WO2021213273A1 - 半导体加工设备及其磁控管机构 - Google Patents

半导体加工设备及其磁控管机构 Download PDF

Info

Publication number
WO2021213273A1
WO2021213273A1 PCT/CN2021/087780 CN2021087780W WO2021213273A1 WO 2021213273 A1 WO2021213273 A1 WO 2021213273A1 CN 2021087780 W CN2021087780 W CN 2021087780W WO 2021213273 A1 WO2021213273 A1 WO 2021213273A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
inner magnetic
back plate
magnetron mechanism
insulating cavity
Prior art date
Application number
PCT/CN2021/087780
Other languages
English (en)
French (fr)
Inventor
杨玉杰
王晓燕
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to EP21793238.3A priority Critical patent/EP4141140A4/en
Priority to JP2022564381A priority patent/JP7499351B2/ja
Priority to KR1020227037773A priority patent/KR102654736B1/ko
Priority to US17/921,088 priority patent/US20230170196A1/en
Publication of WO2021213273A1 publication Critical patent/WO2021213273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3497Temperature of target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment

Definitions

  • the present invention relates to the technical field of semiconductor processing. Specifically, the present invention relates to a semiconductor processing equipment and a magnetron mechanism thereof.
  • PVD Physical Vapor Deposition
  • Traditional PVD equipment generally uses direct current (DC) sputtering or radio frequency (RF) sputtering when preparing TiN films, and the sputtering pressure is low (0.1-10mTorr).
  • DC direct current
  • RF radio frequency
  • the sputtering environment controls the process particle pollution Inferior, the prepared TiN films mostly have compressive stress and low density.
  • the PVD equipment is required to use RF+DC sputtering, and the sputtering pressure is required to be high.
  • the thickness uniformity of the TiN film prepared by the traditional PVD equipment is not only poor, but also it cannot achieve full target corrosion under high pressure, which may cause the process The particles are seriously exceeding the standard and cannot meet the process requirements of the 14nm process.
  • the present invention proposes a semiconductor processing equipment and its magnetron mechanism, which can achieve full target corrosion in a high-pressure sputtering environment, so as to improve the thickness uniformity of the film. , Effectively control process particle pollution.
  • an embodiment of the present invention provides a magnetron mechanism, which is applied to semiconductor processing equipment, and includes a back plate, an outer magnetic pole, and an inner magnetic pole; wherein,
  • the outer magnetic pole is arranged on the bottom surface of the back plate and encloses an accommodating space; the inner magnetic pole is arranged on the bottom surface of the back plate and is located in the accommodating space, and the inner magnetic pole It can be moved to change the corrosion area of the target material; the distance between the inner magnetic pole and the outer magnetic pole during the movement is always greater than the preset distance.
  • the inner magnetic pole can move linearly along a first direction parallel to the bottom surface of the back plate, and alternately stay at a plurality of preset positions spaced apart along the first direction Place.
  • the outer magnetic pole includes an outer arc portion and an inner arc portion, which are connected in series and jointly enclose the accommodating space, wherein the outer arc portion is located in the accommodating space.
  • the side of the inner magnetic pole close to the edge of the target surface; the inner arc part is located on the side of the inner magnetic pole close to the center of the target surface;
  • a first position There are three preset positions, namely a first position, a second position, and a third position, wherein the second position is located on a side of the first position close to the outer arc portion; The third position is located on the side of the first position close to the inner arc.
  • the driving device is arranged on the top surface of the back plate and connected to the inner magnetic pole for driving the inner magnetic pole to move.
  • the driving device includes a driving source and a connecting member, wherein the driving source is disposed on the top surface of the back plate for providing power; one end of the connecting member is connected to The driving source is connected, and the other end of the connecting piece penetrates the back plate and is connected with the inner magnetic pole.
  • the driving device further includes a guide rail, the guide rail is disposed on the top surface of the back plate, and the connecting member is connected to the guide rail and can move along the guide rail.
  • the predetermined distance is greater than or equal to 10 mm.
  • the inner magnetic pole and the outer magnetic pole are arranged at unequal intervals, and the distance between the inner magnetic pole and the outer magnetic pole is 30-60 mm.
  • the inner magnetic pole has a plane spiral shape, and one end of the inner magnetic pole is close to the center of the target surface, and the other end of the inner magnetic pole is close to the edge of the target surface.
  • an embodiment of the present invention provides a semiconductor processing equipment including a process chamber and the magnetron mechanism provided in the first aspect, the magnetron mechanism being arranged on the top of the process chamber.
  • the magnetron mechanism adopts the above-mentioned magnetron mechanism provided by the embodiment of the present invention
  • the semiconductor processing equipment further includes an insulating cavity and a hollow tube arranged above the process chamber, wherein the insulating cavity is filled with deionized water; the magnetron mechanism is arranged in the insulating cavity , And an isolation box is provided on the back plate, and the isolation box encloses the driving source and the connection part thereof with the connecting member, so as to enclose the driving source and the connection part. Isolated from the deionized water in the insulating cavity;
  • One end of the hollow tube penetrates the isolation box body and is connected to the drive source, and a first seal is provided between the hollow tube and the first through hole that penetrates the isolation box body. Seal the gap between the two; the other end of the hollow tube penetrates the insulating cavity and extends to the outside of the insulating cavity, and the hollow tube and the insulating cavity that penetrates through it A second sealing member is provided between the second through holes to seal the gap between the two; the wire of the driving source is inserted into the hollow tube so as to be able to be led out to the hollow tube through the hollow tube.
  • the exterior of the insulating cavity is provided between the insulating cavity.
  • the semiconductor processing equipment further includes an insulating cavity arranged above the process chamber, and the insulating cavity is filled with deionized water; the magnetron mechanism is arranged at Above the insulating cavity.
  • the outer magnetic poles enclose an accommodating space on the bottom surface of the back plate, and the inner magnetic poles are located in the accommodating space and can move to change the corrosion area of the target material.
  • the inner magnetic pole Under high-pressure sputtering environment, by moving the inner magnetic pole to change the corrosion area of the target, it can avoid that the inner magnetic pole is fixed at a certain position and the corresponding position of the target cannot be kept in the whole sputtering process. Is corroded, so that full target corrosion can be achieved.
  • the magnetron mechanism provided by the embodiments of the present invention can achieve full target corrosion in a high-pressure sputtering environment, thereby effectively controlling process particle contamination on the premise of improving the thickness uniformity of the film, especially The 14nm process requires process particle control.
  • the semiconductor processing equipment provided by the embodiments of the present invention can achieve full target corrosion under a high-pressure sputtering environment by adopting the above-mentioned magnetron mechanism provided by the embodiments of the present invention, so that the thickness uniformity of the film can be improved. Under the premise, the process particle pollution can be effectively controlled, especially to meet the requirements of the 14nm process for process particle control.
  • FIG. 1 is a schematic structural diagram of a magnetron mechanism provided by an embodiment of the present invention
  • Fig. 2 is an enlarged view of area I in Fig. 1;
  • FIG. 3 is a schematic cross-sectional view of a driving device used in an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a semiconductor processing equipment provided by an embodiment of the present invention.
  • FIG. 6 is another structural diagram of a semiconductor processing equipment provided by an embodiment of the present invention.
  • an embodiment of the present invention provides a magnetron mechanism, which is applied to semiconductor processing equipment.
  • the magnetron mechanism includes: a back plate 1, an outer magnetic pole 2 and an inner magnetic pole 3; wherein, the shape of the back plate 1 For example, it is rectangular and made of metal material.
