WO2021213445A1 - 内磺酰胺衍生物及其应用 - Google Patents

内磺酰胺衍生物及其应用 Download PDF

Info

Publication number
WO2021213445A1
WO2021213445A1 PCT/CN2021/088736 CN2021088736W WO2021213445A1 WO 2021213445 A1 WO2021213445 A1 WO 2021213445A1 CN 2021088736 W CN2021088736 W CN 2021088736W WO 2021213445 A1 WO2021213445 A1 WO 2021213445A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
added
reaction solution
ring
stirred
Prior art date
Application number
PCT/CN2021/088736
Other languages
English (en)
French (fr)
Inventor
夏建华
贺海鹰
江志赶
张晓�
黎健
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CN202180043987.3A priority Critical patent/CN115702152A/zh
Publication of WO2021213445A1 publication Critical patent/WO2021213445A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/549Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame having two or more nitrogen atoms in the same ring, e.g. hydrochlorothiazide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the invention relates to a class of lactam derivatives and their application in the preparation of medicines for treating related diseases. Specifically, it relates to a compound represented by formula (III) or a pharmaceutically acceptable salt thereof.
  • Hepatitis B is an infectious disease caused by the invasion of hepatitis B virus, which is mainly caused by liver inflammatory lesions and can cause damage to multiple organs. It can easily develop into liver fibrosis, liver cirrhosis and liver cancer. The direct cause of primary liver cancer. It is widespread in countries all over the world. According to reports, about 257 million people worldwide are infected with hepatitis B virus, and about 887,000 people die from hepatitis B virus infection-related diseases each year. There were 1 million cases and 330,000 deaths.
  • Hepatitis B is a worldwide medical problem. At present, there are no specific drugs for treating hepatitis B worldwide.
  • the current first-line drugs for hepatitis B are mainly nucleoside and interferon drugs, but these drugs cannot be completely cured and require long-term medication.
  • the present invention provides a compound represented by formula (III) or a pharmaceutically acceptable salt thereof,
  • Each R 1 is independently selected from halogen, OH, CN, NH 2 , C 1-3 alkyl and C 1-3 alkoxy, the C 1-3 alkyl and C 1-3 alkoxy optionally Substituted by 1, 2 or 3 halogens;
  • n 0, 1, 2 and 3;
  • T is selected from NCH 3 and CH;
  • T is selected from CH
  • n is independently selected from 1, 2, 3, 4, 5, and 6;
  • Ring A is selected from phenyl and pyridyl
  • Ring B does not exist, that is, L 1 is directly connected to ring C;
  • Or ring B is selected from cyclohexyl, piperidinyl, piperazinyl, phenyl and 5-6 membered heteroaryl, the cyclohexyl, piperidinyl, piperazinyl, phenyl and 5-6 membered heteroaryl optionally substituted with one, two, or three R a;
  • Ring C is selected from 5-6 membered heteroaryl groups, which are optionally substituted with 1 or 2 R b ;
  • Each R a, R b are each independently selected from halogen, OH, CN, NH 2, C 1-3 alkyl group and a C 1-3 alkoxy group, a C 1-3 alkyl and a C 1-3 alkoxy oxygen The group is optionally substituted with 1, 2 or 3 halogens;
  • the 5-6 membered heteroaryl group contains 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, S, N and NH.
  • each of R 1 each independently selected from F, Cl, Br, C 1-3 alkyl group and a C 1-3 alkoxy group, a C 1- 3 alkyl and C 1-
  • the 3 alkoxy group is optionally substituted with 1, 2 or 3 halogens, and other variables are as defined in the present invention.
  • each of the aforementioned R 1 is independently selected from F, Cl, Br, CH 3 , CF 3 , OCH 3 and OCF 3 , and other variables are as defined in the present invention.
  • each of the foregoing Ra and R b is independently selected from F, Cl, Br, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally selected from 1, 2, or 3. Replace with F, and other variables are as defined in the present invention.
  • each of the foregoing Ra and R b is independently selected from F and Cl, and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from non-existent, cyclohexyl, piperidinyl, piperazinyl, phenyl, imidazolyl and pyridyl, the cyclohexyl, piperidinyl, piperazinyl, benzene group, imidazolyl and pyridinyl optionally substituted with one, two, or three R a, the other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from non-existent, phenyl, imidazolyl and pyridyl, and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from absent, Other variables are as defined in the present invention.
  • the above-mentioned ring C is selected from thienyl, thiazolyl, imidazolyl and pyridyl, and the ring C is selected from thienyl, thiazolyl, imidazolyl and pyridyl.
  • R b is substituted, and other variables are as defined in the present invention.
  • the above-mentioned ring C is selected from thienyl, thiazolyl, imidazolyl and pyridyl, and other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from:
  • R 1 , R 2 , L 1 , m, ring A, ring B, and ring C are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from:
  • R 1 , R 2 , L 1 , m and ring B are as defined in the present invention.
  • T 1 is selected from CH and N;
  • T 2 and T 3 are independently selected from CH and N, and T 2 and T 3 are not N at the same time.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • Each R 1 is independently selected from halogen, OH, CN, NH 2 , C 1-3 alkyl and C 1-3 alkoxy, the C 1-3 alkyl and C 1-3 alkoxy optionally Substituted by 1, 2 or 3 halogens;
  • n 0, 1, 2 and 3;
  • n is independently selected from 1, 2, 3, 4, 5, and 6;
  • Ring A is selected from phenyl and pyridyl
  • Ring B does not exist, that is, L 1 is directly connected to ring C;
  • ring B is selected from phenyl or 5-6 membered heteroaryl, said phenyl and 5-6 membered heteroaryl optionally substituted with one, two, or three R a;
  • Ring C is selected from 5-6 membered heteroaryl groups, which are optionally substituted by 1, 2 or R b ;
  • Each R a, R b are each independently selected from halogen, OH, CN, NH 2, C 1-3 alkyl group and a C 1-3 alkoxy group, a C 1-3 alkyl and a C 1-3 alkoxy oxygen The group is optionally substituted with 1, 2 or 3 halogens;
  • the 5-6 membered heteroaryl group contains 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, S and N.
  • each of R 1 each independently selected from F, Cl, Br, C 1-3 alkyl group and a C 1-3 alkoxy group, a C 1- 3 alkyl and C 1-
  • the 3 alkoxy group is optionally substituted with 1, 2 or 3 halogens, and other variables are as defined in the present invention.
  • each of the aforementioned R 1 is independently selected from F, Cl, B r , CH 3 , CF 3 , OCH 3 and OCF 3 , and other variables are as defined in the present invention.
  • each of the above-mentioned Ra and R b are independently selected from F, Cl, Br, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally selected by 1, 2 or 3 Replace with F, and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from non-existent, phenyl, imidazolyl and pyridyl, and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from absent, Other variables are as defined in the present invention.
  • the above-mentioned ring C is selected from thienyl, imidazolyl and pyridyl, and the ring C is selected from thienyl, imidazolyl and pyridyl, optionally substituted by 1 or 2 R b , and other variables As defined in the present invention.
  • the above-mentioned ring C is selected from thienyl, imidazolyl and pyridyl, and other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from:
  • R 1 , L 1 , m and ring B are as defined in any one of the present invention.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • Each R 1 is independently selected from halogen, OH, CN, NH 2 , C 1-3 alkyl and C 1-3 alkoxy, the C 1-3 alkyl and C 1-3 alkoxy optionally Substituted by 1, 2 or 3 halogens;
  • n 0, 1, 2 and 3;
  • n is independently selected from 1, 2, 3, 4, 5, and 6;
  • Ring A is selected from phenyl and pyridyl
  • Ring B does not exist, that is, L 1 is directly connected to ring C;
  • Or ring B is selected from cyclohexyl, piperidinyl, phenyl and 5-6 membered heteroaryl, the cyclohexyl, piperidinyl, phenyl and 5-6 membered heteroaryl are optionally selected by 1, 2 Or 3 R a substitutions;
  • Ring C is selected from 5-6 membered heteroaryl groups, which are optionally substituted by 1, 2 or R b ;
  • Each R a, R b are each independently selected from halogen, OH, CN, NH 2, C 1-3 alkyl group and a C 1-3 alkoxy group, a C 1-3 alkyl and a C 1-3 alkoxy oxygen The group is optionally substituted with 1, 2 or 3 halogens;
  • the 5-6 membered heteroaryl group contains 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, S and N.
  • each of R 1 each independently selected from F, Cl, Br, C 1-3 alkyl group and a C 1-3 alkoxy group, a C 1- 3 alkyl and C 1-
  • the 3 alkoxy group is optionally substituted with 1, 2 or 3 halogens, and other variables are as defined in the present invention.
  • each of the aforementioned R 1 is independently selected from F, Cl, Br, CH 3 , CF 3 , OCH 3 and OCF 3 , and other variables are as defined in the present invention.
  • each of the above-mentioned Ra and R b are independently selected from F, Cl, Br, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally selected by 1, 2 or 3 Replace with F, and other variables are as defined in the present invention.
  • each of the foregoing Ra and R b are independently selected from F and Cl, and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from non-existent, cyclohexyl, piperidinyl, phenyl, imidazolyl and pyridyl, and the cyclohexyl, piperidinyl, phenyl, imidazolyl and pyridyl are any is selected from 1, 2 or 3 substituents R a, the other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from non-existent, phenyl, imidazolyl and pyridyl, and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from absent, Other variables are as defined in the present invention.
  • the above-mentioned ring C is selected from thienyl, thiazolyl, imidazolyl and pyridyl, and the ring C is selected from thienyl, thiazolyl, imidazolyl and pyridyl.
  • R b is substituted, and other variables are as defined in the present invention.
  • the above-mentioned ring C is selected from thienyl, thiazolyl, imidazolyl and pyridyl, and other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from:
  • R 1 , L 1 , m and ring B are as defined in any one of the present invention.
  • T 1 is selected from CH and N;
  • T 2 and T 3 are independently selected from CH and N, and T 2 and T 3 are not N at the same time.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof,
  • Each R 1 is independently selected from halogen, OH, CN, NH 2 , C 1-3 alkyl and C 1-3 alkoxy, the C 1-3 alkyl and C 1-3 alkoxy optionally Substituted by 1, 2 or 3 halogens;
  • n 0, 1, 2 and 3;
  • R 2 is selected from H and -COOH
  • L 1 is selected from -(CH 2 ) n -, said -(CH 2 ) n -is optionally substituted with 1, 2 or 3 halogens;
  • n is independently selected from 0, 1, 2, 3, 4, 5, and 6;
  • Ring A is selected from phenyl and pyridyl
  • Ring B does not exist, that is, L 1 is directly connected to ring C;
  • Or ring B is selected from C 3-6 cycloalkyl, phenyl and 5-6 membered heteroaryl, the C 3-6 cycloalkyl, phenyl and 5-6 membered heteroaryl are optionally selected from 1, 2 or 3 Ra substitutions;
  • Ring C is selected from 5-6 membered heteroaryl groups, which are optionally substituted with 1, 2 or 3 R b ;
  • Each R a and R b is independently selected from halogen, OH, CN, NH 2 , C 1-3 alkyl and C 1-3 alkoxy, the C 1-3 alkyl and C 1-3 alkoxy The group is optionally substituted with 1, 2 or 3 halogens;
  • the 5-6 membered heteroaryl group contains 1, 2 or 3 heteroatoms or heteroatom groups independently selected from O, S and N.
  • each of R 1 each independently selected from F, Cl, Br, C 1-3 alkyl group and a C 1-3 alkoxy group, a C 1- 3 alkyl and C 1-
  • the 3 alkoxy group is optionally substituted with 1, 2 or 3 halogens, and other variables are as defined in the present invention.
  • each of the aforementioned R 1 is independently selected from F, Cl, Br, CH 3 , CF 3 , OCH 3 and OCF 3 , and other variables are as defined in the present invention.
  • the above-mentioned L 1 is selected from absent, -CH 2 -, -(CH 2 ) 2 -and -(CH 2 ) 3 -, and other variables are as defined in the present invention.
  • each of the above-mentioned Ra and R b are independently selected from F, Cl, Br, CH 3 and OCH 3 , and the CH 3 and OCH 3 are optionally selected by 1, 2 or 3 Replace with F, and other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from non-existent, cyclohexyl, phenyl, imidazolyl and pyridyl, and the cyclohexyl, phenyl, imidazolyl and pyridyl are optionally selected by 1, 2 or 3 Ra substitutions, other variables are as defined in the present invention.
  • the above-mentioned ring B is selected from absent, Other variables are as defined in the present invention.
  • the above-mentioned ring C is selected from thienyl, imidazolyl and pyridyl, and the thienyl, imidazolyl and pyridyl are optionally substituted by 1 or 2 R b , and other variables are as defined in the present invention. definition.
  • the above-mentioned ring C is selected from Other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from:
  • R 1 , R 2 , L 1 , m and ring B are as defined in any one of the present invention.
  • the present invention also provides the following compounds or pharmaceutically acceptable salts thereof, which are selected from:
  • the present invention also provides the following compounds or pharmaceutically acceptable salts thereof, which are selected from:
  • the present invention also provides the use of the above-mentioned compound or a pharmaceutically acceptable salt thereof in the preparation of a medicament for the treatment of core protein modulator-related diseases.
  • the compound of the present invention has a significant inhibitory effect on HBV, has ideal in vitro pharmacokinetic test results and better liver-to-blood ratio distribution.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues. , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from the compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the neutral form of the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the neutral form of the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, including, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include amino acids (such as arginine, etc.) Salts, and salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and acidic functional groups,
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. In general, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomer or “optical isomer” refers to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” is caused by the inability to freely rotate the double bond or the single bond of the ring-forming carbon atom.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the relationship between the molecules is non-mirror-image relationship.
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a three-dimensional center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dashed key Or use wavy lines Represents a straight solid line key And straight dashed key
  • the compound of the present invention may be specific.
  • tautomer or “tautomeric form” means that at room temperature, the isomers of different functional groups are in dynamic equilibrium and can be transformed into each other quickly. If tautomers are possible (such as in solution), the chemical equilibrium of tautomers can be reached.
  • proton tautomers also called prototropic tautomers
  • proton migration such as keto-enol isomerization and imine-ene Amine isomerization.
  • Valence isomers include some recombination of bonding electrons to carry out mutual transformations.
  • keto-enol tautomerization is the tautomerization between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refer to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with a suitable optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which uses a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • the compound of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterium can be substituted for hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • 5-6 membered heteroaryl ring and “5-6 membered heteroaryl group” can be used interchangeably in the present invention.
  • the term “5-6 membered heteroaryl group” means a ring consisting of 5 to 6 ring atoms. It is composed of a monocyclic group with a conjugated ⁇ -electron system, in which 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from O, S and N, and the rest are carbon atoms. Where the nitrogen atom is optionally quaternized, the nitrogen and sulfur heteroatoms may optionally be oxidized (ie NO and S(O) p , p is 1 or 2).
  • the 5-6 membered heteroaryl group can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • the 5-6 membered heteroaryl group includes 5-membered and 6-membered heteroaryl groups.
  • Examples of the 5-6 membered heteroaryl include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrrolyl, etc.) Azolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5- Oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,
  • halogen or halogen by itself or as part of another substituent represents a fluorine, chlorine, bromine or iodine atom.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by a substituent.
  • the substituent may include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the compound after substitution Is stable.
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • a substituent When a substituent is vacant, it means that the substituent is absent.
  • X in AX when X in AX is vacant, it means that the structure is actually A.
  • the listed linking group does not indicate its linking direction, its linking direction is arbitrary, for example, The middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the opposite direction to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art.
  • the single crystal X-ray diffraction method uses the Bruker D8 venture diffractometer to collect the diffraction intensity data of the cultured single crystal.
  • the light source is CuK ⁇ radiation
  • the scanning method After scanning and collecting relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following abbreviations: aq stands for water; eq stands for equivalent or equivalent; M stands for mol/L; DCM stands for dichloromethane; PE stands for petroleum ether; DMF stands for N,N-dimethylformamide; DMSO Represents dimethyl sulfoxide; EtOAc represents ethyl acetate; EtOH represents ethanol; MeOH represents methanol; CBz represents benzyloxycarbonyl, which is an amine protecting group; Boc represents tert-butoxycarbonyl, which is an amine protecting group; rt Stands for room temperature; O/N stands for overnight; THF stands for tetrahydrofuran; Boc 2 O stands for di-tert-butyl dicarbonate; TFA stands for trifluoroacetic acid; DIPEA stands for diisopropylethylamine; SOCl 2 stands for thionyl chloride; mp Stands for
  • compound 1-a (100g, 487.63mmol, 1eq) was dissolved in MeOH (1L), and sodium methoxide methanol solution (5M, 195.05mL, 2eq) and dimethyl oxalate (86.38g, 731.45mmol, 1.5eq), the reaction was stirred at 70°C for 16 hours.
  • the reaction solution was filtered directly after cooling, 1L of water was added to the filter cake, and the mixture was homogenized and stirred for 1 hour, and then filtered.
  • the obtained filter cake was added with 1 L of methyl tert-butyl ether, stirred for 1 hour and filtered, and the filter cake was dried under reduced pressure to obtain compound 1-b, which was used directly in the next step without further treatment.
  • compound 1-e (9.57 g, 65.71 mmol, 3 eq) and dichloromethane (80 mL) were added to a three-necked flask. At 0°C, a toluene solution of trimethylaluminum (2M, 32.86 mL, 3eq) was added dropwise. After the addition was completed, the mixture was stirred at 0°C for 30 minutes, and then a solution of compound 1-d (8 g, 21.90 mmol, 1 eq) in dichloromethane (100 mL) was added dropwise. The mixture was stirred at 25°C for 1 hour.
  • the aqueous phase of the filtrate was extracted with ethyl acetate (15 mL ⁇ 2).
  • the combined organic phase was washed with saturated brine (30 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • compound 4-c 150mg, 283.10 ⁇ mol, 1.0eq
  • 4-b 95.95mg, 311.41 ⁇ mol, 1.1eq
  • potassium carbonate 117.38mg, 849.31 ⁇ mol, 3eq
  • Pd(dppf) Cl 2 .CH 2 Cl 2 46.24 mg, 56.62 ⁇ mol, 0.2 eq
  • 1,4-dioxane 8 mL
  • H 2 O 2 mL
  • cuprous chloride 35.33mg, 356.83 ⁇ mol, 8.53 ⁇ L, 0.03eq
  • sodium tert-butoxide 114.31mg, 1.19mmol, 0.1eq
  • Xantphos 206.47mg, 356.83 ⁇ mol, 0.03eq
  • tetrahydrofuran 30mL
  • double pinacol borate 3.32g, 13.08mmol, 1.1eq
  • reaction solution was directly concentrated under reduced pressure, diluted with ethyl acetate (30 mL), washed with a saturated aqueous sodium chloride solution (30 mL ⁇ 1), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • compound 13-h (70.0mg, 157.07 ⁇ mol, 1eq), 13-i (27.24mg, 159.11 ⁇ mol, 1eq), potassium carbonate (65.96mg, 477.34 ⁇ mol, 3eq), cuprous iodide (60.60 mg, 318.23 ⁇ mol, 2eq) and L-proline (36.63mg, 318.23 ⁇ mol, 2eq) were added to dimethyl sulfoxide (2mL). The reaction solution was stirred at 110°C for 1 hour.
  • compound 14-a (300g, 2.36mol, 243.90mL, 1eq), ethylene glycol (292.85g, 4.72mol, 263.83mL, 2eq) and toluene (1.5L) were added to a round bottom flask, and then added P-toluenesulfonic acid (40.63g, 235.92mmol, 0.1eq) was refluxed at 120°C for 12 hours while separating water with a water separator. The reaction solution was washed with water (300 mL ⁇ 2). The aqueous phase was extracted with ethyl acetate (100 mL).
  • Step 10 Chiral resolution to obtain compound 14-k:
  • reaction solution was added to saturated sodium chloride solution (20 mL), and extracted with ethyl acetate (20 mL ⁇ 2). The combined organic phase was concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate, gradient: 0-40%, flow rate: 20 mL/min) to obtain compound 16-b. MS m/z(ESI): 496.8[M+1] + .
  • compound 17-b (34.37g, 306.68mmol, 1eq) was added to dichloromethane (1000mL), and then aluminum trichloride (81.79g, 613.36mmol, 33.52mL, 2eq) was added at 20°C, The reaction mixture was stirred at 20°C for 30 min, and then a mixture of 17-a (50 g, 306.68 mmol, 29.76 mL, 1 eq) and dichloromethane (200 mL) was slowly added. After the addition was completed, the reaction mixture was stirred at 20°C for 1.5 hours.
  • reaction solution was poured into 1 mole of potassium hydrogen sulfate aqueous solution (2000 mL), and stirred for 5 min. During this period, a large amount of solid was generated, which was filtered.
  • the filter cake was added to ethyl acetate (1.5L), stirred for 20min and filtered, the filtrate was washed with saturated aqueous sodium chloride (1L ⁇ 1), the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain 17-c.
  • compound 1-e (1.48g, 10.16mmol, 3eq) was dissolved in dichloromethane (10mL), and trimethylaluminum (2M, 5.08mL, 3eq) was added dropwise at 0°C. The mixture Stir at 0°C for 15 min, and then add a solution of 17-j (1.2 g, 3.39 mmol, 1 eq) in dichloromethane (10 mL). The reaction solution was stirred at 20°C for 1 hour.
  • reaction solution was poured into 2M potassium hydrogen sulfate aqueous solution (50 mL), a large amount of viscous solid was generated, filtered, the filter cake was washed with dichloromethane (100 mL), the filtrate was concentrated under reduced pressure, and the residue was dichloromethane (10 mL) at room temperature The slurry was beaten, filtered, and the filter cake was dried under reduced pressure to obtain compound 17-1.
  • compound 17-1 (100 mg, 213.78 ⁇ mol, 1 eq) was added to 1,4-dioxane (3 mL) and water (1 mL), and then 1-h (74.44 mg, 256.54 ⁇ mol, 1.2 eq) and sodium carbonate (33.99mg, 320.68 ⁇ mol, 1.5eq). Replace with nitrogen 3 times, then add palladium tetrakistriphenylphosphine (2.47 mg, 2.14 ⁇ mol, 0.01 eq), replace with nitrogen 3 times, raise the temperature to 90° C. and stir for 12 hours.
  • reaction solution was diluted with 2-methyltetrahydrofuran (10 mL), washed with a saturated aqueous sodium chloride solution (10 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • reaction solution was diluted with 2-methyltetrahydrofuran (10 mL), washed with water (10 mL ⁇ 1) and saturated sodium chloride aqueous solution (10 mL ⁇ 1), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • reaction solution was diluted with 2-methyltetrahydrofuran (10 mL), washed with water (10 mL ⁇ 1) and saturated sodium chloride aqueous solution (10 mL ⁇ 1), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • compound 24-b (3g, 12.14mmol, 1eq), double pinacol borate (3.70g, 14.57mmol, 1.2eq), Pd(dppf)C12 (1.78g, 2.43mmol, 0.2 eq) and potassium acetate (3.57g, 36.42mmol, 3eq) were added to 1,4-dioxane (50mL), and the reaction solution was stirred at 90°C for 2 hours.
  • the real-time-qPCR test was used to detect the HBV DNA content in HepG2.2.15 cells, and the compound's EC50 value was used as an indicator to evaluate the compound's inhibitory effect on HBV.
  • HepG2.2.15 cell culture medium (DMEM/F12, Invitrogen-11330057; 10% serum, Invitrogen-10099141; 100units/ml penicillin and 10 ⁇ g/ml streptomycin, Invitrogen-15140122; 1% non-essential amino acids, Invitrogen-11140076; 2mM L-glutamine, Invitrogen-25030081; 300 ⁇ g/ml geneticin, Invitrogen-10131027
  • HepG2.2.15 cells 4 ⁇ 10 4 cells/well were transferred to a 96-well plate and cultured overnight at 37° C., 5% CO 2.
  • the compound was diluted to a total of 8 concentrations, with a 3-fold gradient dilution. Add different concentrations of compounds to the culture wells, double-repeat the wells. The final concentration of DMSO in the culture broth is 1%. 1 ⁇ M GLS4 was used as a 100% inhibition control; 1% DMSO was used as a 0% inhibition control.
  • Upstream primer sequence GTGTCTGCGGCGTTTTATCA
  • the PCR reaction conditions are: heating at 95°C for 10 minutes; then denaturation at 95°C for 15 seconds, and extension at 60°C for 1 minute, a total of 40 cycles.
  • %Inh. [1-(number of DNA copies in the sample-1 ⁇ Mnumber of DNA copies in GLS4)/(number of DNA copies in the DMSO control-1 ⁇ Mnumber of DNA copies in GLS4)]x100.
  • the compound of the present invention has a significant inhibitory effect on HBV.
  • test compound 3 The inhibitory effect of test compound 3 on the activity of human liver microsomal cytochrome P450 isoenzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) was determined.
  • the test compound 3 (10mM) is gradient, and the working solution (100 ⁇ final concentration) is prepared.
  • the working solution concentration is: 5, 1.5, 0.5, 0.15, 0.05, 0.015, 0.005mM, and the P450 isoenzyme ( CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) the working solution of each positive inhibitor and its specific substrate mixture; thaw the human liver microsomes frozen at -80°C on ice, and wait until the human liver microsomes are completely dissolved.
  • the P450 isoenzyme CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4
  • mice The purpose of this study is to determine the pharmacokinetic parameters of the compound and calculate its oral bioavailability in female Balb/c mice.
  • This project uses four female Balb/c mice, two mice are administered intravenously at a dose of 3mg/kg, collected 0h (before administration) and 0.0833, 0.25, 0.5, 1, 2 after administration , 4, 7, 24 hours of plasma samples, the other two rats were orally administered by gavage at a dose of 1 mg/kg, collected 0 hours (before administration) and 0.5, 1, 2, 3, 4 after administration, 6 and 24h plasma samples, and then perform LC/MS/MS analysis on the collected samples and collect data, and use Phoenix WinNonlin 6.2.1 software to calculate the relevant pharmacokinetic parameters for the collected analysis data.
  • the compound of the present invention has ideal in vitro pharmacokinetic test results.
  • Compound 3 was prepared as a clear solution and administered to female Balb/c mice for a single oral administration (PO, 3mpk).
  • the oral vehicle is 10% solutol. Collect whole blood for 0.5, 2.0, and 8.0 hours, prepare plasma, collect tissue at corresponding time, prepare tissue homogenate, analyze drug concentration by LC-MS/MS method, and use Phoenix WinNonlin software to calculate pharmacokinetic parameters.
  • the compound of the present invention has a better liver-to-blood ratio distribution in mice.

