WO2021213106A1 - 激光器和投影设备 - Google Patents

激光器和投影设备 Download PDF

Info

Publication number
WO2021213106A1
WO2021213106A1 PCT/CN2021/082139 CN2021082139W WO2021213106A1 WO 2021213106 A1 WO2021213106 A1 WO 2021213106A1 CN 2021082139 W CN2021082139 W CN 2021082139W WO 2021213106 A1 WO2021213106 A1 WO 2021213106A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
emitting
emitting chip
type
Prior art date
Application number
PCT/CN2021/082139
Other languages
English (en)
French (fr)
Inventor
田有良
周子楠
张昕
卢云琛
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202180029640.3A priority Critical patent/CN115428282A/zh
Publication of WO2021213106A1 publication Critical patent/WO2021213106A1/zh
Priority to US17/943,608 priority patent/US20230007218A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3173Constructional details thereof wherein the projection device is specially adapted for enhanced portability

Definitions

  • This application relates to the field of optoelectronic technology, in particular to a laser and a projection device.
  • the light source of the projection device is required to provide light with the same polarization direction, and the requirements for the miniaturization of the projection device are getting higher and higher.
  • the laser includes a bottom plate, and a plurality of light-emitting chips and a plurality of reflecting prisms mounted on the bottom plate in a one-to-one correspondence.
  • Each reflecting prism is located on the light emitting side of the corresponding light emitting chip, the light emitting chip is used for emitting a laser beam to the reflecting prism, and the reflecting prism is used for emitting the laser beam in a direction away from the bottom plate.
  • the laser light is linearly polarized light with one polarization direction.
  • the light-emitting directions of the multiple light-emitting chips are all the same, and the polarization direction of the laser beams emitted by a part of the light-emitting chips is perpendicular to the polarization direction of the laser beams emitted by the other part of the light-emitting chips, so the entire laser emits two laser beams with vertical polarization directions.
  • the polarization characteristics of the laser beams of various colors used for projection are consistent, which is conducive to achieving the color uniformity of the laser projection screen. Therefore, when applying the above-mentioned lasers, it is necessary to adjust one of the laser beams in the optical path of the projection device.
  • the laser beam in the polarization direction is provided with a half-wave plate to achieve the same polarization characteristics of the laser beams with different polarization polarities.
  • the half-wave plate is usually obtained by crystal growth, and the cost is relatively high, and it needs to be placed in the corresponding structure of the projection equipment, which increases the structural components, which is not conducive to the simplification of the structure and the compression of the volume, and it is contrary to the realization of the miniaturization of the projection equipment. Purpose.
  • a laser including: a base plate, and a plurality of light-emitting chips and at least one reflective prism mounted on the base plate; the reflective prism corresponds to at least one light-emitting chip, and the reflective prism is located on the corresponding light-emitting chip On the light-emitting side, the light-emitting chip is used to emit laser light to the corresponding reflecting prism, and the reflecting prism is used to emit the laser light in a direction away from the bottom plate;
  • the multiple light-emitting chips include: a first-type light-emitting chip and a second-type light-emitting chip.
  • the transmission direction of the emitted laser light is vertical.
  • an embodiment of the present application provides a projection device, the projection device includes: the above-mentioned laser, and an optical machine and a lens, the optical machine is located on the light exit side of the laser, and the lens is located on the light exit side of the optical machine;
  • the laser is used to emit laser light to the optical machine
  • the optical machine is used to converge the laser light emitted by the laser to the lens
  • the lens is used to project the laser light converged by the optical machine.
  • Figure 1 is a schematic diagram of the structure of a laser provided by related technologies
  • FIG. 2 is a schematic diagram of the propagation of P-polarized light provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the propagation of S-polarized light provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a part of the structure of a projection device provided by the related art
  • FIG. 5 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the propagation of laser light emitted by a first type of light-emitting chip provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the propagation of laser light emitted by a second type of light-emitting chip provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of still another laser provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a laser provided by another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a part of the structure of a projection device provided by an embodiment of the present application.
  • the current laser since the laser light emitted by the current laser includes two lasers with vertical polarization directions, it is necessary to install a half-wave plate in the light output direction of the laser in the projection equipment to modulate the polarization directions of the two lasers to the same direction. Therefore, the current projection equipment includes many structures, and the volume of the projection equipment is relatively large, and it is difficult to realize the miniaturization of the projection equipment.
  • Fig. 1 is a schematic diagram of the structure of a laser provided by the related art.
  • the laser 10 includes a bottom plate 101, and a plurality of light-emitting chips 102 and a plurality of reflecting prisms 103 mounted on the bottom plate 101 in a one-to-one correspondence.
  • Each reflecting prism 103 is located on the light-emitting side of the corresponding light-emitting chip 102, the light-emitting chip 102 is used to emit laser light to the corresponding reflecting prism 103, and the reflecting prism 103 is used to emit the laser light in a direction away from the bottom plate 101, thereby realizing the light output of the laser 10 .
  • the x1 direction in FIG. 1 may be the row direction of the light-emitting chip
  • the y1 direction may be the column direction of the light-emitting chip
  • the x1 direction is perpendicular to the y1 direction.
  • the plurality of light emitting chips 102 in the laser 10 may include a red light emitting chip for emitting red laser light, a green light emitting chip for emitting green laser light, and a blue light emitting chip for emitting blue laser light.