  • the back plate 1 can be connected to a rotary drive mechanism (not shown in the figure) of the semiconductor processing equipment. Driven by the rotary drive mechanism, the back plate 1 can rotate around its vertical center line. For example, the line coincides with the center of the target surface (as shown by the point O in FIG. 1).
  • the material and shape of the back plate 1 and the connection position with the rotation driving mechanism can be designed according to actual conditions, which is not particularly limited in the embodiment of the present invention.
  • the outer magnetic pole 2 is arranged on the bottom surface of the back plate 1 and encloses an accommodating space 4.
  • the specific structure of the outer magnetic pole 2 can have many kinds.
  • the bottom surface of the back plate 1 is arranged in a continuous line shape and encloses the above-mentioned accommodating space 4, wherein the outer magnetic strip 22 is made of, for example, stainless steel, and the outer magnetic strip 22 is provided with a plurality of Fix the mounting hole of the outer magnet 21.
  • the specific arrangement shape of the outer magnetic pole 2 can have various shapes. For example, as shown in FIG. , Wherein the outer arc portion 2a is located on the side of the inner magnetic pole 3 near the edge of the target surface; the inner arc portion 2b is located on the side of the inner magnetic pole 3 near the center of the target surface.
  • the outer arc line portion 2a and the inner arc line portion 2b are both in the shape of a plane spiral, and the outer arc line portion 2a and the inner arc line portion 2b are connected end to end, and the connection is smoothly processed, and the outer arc line portion 2a There is an opening between the two ends that are not connected to the inner arc portion 2b. It should be noted that in practical applications, according to actual process requirements, the specific arrangement shape of the outer magnetic pole 2 can be freely set, as long as it can enclose the accommodating space 4 for the inner magnetic pole 3.
  • the inner magnetic pole 3 is arranged on the bottom surface of the back plate 1 and is located in the above-mentioned accommodating space 4.
  • the specific structure of the inner magnetic pole 3 can have many kinds, for example, the same as the outer magnetic pole 2.
  • the bottom surface of the board 1 is arranged in a continuous line.
  • the inner magnetic conductive strip is made of, for example, stainless steel, and the inner magnetic conductive strip is provided with a plurality of mounting holes for fixing the inner magnet.
  • the specific arrangement of the inner magnetic pole 3 can have various shapes. For example, as shown in Fig.
  • the inner magnetic pole 3 is in the shape of a plane spiral, and one end of the inner magnetic pole 3 is close to the center of the target surface, and the other end of the inner magnetic pole 3 Near the edge of the target surface, that is, both ends of the inner magnetic pole 3 are broken and have openings. This setting is conducive to the realization of full target corrosion.
  • the inner magnetic pole 3 can move relative to the back plate 1 and the outer magnetic pole 2 to change the corrosion area of the target material.
  • the distance between the inner magnetic pole 3 and the outer magnetic pole 2 during the movement is always greater than the preset distance. In other words, when the inner magnetic pole 3 moves in the accommodating space 4, a certain distance between the inner magnetic pole 2 and the outer magnetic pole 1 must be maintained. The collision can effectively prevent the inner magnetic pole 2 and the outer magnetic pole 3 from being too close to cause interruption of the process chamber of the semiconductor processing equipment, thereby avoiding the decrease in process uniformity caused by the interruption, thereby effectively improving the uniformity of the process results .
  • the preset distance is greater than or equal to 10 mm.
  • the inner magnetic pole 3 can be prevented from colliding with the outer magnetic pole 2 during movement, and the inner magnetic pole 2 and the outer magnetic pole 3 can be effectively prevented from being too close to cause the process chamber of the semiconductor processing equipment to break.
  • the inner magnetic pole 3 and the outer magnetic pole 2 are arranged at unequal intervals.
  • the distance between the inner magnetic pole 3 and the outer magnetic pole 2 is 30-60 mm.
  • the specific spacing value can be a combination of 35mm, 40mm, 42mm, 48mm, 53mm, 55mm, 58mm, and 60mm, but the embodiment of the present invention is not limited to this, as long as it can achieve full target corrosion That's it.
  • the inner magnetic pole 3 and the outer magnetic pole 2 can also be arranged at equal intervals to suit other process environments. Therefore, the embodiments of the present invention are not limited to this, and those skilled in the art can adjust the settings by themselves according to different working conditions.
  • the magnetron mechanism provided by the embodiments of the present invention can achieve full target corrosion in a high-pressure sputtering environment, thereby effectively controlling process particle contamination on the premise of improving the thickness uniformity of the film, especially The 14nm process requires process particle control.
  • the inner magnetic pole 3 can move linearly along a first direction parallel to the bottom surface of the back plate 1 (ie, the Y direction in FIG. 1), and stay alternately along the A plurality of preset positions spaced apart in the first direction.
  • the inner magnetic pole 3 By making the inner magnetic pole 3 move in a straight line, it can not only simplify the movement of the inner magnetic pole 3 and be easy to implement, but also help realize that the inner magnetic pole 3 can maintain a certain distance between the inner magnetic pole 3 and the outer magnetic pole 1 as a whole, so as to avoid the inner magnetic pole 3 When it collides with the outer magnetic pole 2 during movement, it can effectively prevent the inner magnetic pole 2 and the outer magnetic pole 3 from being too close to cause the process chamber of the semiconductor processing equipment to break the brightness.
  • the above-mentioned preset positions are three, namely the first position P1, the second position P2, and the The three positions P3, all of which are arranged at intervals along the above-mentioned first direction.
  • the second position P2 is located on the side of the first position P1 close to the outer arc portion 2a; the third position P3 is located on the side of the first position P1 close to the inner arc portion 2b.
  • the inner magnetic pole 3 can be switched between the above three preset positions along the first direction (ie, the Y direction in FIG. 1).
  • the inner magnetic pole 3 When the inner magnetic pole 3 is located at the first position P1, it is located near the outer arc portion 2a and the inner When the inner magnetic pole 3 is located at the second position P2, it is located close to the inner arc portion 2b; when the inner magnetic pole 3 is located at the third position P3, it is located close to the outer arc The position of the line 2a. In this way, it can be realized that the inner magnetic pole 3 is at different positions, and the corresponding target surface has different areas that cannot be corroded. By switching the inner magnetic pole 3 between the above three preset positions, the area that cannot be corroded corresponding to each preset position can be corroded when the inner magnetic pole 3 moves to other preset positions, thereby realizing a full target corrosion.
  • the dotted area 6 shown in FIG. 1 represents the area covered by the magnetron mechanism provided by the embodiment of the present invention during rotation, that is, the target corrosion area.
  • the radius of the three are R1 (35-50mm) and R2.
  • Table 1 Correspondence table of inner magnetic pole position and non-corrosive area on target surface.
  • FIG. 4 is a comparison diagram of the process results at different positions of the inner magnetic pole used in the embodiment of the present invention.
  • the thickness uniformity of the film obtained by fixing the inner magnetic pole 3 at the above three preset positions respectively is 2.1%, 3.00%, and 1.88%, respectively. All three are within 3.00%. Based on this, during the process, by switching the inner magnetic pole 3 between the above three preset positions, the thickness uniformity of the film can be increased to 1.58%, which is significantly better than 3%, thereby further improving the film’s thickness. Thickness uniformity.
  • the embodiment of the present invention does not limit the specific number of the above-mentioned first direction and the above-mentioned preset position.
  • the above-mentioned first direction is not limited to the Y direction in FIG. The direction of the angle.
  • the specific number of the first direction and the preset position can be adjusted according to the arrangement of the outer magnetic pole 2 and the inner magnetic pole 3, and the distance between the two. Therefore, the embodiment of the present invention is not limited to this, and those skilled in the art can adjust the settings by themselves according to the actual situation.
  • the magnetron mechanism further includes a driving device 5 located on the top side of the back plate 1 and connected to the inner magnetic pole 3 for driving the inner magnetic pole 3 sports.