Abstract

本发明公开了一类内磺酰胺衍生物,以及在制备治疗相关疾病的药物中的应用。具体公开了式(III)所示化合物及其药学上可接受的盐。

Description

内磺酰胺衍生物及其应用
本申请要求申请日为2020年4月22日的中国专利申请CN202010324017.8、申请日为2020年5月14日的中国专利申请CN202010406044.X和申请日为2020年9月30日的中国专利申请CN202011059012.3的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一类内磺酰胺衍生物,以及在制备治疗相关疾病的药物中的应用。具体涉及式(III)所示化合物或其药学上可接受的盐。
背景技术
乙型肝炎是由乙肝肝炎病毒入侵引起的以肝脏炎症性病变为主,并可引起多器官损害的一种传染性疾病,其易发展成肝纤维化、肝硬化和肝癌,是全球80%原发性肝癌的直接病因。它广泛流行于世界各国,据报道,全球约2.57亿人感染乙肝病毒,每年约有88.7万人死于乙肝病毒感染相关疾病;中国是乙肝病毒感染重灾区,感染总人数约7000万,每年新发病例100万,死亡病例33万。
乙肝是世界性医学难题,目前全世界范围内还没有治疗乙肝的特效药,乙肝目前的一线药物主要是核苷类和干扰素类药物,但这些药物均无法彻底治愈,都需要长期服药,且存在着肾功能不全,乳酸中度等诸多问题,因此开发出一种为患者提供更为有效和安全的新型抗乙肝药物势在必行。
发明内容
本发明提供了式(III)所示化合物或其药学上可接受的盐,
Figure PCTCN2021088736-appb-000001
其中,
各R 1分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代;
m选自0、1、2和3;
R 2选自-COOH时,T选自NCH 3和CH;
或者,R 2选自H时,T选自CH;
L 1选自-O(CH 2) n-、-(CH 2) n-和-CH=CH-;
各n分别独立地选自1、2、3、4、5和6;
环A选自苯基和吡啶基;
环B不存在,即L 1直接与环C相连;
或者环B选自环己基、哌啶基、哌嗪基、苯基和5-6元杂芳基,所述环己基、哌啶基、哌嗪基、苯基和5-6元杂芳基任选被1个、2个或3个R a取代;
环C选自5-6元杂芳基,所述5-6元杂芳基任选被1个或2个R b取代;
各R a、R b分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代;
所述5-6元杂芳基包含1、2或3个独立选自O、S、N和NH的杂原子或杂原子团。
在本发明的一些方案中,上述各R 1分别独立地选自F、Cl、Br、C 1-3烷基和C 1-3烷氧基,所述C 1- 3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代,其它变量如本发明所定义。
在本发明的一些方案中,上述各R 1分别独立地选自F、Cl、Br、CH 3、CF 3、OCH 3和OCF 3,其它变量如本发明所定义。
在本发明的一些方案中,上述L 1选自-OCH 2-、-(CH 2) n-和-CH=CH-,其它变量如本发明所定义。
在本发明的一些方案中,上述L 1选自-OCH 2-、-CH 2-、-(CH 2) 2-、-(CH 2) 3-、-(CH 2) 5-和-CH=CH-,其它变量如本发明所定义。
在本发明的一些方案中,上述各R a和R b分别独立地选自F、Cl、Br、CH 3和OCH 3,所述CH 3和OCH 3任选被1个、2个或3个F取代,其它变量如本发明所定义。
在本发明的一些方案中,上述各R a和R b分别独立地选自F、Cl,其它变量如本发明所定义。
在本发明的一些方案中,上述环B选自不存在、环己基、哌啶基、哌嗪基、苯基、咪唑基和吡啶基,所述环己基、哌啶基、哌嗪基、苯基、咪唑基和吡啶基任选被1个、2个或3个R a取代,其它变量如本发明所定义。
在本发明的一些方案中,上述环B选自不存在、苯基、咪唑基和吡啶基,其它变量如本发明所定 义。
在本发明的一些方案中,上述环B选自不存在、
Figure PCTCN2021088736-appb-000002
Figure PCTCN2021088736-appb-000003
其它变量如本发明所定义。
在本发明的一些方案中,上述环C选自噻吩基、噻唑基、咪唑基和吡啶基,所述环C选自噻吩基、噻唑基、咪唑基和吡啶基任选被1个或2个R b取代,其它变量如本发明所定义。
在本发明的一些方案中,上述环C选自噻吩基、噻唑基、咪唑基和吡啶基,其它变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021088736-appb-000004
R 1、R 2、L 1、m、环A、环B和环C如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021088736-appb-000005
其中,R 1、R 2、L 1、m和环B如本发明所定义;
T 1选自CH和N;
T 2、T 3分别独立地选自CH和N,且T 2、T 3不同时为N。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021088736-appb-000006
其中,
各R 1分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代;
m选自0、1、2和3;
L 1选自-O(CH 2) n-、-(CH 2) n-和-CH=CH-;
各n分别独立地选自1、2、3、4、5和6;
环A选自苯基和吡啶基;
环B不存在,即L 1直接与环C相连;
或者环B选自苯基和5-6元杂芳基,所述苯基和5-6元杂芳基任选被1个、2个或3个R a取代;
环C选自5-6元杂芳基,所述5-6元杂芳基任选被1个、2个或R b取代;
各R a、R b分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代;
所述5-6元杂芳基包含1、2或3个独立选自O、S和N的杂原子或杂原子团。
在本发明的一些方案中,上述各R 1分别独立地选自F、Cl、Br、C 1-3烷基和C 1-3烷氧基,所述C 1- 3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代,其它变量如本发明所定义。
在本发明的一些方案中,上述各R 1分别独立地选自F、Cl、B r、CH 3、CF 3、OCH 3和OCF 3,其它变量如本发明所定义。
在本发明的一些方案中,上述L 1选自-OCH 2-、-(CH 2) n-和-CH=CH-,其它变量如本发明所定义。
在本发明的一些方案中,上述L 1选自-OCH 2-、-CH 2-、-(CH 2) 2-、-(CH 2) 3-、-(CH 2) 5-和-CH=CH-,其它变量如本发明所定义。
在本发明的一些方案中,上述各R a、R b分别独立地选自F、Cl、Br、CH 3和OCH 3,所述CH 3和 OCH 3任选被1个、2个或3个F取代,其它变量如本发明所定义。
在本发明的一些方案中,上述环B选自不存在、苯基、咪唑基和吡啶基,其它变量如本发明所定义。
在本发明的一些方案中,上述环B选自不存在、
Figure PCTCN2021088736-appb-000007
Figure PCTCN2021088736-appb-000008
其它变量如本发明所定义。
在本发明的一些方案中,上述环C选自噻吩基、咪唑基和吡啶基,所述环C选自噻吩基、咪唑基和吡啶基任选被1个或2个R b取代,其它变量如本发明所定义。
在本发明的一些方案中,上述环C选自噻吩基、咪唑基和吡啶基,其它变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021088736-appb-000009
其中,R 1、L 1、m和环B如本发明任意一项所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021088736-appb-000010
其中,
各R 1分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任 选被1个、2个或3个卤素取代;
m选自0、1、2和3;
L 1选自-O(CH 2) n-、-(CH 2) n-和-CH=CH-;
各n分别独立地选自1、2、3、4、5和6;
环A选自苯基和吡啶基;
环B不存在,即L 1直接与环C相连;
或者环B选自环己基、哌啶基、苯基和5-6元杂芳基,所述环己基、哌啶基、苯基和5-6元杂芳基任选被1个、2个或3个R a取代;
环C选自5-6元杂芳基,所述5-6元杂芳基任选被1个、2个或R b取代;
各R a、R b分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代;
所述5-6元杂芳基包含1、2或3个独立选自O、S和N的杂原子或杂原子团。
在本发明的一些方案中,上述各R 1分别独立地选自F、Cl、Br、C 1-3烷基和C 1-3烷氧基,所述C 1- 3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代,其它变量如本发明所定义。
在本发明的一些方案中,上述各R 1分别独立地选自F、Cl、Br、CH 3、CF 3、OCH 3和OCF 3,其它变量如本发明所定义。
在本发明的一些方案中,上述L 1选自-OCH 2-、-(CH 2) n-和-CH=CH-,其它变量如本发明所定义。
在本发明的一些方案中,上述L 1选自-OCH 2-、-CH 2-、-(CH 2) 2-、-(CH 2) 3-、-(CH 2) 5-和-CH=CH-,其它变量如本发明所定义。
在本发明的一些方案中,上述各R a、R b分别独立地选自F、Cl、Br、CH 3和OCH 3,所述CH 3和OCH 3任选被1个、2个或3个F取代,其它变量如本发明所定义。
在本发明的一些方案中,上述各R a、R b分别独立地选自F、Cl,其它变量如本发明所定义。
在本发明的一些方案中,上述环B选自不存在、环己基、哌啶基、苯基、咪唑基和吡啶基,所述环己基、哌啶基、苯基、咪唑基和吡啶基任选被1个、2个或3个R a取代,其它变量如本发明所定 义。
在本发明的一些方案中,上述环B选自不存在、苯基、咪唑基和吡啶基,其它变量如本发明所定义。
在本发明的一些方案中,上述环B选自不存在、
Figure PCTCN2021088736-appb-000011
Figure PCTCN2021088736-appb-000012
其它变量如本发明所定义。
在本发明的一些方案中,上述环C选自噻吩基、噻唑基、咪唑基和吡啶基,所述环C选自噻吩基、噻唑基、咪唑基和吡啶基任选被1个或2个R b取代,其它变量如本发明所定义。
在本发明的一些方案中,上述环C选自噻吩基、噻唑基、咪唑基和吡啶基,其它变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021088736-appb-000013
其中,R 1、L 1、m和环B如本发明任意一项所定义;
T 1选自CH和N;
T 2、T 3分别独立地选自CH和N,且T 2、T 3不同时为N。
本发明提供了式(II)所示化合物或其药学上可接受的盐,
Figure PCTCN2021088736-appb-000014
其中,
各R 1分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代;
m选自0、1、2和3;
R 2选自H和-COOH;
L 1选自-(CH 2) n-,所述-(CH 2) n-任选被1个、2个或3个卤素取代;
各n分别独立地选自0、1、2、3、4、5和6;
环A选自苯基和吡啶基;
环B不存在,即L 1直接与环C相连;
或者环B选自C 3-6环烷基、苯基和5-6元杂芳基,所述C 3-6环烷基、苯基和5-6元杂芳基任选被1个、2个或3个R a取代;
环C选自5-6元杂芳基,所述5-6元杂芳基任选被1个、2个或3个R b取代;
各R a、R b分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代;
所述5-6元杂芳基包含1、2或3个独立选自O、S和N的杂原子或杂原子团。
在本发明的一些方案中,上述各R 1分别独立地选自F、Cl、Br、C 1-3烷基和C 1-3烷氧基,所述C 1- 3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代,其它变量如本发明所定义。
在本发明的一些方案中,上述各R 1分别独立地选自F、Cl、Br、CH 3、CF 3、OCH 3和OCF 3,其它变量如本发明所定义。
在本发明的一些方案中,上述L 1选自不存在、-CH 2-、-(CH 2) 2-和-(CH 2) 3-,其它变量如本发明所定义。
在本发明的一些方案中,上述各R a、R b分别独立地选自F、Cl、Br、CH 3和OCH 3,所述CH 3和OCH 3任选被1个、2个或3个F取代,其它变量如本发明所定义。
在本发明的一些方案中,上述环B选自不存在、环己基、苯基、咪唑基和吡啶基,所述环己基、苯基、咪唑基和吡啶基任选被1个、2个或3个R a取代,其它变量如本发明所定义。
在本发明的一些方案中,上述环B选自不存在、
Figure PCTCN2021088736-appb-000015
Figure PCTCN2021088736-appb-000016
其它变量如本发明所定义。
在本发明的一些方案中,上述环C选自噻吩基、咪唑基和吡啶基,所述噻吩基、咪唑基和吡啶基任选被1个或2个R b取代,其它变量如本发明所定义。
在本发明的一些方案中,上述环C选自
Figure PCTCN2021088736-appb-000017
其它变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021088736-appb-000018
其中,R 1、R 2、L 1、m和环B如本发明任意一项所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明还提供下述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021088736-appb-000019
Figure PCTCN2021088736-appb-000020
本发明还提供下述化合物或其药学上可接受的盐,其选自:
Figure PCTCN2021088736-appb-000021
Figure PCTCN2021088736-appb-000022
在本发明还提供了上述的化合物或其药学上可接受的盐,在制备治疗核心蛋白调节剂相关疾病的药物上的应用。
技术效果
作为新类型的抗乙肝药物,本发明化合物对HBV的抑制作用显著,具有较理想的体外药代动力学实验结果和更好的肝血比分布。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过 敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的1酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除非另有说明,术语“异构体”意在包括几何异构体、顺反异构体、立体异构体、对映异构体、旋光异构体、非对映异构体和互变异构体。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋 转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2021088736-appb-000023
和楔形虚线键
Figure PCTCN2021088736-appb-000024
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2021088736-appb-000025
和直形虚线键
Figure PCTCN2021088736-appb-000026
表示立体中心的相对构型,用波浪线
Figure PCTCN2021088736-appb-000027
表示楔形实线键
Figure PCTCN2021088736-appb-000028
或楔形虚线键
Figure PCTCN2021088736-appb-000029
或用波浪线
Figure PCTCN2021088736-appb-000030
表示直形实线键
Figure PCTCN2021088736-appb-000031
和直形虚线键
Figure PCTCN2021088736-appb-000032
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者, 当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,本发明术语“5-6元杂芳环”和“5-6元杂芳基”可以互换使用,术语“5-6元杂芳基”表示由5至6个环原子组成的具有共轭π电子体系的单环基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。5-6元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-6元杂芳基包括5元和6元杂芳基。所述5-6元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、 噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基或嘧啶基(包括2-嘧啶基和4-嘧啶基等)。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2021088736-appb-000033
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2021088736-appb-000034
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2021088736-appb-000035
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定 的化合物的情况下才是被允许的。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021088736-appb-000036
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;eq代表当量、等量;M代表mol/L;DCM代表二氯甲烷;PE代表石油醚;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺的保护基团;Boc代表叔丁氧羰基是一种胺保护基团;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc 2O代表二叔丁基二碳酸酯;TFA代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl 2代表氯化亚砜;mp代表熔点;IPA代表异丙醇。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021088736-appb-000037
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1
Figure PCTCN2021088736-appb-000038
合成路线
Figure PCTCN2021088736-appb-000039
步骤1:化合物1-b的合成
在干燥的烧瓶中将化合物1-a(100g,487.63mmol,1eq)溶于MeOH(1L),加入甲醇钠甲醇溶液(5M,195.05mL,2eq)和草酸二甲酯(86.38g,731.45mmol,1.5eq),反应在70℃搅拌16小时。反应液冷却后直接过滤,滤饼中加入1L水,匀浆搅拌1小时后过滤。得到的滤饼加1L甲基叔丁基醚,搅拌1小时后过滤,滤饼减压干燥得到化合物1-b,未做进一步处理,直接用于下一步。
1H NMR(400MHz,DMSO-d6)δppm 7.33,7.10(d,J=3.6Hz,1H),7.18-7.16(m,1H),6.11,5.14(s,1H),3.66,3.56(s,3H).
步骤2:化合物1-c的合成
在干燥的烧瓶中加入化合物1-b(44g,151.14mmol,1eq),磺酰胺(23.24g,241.83mmol,14.44mL,1.6eq)和盐酸/甲醇溶液(4M,440.00mL,11.64eq),反应在70℃下搅拌16小时。反应液直接过滤得到粗品。粗品再加1L甲醇匀浆2个小时后过滤,滤饼减压干燥得到化合物1-c。
1H NMR(400MHz,DMSO-d6)δppm 10.88(br s,1H),7.80(d,J=4Hz 1H),7.32(d,J=4Hz 1H),6.79(s,1H),3.85(s,3H).
步骤3:化合物1-d的合成
氮气保护下,向三口瓶中加入钠氢(5.13g,128.13mmol,60%纯度,1.5eq)和DMF(150mL),降温至0℃,滴加化合物1-c(30g,85.42mmol,1eq)的DMF(200mL)溶液。滴加完毕,在0℃下继续搅拌30分钟,然后滴加碘甲烷(36.37g,256.27mmol,15.95mL,3eq)。滴加完毕,在50℃下继续搅拌12小时。 反应液缓慢加到稀盐酸(500mL,0.5M)中,析出大量黄色固体,过滤,滤饼用水(50mL×2)洗涤。向滤饼中加入甲醇(100mL),搅拌1小时后过滤,滤饼减压干燥得到化合物1-d。MS m/z(ESI):364.9[M+1] +.
1H NMR(400MHz,CDCl 3)δppm 7.59(d,J=4.0Hz,1H),7.17(d,J=4.0Hz,1H),6.96(s,1H),4.01(s,3H),3.67(s,3H).
步骤4:化合物1-f的合成
氮气保护下,在三口瓶中加入化合物1-e(9.57g,65.71mmol,3eq)和二氯甲烷(80mL)。在0℃下,滴加三甲基铝的甲苯溶液(2M,32.86mL,3eq)。滴加完毕,在0℃下搅拌30分钟,然后在滴加化合物1-d(8g,21.90mmol,1eq)的二氯甲烷(100mL)溶液。混合物在25℃下搅拌1小时。将反应液缓慢加到冷的1M稀盐酸(150mL)中,分液。水相用二氯甲烷(50mL×2)萃取,合并的有机相用稀盐酸(100mL,1M)和饱和食盐水(150mL×2)洗涤,无水硫酸钠干燥,减压浓缩。向残余物中加入甲醇(50mL),搅拌30分钟后过滤。滤饼减压干燥得到化合物1-f。MS m/z(ESI):477.9[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 11.33(br s,1H),8.11(d,J=4.1Hz,1H),7.98(dd,J=2.4,6.8Hz,1H),7.66-7.61(m,1H),7.53-7.49(m,2H),7.19(s,1H),3.46(s,3H).