  • the red laser is P-polarized light
  • the blue laser and the green laser are S-polarized light
  • the polarization directions of the P-polarized light and S-polarized light are perpendicular.
  • Fig. 2 is a schematic diagram of the propagation of P-polarized light provided by an embodiment of the present application.
  • the polarization direction of the P-polarized light may be the direction p shown in FIG.
  • FIG. 3 is a schematic diagram of the propagation of S-polarized light provided by an embodiment of the present application.
  • the polarization direction of the S-polarized light may be the direction s shown in FIG. 3
  • the waveform in FIG. 3 refers to the waveform of the light wave of the S-polarized light.
  • the direction p in plane A is perpendicular to the direction s.
  • Fig. 4 is a schematic diagram of a part of the structure of a projection device provided by the related art.
  • the projection device may include a laser 10 and a half-wave plate B.
  • the half-wave plate B is arranged corresponding to a part of the laser light emitted by the laser 10, for example, the half-wave plate B is arranged in the transmission direction of the part of the laser light.
  • This part of the laser includes blue laser and green laser.
  • the laser 10 shown in FIG. 4 may be a schematic diagram after the left view of the laser 10 shown in FIG. 1 is turned 180 degrees.
  • the half-wave plate can be used to rotate the polarization direction of the laser to change the polarization polarity of the laser.
  • the polarization direction of the blue laser and the green laser becomes the same as the polarization direction of the red laser after passing through the half-wave plate, and the projection equipment can adopt polarization
  • the red laser, blue laser and green laser in the same direction are projected to facilitate the realization of the color uniformity of the laser projection screen.
  • the thickness of the half-wave plate is related to the wavelength of the laser light it passes through, it is necessary in the related art to design a half-wave plate with a corresponding thickness according to the wavelengths of the blue laser and the green laser emitted by the laser.
  • the half-wave plate is obtained by crystal growth, and the cost of the half-wave plate is relatively high.
  • the half-wave plate also needs to be fixed with a bracket, and it is difficult to fix the half-wave plate, and the installation of the half-wave plate requires more space in the projection device. Therefore, the cost of the projection equipment in the related art is relatively high, and the volume is relatively large.
  • the projection device may further include a light combining mirror J, which is used to combine the red laser, green laser, and blue laser emitted by the laser 10 into one laser beam and shoot it in a desired direction.
  • the light combining mirror J may include a reflecting prism J1, a dichroic mirror J2 and a dichroic mirror J3. It should be noted that the dichroic mirror can almost completely transmit light in one wavelength range and almost completely reflect light in another wavelength range.
  • the four laser beams emitted by the laser 10 are green laser, blue laser, red laser and red laser in sequence along the y1 direction.
  • the dichroic mirror J2 can completely transmit the green laser and the blue laser Complete reflection; the dichroic mirror J3 can completely transmit the green laser and blue laser, and completely reflect the red laser.
  • the condensing lens G can condense the laser light to the light-receiving element H, and then the light-receiving element H can transmit the received laser light to the lens of the projection device. projection.
  • a laser is used as the light source of the projection device, and a half-wave plate is also required to be provided on the light exit side of the laser, so the volume of the projection device is relatively large and the cost is relatively high.
  • the following embodiments of the present application provide a laser. Using the laser as the light source of the projection device can reduce the volume of the projection device, reduce the cost of the projection device, and facilitate the miniaturization of the projection device.
  • FIG. 5 is a schematic structural diagram of a laser provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of another laser provided by an embodiment of the present application
  • FIG. 5 may be a top view of the laser shown in FIG. 6.
  • the laser 20 includes a bottom plate 201, a plurality of light-emitting chips (such as a first type of light-emitting chip 202 a or a second type of light-emitting chip 202 b) mounted on the bottom plate 201 and at least one reflective prism 203.
  • the reflecting prism 203 is located on the light emitting side of the corresponding light emitting chip.
  • the light emitting chip is used to emit laser light to the corresponding reflecting prism 203.
  • the reflecting prism 203 emits the laser light in a direction away from the bottom plate 201 to realize the light output of the laser 20.
  • the surface M of the reflective prism 203 close to the light-emitting chip may be a reflective surface, and the reflective surface M is used to emit the laser light in a direction away from the bottom plate 201.
  • the plurality of light emitting chips may include: a first type of light emitting chip 202a and a second type of light emitting chip 202b.
  • the polarization direction of the laser light emitted by the first type of light-emitting chip 202a and the second type of light-emitting chip 202b is perpendicular (also referred to as orthogonal), that is, the polarization of the laser light emitted by the first type of light-emitting chip 202a to the corresponding reflecting prism 203
  • the direction is perpendicular to the polarization direction of the laser light emitted from the second type of light-emitting chip 202a to the corresponding reflecting prism 203.
  • the transmission direction of the laser light emitted by the first-type light-emitting chip 202a is perpendicular to the transmission direction of the laser light emitted by the second-type light-emitting chip 202b, that is, the light-emitting direction of the first-type light-emitting chip 202a is perpendicular to the light-emitting direction of the second-type light-emitting chip 202b .
  • the transmission directions of the laser light emitted by the first type of light-emitting chip and the second type of light-emitting chip may both be parallel to the bottom plate.
  • the light-emitting direction of each light-emitting chip is the same as the arrangement direction of the reflecting prism 203 corresponding to the light-emitting chip.