  • a driving device 5 located on the top side of the back plate 1 and connected to the inner magnetic pole 3 for driving the inner magnetic pole 3 sports.
  • the driving device 5 With the aid of the driving device 5, the movement of the inner magnetic pole 3 can be automatically controlled during the process.
  • the embodiment of the present invention is not limited to this, and the inner magnetic pole 3 can also be manually controlled to drive the inner magnetic pole 3 to move.
  • the driving device 5 includes a driving source 51 and a connecting member 52, wherein the driving source 51 is disposed on the top surface of the back plate 1 for providing power; one end of the connecting member 52 is connected to the driving source 51 is connected. The other end of the connecting piece 52 penetrates the back plate 1 and is connected to the inner magnetic pole 3. Driven by the driving source 51, the connecting piece 52 drives the inner magnetic pole 3 to move relative to the back plate 1.
  • the driving device 5 further includes a guide rail (not shown in the figure), the guide rail is arranged on the top surface of the back plate 1, and the connecting member 53 is connected to the guide rail and can move along the guide rail.
  • the movement of the connecting member 52 can be guided to ensure the movement accuracy of the inner magnetic pole 3.
  • the backplane 1 has a hollow structure at the position where the connecting member 52 penetrates, and the size of the hollow structure is adapted to the movement range of the connecting member 52 to ensure that it does not interfere with the movement of the connecting member 52.
  • the driving source 51 may be a stepping motor, which can control the displacement of the connecting member 52 through a signal, so that the movement accuracy of the inner magnetic pole 3 can be further improved.
  • the driving source 51 may also be a servo motor or a screw motor or the like. Using different types of driving sources can effectively expand the scope of application of the embodiments of the present invention, thereby effectively reducing application and maintenance costs.
  • the outer magnetic poles enclose a accommodating space on the bottom surface of the back plate, and the inner magnetic poles are located in the accommodating space and can move to change the corrosion of the target material. area.
  • the inner magnetic poles Under high-pressure sputtering environment, by moving the inner magnetic pole to change the corrosion area of the target, it can avoid that the inner magnetic pole is fixed at a certain position and the corresponding position of the target cannot be kept in the whole sputtering process. Is corroded, so that full target corrosion can be achieved.
  • the magnetron mechanism provided by the embodiments of the present invention can achieve full target corrosion in a high-pressure sputtering environment, thereby effectively controlling process particle contamination on the premise of improving the thickness uniformity of the film, especially The 14nm process requires process particle control.
  • an embodiment of the present invention provides a semiconductor processing equipment including a process chamber.
  • the process chamber includes a cavity 100, and a vacuum pump system 101 is connected to the bottom of the cavity 100. , For vacuuming the cavity 100, so that the inside of the cavity reaches a specified vacuum degree (for example, 10-6 Torr).
  • a specified vacuum degree for example, 10-6 Torr.
  • an air inlet pipe is connected to one side of the cavity 100, and the air inlet end of the air inlet pipe is connected to a gas source 103 for delivering reaction gas (such as argon, nitrogen, etc.) into the reaction chamber 1;
  • a flow meter 102 is provided on the inlet pipe to control the inlet amount of the reaction gas.
  • a susceptor 104 is provided inside the cavity 100 for carrying the wafer 110, and the susceptor 104 may have heating and/or cooling functions; and the susceptor 104 is electrically connected to the bias power supply 116 for The bias power is applied to the susceptor 104 to change the particle energy on the surface of the substrate and the thickness of the plasma sheath, thereby improving the stress and density of the film.
  • a lining 112 is arranged around the inner side of the side wall of the cavity 100, and the bottom of the lining 112 carries a pressing ring 111 when the base 104 is located below the process position. The pressing ring 111 is used when the base 104 is located in the process. Press the edge area of the wafer 110 at the time.
  • a target 105 is provided in the cavity 100 and above the base 104, and the target 105 can be made of a metal material or a metal compound material.
  • an insulating cavity 106 is arranged above the cavity 100, and the insulating cavity 106 is filled with deionized water 107; and a ring-shaped current spreading electrode 113 is also arranged on the inner side of the side wall of the insulating cavity 106, the ring The current spreading electrode 113 is electrically connected to the target 105 and the electrodes of the upper RF power supply 118 and the DC power supply 117, respectively, to apply RF power and DC power to the target to obtain a co-sputtering environment for RF and DC.
  • a plasma 114 is formed inside the body 100.
  • a magnetron mechanism is provided above the target 105 and located in the insulating cavity 106.
  • the magnetron mechanism adopts the magnetron mechanism provided in the foregoing embodiments.
  • the The magnetron mechanism is arranged on the top of the cavity 100 of the process chamber, and is located in the above-mentioned insulating cavity 106. With the help of the magnetron mechanism 108, the sputtering deposition rate can be effectively increased.
  • the magnetron mechanism includes a back plate 1, an outer magnetic pole 2, an inner magnetic pole 3, a driving source 51 and a connecting piece 52, wherein an isolation box is provided on the back plate 1 116.
  • the isolation box 116 encloses the drive source 51 and its connection with the connector 52 to isolate the drive source 51 and its connection with the connector 52 from the deionized water 107 in the insulating cavity 106.
  • the driving source 51 leads the wire out of the insulating cavity 106 through the hollow tube 115 to be able to be connected to the power source.
  • one end of the hollow tube 115 penetrates the isolation box 116 and is connected to the drive source 51, and a first sealing member is provided between the hollow tube 115 and the first through hole that penetrates the isolation box 116 for alignment.
  • the gap between the two is sealed; the other end of the hollow tube 115 penetrates the insulating cavity 106 and extends to the outside of the insulating cavity 106, and between the hollow tube 115 and the second through hole that penetrates the insulating cavity 106
  • a second sealing element is provided between the two to seal the gap between the two; the lead wire of the driving source 51 is threaded through the hollow tube 115 so as to be able to be led out to the outside of the insulating cavity 106 through the hollow tube 115.
  • the back plate 1 is connected to the rotary drive source 109.
  • the drive shaft of the rotary drive source 109 penetrates the insulating cavity 106 and extends to the inside of the insulating cavity 106, and is connected to the back plate 1 of the magnetron mechanism. It is used to drive the inner and outer magnetic poles on the back plate 1 to rotate synchronously by driving the back plate 1.
  • a magnetic fluid bearing may be used to seal the gap between the drive shaft of the rotary drive source 109 and the through hole penetrating the insulating cavity 106, so as to ensure that the drive shaft of the rotary drive source 109 can rotate, and at the same time, the insulation The inside of the cavity 106 is sealed.
  • a time-averaging magnetic field can be generated at various angles in the circumferential direction of the cavity 100 to achieve a more uniform target sputtering morphology and improve the uniformity of film deposition.
  • the magnetron mechanism described above is disposed in the insulating cavity 106, but the embodiment of the present invention is not limited to this.
  • the magnetron mechanism may also It is arranged outside and above the insulating cavity 106.
  • the wires of the driving source 51 can be connected to the power source in a conventional manner.
  • the other structure of the semiconductor processing apparatus shown in FIG. 6 is the same as that of the semiconductor processing apparatus shown in FIG. 5.
  • the above-mentioned magnetron mechanism can adjust the setting position and the setting method of the magnetron mechanism adaptively according to semiconductor processing equipment of different structures, which is not particularly limited in the embodiment of the present invention.
  • the semiconductor processing equipment provided by the embodiments of the present invention can achieve full target corrosion under a high-pressure sputtering environment by adopting the above-mentioned magnetron mechanism provided by the embodiments of the present invention, so that the thickness uniformity of the film can be improved. Under the premise, the process particle pollution can be effectively controlled, especially to meet the requirements of the 14nm process for process particle control.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, unless otherwise specified, “plurality” means two or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Abstract