步骤5:化合物1-g的合成
在圆底烧瓶中加入化合物1-f(5g,10.44mmol,1eq)和乙醇(75mL),在0℃下加入硼氢化钠(790.19mg,20.89mmol,2eq)。混合物在25℃下搅拌30分钟。将反应液减压浓缩。向残余物中加入乙酸乙酯(150mL),缓慢加入稀盐酸(1M,50mL),搅拌澄清后分液。有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,减压浓缩。向残余物中加入甲醇(30mL),搅拌15分钟后过滤。滤饼用甲醇(10mL×2)冲洗后减压干燥得到化合物1-g。MS m/z(ESI):504.1[M+23] +.
1H NMR(400MHz,CD 3COCD 3)δppm9.78(br s,1H),8.07(dd,J=1.6,6.5Hz,1H),7.73-7.62(m,1H),7.31(t,J=9.1Hz,1H),7.08(dd,J=3.5,16.8Hz,2H),6.48(br d,J=8.9Hz,1H),5.00-4.83(m,1H),4.61(br dd,J=4.1,10.6Hz,1H),2.76(s,3H),2.32-2.24(m,2H).
步骤6:化合物1-i的合成
氮气保护下,向拇指瓶中加入化合物1-g(100.00mg,207.14μmol,1eq),1-h(72.12mg,248.56μmol, 1.2eq),1,4-二氧六环(3mL)和水(0.3mL),然后加入碳酸钠(109.77mg,1.04mmol,5eq)和Pd(dppf)Cl 2(15.16mg,20.71μmol,0.1eq),氮气置换三次后,混合物在90℃下搅拌16小时。向反应液中加入水(15mL)和乙酸乙酯(15mL)稀释,用1M稀盐酸调pH=1~2,搅拌5分钟后过滤。滤液的水相用乙酸乙酯(15mL×2)萃取。合并的有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,减压浓缩。残余物通过快速柱层析(石油醚∶乙酸乙酯=100∶0~70∶30)分离得到化合物1-i。MS m/z(ESI):566.1[M+1] +.
1H NMR(400MHz,CDCl 3)δppm 8.04(s,1H),7.81(br d,J=6.4Hz,1H),7.55(br d,J=7.9Hz,2H),7.40(br d,J=8.8Hz,1H),7.33(br d,J=8.0Hz,2H),7.22-7.15(m,2H),7.08(d,J=3.5Hz,1H),4.97(br s,1H),4.68(br d,J=9.5Hz,1H),4.48(br d,J=6.1Hz,1H),4.19(q,J=7.1Hz,2H),3.65(s,2H),2.85(s,3H),2.47-2.38(m,1H),2.34-2.22(m,1H),1.29(br t,J=7.0Hz,3H).
步骤7:化合物1的合成
在拇指瓶中加入化合物1-i(30mg,53.00μmol,1.0eq)和乙醇(1mL),然后加入氢氧化钠(10.60mg,264.99μmol,5eq)的水(0.2mL)溶液。混合物在25℃下搅拌1小时。反应液用1M稀盐酸调pH=1~2,用乙酸乙酯(20mL×3)萃取。合并的有机相用饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物1。MS m/z(ESI):537.7[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 10.64(s,1H),7.99(dd,J=2.5,6.8Hz,1H),7.74(br d,J=9.3Hz,1H),7.62-7.55(m,3H),7.45-7.35(m,2H),7.31(d,J=8.3Hz,2H),7.15(d,J=3.8Hz,1H),4.81(br s,1H),4.33(dd,J=2.4,11.7Hz,1H),3.58(s,2H),2.63(s,3H),2.36-2.12(m,2H).
步骤8:化合物2和3的合成
化合物1(450mg,836.41μmol,1eq)通过手性超临界色谱法(DAICEL CHIRALPAK AD(250mm*30mm,10μm);流动相:0.1%NH 3·H 2O IPA;流速:80mL/min)分离,得到化合物P1(保留时间:1.360分钟),通过制备型高效液相色谱法(乙酸/乙腈)纯化得到化合物2;得到化合物P2(保留时间:2.028分钟),再通过制备型高效液相色谱法(乙酸/乙腈)纯化得到化合物3。
化合物2:
MS m/z(ESI):560.5[M+23] +.
1H NMR(400MHz,DMSO-d6)δppm 10.61(s,1H),7.99(dd,J=2.4,6.8Hz,1H),7.85-7.70(m,1H),7.62-7.54(m,3H),7.46-7.37(m,2H),7.31(d,J=8.3Hz,2H),7.15(d,J=3.5Hz,1H),4.81(br d,J=10.6Hz,1H),4.33(dd,J=2.6,11.7Hz,1H),3.59(s,2H),2.63(s,3H),2.33-2.09(m,2H).
化合物3:
MS m/z(ESI):560.1[M+23] +.
1H NMR(400MHz,DMSO-d6)δppm 10.62(s,1H),7.99(dd,J=2.6,6.8Hz,1H),7.62-7.55(m,3H),7.45-7.37(1m,2H),7.30(d,J=8.1Hz,2H),7.15(d,J=3.4Hz,1H),4.81(br d,J≤11.0Hz,1H),4.33(dd,J=2.6,11.6Hz,1H),3.57(s,2H),2.63(s,3H),2.35-2.12(m,2H).
实施例2
Figure PCTCN2021088736-appb-000040
合成路线
Figure PCTCN2021088736-appb-000041
步骤1:化合物4-b的合成
氮气保护下,将NaH(494.87mg,12.37mmol,60%纯度,1.2eq)加到DMF(20mL)中,反应液降温 至0℃,再缓慢加入4-a(2g,10.31mmol,1eq),反应液在0℃搅拌0.5小时后,再加入4-溴丁酸乙酯(2.21g,11.34mmol,1.63mL,1.1eq)。反应液缓慢升温至25℃,搅拌1小时。反应液用饱和氯化铵水溶液(50mL)淬灭,用乙酸乙酯(50mL×2)萃取,合并的有机相依次用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品经快速柱层析法(SiO 2,乙酸乙酯∶石油醚=30%-100%)纯化得到化合物4-b。
MS m/z(ESI):308.9[M+1] +
1H NMR(400MHz,CDCl 3)δppm 1.28(t,J=7.03Hz,3H),2.10(q,J=7.03Hz,2H),2.25-2.38(m,2H),4.03(t,J=6.90Hz,2H),4.16(q,J=7.03Hz,2H),7.02(d,J=1.25Hz,1H),7.38(d,J=0.75Hz,1H).
步骤2:化合物4-c的合成
氮气保护下,向圆底烧瓶中加入化合物1-g(500mg,1.04mmol,1eq),双联频哪醇硼酸酯(657.49mg,2.59mmol,2.5eq),乙酸钾(508.21mg,5.18mmol,5eq)和1,4-二氧六环(10mL),氮气置换三次,然后加入Pd(dppf)Cl 2.CH 2Cl 2(42.29mg,51.78μmol,0.05eq),氮气置换三次后,在90℃下搅拌12小时。将反应液通过硅藻土过滤,滤饼用乙酸乙酯(20mL)冲洗。滤液减压浓缩得到粗品化合物4-c。MS m/z(ESI):552.0[M+23] +
步骤3:化合物4-d的合成
在氮气保护下,将化合物4-c(150mg,283.10μmol,1.0eq),4-b(95.95mg,311.41μmol,1.1eq),碳酸钾(117.38mg,849.31μmol,3eq)和Pd(dppf)Cl 2.CH 2Cl 2(46.24mg,56.62μmol,0.2eq)加到1,4-二氧六环(8mL)和H 2O(2mL)中,反应液在100℃搅拌2小时。向反应液中加入水(20mL),用乙酸乙酯(30mL×2)萃取,合并有机相,依次用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品用快速柱层析法(甲醇∶二氯甲烷=0~10%)纯化,得到化合物4-d,直接用于下一步反应。MS m/z(ESI):584.1[M+1] +.
步骤4:化合物4的合成
将化合物4-d(150mg,256.81μmol,1eq)和氢氧化钠(51.36mg,1.28mmol,5eq)加入到甲醇(5mL)和水(5mL)中,反应液在25℃搅拌1小时。反应液用1M稀盐酸调pH=3~4,加入水(20mL),用乙 酸乙酯(30mL×2)萃取,合并有机相,依次用水(10mL)和饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过制备型液相色谱法(乙酸/乙腈)纯化得到化合物4。MS m/z(ESI):556.2[M+1] +. 1H NMR(400MHz,DMSO-d 6)δppm 10.59(s,1H),7.98(br d,J=4.6Hz,1H),7.73-7.63(m,2H),7.55(s,2H),7.41(brt,J=9.1Hz,1H),7.11(br d,J=3.1Hz,1H),7.04(br s,1H),4.76(brt,J=8.8Hz,1H),4.30(br d,J=11.4Hz,1H),3.99(br t,J=6.6Hz,2H),2.62(s,3H),2.25-2.13(m,4H),2.00-1.92(m,2H).
实施例3
Figure PCTCN2021088736-appb-000042
合成路线
Figure PCTCN2021088736-appb-000043
步骤1:化合物5-b的合成
氮气保护下,在三口瓶中加入氯化亚铜(35.33mg,356.83μmol,8.53μL,0.03eq),叔丁醇钠(114.31mg,1.19mmol,0.1eq),Xantphos(206.47mg,356.83μmol,0.03eq)和四氢呋喃(30mL),在25℃下搅拌30分钟,然后加入双联频哪醇硼酸酯(3.32g,13.08mmol,1.1eq),搅拌10分钟后,加入化合物5-a(1g,11.89mmol,990.10μL,1eq)和MeOH(1.52g,47.58mmol,1.93mL,4eq)。混合物在25℃下搅拌16小时。将反应液过滤,滤饼用乙酸乙酯(10mL)洗涤。滤液减压浓缩,得到化合物5-b,直接用于下一步反应。 1H NMR(400MHz,CDCl 3)δppm 6.83-6.73(m,1H),6.70-6.57(m,1H),3.77(s,3H),1.29(s,12H).
步骤2:化合物5-c的合成
氮气保护下,在拇指瓶中加入化合物1-g(500mg,1.04mmol,1eq),化合物5-b(439.23mg,2.07mmol,2eq),碳酸钠(329.31mg,3.11mmol,3eq),1,4-二氧六环(10mL)和水(2mL),然后加入Pd(PPh 3) 4(59.84mg,51.78μmol,0.05eq)。氮气置换三次后,在80℃下搅拌16小时。将反应液减压浓缩。残余物通过快速柱层析法(石油醚∶乙酸乙酯=100∶0至70∶30)分离得到化合物5-c。MS m/z(ESI):487.9[M+1] +
步骤3:化合物5的合成
向三口瓶中加入化合物5-c(400mg,819.75μmol,1eq)和甲醇(10mL),然后0℃下加入氢氧化钠(163.95mg,4.10mmol,5eq)的水(2mL)溶液。混合物在25℃下搅拌12小时。反应液用1M稀盐酸调pH=1~2,加入10mL水,析出大量白色固体,过滤。滤饼通过制备型高效液相色谱法(乙酸/乙腈)分离得到化合物5。MS m/z(ESI):474.3[M+1] +.
1H NMR(400MHz,CD 3COCD 3)δppm 9.81(s,1H),8.08(dd,J=2.5,6.8Hz,1H),7.78(d,J=15.6Hz,1H),7.72-7.65(m,1H),7.39(d,J=3.8Hz,1H),7.32(t,J=8.9Hz,1H),7.24(d,J=3.8Hz,1H),6.53(d,J=8.8Hz,1H),6.23(d,J=15.8Hz,1H),5.05-4.90(m,1H),4.64(dd,J=4.1,10.7Hz,1H),2.77(s,3H),2.37-2.25(m,2H).
步骤4:化合物6的合成
氩气保护下,向氢化瓶中加入化合物5(80mg,168.80μmol,1eq)和四氢呋喃(10mL),然后加入Pd/C(10mg,168.80μmol,10%纯度,1eq),氢气置换三次后,在25℃,H 2(50psi)下搅拌16小时。将反应混合物通过硅藻土过滤,滤饼用四氢呋喃(10mL×3)冲洗。合并的有机相减压浓缩。向残余物中加入甲醇(5mL),搅拌1小时后过滤,滤饼用甲醇(5mL)冲洗后,减压干燥得到化合物6。MS m/z(ESI):476.1[M+1] +.
1H NMR(400MHz,DMSO-d 6)δppm 10.80(br s,1H),8.00(dd,J=2.5,6.8Hz,1H),7.67(br s,1H),7.59(td,J=4.3,7.2Hz,1H),7.40(t,J=9.2Hz,1H),6.89(d,J=3.0Hz,1H),6.72(d,J=3.3Hz,1H),4.68(br d,J=10.5Hz,1H),4.25(br d,J=10.3Hz,1H),2.95(br t,J=7.5Hz,2H),2.59(s,3H),2.31(br t,J=7.4Hz,2H),2.21-2.05(m,2H).
实施例4
Figure PCTCN2021088736-appb-000044
合成路线
Figure PCTCN2021088736-appb-000045
步骤1:化合物7-b的合成
将化合物1-g(100mg,207.14μmol,1eq)溶于1,4-二氧六环(4mL),加入7-a(57.20mg,207.14μmol,1eq)和磷酸钾(2M,310.70μL,3eq),体系用氮气置换三次,在氮气保护下加入四三苯基膦钯(14.36mg,12.43μmol,0.06eq),体系用氮气置换三次。反应液在90℃下搅拌13小时。反应液冷却至室温,过滤。滤液浓缩除去溶剂后加入乙酸乙酯(50mL),用饱和食盐水(30mL×3)洗涤,有机相用无水硫酸钠干燥、过滤后浓缩。粗品通过快速柱层析法(石油醚/乙酸乙酯=1/0至2/1)纯化得到化合物7-b。
1H NMR(400MHz,CDCl 3)δppm 8.43(s,1H),7.79(dd,J=2.6,6.4Hz,1H),7.49-7.38(m,3H),7.33(t,J=7.7Hz,1H),7.22(br d,J=7.5Hz,1H),7.17(d,J=3.8Hz,1H),7.11(t,J=8.8Hz,1H),7.03(d,J=3.5Hz,1H),5.01-4.96(m,1H),4.92(ddd,J=3.3,7.3,11.0Hz,1H),4.53(dd,J=3.1,11.9Hz,1H),3.72(s,3H),3.66(s,2H),2.80(s,3H),2.39-2.25(m,2H).
步骤2:化合物7的合成
化合物7-b(88mg,159.41μmol,1eq)溶于甲醇(14mL),加入氢氧化钠(31.88mg,797.05μmol,5eq)溶于水(14mL)的溶液,反应液在25℃下搅拌13小时。反应液浓缩除去甲醇,用1M稀盐酸调节pH至2-3,有固体析出,过滤,滤饼用水(8mL×5)洗涤后,减压干燥得到化合物7。MS m/z(ESI):427.9[M-109].
1H NMR(400MHz,DMSO-d6)δppm 10.61(s,1H),7.98(dd,J=2.4,6.9Hz,1H),7.76(br d,J=9.0Hz,1H),7.60-7.50(m,3H),7.45-7.32(m,3H),7.20(br d,J=7.5Hz,1H),7.15(d,J=3.5Hz,1H),4.81(br t,J=9.2Hz,1H), 4.32(dd,J=2.6,11.7Hz,1H),3.61(s,2H),2.63(s,3H),2.33-2.10(m,2H).
实施例5
Figure PCTCN2021088736-appb-000046
合成路线
Figure PCTCN2021088736-appb-000047
步骤1:化合物8-b的合成
将化合物8-a(500mg,2.17mmol,1eq),双联频哪醇硼酸酯(827.85mg,3.26mmol,1.5eq),乙酸钾(639.88mg,6.52mmol,3eq)和Pd(dppf)Cl 2(79.51mg,108.67μmol,0.05eq)溶于1,4-二氧六环(20mL),氮气置换三次。反应液在90℃下搅拌14小时。反应液用硅藻土过滤,滤饼用乙酸乙酯(15mL×2)洗涤,滤液合并浓缩。得到化合物8-b,直接用于下一步反应。
MS m/z(ESI):196.0[M+1] +.
步骤2:化合物8-c的合成
将化合物8-b(50mg,103.57μmol,1eq)溶于1,4-二氧六环(4mL),加入化合物1-g(71.75mg,367.99μmol,3.55eq)和磷酸钾水溶液(2M,155.35μL,3eq),氮气置换三次,加入四三苯基膦钯(7.18mg,6.21μmol,0.06eq)。反应液在90℃下搅拌13小时。反应液冷却至室温,过滤。滤液浓缩除去溶剂后加入乙酸乙酯(50mL),用饱和食盐水(30mL×3)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩。粗品用快速柱层析法(石油醚/乙酸乙酯=1/0至1/1)纯化得到化合物8-c。
1H NMR(400MHz,CDCl 3)δppm 10.59(s,1H),8.79(s,1H),8.04-7.95(m,2H),7.77(d,J=9.5Hz,1H),7.52(d,J=3.8Hz,1H),7.44-7.37(m,2H),7.20(d,J=3.5Hz,1H),4.83(br t,J=10.2Hz,1H),4.33(br d,J=11.0Hz,1H),3.88(s,2H),3.63(s,3H),2.63(s,3H),2.34-2.10(m,2H).
步骤3:化合物8的合成
化合物8-c(20mg,36.16μmol,1eq)溶于甲醇(4mL),加入氢氧化钠(7.23mg,180.82μmol,5eq)的水(4mL)溶液,反应液在25℃下搅拌13小时。将反应液浓缩除去甲醇,用1M稀盐酸调节pH至4-5,过滤,得到化合物8。MS m/z(ESI):539.1[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 10.72(s,1H),8.73(d,J=1.5Hz,1H),8.01-7.89(m,2H),7.79(br s,1H),7.61-7.53(m,1H),7.47(d,J=3.8Hz,1H),7.43-7.35(m,2H),7.18(d,J=3.8Hz,1H),4.82(br d,J=10.8Hz,1H),4.36-4.26(m,1H),3.66(s,2H),2.62(s,3H),2.35-2.11(m,2H).
实施例6
Figure PCTCN2021088736-appb-000048
合成路线
Figure PCTCN2021088736-appb-000049
步骤1:化合物9-b的合成
将化合物9-a(4.9g,21.21mmol,1eq)溶于甲醇(100mL)中,加入浓硫酸(416.01mg,4.24mmol, 226.09μL,0.2eq)。该反应液在80℃搅拌2小时。将反应液直接减压浓缩,加入二氯甲烷(100mL)溶解,然后用水(100mL×1)洗涤,再用1M碳酸钠水溶液(100mL×1)和饱和食盐水(100mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品用快速柱层析法(石油醚∶乙酸乙酯=100∶0至5∶1)纯化得到化合物9-b。
1H NMR(400MHz,CDCl 3)δppm 7.45-7.39(m,2H),6.85-6.78(m,2H),4.63(s,2H),3.83(s,3H)。
步骤2:化合物9-c的合成
将化合物9-b(2g,8.16mmol,1eq)溶于1,4-二氧六环(30mL)中,加入双联频那醇硼酸酯(2.28g,8.98mmol,1.1eq)和碳酸钾(1.69g,12.24mmol,1.5eq),氮气置换三次,然后加入Pd(dppf)Cl 2(59.71mg,81.61μmol,0.01eq),在90℃下搅拌12小时。向反应液中加入乙酸乙酯(30mL)稀释,用饱和氯化钠水溶液(30mL×3)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品用快速柱层析法(石油醚∶乙酸乙酯=100∶0至5∶1)分离得到化合物9-c。
1H NMR(400MHz,CDCl 3)δppm 7.78(d,J=8.5Hz,2H),6.92(d,J=8.8Hz,2H),4.68(s,2H),3.83(s,3H),1.35(s,12H).
步骤3:化合物9的合成
将化合物1-g(780mg,1.62mmol,1eq)溶于1,4-二氧六环(20mL)和水(5mL)中,在20℃下加入化合物9-c(471.99mg,1.62mmol,1eq)和碳酸钠(256.86mg,2.42mmol,1.5eq),氮气置换三次,然后加入Pd(PPh 3) 4(18.67mg,16.16μmol,0.01eq)。在90℃下搅拌12小时。反应液用1M盐酸水溶液调pH=3~4,然后用乙酸乙酯(20mL×2)萃取,合并有机相用饱和氯化钠水溶液(20mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过制备型高效液相色谱法(乙酸/乙腈)分离得到化合物9。MS m/z(ESI):444.0[M-109].
1H NMR(400MHz,CD 3OD)δppm 7.92(dd,J=2.6,6.7Hz,1H),7.61-7.54(m,3H),7.27-7.21(m,1H),7.20-7.16(m,1H),7.09(d,J=3.0Hz,1H),6.98(d,J=8.8Hz,2H),5.07(br d,J=9.5Hz,1H),4.71(s,2H),4.48-4.36(m,1H),2.80-2.70(m,3H),2.41-2.23(m,2H).
实施例7
Figure PCTCN2021088736-appb-000050