  • the arrangement direction of the first type of light emitting chip 202a and the corresponding reflecting prism 203 is the first direction
  • the arrangement direction of the second type of light emitting chip 202b and the corresponding reflecting prism 203 is the second direction
  • the first direction is perpendicular In the second direction.
  • the first direction is parallel to the direction x2 shown in FIG. 5 or FIG. 6, and the second direction is parallel to the direction y2 shown in FIG.
  • the polarization direction of the laser light is perpendicular to the transmission direction.
  • both the first type of light emitting chip and the second type of light emitting chip emit light in a direction parallel to the base plate, and the transmission direction of the laser light emitted from the first type of light emitting chip and the second type of light emitting chip is perpendicular.
  • the polarization direction of the laser light emitted by one type of light emitting chip is parallel to the bottom plate
  • the polarization direction of the laser light emitted by the other type of light emitting chip is perpendicular to the bottom plate.
  • the transmission direction of the laser light emitted by the first type of light-emitting chip is parallel to the base plate and the polarization direction is perpendicular to the base plate
  • the transmission direction and polarization direction of the laser light emitted by the second type of light-emitting chip are both parallel to the base plate; therefore, the laser light emitted by the second type of light-emitting chip
  • the polarization direction of is parallel to the transmission direction of the laser light emitted by the first type of light-emitting chip.
  • the reflective surface M forms an angle with the plane where the bottom plate is located.
  • the included angle may be 45°. If the polarization direction of the laser light is parallel to the reflection surface M, that is, the polarization direction is in a plane parallel to the bottom plate, and the polarization direction is a linear direction, parallel to the plane where the reflection surface M is located, then the laser light is After M is reflected, the polarization direction of the laser will not change; if the polarization direction of the laser intersects the reflecting surface M, that is, the polarization direction is perpendicular to the plane where the bottom plate is located, which is equivalent to the polarization direction being the perpendicular to the plane where the bottom plate is located.
  • the polarization direction of the laser light will change after the laser is reflected by the reflective surface M, and the angle of the polarization direction change can be the same as the angle between the incident light and the reflected light.
  • the polarization polarity of the laser light changes.
  • the laser light emitted by the light-emitting chip of the first type and the light-emitting chip of the second type changes from a transmission direction parallel to the base plate to a transmission direction away from the base plate, and the angle between the incident light and the reflected light of the laser light can be 90 degrees.
  • the polarization direction of the laser light emitted by the first type of light-emitting chip intersects the reflective surface to which the laser is directed, and then the polarization direction of the laser changes by 90 degrees (that is, the laser undergoes a 90-degree polarity conversion), becoming parallel to the bottom plate and It is the same as the original transmission direction of the laser.
  • the polarization direction of the laser light emitted by the second type of light-emitting chip is parallel to the reflective surface to which the laser is directed, so the polarization direction of the laser remains unchanged, and is still the same as the original transmission direction of the laser light emitted by the first type of light-emitting chip. Therefore, the polarization directions of the laser light emitted by the first type of light-emitting chip and the second type of light-emitting chip are the same after being emitted in a direction away from the bottom plate.
  • the laser light emitted by the first type of light-emitting chip 202a may be P-polarized light
  • the laser light emitted by the second-type light-emitting chip 202b is S-polarized light, and the transmission direction of the P-polarized light and the S-polarized light vertical.
  • FIG. 7 is a schematic diagram of the propagation of laser light emitted by a first type of light-emitting chip provided by an embodiment of the present application.
  • FIG. 7 may be a schematic diagram of the cross-section a-a' in the laser shown in FIG. It is used to indicate the waveform of the laser light emitted by the first type of light-emitting chip. As shown in FIG.
  • the laser light propagates toward the corresponding reflecting prism 203.
  • the transmission direction of the laser light is parallel to the direction x2, and the polarization direction of the laser light is perpendicular to the bottom plate 201. That is, it is perpendicular to the x2 direction and the y2 direction in Figure 5 or Figure 6. Since the polarization direction of the laser light emitted by the first type of light-emitting chip 202a intersects the reflecting surface M in the corresponding reflecting prism 203, the laser light is reflected on the reflecting surface M of the reflecting prism 203 and propagates away from the bottom plate 201. The polarization direction of the laser light changes and becomes parallel to the x2 direction. In this case, the laser has undergone a 90-degree polarity conversion.
  • FIG. 8 is a schematic diagram of the propagation of laser light emitted by a second type of light-emitting chip provided by an embodiment of the present application, and FIG. 8 may be a schematic diagram of a cross-section b-b' in the laser shown in FIG. 5.
  • the second type of light-emitting chip 202a emits laser light
  • the laser light propagates toward the corresponding reflecting prism 203
  • the transmission direction of the laser light is parallel to the direction y2
  • the polarization direction of the laser light is parallel to the bottom plate 201, and It is perpendicular to the transmission direction y2 of the laser light
  • the polarization direction of the laser light is the direction perpendicular to the paper surface.
  • the direction perpendicular to the paper surface in FIG. 8 is the x2 direction in FIGS. 5, 6 and 7, so the polarization direction of the laser light is parallel to the x2 direction. Since the polarization direction of the laser light is parallel to the reflective surface M of the reflective prism 203, after the laser light is reflected on the reflective surface M of the reflective prism 203 and propagates away from the bottom plate 201, the polarization direction of the laser light does not change after reflection. The polarization direction is still parallel to the x2 direction. The polarization polarity of the laser has not changed.