一种磁控管机构,包括背板(1)、外磁极(2)和内磁极(3);其中,外磁极(2)设置于背板(1)的底面上,且围成一容置空间(4);内磁极(3)设置于背板(1)的底面上,且位于容置空间(4)内,并且内磁极(3)能够运动,以改变靶材的腐蚀区域;内磁极(3)在运动过程中与外磁极(2)之间的间距始终大于预设间距。还包括一种半导体加工设备。

Description

半导体加工设备及其磁控管机构 技术领域
本发明涉及半导体加工技术领域,具体而言,本发明涉及一种半导体加工设备及其磁控管机构。
背景技术
在集成电路的制造工艺中,物理气相沉积(Physical Vapor Deposition,以下简称PVD)技术因具有薄膜一致性、均匀性更优,且工艺窗口更宽,能实现深宽比较高的通孔填充等的优点,被广泛用于沉积多种不同的金属层、硬掩膜等的相关材料层。
传统的PVD设备在制备TiN薄膜时一般采用直流(DC)溅射或射频(RF)溅射,且溅射气压为低气压状态(0.1~10mTorr),该溅射环境下对工艺颗粒污染的控制较差,制备的TiN薄膜多为压应力且密度较低。但在14nm制程,需要更严格地控制工艺颗粒污染,并且要求TiN薄膜具有高密度,且为张应力,为了满足该要求,就需要PVD设备采用RF+DC溅射,且需要溅射气压为高气压状态(一般为100~250mTorr),而在该溅射条件下,传统的PVD设备不仅制备的TiN薄膜的厚度均匀性较差,而且其在高气压状态无法实现全靶腐蚀,从而可能造成工艺颗粒严重超标,无法满足14nm制程的工艺要求。
发明内容
本发明针对现有方式的缺点,提出一种半导体加工设备及其磁控管机构,其可以在高气压状态的溅射环境下实现全靶腐蚀,从而可以在提高薄膜的厚度均匀性的前提下,有效控制工艺颗粒污染。
第一个方面,本发明实施例提供了一种磁控管机构,应用于半导体加工设备,包括背板、外磁极和内磁极;其中,
所述外磁极设置于所述背板的底面上,且围成一容置空间;所述内磁极设置于所述背板的底面上,且位于所述容置空间内,并且所述内磁极能够运动,以改变靶材的腐蚀区域;所述内磁极在运动过程中与所述外磁极之间的间距始终大于预设间距。
于本发明的一实施例中,所述内磁极能够沿平行于所述背板的底面的第一方向作直线运动,且交替地停留在沿所述第一方向间隔设置的多个预设位置处。
于本发明的一实施例中,所述外磁极包括外弧线部和内弧线部,二者串接,且共同围成所述容置空间,其中,所述外弧线部位于所述内磁极的靠近靶材表面边缘的一侧;所述内弧线部位于所述内磁极的靠近靶材表面中心的一侧;
所述预设位置为三个,分别为第一位置、第二位置及第三位置,其中,所述第二位置位于所述第一位置的靠近所述外弧线部的一侧;所述第三位置位于所述第一位置的靠近所述内弧线部的一侧。
于本发明的一实施例中,所述驱动装置设置于所述背板的顶面上,且与所述内磁极连接,用于驱动所述内磁极运动。
于本发明的一实施例中,所述驱动装置包括有驱动源及连接件,其中,所述驱动源设置于所述背板的顶面上,用于提供动力;所述连接件的一端与所述驱动源连接,所述连接件的另一端贯穿所述背板,并与所述内磁极连接。
于本发明的一实施例中,所述驱动装置还包括导轨,所述导轨设置于所述背板的顶面上,所述连接件与所述导轨连接,且能够沿所述导轨运动。
于本发明的一实施例中,所述预设间距大于等于10毫米。
于本发明的一实施例中,所述内磁极与所述外磁极之间为非等间距设 置,并且所述内磁极与所述外磁极之间的间距为30~60毫米。
于本发明的一实施例中,所述内磁极为一段平面螺旋线状,且所述内磁极的一端靠近靶材表面的中心,所述内磁极的另一端靠近靶材表面的边缘。
第二个方面,本发明实施例提供了一种半导体加工设备,包括工艺腔室及如第一个方面提供的磁控管机构,所述磁控管机构设置于所述工艺腔室的顶部。
于本发明的一实施例中,所述磁控管机构采用本发明实施例提供的上述磁控管机构;
所述半导体加工设备还包括设置在所述工艺腔室上方的绝缘腔体和空心管,其中,在所述绝缘腔体中充满去离子水;所述磁控管机构设置在所述绝缘腔体中,且在所述背板上设置有隔离箱体,所述隔离箱体将所述驱动源及其与所述连接件的连接部分封闭在其中,以将所述驱动源及所述连接部分与所述绝缘腔体中的去离子水相互隔离;
所述空心管的一端贯通所述隔离箱体,并与所述驱动源连接,且在所述空心管与其贯通所述隔离箱体的第一通孔之间设置有第一密封件,用以对二者之间的间隙进行密封;所述空心管的另一端贯通所述绝缘腔体,并延伸至所述绝缘腔体的外部,并且,在所述空心管与其贯通所述绝缘腔体的第二通孔之间设置有第二密封件,用以对二者之间的间隙进行密封;所述驱动源的导线穿设在所述空心管中,以能够通过所述空心管引出至所述绝缘腔体的外部。
于本发明的一实施例中,所述半导体加工设备还包括设置在所述工艺腔室上方的绝缘腔体,且在所述绝缘腔体中充满去离子水;所述磁控管机构设置在所述绝缘腔体的上方。
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例提供的磁控管机构,其外磁极在背板的底面上围成容置空 间,内磁极位于该容置空间内,且能够运动,以改变靶材的腐蚀区域。在高气压状态的溅射环境下,通过使内磁极运动来改变靶材的腐蚀区域,可以避免因内磁极固定在某一位置处而导致靶材的对应位置处在整个溅射过程中始终无法被腐蚀,从而可以实现全靶腐蚀。由此,本发明实施例提供的磁控管机构可以在高气压状态的溅射环境下实现全靶腐蚀,从而可以在提高薄膜的厚度均匀性的前提下,有效控制工艺颗粒污染,尤其可以满足14nm制程对工艺颗粒控制的要求。
本发明实施例提供的半导体加工设备,其通过采用本发明实施例提供的上述磁控管机构,可以在高气压状态的溅射环境下实现全靶腐蚀,从而可以在提高薄膜的厚度均匀性的前提下,有效控制工艺颗粒污染,尤其可以满足14nm制程对工艺颗粒控制的要求。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例提供的磁控管机构的结构示意图;
图2为图1中I区域的放大图;
图3为本发明实施例采用的驱动装置的剖视示意图;
图4为本发明实施例采用的内磁极在不同位置处的工艺结果对比图;
图5为本发明实施例提供的半导体加工设备的一种结构图;
图6为本发明实施例提供的半导体加工设备的另一种结构图。
具体实施方式
下面详细描述本发明,本发明的实施例的示例在附图中示出,其中自始 至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本发明的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
下面以具体地实施例对本发明的技术方案以及本发明的技术方案如何解决上述技术问题进行详细说明。
请参阅图1,本发明实施例提供了一种磁控管机构,应用于半导体加工设备,该磁控管机构包括:背板1、外磁极2和内磁极3;其中,背板1的形状例如为矩形,且采用金属材质制成。可选的,背板1可以与半导体加工设备的旋转驱动机构(图中未示出)连接,在该旋转驱动机构的驱动下,背板1可以围绕其竖直中心线旋转,该竖直中心线例如与靶材表面的中心(如图1中的点O所示)重合。需要说明的是,在实际应用中,可以根据实际情况,设计背板1的材质和形状以及与旋转驱动机构的连接位置,本发明实施例对此没有特别的限定。