合成路线
Figure PCTCN2021088736-appb-000051
步骤1:化合物10-b的合成
在三口瓶内加入10-a(3.02g,3eq)和二氯甲烷(45mL),反应液冷却至0℃,滴加三甲基铝(2M,3eq),搅拌30分钟,然后加入1-d(2.5g,1eq),反应液在25℃下搅拌1小时。反应液冷却至室温,然后将反应液缓慢倒入冰水(50mL)中,然后搅拌5分钟,然后用1M的盐酸水溶液调节pH=3~4,有黄色固体析出,过滤,滤饼加入甲醇(50mL)搅拌,过滤,滤饼减压浓缩干燥得到化合物10-b。MS m/z(ESI):479.8[M+1] +
1H NMR(400MHz,DMSO-d 6)δppm 11.47(s,1H),8.10(d,J=4.0Hz,1H),7.61(dd,J=6.4,9.6Hz,2H),7.51(d,J=4.0Hz,1H),7.20(s,1H),3.48-3.38(m,3H)。
步骤2:化合物10-c的合成
在茄形瓶内加入10-b(2.2g)和乙醇(50mL),然后将反应液冷却至0℃下加入硼氢化钠(348.86mg,2.0eq),反应液在25℃下搅拌1小时。反应液冷却至室温,然后将反应液减压浓缩至残余物,残余物加入MeOH(30mL)和水(20mL)搅拌,用1M的盐酸水溶液调节pH至3~4,有白色固体析出,过滤,滤饼用甲醇(20mL)洗涤,滤饼减压浓缩干燥得到化合物10-c。
1H NMR(400MHz,DMSO-d 6)δppm 10.62(s,1H),7.62(d,J=6.8Hz,1H),7.48(dd,J=6.4,10.0Hz,2H),7.03(d,J=3.6Hz,1H),6.90(d,J=4.0Hz,1H),4.6-4.60(m,1H),4.23(dd,J=2.5,11.8Hz,1H),2.42-2.38(m,3H),2.14-2.05(m,1H),2.02-1.90(m,1H).
步骤3:化合物10的合成
在茄形瓶内加入化合物10-e(0.5g,1.03mmol,1eq),1-h(300.00mg,1eq),磷酸钾(650mg,2.97eq),1,4-二氧六环(15mL)和水(3mL),反应液置换氮气,然后将Pd(PPh 3) 4(43mg,0.03eq)加入反应液内,反应液升温至90℃搅拌1小时。待反应液降至20℃,加入乙醇(4mL)和氢氧化钠(200mg,4.89eq)的水(1mL)溶液。反应液在20℃下搅拌1小时。向反应液中加入水(10mL),水相用二氯甲烷(20mL×2)萃取,合并的有机相用饱和食盐水(15mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。向残余物中加入甲醇(10mL)和水(5mL),搅拌20分钟,过滤,得到化合物10。MS m/z(ESI):540.1[M+1] +
1H NMR(400MHz,DMSO-d 6)δppm 9.86(s,1H),6.86(d,J=9.2Hz,1H),6.77-6.67(m,4H),6.50(d,J=3.6Hz,1H),6.42(d,J=8.0Hz,2H),6.26(d,J=3.6Hz,1H),3.973.88(m,1H),3.52-3.45(m,1H),2.71(s,2H),1.74(s,3H),1.41-1.34(m,1H),1.32-1.20(m,1H).
实施例8
Figure PCTCN2021088736-appb-000052
合成路线
Figure PCTCN2021088736-appb-000053
步骤1:化合物11-b的合成
将化合物11-a(2g,7.38mmol,1eq)溶于1,4-二氧六环(30mL),加入联硼酸频那醇酯(2.06g,8.11mmol,1.1eq)和碳酸钾(1.53g,11.06mmol,1.5eq),氮气置换三次,然后加入Pd(dppf)Cl 2(53.97mg,73.76μmol,0.01eq),再用氮气置换三次,在90℃搅拌12小时。反应液直接减压浓缩,加入乙酸乙酯(30mL)稀释,然后用饱和氯化钠水溶液(30mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩。残余物通过快速柱层析纯化(梯度淋洗:石油醚∶乙酸乙酯=100∶0至5∶1)得到化合物11-b。MS m/z(ESI):319.1[M+1] +.1H NMR(400MHz,CDCl 3)δppm 7.76(d,J=7.8Hz,2H),7.22(d,J=7.8Hz,2H),4.14(q,J=7.0Hz,2H),2.69(t,J=7.7Hz,2H),2.33(t,J=7.4Hz,2H),1.97(t,J=7.5Hz,2H),1.36(s,12H),1.29-1.25(m,3H).
步骤2:化合物11-c的合成
将化合物1-g(200mg,414.27μmol,1eq)溶于1,4-二氧六环(10mL)和水(2mL)中,加入化合物11-b(131.83mg,414.27μmol,1eq)和碳酸钠(65.86mg,621.41μmol,1.5eq),氮气置换三次,然后加入Pd(PPh 3) 4(4.79mg,4.14μmol,0.01eq)。再用氮气置换三次。该反应液在90℃搅拌12小时。向反应液中加入乙酸乙酯(20mL)稀释,然后用饱和氯化钠水溶液(20mL×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩。残余物通过快速柱层析法(石油醚∶乙酸乙酯=100∶0至5∶1)纯化得到化合物11-c。
1H NMR(400MHz,DMSO-d 6)δppm 11.96(br s,4H),10.59(s,1H),7.99(dd,J=2.4,6.9Hz,1H),7.73(br d,J=9.5Hz,1H),7.62-7.52(m,3H),7.41(t,J=9.2Hz,1H),7.36(d,J=3.8Hz,1H),7.24(d,J=8.3Hz,2H),7.14(d,J=3.5Hz,1H),4.81(brt,J=9.7Hz,1H),4.33(dd,J=2.6,11.7Hz,1H),4.04(quin,J=7.1Hz,3H),2.68-2.56(m,6H),2.34-2.13(m,5H),1.92(s,10H),1.87-1.78(m,3H),1.18(t,J=7.0Hz,6H).
步骤3:化合物11的合成
将化合物11-e(200mg,336.63μmol,1eq)溶于甲醇(3mL)和水(3mL)的混合液中,然后加入氢氧化钠(80.79mg,2.02mmol,6eq)。该反应混合液在50℃搅拌12小时。反应用2M盐酸调pH=3~4,直接减压浓缩。粗品经高效液相色谱法(乙酸/乙腈)分离得到化合物11。
1H NMR(400MHz,CD 3OD)δppm 7.92(dd,J=2.5,6.8Hz,1H),7.63-7.52(m,3H),7.29-7.20(m,4H),7.11(d,J=3.0Hz,1H),4.96-4.92(m,1H),4.46-4.38(m,1H),2.76(s,3H),2.69(t,J=7.5Hz,2H),2.33(q,J=6.9Hz,4H),2.01-1.88(m,2H).
实施例9
Figure PCTCN2021088736-appb-000054
合成路线
Figure PCTCN2021088736-appb-000055
步骤1:化合物12-b的合成
氮气保护下,在三口瓶中加入氯化亚铜(4.71mg,47.56μmol,1.14μL,0.03eq),叔丁醇钠(15.24mg,158.54μmol,0.1eq),Xantphos(27.52mg,47.56μmol,0.03eq)和四氢呋喃(4mL),在25℃下搅拌30分钟,然后加入双联频哪醇硼酸酯(442.85mg,1.74mmol,1.1eq),搅拌10分钟后,加入12-a(200mg,1.59mmol,1eq)和甲醇(203.19mg,6.34mmol,256.62μL,4eq)。混合物在25℃下搅拌16小时。反应液用硅藻土过滤,滤饼用乙酸乙酯(6mL×3)洗涤,滤液合并浓缩得到化合物12-b。
1H NMR(400MHz,CDCl 3)δppm 6.65-6.51(m,1H),5.48-5.42(m,1H),3.68(s,3H),2.46(t,J=7.5Hz,2H),2.22-2.15(m,2H),1.76(quin,J=7.5Hz,2H),1.22(s,12H).
步骤2:化合物12-c的合成
将化合物1-g(300mg,621.41μmol,1eq)溶于1,4-二氧六环(12mL),往其中加入12-b(394.79mg,1.55mmol,2.5eq)和磷酸钾水溶液(2M,932.11μL,3eq),体系用氮气置换三次,在氮气保护下加入四三苯基膦钯(43.08mg,37.28μmol,0.06eq),体系用氮气置换三次。反应液在90℃下搅拌15小时。反 应液冷却至室温,过滤。滤液减压浓缩,加入乙酸乙酯(50mL),用饱和食盐水(30mL×3)洗涤,有机相经无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(石油醚/乙酸乙酯=1/0至1/1,在乙酸乙酯中加入0.1%体积的乙酸)纯化得到化合物12-c。
1H NMR(400MHz,CDCl 3)δppm 8.16(s,1H),7.84-7.76(m,1H),7.43-7.35(m,1H),7.14(t,J=8.8Hz,1H),7.03-6.73(m,2H),6.50-5.96(m,1H),4.94-4.83(m,1H),4.65-4.51(m,2H),3.74-3.64(m,3H),2.81(s,3H),2.54-2.32(m,4H),2.28-2.15(m,2H),1.97-1.77(m,2H).
步骤3:化合物12-d的合成
化合物12-c(110mg,207.53μmol,1eq)溶于甲醇(45mL),在氩气保护下往其中加入湿Pd(OH) 2(100mg,20%纯度),体系用氩气置换三次,再用氢气置换三次,反应液在30℃下,H 2(20psi)中搅拌16小时。反应液用硅藻土过滤,滤饼用甲醇(25mL×3)洗涤,滤液合并浓缩。粗品用快速柱层析法(石油醚/乙酸乙酯=1/0至1/1,在乙酸乙酯中加入0.1%体积的乙酸)纯化得到化合物12-d。
1H NMR(400MHz,CDCl 3)δppm 8.18(s,1H),7.81(dd,J=2.6,6.4Hz,1H),7.39(td,J=3.3,8.8Hz,1H),7.18-7.10(m,1H),6.89(d,J=3.3Hz,1H),6.70-6.63(m,1H),4.95-4.84(m,1H),4.63-4.54(m,2H),3.67(s,3H),2.84-2.72(m,5H),2.40-2.16(m,4H),1.73-1.66(m,2H),1.44-1.24(m,4H).
步骤4:化合物12的合成
化合物12-d(50mg,93.98μmol,1eq)溶于甲醇(8mL),加入氢氧化钠(18.80mg,469.88μmol,5eq)的水(8mL)溶液,反应液在25℃下搅拌6小时。反应液浓缩除去甲醇,用1M稀盐酸调节pH至3~4,过滤,滤饼用水(3mL×3)洗涤后,减压干燥得到粗品,粗品经制备型高效液相色谱法(乙酸/乙腈)纯化得到化合物12。MS m/z(ESI):518.0[M+1] +.
1H NMR(400MHz,DMSO-d 6)δppm 10.56(s,1H),7.97(dd,J=2.5,6.8Hz,1H),7.68-7.51(m,2H),7.44-7.36(m,1H),6.92(d,J=3.5Hz,1H),6.76-6.70(m,1H),4.70(br d,J=11.0Hz,1H),4.27(dd,J=3.1,11.4Hz,1H),2.74(t,J=7.4Hz,2H),2.59(s,3H),2.22-2.05(m,4H),1.64-1.46(m,4H),1.36-1.22(m,2H).
实施例10
Figure PCTCN2021088736-appb-000056
合成路线:
Figure PCTCN2021088736-appb-000057
步骤1:化合物13-c的合成
氮气保护下将正丁基锂(2.5M,80.28mL,1.2eq)加到四氢呋喃(240mL)中,反应液降温至-78℃,再缓慢滴加化合物13-a(20g,167.26mmol,1eq)的四氢呋喃(80mL)溶液。在-78℃搅拌0.5hr后,滴加化合物13-b(20.70g,200.72mmol,21.34mL,1.2eq)的四氢呋喃(80mL)溶液。反应液缓慢升温至25℃,继续搅拌1小时。向反应液中滴加水(100mL),减压浓缩除去大部分四氢呋喃,然后加入饱和氯化铵水溶液(200mL),用乙酸乙酯(600mL×2)萃取,合并的有机相依次用水(200mL)和饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(石油醚/乙酸乙酯=1/0至1/1)纯化,得到化合物13-c。MS m/z(ESI):161.8[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 8.58-8.48(m,1H),2.57(s,3H)。
步骤2:化合物13-d的合成
氮气保护下,将LiHMDS(1M,168.13mL,1.3eq)加入到四氢呋喃(210mL)中,反应液降温至-78℃, 再滴加化合物13-c(20.9g,129.33mmol,1eq)的四氢呋喃(80mL)溶液。反应液在-78℃搅拌0.5小时后,滴加草酸二甲酯(22.91g,193.99mmol,1.5eq)的四氢呋喃(80mL)溶液。反应液缓慢升温至25℃,继续搅拌1小时。向反应液中缓慢加入水(100mL),然后减压浓缩除去大部分四氢呋喃,再加入水(200mL),搅拌1小时后过滤。向滤饼中加入乙酸乙酯(200mL),搅拌1小时后过滤,收集滤饼,减压干燥。得到化合物13-d。MS m/z(ESI):247.7[M+1].
步骤3:化合物13-e的合成
将化合物13-d(10g,4.028mmol,1eq)和磺酰胺(4.66g,48.46mmol,1.2eq)加到盐酸/甲醇(4M,100.00mL,9.91eq)中,反应液在60℃搅拌0.5小时。将反应液在25℃左右过滤,滤饼用甲醇(100mL)洗涤,滤液减压浓缩。向反应液中加入水(200mL),用乙酸乙酯(200mL×2)萃取。合并的有机相依次用水(100mL)和饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(二氯甲烷/甲醇=1/0至1/10)纯化得到化合物13-e。MS m/z(ESI):307.5[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 8.32-8.28(m,1H),6.54(s,1H),3.78(s,3H).
步骤4:化合物13-f的合成
氮气保护下,将化合物13-e(1.45g,4.71mmol,1eq)加到DMF(15mL)中,反应液降温至0℃,分批加入NaH(282.68mg,7.07mmol,60%含量,1.5eq)。反应液在0℃搅拌0.5小时后,滴加碘甲烷(3.34g,23.56mmol,1.47mL,5eq)。反应液升温至50℃搅拌1小时。将反应液缓慢加到饱和氯化铵水溶液(50mL)中淬灭,用乙酸乙酯(50mL×2)萃取。合并的有机相依次用水(50mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(石油醚/乙酸乙酯=1/0至1/1)纯化,得到化合物13-f。MS m/z(ESI):321.6[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 8.87-8.83(m,1H),7.40(s,1H),3.96(s,3H),3.55(s,3H).
步骤5:化合物13-g的合成
氮气保护下,将化合物1-e(135.32mg,929.67μmol,1.3eq)加到二氯甲烷(2mL)中,反应液降温至0℃,滴加三甲基铝(2M,464.84μL,1.3eq)。反应液在0℃搅拌0.5小时,再滴加13-f(130mg,715.13μmol,1eq)的二氯甲烷(2mL)溶液。反应液升温至25℃搅拌30分钟。向反应液中缓慢滴加水(50mL), 用乙酸乙酯(50mL×2)萃取。合并的有机相依次用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(石油醚/乙酸乙酯=1/0至1/1)纯化得到化合物13-g。MS m/z(ESI):434.9[M+1].
步骤6:化合物13-h的合成
将化合物13-g(350mg,804.08μmol,1eq)加到乙醇(2mL)中,然后分批加入硼氢化钠(45.63mg,1.21mmol,1.5eq)。反应液在25℃搅拌0.5小时。向反应液中缓慢滴加1mL醋酸和水(50mL),用乙酸乙酯(50mL×2)萃取,合并有机相,依次用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。通过快速柱层析法(石油醚/乙酸乙酯=1/0至1/1)纯化得到化合物13-h。MS m/z(ESI):438.9[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 10.61(s,1H),7.97(dd,J=2.5,6.8Hz,1H),7.86(br d,J=9.5Hz,1H),7.75(d,J=1.0Hz,1H),7.56(ddd,J=2.5,4.3,9.0Hz,1H),7.48-7.36(m,1H),4.96-4.83(m,1H),4.30(dd,J=2.8,11.8Hz,1H),2.67(s,3H),2.32-2.22(m,1H),2.20-2.08(m,1H)。
步骤7:化合物13-j的合成
氮气保护下,将化合物13-h(70.0mg,157.07μmol,1eq),13-i(27.24mg,159.11μmol,1eq),碳酸钾(65.96mg,477.34μmol,3eq),碘化亚铜(60.60mg,318.23μmol,2eq)和L-脯氨酸(36.63mg,318.23μmol,2eq)加到二甲基亚砜(2mL)中。反应液在110℃搅拌1小时。向反应液中加入水(50mL),用乙酸乙酯(50mL×2)萃取,合并有机相,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。通过快速柱层析法(石油醚/乙酸乙酯=1/0至1/1)纯化得到化合物13-j。MS m/z(ESI):574.1[M+1] +.
步骤8:化合物13的合成
将化合物13-j(30.05mg,52.35μmol,1eq)和一水合氢氧化锂(21.97mg,523.47μmol,10eq)加到甲醇(1mL)和水(1mL)中,反应液在25℃搅拌30分钟。反应液用4M盐酸将pH调至3~4,加入水(30mL),用乙酸乙酯(30mL×2)萃取。合并的有机相依次用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过制备型高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18  75*30mm*3μm;流动相:水(0.225%甲酸)-乙腈,流速:25mL/min)纯化得到化合物13。MS m/z(ESI):546.2[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 10.58(s,1H),7.98(dd,J=2.4,6.9Hz,1H),7.64-7.51(m,2H),7.46-7.36(m,1H),7.10(s,1H),4.66(br s,1H),4.27(dd,J=3.9,10.7Hz,1H),3.84(br d,J=12.3Hz,2H),2.99(br t,J=12.3Hz,2H),2.60(s,3H),2.23-2.07(m,4H),1.91(br s,1H),1.75(br d,J=11.0Hz,2H),1.28-1.16(m,2H).
实施例11
Figure PCTCN2021088736-appb-000058
合成路线:
Figure PCTCN2021088736-appb-000059
步骤1:化合物14-b的合成
氮气保护下,向圆底烧瓶中加入化合物14-a(300g,2.36mol,243.90mL,1eq),乙二醇(292.85g,4.72mol,263.83mL,2eq)和甲苯(1.5L),然后加入对甲苯磺酸(40.63g,235.92mmol,0.1eq),在120℃ 下回流12小时,同时用分水器分水。反应液用水(300mL×2)洗涤。水相用乙酸乙酯(100mL)萃取。合并的有机相用饱和食盐水(300mL×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩。浓缩液通过硅胶柱层析法(石油醚∶乙酸乙酯=100∶0~50∶50)分离,得到化合物14-b。
1H NMR(400MHz,CDCl 3)δppm 7.72(d,J=3.1Hz,1H),7.30-7.08(m,1H),4.11-4.02(m,2H),3.99-3.92(m,2H),1.77(s,3H).
步骤2:化合物14-c的合成
将化合物14-b(20g,116.81mmol,1eq)溶于四氢呋喃(360mL)中,降温至-78℃,缓慢滴加丁基锂(2.5M,51.40mL,1.1eq)。反应液在-78℃搅拌1小时,然后缓慢滴加四溴化碳(42.61g,128.49mmol,1.1eq)的四氢呋喃(40mL)溶液,反应液在-78℃下搅拌0.5小时,再升温至0℃搅拌0.5小时。向反应液中滴加饱和氯化铵溶液(300mL),用乙酸乙酯(300mL×3)萃取。合并的有机相用饱和食盐水(300mL×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。粗品通过快速柱层析法(石油醚/乙酸乙酯=1/0至10/1)纯化得到化合物14-c。MS m/z(ESI):249.8[M+1] +.
1H NMR(400MHz,CDCl 3)δppm 7.65(s,1H),4.12-4.07(m,2H),4.03-3.98(m,2H),1.79(s,3H).
步骤3:化合物14-d的合成
在三口瓶中将化合物14-c(49.1g,196.31mmol,1eq)溶于丙酮(280mL)中,在0℃下加入盐酸水溶液(6M,196.31mL,6eq),于25℃下搅拌反应2小时。向反应液中加入水(200mL),用乙酸乙酯(200mL×3)萃取,合并的有机相用饱和食盐水(200mL×3)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物14-d。
1H NMR(400MHz,CDCl 3)δppm 7.87(s,1H),2.65(d,J=0.8Hz,3H).
步骤4:化合物14-e的合成
