  前記第3部分の前記外側端辺には、前記内側端辺から離れる方向に凹形状部が形成され、
     前記第3部分における前記幅W3は、前記第2部分における前記幅W2よりも広い
     請求項2に記載のロータ。
  4.  前記空隙に、前記永久磁石を位置決めするための突起が形成され、
     前記空隙の前記外側端辺と前記突起とが、前記幅W2を隔てて対向する
     請求項1から3までの何れか1項に記載のロータ。
  5.  前記突起は、前記内側端辺まで延在している
     請求項4に記載のロータ。
  6.  前記第1部分の前記幅W1は、前記永久磁石の前記径方向の厚さTよりも狭い
     請求項1から5までの何れか1項に記載のロータ。
  7.  前記第1部分の前記幅W1と、前記永久磁石の前記厚さTとは、
     0.2≦W1/T≦0.5を満足する
     請求項6に記載のロータ。
  8.  前記永久磁石の前記周方向の端部から前記第1部分までの距離は、前記幅W1以上である
     請求項1から7までの何れか1項に記載のロータ。
  9.  前記空隙の前記内側端辺に、前記外側端辺に向けて突出する凸部が形成され、
     前記外側端辺と前記凸部とにより、前記第1部分が形成される
     請求項1から8までの何れか1項に記載のロータ。
  10.  前記空隙の前記外側端辺に、前記内側端辺に向けて突出する凸部が形成され、
     前記空隙の前記内側端辺と前記凸部とにより、前記第1部分が形成される
     請求項1から8までの何れか1項に記載のロータ。
  11.  前記空隙の前記内側端辺は、前記挿入孔内側端辺の延長線上に位置する第1端辺部と、前記第1端辺部に対して傾斜し、前記外周に向けて延在する第2端辺部とを有し、
     前記内側端辺の前記第1端辺部に、前記空隙の前記外側端辺に向けて突出する凸部が形成されている
     請求項1から8までの何れか1項に記載のロータ。
  12.  前記空隙の前記内側端辺は、前記挿入孔内側端辺の延長線上に位置する第1端辺部と、前記第1端辺部に対して傾斜し、前記外周に向けて延在する第2端辺部とを有し、
     前記内側端辺の前記第1端辺部および前記第2端辺部に、前記空隙の前記外側端辺に向けて突出する凸部が形成されている
     請求項1から8までの何れか1項に記載のロータ。
  13.  前記第1部分の全体が、前記基準線に対して前記径方向の外側に位置している
     請求項1から12までの何れか1項に記載のロータ。
  14.  前記磁石挿入孔の前記磁極面は、前記軸線の方向に直交する面内において、前記径方向の内側に凸となるV字形状を有する
     請求項1から13までの何れか1項に記載のロータ。
  15.  前記磁石挿入孔の前記磁極面は、前記軸線の方向に直交する面内において、湾曲形状を有する
     請求項1から14までの何れか1項に記載のロータ。
  16.  請求項1から15までの何れか1項に記載のロータと、
     前記ロータを前記径方向の外側から囲むステータと
     を有するモータ。
  17.  請求項16に記載のモータと、
     前記モータによって駆動される圧縮機構部と
     を備えた圧縮機。
  18.  請求項17に記載の圧縮機と、
     前記圧縮機から送り出された冷媒を凝縮する凝縮器と、
     前記凝縮器により凝縮した冷媒を減圧する減圧装置と、 
     前記減圧装置で減圧された冷媒を蒸発させる蒸発器と
     を備えた空気調和装置。
PCT/JP2020/017037 2020-04-20 2020-04-20 ロータ、モータ、圧縮機および空気調和装置 WO2021214825A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022516481A JP7433420B2 (ja) 2020-04-20 2020-04-20 ロータ、モータ、圧縮機および空気調和装置
CN202080099259.XA CN115398779A (zh) 2020-04-20 2020-04-20 转子、电机、压缩机及空气调节装置
PCT/JP2020/017037 WO2021214825A1 (ja) 2020-04-20 2020-04-20 ロータ、モータ、圧縮機および空気調和装置
EP20932353.4A EP4142112A4 (en) 2020-04-20 2020-04-20 ROTOR, MOTOR, COMPRESSOR, AND AIR CONDITIONER
AU2020444066A AU2020444066B2 (en) 2020-04-20 2020-04-20 Rotor, motor, compressor, and air conditioner
US17/910,167 US20230091530A1 (en) 2020-04-20 2020-04-20 Rotor, motor, compressor, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017037 WO2021214825A1 (ja) 2020-04-20 2020-04-20 ロータ、モータ、圧縮機および空気調和装置

Publications (1)

Publication Number Publication Date
WO2021214825A1 true WO2021214825A1 (ja) 2021-10-28

Family

ID=78270911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017037 WO2021214825A1 (ja) 2020-04-20 2020-04-20 ロータ、モータ、圧縮機および空気調和装置

Country Status (6)