外磁极2设置于背板1的底面上,且围成容置空间4。外磁极2的具体结构可以有多种,例如,如图2所示,外磁极2由多个外磁铁21以及将多个外磁铁21串接在一起的多个外导磁条22组成,以在背板1的底面上呈连续的线条状排布,并围成上述容置空间4,其中,外导磁条22例如采用不锈钢制成,并且外导磁条22上设置有多个用于固定外磁铁21的安装孔。
外磁极2的具体排布形状可以有多种,例如,如图1所示,外磁极2包 括外弧线部2a和内弧线部2b,二者串接,且共同围成容置空间4,其中,外弧线部2a位于内磁极3的靠近靶材表面边缘的一侧;内弧线部2b位于内磁极3的靠近靶材表面中心的一侧。可选的,外弧线部2a和内弧线部2b均为一段平面螺旋线状,并且外弧线部2a和内弧线部2b首尾连接,且在连接处圆滑处理,外弧线部2a和内弧线部2b未连接的两端之间具有开口。需要说明的是,在实际应用中,根据实际工艺要求,可以自由设定外磁极2的具体排布形状,只要能够围成容纳内磁极3的容置空间4即可。
内磁极3设置于背板1的底面上,且位于上述容置空间4内。内磁极3的具体结构可以有多种,例如,与外磁极2相同的,内磁极3由多个内磁铁以及将多个内磁铁串接在一起的多个内导磁条组成,以在背板1的底面上呈连续的线条状排布。其中,内导磁条例如采用不锈钢制成,并且内导磁条上设置有多个用于固定内磁铁的安装孔。内磁极3的具体排布形状可以有多种,例如,如图1所示,内磁极3为一段平面螺旋线状,且内磁极3的一端靠近靶材表面的中心,内磁极3的另一端靠近靶材表面的边缘,即,内磁极3的两端是断开的,具有开口。这样设置,有利于实现全靶腐蚀。
而且,内磁极3能够相对于背板1和外磁极2运动,以改变靶材的腐蚀区域。并且,内磁极3在移动过程中与外磁极2之间的间距始终大于预设间距。也就是说,在内磁极3在容置空间4内运动时,内磁极2与外磁极1之间必须保持一定间距,上述预设间距满足:既能够避免内磁极3在运动时与外磁极2发生碰撞,又能够有效避免内磁极2与外磁极3距离过近而导致半导体加工设备的工艺腔室断辉,从而可以避免因断辉导致的工艺均匀性下降,从而有效提高工艺结果的均匀性。
可选的,预设间距大于等于10毫米。在该间距范围内,既能够避免内磁极3在运动时与外磁极2发生碰撞,又能够有效避免内磁极2与外磁极3距离过近而导致半导体加工设备的工艺腔室断辉。
可选的,内磁极3与外磁极2之间为非等间距设置。并且,内磁极3与外磁极2之间的间距为30~60毫米。例如,在上述间距范围内,具体的间距数值可以为35mm、40mm、42mm、48mm、53mm、55mm、58mm及60mm的组合,但是本发明实施例并不以此为限,只要能够实现全靶腐蚀即可。需要说明的是,在实际应用中,内磁极3与外磁极2之间也可以采用等间距设置,以适用其它工艺环境。因此本发明实施例并不以此为限,本领域技术人员可以根据不同工况自行调整设置。
需要说明的是,在实际应用中,在满足上述条件的前提下,可以根据实际工艺要求,自由设定内磁极3的具体排布形状。
在高气压状态(一般为100~250mTorr)的溅射环境(RF+DC溅射)下,虽然可以提高薄膜的厚度均匀性,但是,在靶材表面的内磁极3所在位置正下方的对应位置会存在严重的反溅射,这种反溅射会导致该对应位置处无法被腐蚀,从而造成靶材上的被腐蚀较多区域的粒子沉积在无法被腐蚀的区域,进而可能造成工艺颗粒严重超标。为了解决上述问题,通过使内磁极3运动来改变靶材的腐蚀区域,可以避免因内磁极3固定在某一位置处而导致靶材的对应位置处在整个溅射过程中始终无法被腐蚀,从而可以实现全靶腐蚀。由此,本发明实施例提供的磁控管机构可以在高气压状态的溅射环境下实现全靶腐蚀,从而可以在提高薄膜的厚度均匀性的前提下,有效控制工艺颗粒污染,尤其可以满足14nm制程对工艺颗粒控制的要求。
于发明的一实施例中,如图1所示,内磁极3能够沿平行于背板1的底面的第一方向(即,图1中的Y方向)作直线运动,且交替地停留在沿该第一方向间隔设置的多个预设位置处。通过使内磁极3作直线运动,不仅可以简化内磁极3的运动方式,易于实现,而且有利于实现内磁极3在整体上能够与外磁极1之间保持一定间距,从而既能够避免内磁极3在运动时与外磁极2发生碰撞,又能够有效避免内磁极2与外磁极3距离过近而导致半导体 加工设备的工艺腔室断辉。
于发明的一实施例中,如图1所示,在外磁极2采用如图1所示的形状的基础上,上述预设位置为三个,分别为第一位置P1、第二位置P2及第三位置P3,三者均沿上述第一方向间隔设置。其中,第二位置P2位于第一位置P1的靠近外弧线部2a的一侧;第三位置P3位于第一位置P1的靠近内弧线部2b的一侧。内磁极3能够沿第一方向(即,图1中的Y方向)在上述三个预设位置之间切换,当内磁极3位于第一位置P1时,其位于靠近外弧线部2a和内弧线部2b之间的中间位置处;当内磁极3位于第二位置P2时,其位于靠近内弧线部2b的位置处;当内磁极3位于第三位置P3时,其位于靠近外弧线部2a的位置处。这样,可以实现内磁极3在不同的位置处,对应的靶材表面的无法被腐蚀的区域不同。通过使内磁极3在上述三个预设位置之间切换,可以使每个预设位置对应的无法被腐蚀的区域在内磁极3移动至其他预设位置时能够被腐蚀到,从而实现全靶腐蚀。
为了便说明本发明实施例,以下结合本发明的一具体实施方式进行说明。图1中示出的虚线区域6表示本发明实施例提供的磁控管机构在旋转时所覆盖的区域,即,靶材腐蚀区域。结合参照图1及下述表1所示,当内磁极3位于第一位置P1时,在靶材表面上对应有三个非腐蚀区域,三者的半径范围分别为R1(35~50mm)、R2(102~110mm)和R3(140~150mm);当内磁极3位于第二位置P2时,在靶材表面上对应有两个非腐蚀区域,二者的半径范围分别为R2(90~100mm)和R3(145~160mm);当内磁极3位于第二位置P3时,在靶材表面上对应有两个非腐蚀区域,二者的半径范围分别为R1(30~50mm)和R2(105~125mm)。
表1、内磁极位置与靶材表面上的非腐蚀区域的对应表。
Figure PCTCN2021087780-appb-000001
Figure PCTCN2021087780-appb-000002
由上可知,当内磁极3位于第二位置P2时,可以对第一位置P1及第三位置P3对应的半径范围为R1和R2的非腐蚀区域进行腐蚀;当内磁极3位于第二位置P3时,可以对第二位置P2对应的半径范围为R3的非腐蚀区域进行腐蚀。由此,通过使内磁极3在上述三个预设位置之间切换,可以使每个预设位置对应的无法被腐蚀的区域在内磁极3移动至其他预设位置时能够被腐蚀到,从而实现全靶腐蚀。
图4为本发明实施例采用的内磁极在不同位置处的工艺结果对比图。如图4所示,内磁极3分别固定在上述三个预设位置处进行工艺获得的薄膜的厚度均匀性分别为2.1%、3.00%、1.88%。三者均在3.00%以内。基于此,在进行工艺的过程中,通过使内磁极3在上述三个预设位置之间切换,可以将薄膜的厚度均匀性提高至1.58%,明显优于3%,从而可以进一步提高薄膜的厚度均匀性。