在三口瓶中加入化合物14-d(22g,106.76mmol,1eq)和甲醇(300mL),然后在0℃下缓慢加入甲醇钠的四氢呋喃溶液(5M,42.71mL,2eq)和草酸二甲酯(18.91g,160.15mmol,1.5eq)。混合物在70℃下搅拌1小时。反应液降至0℃,加入水(300mL),然后用2mol/L稀盐酸调pH=2~3,在0℃搅拌30分钟后过滤。滤饼用甲醇(30mL×3)洗涤后减压干燥。得到化合物14-e。MS m/z(ESI):291.9[M+1] +.
1H NMR(400MHz,DMSO-d 6)δppm 7.92(s,1H),6.55(s,1H),3.69(s,3H).
步骤5:化合物14-f的合成
在圆底烧瓶中加入化合物14-e(65g,222.52mmol,1eq),磺酰胺(32.08g,333.78mmol,19.93mL,1.5eq)和盐酸/甲醇溶液(4M,500mL,8.99eq)。混合物在70℃下搅拌2小时。将反应液降至0℃,搅拌1小时后过滤。向滤饼中加入水(300mL),搅拌30分钟后过滤。向滤饼中加入叔丁基甲醚(200mL),搅拌30分钟后过滤。滤饼减压干燥得到化合物14-f。MS m/z(ESI):351.9[M+1] +.
1H NMR(400MHz,DMSO-d 6)δppm 8.05(s,1H),6.84(s,1H),3.81(s,3H).
步骤6:化合物14-g的合成
氮气保护下,在三口瓶中加入化合物14-f(20g,56.79mmol,1eq)和DMF(200mL),搅拌溶解后,在0℃下分批加入钠氢(2.95g,73.82mmol,含量60%,1.3eq)。反应混合物在0℃在搅拌30分钟,然后加入碘甲烷(24.18g,170.37mmol,10.61mL,3eq)。混合物在50℃下搅拌12小时。将反应液缓慢倒入冰水(200mL)中,用1M稀盐酸调pH=2~3,搅拌15分钟后过滤。滤饼用水(50mL)和甲醇(20mL×2)冲洗后,减压干燥。得到化合物14-g。MS m/z(ESI):365.7[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 8.35(s,1H),7.37(s,1H),3.95(s,3H),3.60(s,3H).
步骤7:化合物14-h的合成
将14-g(50g,136.53mmol,1eq)和三乙胺(69.08g,682.67mmol,95.02mL,5eq)加到乙腈(250mL)和水(250mL)中,混合物在50℃下搅拌1小时。向反应液中加入水(200mL),用乙酸乙酯(200mL×2)萃取。合并的有机相依次用水(100mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。得到化合物14-h。MS m/z(ESI):351.8[M+1] +.
步骤8:化合物14-i的合成
氮气保护下,将化合物14-h(20g,56.79mmol,1eq),1-e(8.27g,56.79mmol,1eq),DIEA(22.02g,170.37mmol,29.67mL,3eq)和HATU(32.39g,85.18mmol,1.5eq)加到DMF(200mL)中,反应液在25℃搅拌1小时。向反应液中加入水(100mL),用乙酸乙酯(500mL×2)萃取。合并的有机相依次用水(200mL)和饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。得到化合物14-i。MS m/z(ESI): 478.8[M+1].
步骤9:化合物14-j的合成
将14-i(10g,20.85mmol,1eq)溶于乙醇(100mL)中,降温至0℃,分批加入硼氢化钠(788.62mg,20.85mmol,1eq)。反应在0℃搅拌30分钟。缓慢加入2M稀盐酸(40mL)和水(50mL),用乙酸乙酯(50mL)萃取。有机相用饱和氯化钠溶液(30mL)洗涤,用无水硫酸钠干燥后过滤,有机相减压浓缩得到产物14-j。MS m/z(ESI):482.9[M+1] +.
步骤10:手性拆分得到化合物14-k:
化合物14-j(6g,12.40mmol,1eq)通过手性超临界液相色谱法(色谱柱:(s,s)WHELK-O1(250mm*50mm,10μm);流动相:[0.1%氨水/乙醇];流速:220mL/min)分离,得到化合物14-k。MS m/z(ESI):482.9[M+1] +.
Chiral SFC保留时间:3.464分钟。
1H NMR(400MHz,DMSO-d6)δppm 10.62(s,1H),7.97(br dd,J=2.4,6.8Hz,2H),7.89(s,1H),7.62-7.52(m,1H),7.46-7.33(m,1H),4.92(br d,J=9.6Hz,1H),4.33(br d,J=10.8Hz,1H),2.62(s,3H),2.37(br d,J=13.9Hz,1H),2.22-2.07(m,1H).
步骤11:化合物14-m的合成
将化合物14-k(150.00mg,310.07μmol,1eq)和化合物14-l(182.44mg,620.14μmol,2eq),碳酸钠(164.32mg,1.55mmol,5eq)和1,1-双(二苯基膦)二茂铁氯化钯(22.69mg,31.01μmol,0.1eq)溶于二氧六环(9mL)和水(0.9mL)中,氮气置换三次后,在90℃下搅拌1小时。反应液通过硅藻土过滤,滤液中加入水(10mL),用乙酸乙酯(10mL×3)萃取,合并的有机相用饱和食盐水(10mL×3)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(石油醚/乙酸乙酯=1/0至5/3)纯化,得到化合物14-m。MS m/z(ESI):571.2[M+1].
步骤12:化合物14-n的合成
将化合物14-m(50mg,87.55μmol,1eq)和醋酸(52.58μg,8.76e-1μmol,5.01e-2μL,0.01eq)溶于四氢呋喃(10mL)中,在氩气保护下加入湿钯碳(14.44mg,13.57μmol,钯含量,1.55e-1eq)。体系用氩气 置换三次,再用氢气置换三次,将反应液升温至50℃在氢气(50psi)氛围下搅拌反应3小时。反应液冷却至室温,硅藻土过滤,滤饼用甲醇(10mL×3)洗涤,滤液合并浓缩。粗品经制备型高效液相色谱法(色谱柱:YMCTriartC18250*50mm*7μm;流动相:[水(0.225%甲酸)-乙腈];流速:30mL/min)纯化,得到化合物14-n。MS m/z(ESI):573.1[M+1] +.
步骤13:化合物14的合成
将化合物14-n(10mg,17.45μmol,1eq)溶于四氢呋喃(2mL)和水(1mL)中,再加入氢氧化锂(2.09mg,87.24μmol,5eq),在25℃搅拌反应1小时。向反应液中加入1M稀盐酸调节pH为6-7,再加入水(10mL)和乙酸乙酯(10mL×3)萃取,合并的有机相再用饱和食盐水(10mL×3)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物14。MS m/z(ESI):545.3[M+1] +.
1H NMR(400MHz,CD 3OD)δppm 7.88(brd,J=4.3Hz,1H),7.53-7.47(m,2H),7.21(t,J=8.9Hz,1H),4.40(br d,J=11.6Hz,1H),3.85-3.81(m,1H),3.50-3.43(m,2H),2.73(s,3H),2.38-2.25(m,4H),1.94-1.86(m,4H),1.70(br s,1H),1.56(br s,1H).
实施例12
Figure PCTCN2021088736-appb-000060
合成路线:
Figure PCTCN2021088736-appb-000061
步骤1:化合物15-a的合成
将14-k(50mg,103.36μmol,1eq)和化合物1-h(35.99mg,124.03μmol,1.2eq)溶于1,4-二氧六环(3mL)中,加入磷酸钾(65.82mg,310.07μmol,3eq)和水(1mL)。氮气置换后加入四三苯基膦钯(23.89mg,20.67μmol,0.2eq)。混合物在100℃下搅拌16小时。将反应液过滤,向滤液中加入水(20mL), 用乙酸乙酯(20mL)萃取。有机相用饱和氯化钠溶液(20mL)洗涤后减压浓缩。粗品通过快速柱层析法(石油醚/乙酸乙酯,梯度:0-60%)纯化,得到化合物15-a。MS m/z(ESI):567.2[M+1] +.
步骤2:化合物15的合成
将化合物15-a溶于四氢呋喃(2mL)中,加入一水合氢氧化锂(17.76mg,423.24μmol,5eq)和水(2mL)。混合物在25℃搅拌30min。加入2M稀盐酸调节pH=3~4,加入水(20mL),用乙酸乙酯(20mL×2)萃取。合并的有机相减压浓缩得到粗品。粗品经制备型高效液相色谱法(色谱柱:Phenomenex Gemini-NXC1875*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈];流速:30mL/min)纯化得到15。MS m/z(ESI):567.2[M+23] +.
1H NMR(400MHz,DMSO-d6)δppm 10.74(br s,1H),8.41(br s,1H),8.12(s,1H),7.99(dd,J=2.3,6.6Hz,1H),7.57(br d,J=7.9Hz,3H),7.41(br t,J=9.1Hz,1H),7.33(br d,J=8.1Hz,2H),4.94(br d,J=9.4Hz,1H),4.36(br d,J=11.4Hz,1H),3.45-3.44(m,2H),2.64(s,3H),2.42(br d,J=13.8Hz,2H),2.28-2.16(m,1H).
实施例13
Figure PCTCN2021088736-appb-000062
合成路线:
Figure PCTCN2021088736-appb-000063
步骤1:化合物16-b的合成
将化合物14-h(1g,2.84mmol,1eq)和化合物16-a(557.27mg,3.41mmol,1.2eq)溶于四氢呋喃(10mL)中,体系冷却至0℃,加入N,N-二异丙基乙胺(1.10g,8.52mmol,1.48mL,3eq)和三正丙基环磷酸酐50%乙酸乙酯溶液(3.61g,5.68mmol,3.38mL,50%纯度,2eq)。混合物在50℃搅拌16小时。将反应液加到饱和氯化钠溶液(20mL)中,用乙酸乙酯(20mL×2)萃取。合并的有机相减压浓缩。粗品通过快速柱层析法(石油醚/乙酸乙酯,梯度:0-40%,流速:20mL/min)纯化,得到化合物16-b。MS m/z(ESI):496.8[M+1] +.
步骤2:化合物16-c的合成
将16-b(1.5g,3.01mmol,1eq)溶于乙醇(15mL)中,在0℃加入硼氢化钠(114.02mg,3.01mmol,1eq)。混合物在0℃搅拌30min。向反应液中滴加2M稀盐酸(20mL)和水(20mL),用乙酸乙酯(20mL)萃取。合并的有机相用饱和氯化钠溶液(20mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩,得到化合物16-c。MS m/z(ESI):500.9[M+1] +.
步骤3:化合物16-d的合成
将化合物16-c(200mg,398.60μmol,1eq)和1-h(138.79mg,478.32μmol,1.2eq)溶于1,4-二氧六环(6mL)中,加入碳酸钠(211.24mg,1.99mmol,5eq)和水(0.5mL),氮气置换后加入1,1-双(二苯基膦)二茂铁氯化钯(29.17mg,39.86μmol,0.1eq)。氮气置换三次后,混合物在90℃搅拌16小时。将反应液过滤,向滤液中加水(20mL),用乙酸乙酯(20mL)萃取。合并的有机相用饱和氯化钠溶液(20mL)洗涤后减压浓缩。粗品用快速柱层析法(石油醚/乙酸乙酯,梯度:0-60%,流速:20mL/min)纯化得到16-d。MS m/z(ESI):585.0[M+1] +.
步骤4:化合物16的合成
将16-d(90mg,153.84μmol,1eq)溶于甲醇(2mL)和四氢呋喃(4mL),加入一水合氢氧化锂(32.28mg,769.20μmol,5eq)的水(2mL)溶液,混合物在25℃搅拌30min。向反应液中加入2M盐酸调节pH=3~4,加入水(20mL),用乙酸乙酯(20mL×2)萃取。合并的有机相减压浓缩。粗品通过制备型薄层层析法(二氯甲烷∶甲醇=10∶1)纯化,得到化合物16。MS m/z(ESI):557.3[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 10.91(br s,1H),8.07(s,1H),7.83-7.72(m,2H),7.54(br d,J=7.9Hz,2H),7.32(br d,J=8.3Hz,2H),4.87(br d,J=10.9Hz,1H),4.29(br s,1H),3.47-3.45(m,1H),2.59(br s,3H),2.36(br d,J=16.9Hz,1H),2.22-1.97(m,2H).
实施例14
Figure PCTCN2021088736-appb-000064
合成路线
Figure PCTCN2021088736-appb-000065
步骤1:化合物17-c的合成
氮气保护下,将化合物17-b(34.37g,306.68mmol,1eq)加入到二氯甲烷(1000mL)中,然后在20℃加入三氯化铝(81.79g,613.36mmol,33.52mL,2eq),该反应混合物在20℃搅拌30min,然后缓慢加入17-a(50g,306.68mmol,29.76mL,1eq)和二氯甲烷(200mL)的混合液。加料完毕,该反应混合物在 20℃搅拌1.5小时。将反应液倒入到1摩尔的硫酸氢钾水溶液(2000mL)中,搅拌5min,期间生成大量固体,过滤。滤饼加入到乙酸乙酯(1.5L)中,搅拌20min过滤,滤液用饱和氯化钠水溶液(1L×1)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩得到17-c。
1H NMR(400MHz,CDCl 3)δppm 7.54(d,J=4.0Hz,1H),7.14(d,J=4.0Hz,1H),6.57(s,1H),5.89(s,1H),3.87(s,2H).
步骤2:化合物17-d的合成
将化合物17-c(40g,145.39mmol,1eq)溶于二氯甲烷(800mL)中,在20℃下加入氢溴酸的乙酸溶液(71.30g,290.78mmol,47.85mL,33%纯度,2eq)。该反应混合液在20℃搅拌12小时。该反应液用饱和亚硫酸氢钠水溶液(1000mL×1)洗涤,再用水(1000mL×1)和饱和氯化钠水溶液(1000mL×1)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩得到化合物17-d。
1H NMR(400MHz,CDCl 3)δppm 7.57(d,J=4.0Hz,1H),7.16(d,J=4.0Hz,1H),3.88-3.81(m,1H),3.75-3.68(m,1H),3.65-3.58(m,1H),3.57-3.49(m,1H),3.25(dd,J=5.6,17.7Hz,1H).
步骤3:化合物17-e的合成
将化合物17-d(53g,148.86mmol,1eq)溶于甲醇(600mL)中,然后加入浓硫酸(2.92g,29.77mmol,1.59mL,0.2eq)。该反应液在20℃搅拌2小时。反应液直接减压浓缩。得到的残余物用二氯甲烷(500mL)溶解,用水(500ml×1)洗涤,再用1摩尔碳酸钠水溶液(500mL×1)和饱和氯化钠水溶液(500mL×1)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(梯度淋洗:石油醚∶乙酸乙酯=100∶0至5∶1)分离,得到化合物17-e。
1H NMR(400MHz,CDCl 3)δppm 7.56(d,J=4.0Hz,1H),7.15(d,J=4.0Hz,1H),3.83-3.79(m,1H),3.77(s,3H),3.72-3.66(m,1H),3.60-3.48(m,2H),3.26-3.15(m,1H).
步骤4:化合物17-f的合成
将化合物17-e(10g,27.02mmol,1eq)溶于N,N-二甲基甲酰胺(200mL)中,然后加入硫代乙酸钾(4.63g,40.53mmol,1.5eq)。该反应液在20℃搅拌12小时。将反应液加到乙酸乙酯(300mL)中稀释,用饱和氯化钠水溶液(200mL×3)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱 层析法(梯度淋洗:石油醚∶乙酸乙酯=100∶0至5∶1)纯化,得到化合物17-f。
1H NMR(400MHz,CDCl 3)δppm 7.48(d,J=4.0Hz,1H),7.12(d,J=4.0Hz,1H),3.73(s,3H),3.40-3.29(m,3H),3.26-3.18(m,1H),3.11-3.00(m,1H),2.36(s,3H).
步骤5:化合物17-g的合成
在20℃下将盐酸水溶液(2M,6.20mL,1.46eq)加到化合物17-f(3.1g,8.49mmol,1eq)和乙腈(62mL)混合液中,然后分批加入N-氯代丁二酰亚胺(4.53g,33.95mmol,4eq)。该反应混合液在20℃搅拌2小时。将反应液倒入到叔丁醇甲醚(150mL)中,用水(150mL×1)洗涤,再用0.1M碳酸钠水溶液(200mL×1)和饱和氯化钠水溶液(200mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物17-g。MS m/z(ESI):388.8[M+1] +.
步骤6:化合物17-h的合成
将化合物17-g(3.3g,8.47mmol,1eq)溶于四氢呋喃(6mL)中,加入氨水(7.12g,50.81mmol,7.83mL,25%纯度,6eq)。该反应液在20℃搅拌0.5小时。反应液直接减压浓缩,然后加入乙酸乙酯(60mL)溶解,用饱和氯化钠水溶液(60mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩。向粗品中加入叔丁醇甲醚(30mL)室温打浆,过滤,滤饼减压干燥,得到化合物17-h。MS m/z(ESI):369.8[M+1] +.
步骤7:化合物17-i的合成
将化合物17-h(1.9g,5.13mmol,1eq)溶于三氟乙酸(20mL)中,反应混合液在70℃搅拌0.5小时。反应液直接减压浓缩,加入二氯甲烷(50mL)溶解,然后用饱和氯化钠水溶液(50mL×3)洗涤,无水硫酸钠干燥,过滤,减压浓缩,得到化合物17-i。MS m/z(ESI):351.9[M+1] +.
1H NMR(400MHz,CD 3OD)δppm 7.81(d,J=4.3Hz,1H),7.33(d,J=4.0Hz,1H),3.81(s,3H),3.60-3.44(m,4H),3.21(dd,J=9.0,18.8Hz,1H).
步骤8:化合物17-j的合成
将化合物17-i(1.6g,4.54mmol,1eq)溶于四氢呋喃(30mL)中,加入氰基硼氢化钠(570.93mg,9.09mmol,2eq)。混合物在20℃下搅拌0.5小时。向反应液中加入乙酸乙酯(20mL)稀释,用饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,减压浓缩。残余物通过快速柱层析法(石油醚∶乙酸乙酯=100∶0 至2∶1)纯化,得到化合物17-j。
1H NMR(400MHz,CDCl 3)δppm 6.97(d,J=3.8Hz,1H),6.85(d,J=3.8Hz,1H),4.77(ddd,J=2.3,8.7,11.6Hz,1H),4.39(br d,J=8.3Hz,1H),3.79(s,3H),3.55(dd,J=3.5,13.6Hz,1H),3.37(tt,J=3.3,12.7Hz,1H),3.13-2.98(m,1H),2.57(td,J=2.6,13.8Hz,1H),1.84(q,J=12.5Hz,1H).
步骤9:化合物17-l的合成
氮气保护下,将化合物1-e(1.48g,10.16mmol,3eq)溶于二氯甲烷(10mL)中,在0℃下滴加三甲基铝(2M,5.08mL,3eq),该混合液在0℃下搅拌15min,然后加入17-j(1.2g,3.39mmol,1eq)的二氯甲烷(10mL)溶液。反应液在20℃搅拌1小时。将反应液倒入到2M硫酸氢钾水溶液(50mL)中,生成大量粘稠固体,过滤,滤饼用二氯甲烷(100mL)洗涤,滤液减压浓缩,残余物用二氯甲烷(10mL)室温打浆,过滤,滤饼减压干燥得到化合物17-l。
1H NMR(400MHz,DMSO-d6)δppm 10.47(s,1H),7.93(dd,J=2.5,6.8Hz,1H),7.49-7.43(m,1H),7.42-7.31(m,2H),7.14(d,J=3.8Hz,1H),7.00(d,J=3.8Hz,1H),4.58(br t,J=10.4Hz,1H),3.55(dd,J=3.3,13.3Hz,1H),3.23(br d,J=3.0Hz,1H),2.95(t,J=12.9Hz,1H),2.35(br d,J=13.8Hz,1H),1.82(q,J=12.5Hz,1H).
步骤10:化合物17-n的合成
在20℃下,将化合物17-l(100mg,213.78μmol,1eq)加入1,4-二氧六环(3mL)和水(1mL)中,然后加入1-h(74.44mg,256.54μmol,1.2eq)和碳酸钠(33.99mg,320.68μmol,1.5eq)。氮气置换3次,然后加入四三苯基膦钯(2.47mg,2.14μmol,0.01eq),再用氮气置换3次,升温至90℃搅拌12小时。向反应液中加入乙酸乙酯(10mL)稀释,用饱和氯化钠水溶液(10mL×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩,得到粗品化合物17-n。MS m/z(ESI):551.1[M+1] +.
步骤11:化合物17的合成
将化合物17-n(150mg,272.21μmol,1eq)加入到甲醇(3mL)和水(3mL)的混合液中,然后加入氢氧化钠(65.33mg,1.63mmol,6eq)。该反应液在50℃搅拌12小时。向反应液中加入2M盐酸调pH=4~5,直接减压浓缩。粗品通过制备型高效液相色谱法(色谱柱:Venusil ASB Phenyl 150*30mm*5μm;流动相:水(0.05%盐酸)-乙腈,流速:25mL/min)分离,得到化合物17。