  • the laser light emitted by the first type of light-emitting chip 202a and the second type of light-emitting chip 202b in the embodiment of the present application has the same polarization direction after being emitted from the laser, and the polarization direction is parallel to the x2 direction, so the laser 20 can emit Lasers with the same polarization direction.
  • the laser 20 includes 16 light-emitting chips as an example for illustration.
  • the number of light-emitting chips in the laser 20 may also be 20, 12, or other numbers.
  • the embodiment is not limited.
  • the polarization directions of the laser light emitted by the first type light-emitting chip and the second type light-emitting chip are orthogonal, and the laser light emitted by the first type light-emitting chip and the second type light-emitting chip are different from each other.
  • the transmission direction is vertical and parallel to the bottom plate.
  • the polarization direction of the laser light is perpendicular to the transmission direction
  • the polarization direction of the laser light emitted by one type of light-emitting chip is parallel to the bottom plate
  • the polarization direction of the laser light emitted by the other type of light-emitting chip is vertical ⁇ On the bottom plate.
  • the reflecting prism can only change the polarization direction of the laser whose polarization direction is perpendicular to the bottom plate, and specifically perform a 90-degree polarity conversion, so the laser light emitted by the first type of light-emitting chip and the second type of light-emitting chip are reflected After the prism is reflected, the polarization direction becomes uniform. In this way, using this laser as the light source of the projection device can directly obtain the laser with the same polarization direction. There is no need to set a half-wave plate in the projection device to convert the polarities of the light beams in one of the polarization directions, and the volume of the projection device is larger. Small, conducive to the miniaturization of projection equipment.
  • the laser 20 may further include at least one heat sink 204, each heat sink corresponds to at least one light-emitting chip, and the light-emitting chip may be mounted on the base plate 201 through the corresponding heat sink 204.
  • the thermal conductivity of the heat sink in the embodiments of the present application can be relatively large, and the heat can be quickly discharged when the light-emitting chip emits heat, so as to avoid damage to the light-emitting chip by the heat.
  • the material of the heat sink may include one or more of aluminum nitride and silicon carbide.
  • the material of the bottom plate may include one or more of oxygen-free copper and Kovar materials.
  • the material of the bottom plate includes oxygen-free copper, since the thermal conductivity of oxygen-free copper is also relatively large, the bottom plate can assist the heat sink to conduct heat generated by the light-emitting chip.
  • the thickness of the bottom plate may range from 1 mm to 3 mm.
  • the light emitting chip is close to the end of the corresponding reflection prism, and protrudes from the heat sink close to the end of the reflection prism.
  • the light-emitting chip protrudes from the part of the heat sink, and the length of the light-emitting chip in the direction in which the light-emitting chip approaches the corresponding reflecting prism may be less than 15 microns.
  • the light-emitting chip protruding from the heat sink can further make the distance between the light-emitting chip and the reflecting prism closer, thereby ensuring that more light emitted by the light-emitting chip is directed to the reflecting prism. Avoid laser waste caused by the laser emitted by the light-emitting chip on the bottom plate, so the brightness of the laser emitted by the laser can be higher.
  • the light-emitting chip in the laser whose end close to the corresponding reflecting prism is flush with the end of the heat sink close to the reflecting prism, or the end of each light-emitting chip in the laser close to the reflecting prism is close to the reflection of the heat sink.
  • One end of the prism is flush, which is not limited in the embodiment of the present application.
  • the contact area between the light-emitting chip and the heat sink is relatively large, thereby increasing the area of the light-emitting chip supported by the heat sink and improving the light-emitting chip The stability of the setting.
  • the heat generated in each area of the light-emitting chip can be directly conducted through the heat sink, thereby improving the heat dissipation effect of the light-emitting chip.
  • the reflecting prism 203 is located in the middle area of the bottom plate 201, and the light emitting chip is located in the edge area of the bottom plate 201, and the edge area surrounds the middle area.
  • the distance between the reflecting prisms in the laser is relatively short. Since the laser light emitted by each light-emitting chip is finally emitted from the laser by the reflecting prism, the reflecting prism is located in the middle area of the bottom plate to ensure that the laser light emitted by each light-emitting chip is closer when emitting the laser. ; In turn, it can be ensured that the laser beam emitted by the laser is thinner, the formed spot is smaller, and the brightness difference of each position in the spot is small, and the brightness of the spot is more uniform.
  • FIGS. 5 to 8 all take as an example that no other components are provided in the area surrounded by the reflective prism.
  • the number of light-emitting chips in the laser is larger, the area enclosed by the reflective prism is larger, and the spot formed by the laser is larger, and the brightness difference between the middle position of the spot and other positions is larger. Therefore, the embodiment of the present application
  • the number of medium light-emitting chips can be small, such as less than or equal to a certain number threshold.
  • the number threshold can be 20 or 16 or other numbers.
  • the power of the laser in the embodiment of the present application may be low, and the laser may be used as the light source of a micro-projection device.
  • multiple light-emitting chips may also be arranged in the area surrounded by the reflective prism.
  • the brightness difference between the middle position of the spot formed by the laser and other positions can be reduced; and the laser of the same volume can be provided with more light-emitting chips.
  • the light-emitting chip can avoid the waste of the volume of the laser, and further contribute to the miniaturization of the laser, which is not limited in the embodiment of the present application.