需要说明的是,本发明实施例并不限定上述第一方向和上述预设位置的具体数量,例如,上述第一方向并不局限于图1中的Y方向,还可以是与Y方向呈任意夹角的方向。在实际应用中,上述第一方向和上述预设位置的具体数量可以根据外磁极2及内磁极3的排布方式,以及两者的间距进行调整设置。因此本发明实施例并不以此为限,本领域技术人员可以根据实际情况自行调整设置。
于发明的一实施例中,如图3所示,磁控管机构还包括驱动装置5,该驱动装置5位于背板1的顶面一侧,且与内磁极3连接,用于驱动内磁极3运动。借助驱动装置5,可以实现在进行工艺过程中内磁极3的运动自动控制。当然,在实际应用中,本发明实施例并不局限于此,内磁极3还可以采用手动控制的方式驱动内磁极3运动。
于本发明的一实施例中,驱动装置5包括有驱动源51及连接件52,其中,驱动源51设置于背板1的顶面上,用于提供动力;连接件52的一端与驱动源51连接,连接件52的另一端贯穿背板1,并与内磁极3连接,在驱动源51的驱动下,连接件52带动内磁极3相对于背板1运动。可选地,驱动装置5还包括导轨(图中未示出),该导轨设置于背板1的顶面上,连接件53与该导轨连接,且能够沿导轨运动。借助上述导轨,可以对连接件52的运动进行导向,以保证内磁极3的运动精度。需要说明的是,背板1在上述连接件52贯穿的位置处为镂空结构,该镂空结构的尺寸与连接件52的运动范围相适配,以保证不会对连接件52的运动产生干涉。
于本发明的一实施例中,驱动源51可以采用步进电机,其能够通过信号控制连接件52的位移量,从而可以进一步提高内磁极3的运动精度。当然,在实际应用中,驱动源51还可以为伺服电机或者丝杠电机等等。采用不同类型的驱动源能有效扩展本发明实施例的适用范围,从而能有效降低应用及维护成本。
综上所述,本发明实施例提供的磁控管机构,其外磁极在背板的底面上围成容置空间,内磁极位于该容置空间内,且能够运动,以改变靶材的腐蚀区域。在高气压状态的溅射环境下,通过使内磁极运动来改变靶材的腐蚀区域,可以避免因内磁极固定在某一位置处而导致靶材的对应位置处在整个溅射过程中始终无法被腐蚀,从而可以实现全靶腐蚀。由此,本发明实施例提供的磁控管机构可以在高气压状态的溅射环境下实现全靶腐蚀,从而可以在提高薄膜的厚度均匀性的前提下,有效控制工艺颗粒污染,尤其可以满足14nm制程对工艺颗粒控制的要求。
基于同一发明构思,本发明实施例提供了一种半导体加工设备,包括工艺腔室,例如,请参阅图5,该工艺腔室包括腔体100,在该腔体100的底部连接有真空泵系统101,用以对腔体100进行抽真空,以使腔体内部达到 指定真空度(例如10-6Torr)。并且,在腔体100的一侧连接有进气管路,该进气管路的进气端与气体源103连接,用以向反应腔体1的内部输送反应气体(如氩气、氮气等),且在该进气管路上设置有流量计102,用以控制反应气体的进气量。
而且,在腔体100的内部设置有基座104,用于承载晶圆110,并且该基座104可以具备加热和/或冷却功能;并且,基座104与偏压电源116电连接,用以向基座104加载偏压功率,从而改变基片表面的粒子能量和等离子体鞘层厚度,从而改善薄膜的应力和密度。另外,在腔体100的侧壁内侧环绕设置有内衬112,该内衬112的底部在基座104位于工艺位置以下时承载有压环111,该压环111用于在基座104位于工艺位置时压住晶圆110的边缘区域。
在腔体100的内部,且位于基座104的上方设置有靶材105,该靶材105可以采用金属材料或者金属化合物材料制作。此外,在腔体100的上方设置有绝缘腔体106,该绝缘腔体106中充满去离子水107;并且,在绝缘腔体106的侧壁内侧还设置有环状电流扩展电极113,该环状电流扩展电极113分别与靶材105和上射频电源118和直流电源117各自的电极电连接,用以向靶材施加射频功率和直流功率,以获得射频与直流共溅射的环境,在腔体100的内部形成等离子体114。
此外,在靶材105的上方,且位于绝缘腔体106中设置有磁控管机构,该磁控管机构采用如上述各实施例提供的磁控管机构,例如,在本实施例中,该磁控管机构设置于工艺腔室的腔体100的顶部,且位于上述绝缘腔体106中。借助磁控管机构108,可以有效提高溅射沉积速率。
以图3示出的磁控管机构为例,磁控管机构包括背板1、外磁极2、内磁极3、驱动源51及连接件52,其中,在背板1上设置有隔离箱体116,该隔离箱体116将驱动源51及其与连接件52的连接部分封闭在其中,以将驱 动源51及其与连接件52的连接部分与绝缘腔体106中去离子水107相互隔离。而且,驱动源51通过空心管115将导线引出绝缘腔体106的外部,以能够与电源连接。具体地,该空心管115的一端贯通隔离箱体116,并与驱动源51连接,且在空心管115与其贯通隔离箱体116的第一通孔之间设置有第一密封件,用以对二者之间的间隙进行密封;空心管115的另一端贯通绝缘腔体106,并延伸至该绝缘腔体106的外部,并且,在空心管115与其贯通绝缘腔体106的第二通孔之间设置有第二密封件,用以对二者之间的间隙进行密封;驱动源51的导线穿设在空心管115中,以能够通过空心管115引出至绝缘腔体106的外部。
此外,背板1与旋转驱动源109连接,具体地,旋转驱动源109的驱动轴贯通绝缘腔体106,并延伸至绝缘腔体106的内部,且与磁控管机构的背板1连接,用以通过驱动背板1来带动背板1上的内、外磁极同步转动。可选的,可以采用磁流体轴承对旋转驱动源109的驱动轴与其贯通绝缘腔体106的通孔之间的间隙进行密封,以在保证旋转驱动源109的驱动轴能够旋转的同时,对绝缘腔体106的内部进行密封。通过利用旋转驱动源109驱动磁控管机构旋转,可在腔体100圆周方向的各个角度上产生时间均化磁场,以达到更均匀的靶材溅射形态,以提高薄膜沉积的均匀性。
需要说明的是,在本实施例中,上述磁控管机构设置在绝缘腔体106中,但是,本发明实施例并不局限于此,例如,如图6所示,磁控管机构还可以设置在绝缘腔体106外部,且位于其上方,在这种情况下,驱动源51的导线采用常规的方式与电源连接即可。图6中示出的半导体加工设备的其他结构与图5中示出的半导体加工设备相同。
需要说明的是,在实际应用中,上述磁控管机构可以根据不同结构的半导体加工设备适应性地调整磁控管机构的设置位置和设置方式,本发明实施例对此没有特别的限制。
本发明实施例提供的半导体加工设备,其通过采用本发明实施例提供的上述磁控管机构,可以在高气压状态的溅射环境下实现全靶腐蚀,从而可以在提高薄膜的厚度均匀性的前提下,有效控制工艺颗粒污染,尤其可以满足14nm制程对工艺颗粒控制的要求。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普 通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