Country Link
US (1) US20230091530A1 (ja)
EP (1) EP4142112A4 (ja)
JP (1) JP7433420B2 (ja)
CN (1) CN115398779A (ja)
AU (1) AU2020444066B2 (ja)
WO (1) WO2021214825A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135693A1 (ja) * 2022-01-13 2023-07-20 株式会社 東芝 回転子および回転電機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217287A (ja) * 1999-01-19 2000-08-04 Toshiba Corp 永久磁石形モ―タ及びコンプレッサ
JP2009247131A (ja) 2008-03-31 2009-10-22 Fuji Electric Systems Co Ltd 永久磁石電動機の回転子
JP2011199944A (ja) * 2010-03-17 2011-10-06 Toyota Industries Corp 回転電機の永久磁石埋設型回転子及び回転電機
JP2012210040A (ja) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp 埋め込み磁石型モータ
WO2014141428A1 (ja) * 2013-03-14 2014-09-18 三菱電機株式会社 永久磁石埋込型電動機及び圧縮機
JP2018057155A (ja) * 2016-09-29 2018-04-05 三菱電機株式会社 回転電機の回転子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932658B2 (en) * 2007-03-15 2011-04-26 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
CN103081300B (zh) * 2010-08-27 2015-05-20 三菱电机株式会社 永久磁铁嵌入型电动机的转子、压缩机及制冷空调装置
JP2013126281A (ja) * 2011-12-14 2013-06-24 Daikin Ind Ltd 界磁子の製造方法及び界磁子用の端板
WO2014054150A1 (ja) * 2012-10-04 2014-04-10 三菱電機株式会社 永久磁石埋込型電動機
WO2014068655A1 (ja) * 2012-10-30 2014-05-08 三菱電機株式会社 永久磁石埋込型電動機及びそれを備えた冷凍空調装置
JP6512060B2 (ja) * 2015-05-25 2019-05-15 株式会社豊田自動織機 回転電機のロータ
JP2018011466A (ja) * 2016-07-15 2018-01-18 パナソニック株式会社 永久磁石埋込同期機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217287A (ja) * 1999-01-19 2000-08-04 Toshiba Corp 永久磁石形モ―タ及びコンプレッサ
JP2009247131A (ja) 2008-03-31 2009-10-22 Fuji Electric Systems Co Ltd 永久磁石電動機の回転子
JP2011199944A (ja) * 2010-03-17 2011-10-06 Toyota Industries Corp 回転電機の永久磁石埋設型回転子及び回転電機
JP2012210040A (ja) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp 埋め込み磁石型モータ
WO2014141428A1 (ja) * 2013-03-14 2014-09-18 三菱電機株式会社 永久磁石埋込型電動機及び圧縮機
JP2018057155A (ja) * 2016-09-29 2018-04-05 三菱電機株式会社 回転電機の回転子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4142112A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135693A1 (ja) * 2022-01-13 2023-07-20 株式会社 東芝 回転子および回転電機
JP7318138B1 (ja) * 2022-01-13 2023-07-31 株式会社東芝 回転子および回転電機

Also Published As

Publication number Publication date
AU2020444066B2 (en) 2024-02-22
JPWO2021214825A1 (ja) 2021-10-28
EP4142112A4 (en) 2023-06-21
CN115398779A (zh) 2022-11-25
EP4142112A1 (en) 2023-03-01
AU2020444066A1 (en) 2022-11-17
US20230091530A1 (en) 2023-03-23
JP7433420B2 (ja) 2024-02-19

Similar Documents

Publication Publication Date Title
US10483816B2 (en) Motor, rotor, compressor, and refrigeration and air conditioning apparatus
CN108352741B (zh) 电动机、转子、压缩机以及制冷空调装置
JP7003267B2 (ja) 電動機、圧縮機および空気調和装置
JP6824333B2 (ja) 電動機、ロータ、圧縮機および冷凍空調装置
JP6942246B2 (ja) ロータ、電動機、圧縮機および空気調和装置
JP7023408B2 (ja) モータ、圧縮機および空気調和装置
JP7038827B2 (ja) ステータ、電動機、圧縮機および空気調和装置
WO2013114541A1 (ja) 永久磁石埋込型電動機および圧縮機
WO2021214825A1 (ja) ロータ、モータ、圧縮機および空気調和装置
JP7150181B2 (ja) モータ、圧縮機、及び空気調和機
WO2021214824A1 (ja) ロータ、モータ、圧縮機、空気調和装置およびロータの製造方法
WO2020089991A1 (ja) ロータ、モータ、圧縮機、及び冷凍空調装置
WO2020174647A1 (ja) 電動機、圧縮機、及び空気調和機
JP7026811B2 (ja) ステータ、電動機、圧縮機および空気調和装置
WO2022208740A1 (ja) モータ、圧縮機および冷凍サイクル装置
WO2022024204A1 (ja) ロータ、電動機、圧縮機および冷凍サイクル装置
JP5619305B2 (ja) 永久磁石埋込型電動機および圧縮機
JP2023103425A (ja) 固定子、電動機、圧縮機、冷凍サイクル装置及び空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516481

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020444066

Country of ref document: AU

Date of ref document: 20200420

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020932353

Country of ref document: EP

Effective date: 20221121