  • the light-emitting chip may be located in the middle area of the bottom plate, and the reflective prism is located in the edge area of the bottom plate, which is not limited in the embodiment of the present application.
  • FIG. 5 to FIG. 8 take the respective light-emitting chips in the laser 20 corresponding to the independent reflective prism 203 and the heat sink 204 as an example for illustration.
  • the arrangement direction of the at least two light-emitting chips is perpendicular to the arrangement direction of the at least two light-emitting chips and the corresponding reflecting prism 203, and the at least two light-emitting chips are adjacent.
  • the at least two light-emitting chips may be located on the same side of the corresponding reflecting prism, and the at least two light-emitting chips are adjacent. In this way, the reflective surface of the reflective prism close to the corresponding light-emitting chip can be used to reflect the laser light emitted by the at least two light-emitting chips.
  • the at least two light-emitting chips may also be located on different sides of the reflective prism. For example, it is located on two opposite sides of the reflective prism, so the reflective surface of the reflective prism located on each of the two sides can be used to reflect the laser light emitted by the light-emitting chip on that side.
  • FIG. 9 is a schematic structural diagram of still another laser provided by an embodiment of the present application.
  • the laser 20 includes: four light-emitting chips arranged in the x2 direction and corresponding reflecting prisms (located in the dashed box K1 in FIG.
  • the four light-emitting chips in each dotted frame correspond to the same reflecting prism 203 as an example.
  • only two adjacent light-emitting chips may correspond to the same reflecting prism, or three adjacent light-emitting chips may correspond to the same reflecting prism, which is not limited in the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • the laser 20 may include only one reflective prism 203, the reflective prism 203 is located in the middle area of the bottom plate 201, and the multiple light-emitting chips in the laser are located at the edge area of the bottom plate 201, and the multiple light-emitting chips all correspond to the reflection
  • the prism 203, and the reflecting prism 203 has a quadrangular pyramid shape.
  • the four sides of the quadrangular prism may be reflective surfaces, and each reflective surface is used to reflect the laser light directed to the reflective surface and emit the laser light in a direction away from the bottom plate.
  • a quadrangular pyramid-shaped reflective prism can be directly attached to the bottom plate 201, which simplifies the attaching process of the reflective prism.
  • only one quadrangular pyramid-shaped reflective prism can be arranged to make the arrangement of the light-emitting chips more compact, and the volume of the laser can be further reduced. Since the area of each side of the quadrangular pyramid-shaped reflecting prism is relatively large, the mounting of the reflecting prism only needs to ensure that the laser light emitted by each light-emitting chip can be directed to the corresponding side. Therefore, the mounting of the reflecting prism is accurate Degree requirements are lower.
  • the quadrangular pyramid may be a regular quadrangular pyramid.
  • a plurality of light-emitting chips in the laser 20 may be enclosed in a rectangle (the rectangle is not shown in the figure), and the first type of light-emitting chip 202a may be Located on a set of opposite sides of the rectangle, the second type of light-emitting chip 202b may be located on another set of opposite sides of the rectangle.
  • the first type of light-emitting chip can be used to emit laser light with a center wavelength in the first wavelength range
  • a part of the second type of light-emitting chip can be used to emit laser light with a center wavelength in the second wavelength range.
  • a part of the light-emitting chips can be used to emit laser light with a center wavelength in the third wavelength range; the wavelengths in the first wavelength range, the second wavelength range, and the third wavelength range are all different.
  • the laser light emitted by the light-emitting chip includes light with multiple wavelengths in one wavelength range.
  • the center wavelength of the laser light emitted by the light-emitting chip is the median value of the multiple wavelengths, or it can also be represented by the average value of the minimum wavelength and the maximum wavelength of the laser light emitted by the light-emitting chip. If the light-emitting chip emits laser light with a center wavelength of 550 nanometers, the light-emitting chip may actually emit laser light with different wavelengths in the range of 549 nanometers to 551 nanometers.
  • the laser light emitted by the first type of light-emitting chip and the laser light emitted by the second type of light-emitting chip can be mixed to obtain a white laser.
  • the part of the light-emitting chip and the other part of the light-emitting chip may be located on different sides of the other set of opposite sides of the rectangle.
  • the part of the light-emitting chips and the other part of the light-emitting chips can also be alternately arranged on each side of the other set of opposite sides. At this time, the part of the light-emitting chips and the other part of the light-emitting chips are mixed with laser light.
  • the light effect is good, which is not limited in the embodiment of the present application.
  • the first wavelength range may be 620 nanometers to 680 nanometers
  • the second wavelength range may be 505 nanometers to 525 nanometers
  • the third wavelength range may be 407 nanometers to 470 nanometers. That is, the light-emitting chips of the first type can emit red lasers, some of the light-emitting chips of the second type can emit blue lasers, and the other light-emitting chips can emit green lasers.
  • the ratio of red light, blue light and green light in white light can be 2:1:1, so the first embodiment of this application
  • the number of light-emitting chips of the second type may be equal to the number of light-emitting chips of the second type.
  • Half of the light-emitting chips of the second type of light-emitting chips can be used to emit blue laser light, and the other half of the light-emitting chips can be used to emit green laser light.
  • the first wavelength range, the second wavelength range, and the third wavelength range may also be other ranges, and it is only necessary to ensure that the laser light emitted by the first type light emitting chip and the second type light emitting chip can be mixed to obtain a white laser light.
  • the embodiments of this application are not limited.