1H NMR(400MHz,CD 3OD)δppm 7.88(dd,J=2.6,6.7Hz,1H),7.59(d,J=8.3Hz,2H),7.51-7.45(m,1H),7.33(d,J=8.3Hz,2H),7.28(d,J=3.5Hz,1H),7.22(t,J=9.0Hz,1H),7.11(d,J=3.8Hz,1H),4.80(br d,J=10.5Hz,1H),4.82-4.77(m,1H),3.64(s,2H),3.47(dd,J=3.1,13.2Hz,1H),3.40-3.35(m,1H),3.35-3.35(m,1H),3.22-3.12(m,1H),2.47(br d,J=13.6Hz,1H),2.22-1.94(m,1H).
步骤12:化合物18和19的合成
化合物17(700mg,1.34mmol,1eq)通过手性超临界色谱法(色谱柱:DAICEL CHIRALPAK AD(250mm*30mm,10μm);流动相:0.1%NH 3·H 2O EtOH;流速:80mL/min)分离,得到化合物18(保留时间:4.507min)和化合物19(保留时间:5.397min)。
化合物18: 1H NMR(400MHz,DMSO-d6)δppm 10.61(s,1H),7.95(dd,J=2.4,6.9Hz,1H),7.55(d,J=8.3Hz,2H),7.50(ddd,J=2.5,4.3,9.0Hz,1H),7.43-7.38(m,1H),7.37-7.35(m,1H),7.29(d,J=8.3Hz,2H),7.12(d,J=3.5Hz,1H),4.63(br d,J=11.5Hz,1H),3.54(br dd,J=3.1,13.2Hz,2H),3.48(s,2H),3.05-2.94(m,1H),2.42(br d,J=13.6Hz,1H),2.34(s,1H),1.90(q,J=12.5Hz,1H).
化合物19: 1H NMR(400MHz,DMSO-d6)δppm 10.54(s,1H),7.95(dd,J=2.5,7.0Hz,1H),7.57(d,J=8.3Hz,2H),7.52-7.46(m,1H),7.43-7.36(m,2H),7.30(d,J=8.3Hz,2H),7.13(d,J=3.0Hz,1H),4.64(br d,J=11.3Hz,1H),3.57-3.51(m,4H),2.98(brt,J=12.8Hz,1H),2.42(brd,J=13.3Hz,1H),1.90(q,J=12.5Hz,1H).
实施例15
Figure PCTCN2021088736-appb-000066
合成路线
Figure PCTCN2021088736-appb-000067
步骤1:化合物20-b的合成
将化合物17-l(200mg,427.57μmol,1eq)加到二氧六环(3mL)和水(1mL)的混合液中,搅拌下加入化合物20-a(107.83mg,555.84μmol,1.3eq)和碳酸钠(67.98mg,641.35μmol,1.5eq)。氮气置换三次,加入四三苯基膦钯(24.70mg,21.38μmol,0.05eq),再用氮气置换三次。该反应液在90℃下搅拌12小时。向反应液中加入2-甲基四氢呋喃(10mL)稀释,用饱和氯化钠水溶液(10mL×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(石油醚∶乙酸乙酯=100∶0~3∶1)分离,得到化合物20-b。MS m/z(ESI):537.0[M+1] +.
步骤2:化合物20的合成
将化合物20-b(100mg,186.21μmol,1eq)加到甲醇(3mL)和水(3mL)的混合液中,再加入氢氧化钠(44.69mg,1.12mmol,6eq)。该反应混合液在50℃搅拌1小时。反应液直接减压浓缩,加入水(10mL)溶解,2M盐酸调pH=4,用2-甲基四氢呋喃(10mL×2)萃取,合并有机相用饱和氯化钠水溶液(20mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩后处理得到化合物20。MS m/z(ESI):509.0[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 10.48(s,1H),7.99-7.91(m,3H),7.77(d,J=8.5Hz,2H),7.56(d,J=3.8Hz,1H),7.52-7.46(m,1H),7.38-7.33(m,1H),7.43-7.32(m,1H),7.38-7.31(m,1H),7.20(d,J=3.8Hz,1H),4.67(br t,J=10.7Hz,1H),3.56(br dd,J=3.1,13.2Hz,1H),3.45-3.39(m,1H),3.27-3.19(m,1H),3.06-2.93(m,1H),2.43(br d,J=13.6Hz,1H),1.91(q,J=12.5Hz,1H).
实施例16
Figure PCTCN2021088736-appb-000068
合成路线:
Figure PCTCN2021088736-appb-000069
步骤1:化合物21-b的合成
将化合物17-l(200mg,427.57μmol,1eq)加到1,4-二氧六环(3mL)和水(1mL)的混合液中,搅拌下加入21-a(161.28mg,555.84μmol,1.3eq)和碳酸钠(67.98mg,641.35μmol,1.5eq)。氮气置换三次,加入四三苯基膦钯(24.70mg,21.38μmol,0.05eq),再用氮气置换三次。该反应液在90℃搅拌12小时。向反应液中加入2-甲基四氢呋喃(10mL)稀释,依次用水(10mL×1)和饱和氯化钠水溶液(10mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(石油醚∶乙酸乙酯=100∶0~2∶1)纯化,得到化合物21-b。MS m/z(ESI):550.9[M+1] +.
步骤2:化合物21的合成
将化合物21-b(110mg,199.62μmol,1eq)加到甲醇(3mL)和水(3mL)的混合液中,搅拌下加入氢氧化钠(39.92mg,998.10μmol,5eq)。该反应升温至50℃搅拌1小时。向反应液中加入1M盐酸水溶液调pH=4,用2-甲基四氢呋喃(10mL×2)萃取,合并有机相用饱和氯化钠水溶液(20mL×1)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩后处理得到化合物21。
1H NMR(400MHz,DMSO-d6)δppm 10.54(s,1H),7.94(dd,J=2.4,6.9Hz,1H),7.55-7.47(m,3H),7.42- 7.37(m,1H),7.34(d,J=3.5Hz,1H),7.27(d,J=8.0Hz,2H),7.12(d,J=3.8Hz,1H),4.63(br d,J=11.5Hz,1H),3.58-3.50(m,1H),2.98(brt,J=12.8Hz,1H),2.82(brt,J=7.7Hz,2H),2.48-2.32(m,4H),1.90(q,J=12.1Hz,1H).
实施例17
Figure PCTCN2021088736-appb-000070
合成路线
Figure PCTCN2021088736-appb-000071
在20℃下,将化合物17-l(35mg,74.82μmol,1eq)和22-a(55.54mg,149.65μmol,2eq)加到1,4-二氧六环(2mL)中,氮气置换3次,然后加入1,1-双(二苯基膦)二茂铁氯化钯(2.74mg,3.74μmol,0.05eq),用氮气再置换3次,该反应混合物升温至90℃搅拌12小时。将反应液过滤后,通过制备型高效液相色谱法(色谱柱:Xtimate C18 100*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈],流速:25mL/min)纯化,得到化合物22。
1H NMR(400MHz,CD 3OD)δppm 7.88(dd,J=2.6,6.7Hz,1H),7.64(s,1H),7.50-7.46(m,1H),7.36(s,1H),7.22(t,J=9.0Hz,1H),7.15(d,J=3.8Hz,1H),7.04(d,J=3.5Hz,1H),4.77(br d,J=10.5Hz,1H),3.76(s,3H),3.46(dd,J=3.3,13.1Hz,1H),3.21-3.08(m,1H),2.45(brd,J=13.8Hz,1H),2.14-1.95(m,1H),1.72-1.57(m,1H).
实施例18
Figure PCTCN2021088736-appb-000072
合成路线
Figure PCTCN2021088736-appb-000073
步骤1:化合物23-c的合成
将化合物17-l(200mg,427.57μmol,1eq)加到1,4-二氧六环(3mL)和水(3mL)的混合液中,搅拌下加入化合物11-b(176.88mg,555.84μmol,1.3eq)和碳酸钠(67.98mg,641.36μmol,1.5eq)。氮气置换三次,加入四三苯基膦钯(24.70mg,21.38μmol,0.05eq),再用氮气置换三次。该反应液升温至90℃搅拌12小时。向反应液中加入2-甲基四氢呋喃(10mL)稀释,依次用水(10mL×1)和饱和氯化钠水溶液(10mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(石油醚∶乙酸乙酯=100∶0~2∶1)纯化,得到化合物23-c。MS m/z(ESI):579.1[M+1] +.
步骤2:化合物23的合成
将化合物23-c(100mg,172.68μmol,1eq)加入到甲醇(3mL)和水(3mL)的混合液中,搅拌下加入氢氧化钠(34.53mg,863.41μmol,5eq)。该反应升温至50℃搅拌1小时。向反应液加入1M盐酸水溶液调pH=4,用2-甲基四氢呋喃(10mL×2)萃取,合并有机相用饱和氯化钠水溶液(10mL×1)洗涤,无水硫酸钠干燥,过滤,减压浓缩后处理得到化合物23。
1H NMR(400MHz,DMSO-d6)δppm 10.51(s,1H),7.94(dd,J=2.5,6.8Hz,1H),7.55(d,J=8.3Hz,2H),7.51 -7.46(m,1H),7.43-7.39(m,1H),7.38-7.34(m,1H),7.33-7.28(m,1H),7.24(d,J=8.0Hz,2H),7.13(d,J=3.3Hz,1H),4.64(br s,1H),3.55(br dd,J=3.1,13.2Hz,1H),2.98(br t,J=12.8Hz,1H),2.62-2.58(m,2H),2.45-2.31(m,2H),2.19(br t,J=7.2Hz,2H),1.96-1.87(m,1H),1.85-1.76(m,2H).
实施例19
Figure PCTCN2021088736-appb-000074
合成路线:
步骤1:化合物24-b的合成
Figure PCTCN2021088736-appb-000075
将化合物24-a(4.7g,25.51mmol,1eq),亚磷酸三苯酯(9.50g,30.61mmol,8.05mL,1.2eq)和三乙胺(3.87g,38.27mmol,5.33mL,1.5eq)加到二氯甲烷(200mL)中。反应液降温至-25℃,缓慢加入液溴(4.89g,30.61mmol,1.58mL,1.2eq)的二氯甲烷(20mL)溶液,然后在-25℃搅拌1小时。向反应液加入20%亚硫酸钠水溶液(100mL),用二氯甲烷(200mL×2)萃取,合并有机相,依次用水(100mL)和饱 和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(硅胶柱,乙酸乙酯∶石油醚=10%-30%)分离得到化合物24-b。
1H NMR(400MHz,CDCl 3)δppm 6.01(br s,1H),4.16(br d,J=3.51Hz,2H),2.51(br d,J=17.57Hz,2H),2.36-2.13(m,4H),1.86(br s,2H),1.53(br s,1H),1.29(br s,3H).
步骤2:化合物24-c的合成
氮气保护下,将化合物24-b(3g,12.14mmol,1eq),双联频哪醇硼酸酯(3.70g,14.57mmol,1.2eq),Pd(dppf)C12(1.78g,2.43mmol,0.2eq)和乙酸钾(3.57g,36.42mmol,3eq)加到1,4-二氧六环(50mL)中,反应液在90℃搅拌2小时。向反应液中加入水(100mL),用乙酸乙酯(100mL×2)萃取,合并有机相,依次用水(50mL)和饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(硅胶柱,乙酸乙酯∶石油醚=10%-30%)分离,得到化合物24-c。
1H NMR(400MHz,CDCl 3)δppm 6.44(br d,J=2.26Hz,1H),4.06(q,J=7.19Hz,2H),2.24-2.11(m,4H),2.09-1.95(m,2H),1.78-1.66(m,2H),1.19(s,12H),1.18(br s,3H),0.84-0.75(m,1H).
步骤3:化合物24-d的合成
氮气保护下,将化合物17-l(200mg,427.57μmol,1eq),化合物24-c(150.95mg,513.08μmol,1.2eq),Pd(PPh 3) 4(49.41mg,42.76μmol,0.1eq)和磷酸钾(272.28mg,1.28mmol,3eq)加到1,4-二氧六环(6mL)和水(2mL)中。反应液在100℃搅拌2小时。向反应液中加入水(20mL),用乙酸乙酯(30mL×2)萃取,合并有机相,依次用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩。粗品通过快速柱层析法(硅胶柱,乙酸乙酯∶石油醚=10%-30%)纯化得到化合物24-d。MS m/z(ESI):555.1[M+1] +
步骤4:化合物24-e的合成
将化合物24-d(100mg,180.15μmol,1eq)和一水合氢氧化锂(75.60mg,1.80mmol,10eq)加入到甲醇(2mL)和水(2mL)中,反应液在25℃搅拌1小时。反应液用4M盐酸溶液调pH至弱酸性,加入水(30mL),用乙酸乙酯(30mL×2)萃取,合并有机相,依次用水(20mL)和饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,减压浓缩,得到化合物24-e。MS m/z(ESI):527.0[M+1] +
步骤5:化合物24的合成
在氮气保护下,将化合物24-e(50mg,94.87μmol,1eq)加到四氢呋喃(5mL)中,再加入Pd/C(55.97mg,47.44μmol,钯含量10%,0.5eq),然后置换氢气,反应液在氢气(50psi)氛围下30℃搅拌2小时。将反应液过滤,减压浓缩。粗品经制备型高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[水(0.225%甲酸)-乙腈];流速:25mL/min)纯化,得到化合物24。MS m/z(ESI):529.3[M+1] +.
1H NMR(400MHz,DMSO-d6)δppm 12.04(br s,1H),10.44(s,1H),7.98-7.85(m,1H),7.51-7.32(m,2H),7.18(br d,J=9.29Hz,1H),6.94(dd,J=7.28,3.51Hz,1H),6.76(dd,J=13.93,3.39Hz,1H),4.55(br t,J=9.29Hz,1H),3.51(br dd,J=12.92,2.13Hz,1H),3.28-3.20(m,1H),3.05-2.64(m,2H),2.38-2.28(m,1H),2.21(d,J=7.28Hz,1H),2.13(d,J=7.03Hz,1H),2.06-1.55(m,7H),1.49-1.33(m,2H),1.20-1.01(m,1H).
生物活性测试
实验例1:HBV体外测试定量qPCR试验
1实验目的:
通过实时定量qPCR试验(real time-qPCR)检测HepG2.2.15细胞内的HBV DNA含量,以化合物的EC50值为指标,来评价化合物对HBV的抑制作用。
2实验材料:
2.1细胞系:HepG2.2.15细胞
HepG2.2.15细胞培养基(DMEM/F12,Invitrogen-11330057;10%血清,Invitrogen-10099141;100units/ml青霉素和10μg/ml链霉素,Invitrogen-15140122;1%非必需氨基酸,Invitrogen-11140076;2mM左旋谷氨酰胺,Invitrogen-25030081;300μg/ml遗传霉素,Invitrogen-10131027
2.2试剂:
胰酶(Invitrogen-25300062)
DPBS(Hyclone-SH30028.01B)
DMSO(Sigma-D2650-100ML)
高通量DNA纯化试剂盒(QIAamp 96 DNA Blood Kit,Qiagen-51162)
定量快速启动通用探针试剂(FastStart Universal Probe Master,Roche-04914058001)
2.3耗材与仪器:
96孔细胞培养板(Corning-3599)
CO 2培养箱(HERA-CELL-240)
光学封板膜(ABI-4311971)
定量PCR 96孔板(Applied Biosystems-4306737)
荧光定量PCR仪(Applied Biosystems-7500 real time PCR system)
3.实验步骤和方法:
3.1种HepG2.2.15细胞(4x10 4细胞/孔)到96孔板,在37℃,5%CO 2培养过夜。
3.2第二天,稀释化合物,共8个浓度,3倍梯度稀释。加不同浓度化合物到培养孔中,双复孔。培养液中DMSO的终浓度为1%。1μM GLS4作为100%抑制对照;1%的DMSO作为0%抑制对照。
3.3第五天,更换含有化合物的新鲜培养液。
3.4第八天收取培养孔中的培养液,使用高通量DNA纯化试剂盒(Qiagen-51162)提取DNA,具体步骤参照该产品说明书。
3.5 PCR反应液的配制如表1所示:
表1.PCR反应液的配制
Figure PCTCN2021088736-appb-000076
上游引物序列:GTGTCTGCGGCGTTTTATCA
下游引物序列:GACAAACGGGCAACATACCTT
探针序列:5′+FAM+CCTCTKCATCCTGCTGCTATGCCTCATC+TAMRA-3′
3.6在96孔PCR板中每孔加入15μL的反应混合液,然后每孔加入10μL的样品DNA或HBV DNA的标准品。
3.7 PCR的反应条件为:95℃加热10分钟;然后95℃变性15秒,60℃延伸1分钟,共40个循环。
3.8数据分析:
3.8.1计算抑制百分比:%Inh.=【1-(样品中DNA拷贝数-1μM GLS4中DNA拷贝数)/(DMSO对照中DNA拷贝数-1μM GLS4中DNA拷贝数)】x100。
3.8.2计算EC 50:使用GraphPad Prism软件计算化合物对HBV的50%抑制浓度(EC 50)值。
4实验结果如表2所示:
表2.qPCR实验检测EC 50测试结果
Figure PCTCN2021088736-appb-000077
结论:本发明化合物对HBV的抑制作用显著。
实验例2:细胞色素P450同工酶抑制性
A.实验目的
测定受试化合物3对人肝微粒体细胞色素P450同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)活性的抑制作用。
B.实验操作
首先将受试化合物3(10mM)进行梯度,制备工作液(100×最终浓度),工作液浓度分别为∶5,1.5,0.5,0.15,0.05,0.015,0.005mM,同时准备P450同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)各阳性抑制剂及其特异性底物混合物的工作液;将冷冻于-80℃冰箱的人肝微粒体置于冰上解冻,待人肝微粒体全部溶解,用PB(磷酸缓冲液)进行稀释,制备一定浓度工作液(0.253mg/m1);并将20μL底物混合液加至反应板中(Blank孔中加入20μLPB)同时将158μL人肝微粒体工作液加入反应板中,将反应板置于冰上,待用;此时将2μl各个浓度的受试化合物(N=1)及特异性抑制剂(N=2)加入对应孔中,无抑制剂(受试化合物或阳性抑制剂)组加入对应的有机溶剂,作为对照组样品(受试化合物对照样品为1∶1DMSO∶MeOH,阳性对照样品为1∶9DMSO∶MeOH);在37℃水浴预孵育10min后,将20μL辅酶因子(NADPH)溶液加入反应板中,置于37℃水浴孵育10min;加入400μL冷的乙腈溶液(内标为200ng/mL Tolbutamide和Labetalol)终止反应;将反应板置于摇床,振荡10min;4,000rpm离心20min;取200μL上清加至100μL水中,进行样品稀释;最后封板,振荡,摇匀,进行LC/MS/MS检测。
C.实验结果
实验结果如表3所示,本发明化合物未显示CYP抑制活性。
表3受试化合物3对人肝微粒体细胞色素P450同工酶活性的抑制作用结果
Figure PCTCN2021088736-appb-000078
实验例3:药代动力学性质研究
A.供试样品:化合物3
B.实验方法:该研究的目的是为了测定该化合物药代动力学参数,并计算其在雌性Balb/c小鼠中的 口服生物利用度。该项目使用四只雌性Balb/c小鼠,两只小鼠进行静脉注射给药,给药剂量为3mg/kg,收集0h(给药前)和给药后0.0833,0.25,0.5,1,2,4,7,24h的血浆样品,另外两只大鼠口服灌胃给药,给药剂量为1mg/kg,收集0h(给药前)和给药后0.5,1,2,3,4,6,24h的血浆样品,然后对收集的样品进行LC/MS/MS分析并采集数据,采集的分析数据用Phoenix WinNonlin 6.2.1软件计算相关药代动力学参数。
C.实验结果:
表4体外药代动力学实验结果
Figure PCTCN2021088736-appb-000079
结论:本发明中的化合物具有较理想的体外药代动力学实验结果。
实验例4:化合物小鼠中肝血比评价
A.实验目的:
测试化合物3在雌性Balb/c小鼠中的组织分布
B.实验操作
将化合物3配成澄清溶液,给予雌性Balb/c小鼠单次口服给药(PO,3mpk)。口服溶媒为10%solutol。收集0.5、2.0、8.0小时的全血,制备得到血浆,收集相应时间的组织,制备得组织均浆液,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件计算药代参数。
C.实验结果
实验结果如表5所示。
表5药代动力学测试结果
Figure PCTCN2021088736-appb-000080
结论:本发明中的化合物在小鼠体内具有较好的肝血比分布。