  1. 一种磁控管机构,应用于半导体加工设备,其特征在于,包括背板、外磁极和内磁极;其中,
    所述外磁极设置于所述背板的底面上,且围成一容置空间;所述内磁极设置于所述背板的底面上,且位于所述容置空间内,并且所述内磁极能够运动,以改变靶材的腐蚀区域;所述内磁极在运动过程中与所述外磁极之间的间距始终大于预设间距。
  2. 如权利要求1所述的磁控管机构,其特征在于,所述内磁极能够沿平行于所述背板的底面的第一方向作直线运动,且交替地停留在沿所述第一方向间隔设置的多个预设位置处。
  3. 如权利要求2所述的磁控管机构,其特征在于,所述外磁极包括外弧线部和内弧线部,二者串接,且共同围成所述容置空间,其中,所述外弧线部位于所述内磁极的靠近靶材表面边缘的一侧;所述内弧线部位于所述内磁极的靠近靶材表面中心的一侧;
    所述预设位置为三个,分别为第一位置、第二位置及第三位置,其中,所述第二位置位于所述第一位置的靠近所述外弧线部的一侧;所述第三位置位于所述第一位置的靠近所述内弧线部的一侧。
  4. 如权利要求1-3任意一项所述的磁控管机构,其特征在于,所述磁控管机构还包括驱动装置,所述驱动装置设置于所述背板的顶面上,且与所述内磁极连接,用于驱动所述内磁极运动。
  5. 如权利要求4所述的磁控管机构,其特征在于,所述驱动装置包括有驱动源及连接件,其中,所述驱动源设置于所述背板的顶面上,用于提供动 力;所述连接件的一端与所述驱动源连接,所述连接件的另一端贯穿所述背板,并与所述内磁极连接。
  6. 如权利要求5所述的磁控管机构,其特征在于,所述驱动装置还包括导轨,所述导轨设置于所述背板的顶面上,所述连接件与所述导轨连接,且能够沿所述导轨运动。
  7. 如权利要求1所述的磁控管机构,其特征在于,所述预设间距大于等于10毫米。
  8. 如权利要求1至3的任一所述的磁控管机构,所述内磁极与所述外磁极之间为非等间距设置,并且所述内磁极与所述外磁极之间的间距为30~60毫米。
  9. 如权利要求1至3的任一所述的磁控管机构,其特征在于,所述内磁极为一段平面螺旋线状,且所述内磁极的一端靠近靶材表面的中心,所述内磁极的另一端靠近靶材表面的边缘。
  10. 一种半导体加工设备,其特征在于,包括工艺腔室及如权利要求1至9的任一所述的磁控管机构,所述磁控管机构设置于所述工艺腔室的顶部。
  11. 如权利要求10所述的半导体加工设备,其特征在于,所述磁控管机构采用如权利要求5或6所述的磁控管机构;
    所述半导体加工设备还包括设置在所述工艺腔室上方的绝缘腔体和空心管,其中,在所述绝缘腔体中充满去离子水;所述磁控管机构设置在所述绝缘腔体中,且在所述背板上设置有隔离箱体,所述隔离箱体将所述驱动源 及其与所述连接件的连接部分封闭在其中,以将所述驱动源及所述连接部分与所述绝缘腔体中的去离子水相互隔离;
    所述空心管的一端贯通所述隔离箱体,并与所述驱动源连接,且在所述空心管与其贯通所述隔离箱体的第一通孔之间设置有第一密封件,用以对二者之间的间隙进行密封;所述空心管的另一端贯通所述绝缘腔体,并延伸至所述绝缘腔体的外部,并且,在所述空心管与其贯通所述绝缘腔体的第二通孔之间设置有第二密封件,用以对二者之间的间隙进行密封;所述驱动源的导线穿设在所述空心管中,以能够通过所述空心管引出至所述绝缘腔体的外部。
  12. 如权利要求10所述的半导体加工设备,其特征在于,所述半导体加工设备还包括设置在所述工艺腔室上方的绝缘腔体,且在所述绝缘腔体中充满去离子水;所述磁控管机构设置在所述绝缘腔体的上方。
PCT/CN2021/087780 2020-04-24 2021-04-16 半导体加工设备及其磁控管机构 WO2021213273A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21793238.3A EP4141140A4 (en) 2020-04-24 2021-04-16 SEMICONDUCTOR PROCESSING DEVICE AND ASSOCIATED MAGNETRON MECHANISM
JP2022564381A JP7499351B2 (ja) 2020-04-24 2021-04-16 半導体加工装置及びマグネトロン機構
KR1020227037773A KR102654736B1 (ko) 2020-04-24 2021-04-16 반도체 가공 디바이스 및 이의 마그네트론 메커니즘
US17/921,088 US20230170196A1 (en) 2020-04-24 2021-04-16 Semiconductor processing apparatus and magnetron mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010331542.2 2020-04-24
CN202010331542.2A CN111304620A (zh) 2020-04-24 2020-04-24 半导体加工设备及其磁控管机构