  • the light-emitting chip can be electrically connected to an external power source in a variety of ways.
  • the laser may further include conductive pins, and the conductive pins may be electrically connected to the electrodes of the light-emitting chip through wires to transmit external power to the light-emitting chip, thereby exciting the light-emitting chip to emit laser light.
  • the conductive pins may be connected to the electrodes of adjacent light-emitting chips through wires, and the electrodes of adjacent light-emitting chips that emit laser light in the same wavelength range may be connected through wires to transmit power to each Light-emitting chip.
  • the wire can be a gold wire, that is, the material of the wire is gold.
  • a conductive strip may be provided between the light-emitting chip and the base plate, and the electrode of the light-emitting chip is connected to the conductive strip, and the conductive strip may be electrically connected to an external power source, thereby transmitting the external power to the light-emitting chip , To excite the light-emitting chip to emit laser light.
  • an external power source thereby transmitting the external power to the light-emitting chip , To excite the light-emitting chip to emit laser light.
  • each light-emitting chip may also be electrically connected to an external power supply through a wire, which is not limited in the embodiment of the present application.
  • the laser can emit lasers with center wavelengths in different wavelength ranges in time sharing, and then the lasers with different wavelength ranges are mixed to obtain a white laser.
  • the first type of light-emitting chip, the part of the second type of light-emitting chip, and the other part of the second type of light-emitting chip can emit laser light in sequence, and the electrodes of the first type of light-emitting chip in the laser can be Connected, the electrodes of the part of the light-emitting chip can be connected, and the electrodes of the other part of the light-emitting chip can be connected.
  • the first type of light-emitting chips are located on a set of opposite sides of the rectangle, and a part of the light-emitting chips of the second type and the other part of the light-emitting chips are located on different sides of the other set of opposite sides of the rectangle. It is convenient to connect the electrodes of the first type of light-emitting chips, and it is convenient to connect the electrodes of the part of the light-emitting chips and the electrodes of the other part of the light-emitting chips.
  • the center wavelengths of the laser light emitted by the two light-emitting chips are different, and the same wavelength range is the above Any one of the first wavelength range, the second wavelength range, and the third wavelength range.
  • any two adjacent light-emitting chips that are located on the same side of the rectangle surrounded by the light-emitting chips have different center wavelengths.
  • the center wavelengths of the red lasers emitted by two adjacent light-emitting chips used to emit red lasers are different, and the center wavelengths of the blue lasers emitted by two adjacent light-emitting chips used to emit blue lasers are different for emitting
  • the center wavelengths of the green laser light emitted by two adjacent light-emitting chips of green light are also different.
  • the absolute value of the difference between the center wavelengths of the laser light emitted by any two light-emitting chips may be greater than or equal to 1 nanometer.
  • the absolute value can be 1 nanometer or 2 nanometers.
  • speckle effect means that after two laser beams emitted by a coherent light source are scattered after irradiating a rough object (such as the screen of a projection device), the two laser beams will interfere in space, and finally granular light and dark appear on the screen. The effect of alternate spots.
  • a rough object such as the screen of a projection device
  • two adjacent light-emitting chips that emit lasers with the same wavelength and constant phase are coherent light sources.
  • the speckle effect makes the display effect of the projected image poor, and these unfocused spots of light and dark are in a flickering state in the eyes of the human eye, prone to dizziness when viewed for a long time, and the user's viewing experience is poor.
  • the center wavelengths of the laser light emitted by the two light-emitting chips are different, so the two light-emitting chips are not coherent light source. Therefore, it is difficult for the laser light emitted by the two light-emitting chips to interfere, thereby reducing the speckle effect when the laser is used as the light source of the projection device for projection display, avoiding the projected image from becoming blurred, improving the display effect of the projected image, and avoiding human eyes. The feeling of dizziness from watching.
  • any wavelength of the laser light emitted by the two light-emitting chips is different.
  • the maximum wavelength of the laser light emitted by one of the two light-emitting chips may be smaller than the minimum wavelength emitted by the other light-emitting chip. This can further ensure that the two light-emitting chips are not coherent light sources, and avoid interference of the laser light emitted by the two light-emitting chips.
  • the lasers with different polarization directions have different reflectivity on the screen.
  • the reflectivity of the screen to P-polarized light is greater than that of S-polarized light. Rate.
  • the transmittance and reflectance of the optical lens itself to P-polarized light and S-polarized light are different, for example, the transmittance of the optical lens to P-polarized light is greater than the transmittance of S-polarized light. Therefore, the P-polarized light emitted by the laser in the related art can be more shot toward the screen and reflected like human eyes.
  • the projected image formed will have a partial color cast, such as a reddish part of the area, so that the actual displayed color is different from the desired displayed color.
  • a partial color cast such as a reddish part of the area
  • the laser can directly emit laser light with the same polarization direction, and the transmittance of the laser light when passing through the optical lens can be the same, and the reflectivity on the screen can also be the same. Ensure that the light flux of different colors reflected by the screen into the human eye is more balanced, improve the color cast phenomenon of the projected image, and improve the display effect of the projected image.
  • FIG. 11 is a schematic structural diagram of a laser provided by another embodiment of the present application
  • FIG. 11 may be a schematic diagram of the cross-section c-c' in the laser shown in FIG. 10
  • FIG. 10 may be the diagram shown in FIG. 11 Top view of part of the structure in the laser.
  • the laser 20 may further include a tube shell 205 and a sealed light-transmitting layer 206.