Claims (15)

  1. 式(III)所示化合物或其药学上可接受的盐,
    Figure PCTCN2021088736-appb-100001
    其中,
    各R 1分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代;
    m选自0、1、2和3;
    R 2选自-COOH时,T选自NCH 3和CH;
    或者,R 2选自H时,T选自CH;
    L 1选自-O(CH 2) n-、-(CH 2) n-和-CH=CH-;
    各n分别独立地选自1、2、3、4、5和6;
    环A选自苯基和吡啶基;
    环B不存在,即L 1直接与环C相连;
    或者,
    环B选自环己基、哌啶基、哌嗪基、苯基和5-6元杂芳基,所述环己基、哌啶基、哌嗪基、苯基和5-6元杂芳基任选被1个、2个或3个R a取代;
    环C选自5-6元杂芳基,所述5-6元杂芳基任选被1个或2个R b取代;
    各R a和R b分别独立地选自卤素、OH、CN、NH 2、C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代;
    所述5-6元杂芳基包含1、2或3个独立选自O、S、N和NH的杂原子或杂原子团。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中,各R 1分别独立地选自F、Cl、Br、 C 1-3烷基和C 1-3烷氧基,所述C 1-3烷基和C 1-3烷氧基任选被1个、2个或3个卤素取代。
  3. 根据权利要求2所述化合物或其药学上可接受的盐,其中,各R 1分别独立地选自F、Cl、Br、CH 3、CF 3、OCH 3和OCF 3
  4. 根据权利要求1所述化合物或其药学上可接受的盐,其中,L 1选自-OCH 2-、-CH 2-、-(CH 2) 2-、-(CH 2) 3-、-(CH 2) 5-和-CH=CH-。
  5. 根据权利要求1所述化合物或其药学上可接受的盐,其中各R a和R b分别独立地选自F、Cl、Br、CH 3和OCH 3,所述CH 3和OCH 3任选被1个、2个或3个F取代。
  6. 根据权利要求5所述化合物或其药学上可接受的盐,其中各R a和R b分别独立地选自F和Cl。
  7. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环B选自不存在、环己基、哌啶基、哌嗪基、苯基、咪唑基和吡啶基,所述环己基、哌啶基、哌嗪基、苯基、咪唑基和吡啶基任选被1个、2个或3个R a取代。
  8. 根据权利要求7所述化合物或其药学上可接受的盐,其中,环B选自不存在、
    Figure PCTCN2021088736-appb-100002
    Figure PCTCN2021088736-appb-100003
  9. 根据权利要求1所述化合物或其药学上可接受的盐,其中,环C选自噻吩基、噻唑基、咪唑基和吡啶基,所述环C选自噻吩基、噻唑基、咪唑基和吡啶基任选被1个或2个R b取代。
  10. 根据权利要求9所述化合物或其药学上可接受的盐,其中,环C选自噻吩基、噻唑基、咪唑基和吡啶基。
  11. 根据权利要求1-10任意一项所述的化合物或其药学上可接受的盐,其选自:
    Figure PCTCN2021088736-appb-100004
    R 1、L 1、m、环A、环B和环C如权利要求1-10任意一项所定义。
  12. 根据权利要求11所述的化合物或其药学上可接受的盐,其选自
    Figure PCTCN2021088736-appb-100005
    其中,
    R 1、R 2、L 1、m和环B如权利要求11所定义;
    T 1选自CH和N;
    T 2、T 3分别独立地选自CH和N,且T 2、T 3不同时为N。
  13. 下式化合物或其药学上可接受的盐:
    Figure PCTCN2021088736-appb-100006
    Figure PCTCN2021088736-appb-100007
  14. 根据权利要求13所述化合物或其药学上可接受的盐,其选自:
    Figure PCTCN2021088736-appb-100008
    Figure PCTCN2021088736-appb-100009
  15. 根据权利要求1~14任意一项所述的化合物或其药学上可接受的盐在制备治疗核心蛋白调节剂相关疾病的药物上的应用。
PCT/CN2021/088736 2020-04-22 2021-04-21 内磺酰胺衍生物及其应用 WO2021213445A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180043987.3A CN115702152A (zh) 2020-04-22 2021-04-21 内磺酰胺衍生物及其应用