Publications (1)

Publication Number Publication Date
WO2021213273A1 true WO2021213273A1 (zh) 2021-10-28

Family

ID=71150247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087780 WO2021213273A1 (zh) 2020-04-24 2021-04-16 半导体加工设备及其磁控管机构

Country Status (7)

Country Link
US (1) US20230170196A1 (zh)
EP (1) EP4141140A4 (zh)
JP (1) JP7499351B2 (zh)
KR (1) KR102654736B1 (zh)
CN (1) CN111304620A (zh)
TW (1) TWI819294B (zh)
WO (1) WO2021213273A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304620A (zh) * 2020-04-24 2020-06-19 北京北方华创微电子装备有限公司 半导体加工设备及其磁控管机构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253859A (ja) * 1995-03-16 1996-10-01 Sumitomo Metal Mining Co Ltd スパッタリング装置
CN1914351A (zh) * 2004-03-24 2007-02-14 应用材料股份有限公司 可选式双位置磁控管
JP2009149927A (ja) * 2007-12-19 2009-07-09 Ulvac Japan Ltd 磁石装置、マグネトロンスパッタ装置
CN102064076A (zh) * 2010-11-02 2011-05-18 清华大学 一种变偏心距式磁电管
CN204174268U (zh) * 2014-07-09 2015-02-25 星弧涂层新材料科技(苏州)股份有限公司 一种扫描磁场磁控溅射阴极
CN204455275U (zh) * 2015-02-10 2015-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种溅射工艺反应腔的内衬结构
CN104810228A (zh) * 2014-01-23 2015-07-29 北京北方微电子基地设备工艺研究中心有限责任公司 螺旋形磁控管及磁控溅射设备
CN104937134A (zh) * 2013-03-01 2015-09-23 应用材料公司 可配置的可变位置式封闭轨道磁电管
CN111304620A (zh) * 2020-04-24 2020-06-19 北京北方华创微电子装备有限公司 半导体加工设备及其磁控管机构

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1003655B (zh) * 1987-10-12 1989-03-22 浙江大学 分离磁体式平面磁控溅射源
US6689254B1 (en) * 1990-10-31 2004-02-10 Tokyo Electron Limited Sputtering apparatus with isolated coolant and sputtering target therefor
DE4125110C2 (de) * 1991-07-30 1999-09-09 Leybold Ag Magnetron-Zerstäubungskathode für Vakuumbeschichtungsanlagen
JP2627861B2 (ja) * 1993-10-22 1997-07-09 アネルバ株式会社 Ti−TiN積層膜の成膜方法および装置
JPH08337873A (ja) * 1995-06-13 1996-12-24 Sony Corp スパッタ方法
JPH0987834A (ja) * 1995-09-25 1997-03-31 Sony Corp スパッタ装置
TWI229138B (en) * 2001-06-12 2005-03-11 Unaxis Balzers Ag Magnetron-sputtering source
US20070012557A1 (en) * 2005-07-13 2007-01-18 Applied Materials, Inc Low voltage sputtering for large area substrates
US7901552B2 (en) * 2007-10-05 2011-03-08 Applied Materials, Inc. Sputtering target with grooves and intersecting channels
CN102102185A (zh) * 2009-12-22 2011-06-22 北京北方微电子基地设备工艺研究中心有限责任公司 磁控溅射源、磁控溅射装置及其方法
CN102789941B (zh) * 2011-05-18 2015-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种磁控管、磁控管的制造方法及物理沉积室
CN103177918B (zh) 2011-12-26 2016-08-31 北京北方微电子基地设备工艺研究中心有限责任公司 一种磁控管及等离子体加工设备
CA2899229C (fr) 2013-02-06 2018-04-03 Arcelormittal Investigacion Y Desarrollo Sl Source de plasma
CN104109840A (zh) * 2014-07-09 2014-10-22 星弧涂层新材料科技(苏州)股份有限公司 一种扫描磁场磁控溅射阴极
JP6471000B2 (ja) * 2015-02-24 2019-02-13 株式会社アルバック マグネトロンスパッタリング装置用の磁石ユニット及びこの磁石ユニットを用いたスパッタリング方法
JP6770886B2 (ja) 2016-12-28 2020-10-21 株式会社Screenホールディングス 基板処理装置及び基板処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253859A (ja) * 1995-03-16 1996-10-01 Sumitomo Metal Mining Co Ltd スパッタリング装置
CN1914351A (zh) * 2004-03-24 2007-02-14 应用材料股份有限公司 可选式双位置磁控管
JP2009149927A (ja) * 2007-12-19 2009-07-09 Ulvac Japan Ltd 磁石装置、マグネトロンスパッタ装置
CN102064076A (zh) * 2010-11-02 2011-05-18 清华大学 一种变偏心距式磁电管
CN104937134A (zh) * 2013-03-01 2015-09-23 应用材料公司 可配置的可变位置式封闭轨道磁电管
CN104810228A (zh) * 2014-01-23 2015-07-29 北京北方微电子基地设备工艺研究中心有限责任公司 螺旋形磁控管及磁控溅射设备
CN204174268U (zh) * 2014-07-09 2015-02-25 星弧涂层新材料科技(苏州)股份有限公司 一种扫描磁场磁控溅射阴极
CN204455275U (zh) * 2015-02-10 2015-07-08 北京北方微电子基地设备工艺研究中心有限责任公司 一种溅射工艺反应腔的内衬结构
CN111304620A (zh) * 2020-04-24 2020-06-19 北京北方华创微电子装备有限公司 半导体加工设备及其磁控管机构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141140A4 *

Also Published As

Publication number Publication date
JP7499351B2 (ja) 2024-06-13
KR102654736B1 (ko) 2024-04-05
KR20220160099A (ko) 2022-12-05
JP2023522434A (ja) 2023-05-30
CN111304620A (zh) 2020-06-19
US20230170196A1 (en) 2023-06-01
EP4141140A4 (en) 2024-04-24
TWI819294B (zh) 2023-10-21
EP4141140A1 (en) 2023-03-01
TW202140830A (zh) 2021-11-01

Similar Documents

Publication Publication Date Title
TWI433951B (zh) Sputtering device
TW201536944A (zh) 磁控濺鍍腔室及磁控濺鍍裝置
US9394603B2 (en) Soft sputtering magnetron system
WO2021213273A1 (zh) 半导体加工设备及其磁控管机构
CN102760679A (zh) 基板托架以及使用了该托架的基板处理装置
KR102643212B1 (ko) 공정 챔버 및 반도체 공정 디바이스
US11784032B2 (en) Tilted magnetron in a PVD sputtering deposition chamber
CN110128022B (zh) 一种大型曲面玻璃真空溅射镀膜装置
KR101288133B1 (ko) 기판 증착 장치
CN1245534C (zh) 无磁屏蔽型铁磁性靶材溅射阴极及其溅射方法
CN105506568B (zh) 一种新型孪生外置旋转阴极
CN204959025U (zh) 一种磁控溅射镀膜用的平面阴极
KR101209651B1 (ko) 스퍼터 장치
CN206858650U (zh) 一种磁控溅射装置
CN112391597B (zh) 半导体工艺设备
CN111560588B (zh) 用于超高真空环境的磁控溅射靶、磁控溅射装置
CN106399958B (zh) 一种用于金属镀膜的矩形磁控溅射靶
CN212025446U (zh) 一种可调式磁场装置
CN215440668U (zh) 磁场调节器、磁控溅射装置的靶组件和磁控溅射装置
KR20200081188A (ko) 성막 장치, 성막 방법 및 전자 디바이스의 제조 방법
TWI840426B (zh) Pvd濺射沉積腔室中的傾斜磁控管
CN217628596U (zh) 一种挡板可调节的镀膜设备
US11984302B2 (en) Magnetic-material shield around plasma chambers near pedestal
JPH06184742A (ja) スパッタリング方法及び装置
CN102108488A (zh) 镀膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022564381

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037773

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021793238

Country of ref document: EP

Effective date: 20221124

NENP Non-entry into the national phase

Ref country code: DE