  • the tube shell 205 may be ring-shaped and mounted on the bottom plate 201.
  • the tube shell 205, the light-transmitting sealing layer 206 and the bottom plate 201 may form a sealed space, and the light-emitting chip and the reflective prism in the laser 20 may be located in the sealed space.
  • the sealed space may be filled with an inert gas, such as nitrogen, to protect the light-emitting chip and prevent the light-emitting chip from being oxidized.
  • the edge of the light-transmitting sealing layer 206 may be pasted on the surface of the tube shell 205 away from the bottom plate 201, or the light-transmitting sealing layer 206 may also be fixed on the tube shell by other components.
  • the laser 20 may further include an upper cover 207, the upper cover 207 is located on the side of the light emitting chip 202 away from the bottom plate 201, the top cover 207 may be ring-shaped, and the middle area of the top cover 207 faces the bottom plate. 201 recessed.
  • the edge area of the upper cover 207 is fixed on the surface of the tube shell 205 away from the bottom plate 201.
  • the light-transmitting sealing layer 206 is located at the side of the middle area of the upper cover 207 away from the bottom plate 201, so the light-transmitting sealing layer 206 is fixed on the tube shell 205 through the upper cover 207.
  • the upper cover 207, the light-transmitting sealing layer 206, the tube case 205, and the bottom plate 201 can form a sealed space in which the light-emitting chip and the reflecting prism are all located.
  • the laser 20 may further include a plurality of collimating lenses 208 corresponding to the light-emitting chip 202 in a one-to-one manner.
  • the laser light emitted by each light-emitting chip can be directed to the corresponding collimating lens 208 after being reflected by the corresponding reflecting prism, and then the collimating lens 208 can collimate the laser light and then emit the laser.
  • the plurality of collimating lenses 208 may be integrally formed, or the plurality of collimating lenses may also be independent of each other, which is not limited in the embodiment of the present application.
  • FIG. 11 takes the plurality of collimating lenses located on the side of the light-transmitting sealing layer 206 away from the bottom plate 201 as an example.
  • the collimating lenses may also be located in the above-mentioned sealed space. limited.
  • the polarization directions of the laser light emitted by the first type light-emitting chip and the second type light-emitting chip are orthogonal, and the laser light emitted by the first type light-emitting chip and the second type light-emitting chip are different from each other.
  • the transmission direction is vertical and parallel to the bottom plate.
  • the polarization direction of the laser light is perpendicular to the transmission direction
  • the polarization direction of the laser light emitted by one type of light-emitting chip is parallel to the bottom plate
  • the polarization direction of the laser light emitted by the other type of light-emitting chip is vertical ⁇ On the bottom plate.
  • the reflecting prism can only change the polarization direction of the laser whose polarization direction is perpendicular to the bottom plate, and specifically perform a 90-degree polarity conversion, so the laser light emitted by the first type of light-emitting chip and the second type of light-emitting chip are reflected After the prism is reflected, the polarization direction becomes uniform. In this way, using this laser as the light source of the projection device can directly obtain the laser with the same polarization direction. There is no need to set a half-wave plate in the projection device to convert the polarities of the light beams in one of the polarization directions, and the volume of the projection device is larger. Small, conducive to the miniaturization of projection equipment.
  • FIG. 12 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • the projection device may include: a laser 20, an optical engine 30, and a lens 40.
  • the optical engine 30 is located on the light output side of the laser 20, and the lens 40 is located on the light output side of the optical engine 30; 30 emits laser light, the optical machine 30 is used to converge the laser light emitted by the laser 20 to the lens 40, and the lens 40 is used to project the laser light converged by the optical machine 20.
  • the laser 20 can be any one of the lasers shown in FIGS. 5, 6 and 9-11.
  • FIG. 13 is a schematic diagram of a part of the structure of a projection device provided by an embodiment of the present application.
  • the optical machine 30 in the projection device may include a diffuser wheel 301, which includes a rotatable diffuser, and the diffuser wheel 301 may be used to filter the focused laser beam.
  • the spot of the light beam is homogenized, which can eliminate speckle.
  • the light engine 30 may further include a light rod 302 and a light valve 303.