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010324017 2020-04-22
CN202010324017.8 2020-04-22
CN202010406044 2020-05-14
CN202010406044.X 2020-05-14
CN202011059012.3 2020-09-30
CN202011059012 2020-09-30

Publications (1)

Publication Number Publication Date
WO2021213445A1 true WO2021213445A1 (zh) 2021-10-28

Family

ID=78270265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088736 WO2021213445A1 (zh) 2020-04-22 2021-04-21 内磺酰胺衍生物及其应用

Country Status (2)

Country Link
CN (1) CN115702152A (zh)
WO (1) WO2021213445A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138448A1 (en) * 2002-10-12 2004-07-15 The Scripps Research Institute Synthesis of non-symmetrical sulfamides using burgess-type reagents
WO2018153285A1 (zh) * 2017-02-23 2018-08-30 福建广生堂药业股份有限公司 三并环类化合物及其应用
WO2019206072A1 (zh) * 2018-04-24 2019-10-31 浙江海正药业股份有限公司 磺酰胺芳基甲酰胺衍生物及其制备方法和用途
CN110621672A (zh) * 2017-03-02 2019-12-27 组装生物科学股份有限公司 环状磺酰胺化合物及其使用方法
WO2020051319A1 (en) * 2018-09-05 2020-03-12 Assembly Biosciences, Inc. Cyclic sulfamide compounds for treatment of hbv
WO2020051320A1 (en) * 2018-09-05 2020-03-12 Assembly Biosciences, Inc. Cyclic sulfamide compounds for treatment of hbv

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138448A1 (en) * 2002-10-12 2004-07-15 The Scripps Research Institute Synthesis of non-symmetrical sulfamides using burgess-type reagents
WO2018153285A1 (zh) * 2017-02-23 2018-08-30 福建广生堂药业股份有限公司 三并环类化合物及其应用
CN110621672A (zh) * 2017-03-02 2019-12-27 组装生物科学股份有限公司 环状磺酰胺化合物及其使用方法
WO2019206072A1 (zh) * 2018-04-24 2019-10-31 浙江海正药业股份有限公司 磺酰胺芳基甲酰胺衍生物及其制备方法和用途
WO2020051319A1 (en) * 2018-09-05 2020-03-12 Assembly Biosciences, Inc. Cyclic sulfamide compounds for treatment of hbv
WO2020051320A1 (en) * 2018-09-05 2020-03-12 Assembly Biosciences, Inc. Cyclic sulfamide compounds for treatment of hbv

Also Published As

Publication number Publication date
CN115702152A (zh) 2023-02-14

Similar Documents

Publication Publication Date Title
EP3538526B1 (en) Cyclobutane- and azetidine-containing mono and spirocyclic compounds as alpha v integrin inhibitors
CN107207487B (zh) 用于提高cftr活性的化合物、组合物和方法
CN103524392B (zh) 作为用于治疗增生性疾病的mek 抑制剂的吖丁啶
CN105555783B (zh) 包含杂芳族环‑苄基‑酰胺‑环核心的自分泌运动因子抑制剂
CN111247151B (zh) 2,3-二氢-1h-吡咯嗪-7-甲酰胺类衍生物及其应用
CN101917981B (zh) 肽脱甲酰化酶抑制剂
CN101903386B (zh) 抑制二肽基肽酶-ⅳ的化合物、其制备方法以及含所述化合物作为活性剂的药物组合物
CN109996541A (zh) N-酰基氨基酸化合物及其使用方法
CN107849017A (zh) 作为magl抑制剂的1,1,1‑三氟‑3‑羟基丙‑2‑基氨基甲酸酯衍生物及1,1,1‑三氟‑4‑羟基丁‑2‑基氨基甲酸酯衍生物
TW201718456A (zh) γ-羥基丁酸的前藥及其組合物和用途
CN105254616A (zh) 取代的n-(2-甲氧基-5-硝基苯基)嘧啶-2-胺化合物及其盐
WO2008099073A1 (fr) Derives de n, n' - 2, 4 -dianilino pyrimidines, leur utilisation comme inhibiteurs de ikk, leur preparation et leur compositions pharmaceutiques
SA05260362B1 (ar) مشتقات حمض فينوكسي أسيتيك مفيدة في علاج الامراض النفسية
WO2004064730A2 (en) Compounds, compositions and methods
JP7015092B2 (ja) ドーパミンd3受容体拮抗作用を有する含窒素縮環化合物
JP7168149B2 (ja) Fgfr阻害剤としてのピラジン-2(1h)-オン系化合物
CN107011272A (zh) 吡嗪衍生物
CN107793395A (zh) 成纤维细胞生长因子受体抑制剂及其用途
WO2021129737A1 (zh) 具有khk抑制作用的化合物
IL305262A (en) Small molecule inhibitors of mammalian SLC6A19 function
CN112789087A (zh) Pad酶的苯并咪唑抑制剂
WO2021129817A1 (zh) 具有果糖激酶(khk)抑制作用的嘧啶类化合物
CN109661391A (zh) S1p1激动剂及其应用
CN111315750B (zh) 作为mTORC1/2双激酶抑制剂的吡啶并嘧啶类化合物
WO2021213445A1 (zh) 内磺酰胺衍生物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793324

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21793324

Country of ref document: EP

Kind code of ref document: A1