  • the light rod 302 is used to collect the filtered laser beam; the light valve 303 is used to receive and modulate the laser beam collected by the light rod 302, and then input the modulated laser beam into the lens 40.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光器(10)和投影设备,属于光电技术领域。激光器(10,20)包括:底板(101,201),以及贴装在底板(101,201)上的多个发光芯片(102,202a,202b)和至少一个反射棱镜(103,203);反射棱镜(103,203)与至少一个发光芯片(102,202a,202b)对应,反射棱镜(103,203)位于对应的发光芯片(102,202a,202b)的出光侧,发光芯片(102,202a,202b)用于向对应的反射棱镜(103,203)发出激光,反射棱镜(103,203)用于将激光向远离底板(101,201)的方向出射;多个发光芯片(102,202a,202b)包括:第一类发光芯片(202a)和第二类发光芯片(202b),第一类发光芯片(202a)与第二类发光芯片(202b)发出的激光的偏振方向垂直,且从第一类发光芯片(202a)与第二类发光芯片(202b)发出的激光的传输方向垂直。

Description

激光器和投影设备
相关申请的交叉引用
本申请要求在2020年4月21日提交中国专利局、申请号为202010318957.6,发明名称为激光器和投影设备的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,特别涉及一种激光器和投影设备。
背景技术
随着光电技术的发展,投影设备中广泛采用激光器作为光源。目前要求投影设备的光源提供偏振方向均相同的光线,且对于投影设备的小型化的要求越来越高。
相关技术中,激光器包括底板,以及贴装在底板上的一一对应的多个发光芯片和多个反射棱镜。每个反射棱镜位于对应的发光芯片的出光侧,发光芯片用于向反射棱镜发出激光光束,反射棱镜用于将激光光束向远离底板的方向出射。其中,激光为具有一种偏振方向的线偏振光。该多个发光芯片的发光方向均相同,且一部分发光芯片发出的激光光束与另一部分发光芯片发出的激光光束偏振方向垂直,因此整个激光器会发出偏振方向垂直的两种激光光束。
投影光学系统中有时期望用于投影的各种颜色的激光光束的偏振特性一致,利于实现激光投影画面的颜色均匀性,因此在对上述激光器进行应用时,需要在投影设备光路中对其中一种偏振方向的激光光束设置半波片,以实现不同偏振极性的激光光束偏振特性一致。
但是半波片通常为晶体生长得到,造价较高,且需要在投影设备配置对应的结构进行安放,增加了结构部件,不利于结构的简化和体积的压缩,有违实现投影设备的小型化的目的。
发明内容
本申请实施例一方面提供了一种激光器,包括:底板,以及贴装在底板上的多个发光芯片和至少一个反射棱镜;反射棱镜与至少一个发光芯片对应,反射棱镜位于对应的发光芯片的出光侧,发光芯片用于向对应的反射棱镜发出激光,反射棱镜用于将激光向远离底板的方向出射;
多个发光芯片包括:第一类发光芯片和第二类发光芯片,第一类发光芯片与第二类发光芯片发出的激光的偏振方向垂直,且从第一类发光芯片与第二类发光芯片发出的激光的 传输方向垂直。
另一方面,本申请实施例提供了一种投影设备,投影设备包括:上述的激光器,以及光机和镜头,光机位于激光器的出光侧,镜头位于光机的出光侧;
激光器用于向光机发出激光,光机用于将激光器发出的激光汇聚至镜头,镜头用于将光机汇聚后的激光进行投射。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术提供的一种激光器的结构示意图;
图2是本申请实施例提供的一种P偏振光的传播示意图;
图3是本申请实施例提供的一种S偏振光的传播示意图;
图4是相关技术提供的一种投影设备的部分结构示意图;
图5是本申请实施例提供的一种激光器的结构示意图;
图6是本申请实施例提供的另一种激光器的结构示意图;
图7是本申请实施例提供的一种第一类发光芯片发出的激光的传播示意图;
图8是本申请实施例提供的一种第二类发光芯片发出的激光的传播示意图;
图9是本申请实施例提供的再一种激光器的结构示意图;
图10是本申请实施例提供的又一种激光器的结构示意图;
图11是本申请另一实施例提供的一种激光器的结构示意图;
图12是本申请实施例提供的一种投影设备的结构示意图;
图13是本申请实施例提供的一种投影设备的部分结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
随着光电技术的发展,投影设备中广泛采用激光器作为光源。且由于目前的激光器发出的激光包括偏振方向垂直的两种激光,故投影设备中还需在激光器的出光方向上设置半波片,以将该两种激光的偏振方向调制为同一方向。因此,目前的投影设备包括的结构较 多,投影设备的体积较大,较难实现投影设备的小型化。
图1是相关技术提供的一种激光器的结构示意图。如图1所示,激光器10包括底板101,以及贴装在底板101上的一一对应的多个发光芯片102和多个反射棱镜103。每个反射棱镜103位于对应的发光芯片102的出光侧,发光芯片102用于向对应的反射棱镜103发出激光,反射棱镜103用于将激光向远离底板101的方向出射,进而实现激光器10的出光。图1所示的激光器10包括20个发光芯片102,且该20个发光芯片102排成四行五列,该20个发光芯片102均朝y1方向发光。图1中的x1方向可以为该发光芯片的行方向,y1方向可以为该发光芯片的列方向,x1方向垂直于y1方向。
激光器10中的多个发光芯片102可以包括用于发出红色激光的红色发光芯片,用于发出绿色激光的绿色发光芯片和用于发出蓝色激光的蓝色发光芯片。其中,红色激光为P偏振光,蓝色激光和绿色激光为S偏振光,P偏振光和S偏振光的偏振方向垂直。需要说明的是,在P偏振光以非垂直角度穿透光学元件的表面时,P偏振光的偏振矢量在包含入射光线与反射光线的平面中;在S偏振光以非垂直角度穿透光学元件的表面时,S偏振光的偏振矢量垂直包含入射光线与反射光线的平面。图2是本申请实施例提供的一种P偏振光的传播示意图。当P偏振光穿过图2所示的平面A时,该P偏振光的偏振方向可以为图2所示的方向p,图2中的波形指的是P偏振光的光波的波形。图3是本申请实施例提供的一种S偏振光的传播示意图。当S偏振光穿过图3所示的平面A时,该S偏振光的偏振方向可以为图3所示的方向s,图3中的波形指的是S偏振光的光波的波形。平面A中该方向p垂直于方向s。
请结合图1、图2和图3可知,图1所示的激光器10中红色激光在经过反射棱镜反射进而射出激光器10后,该红色激光的偏振方向平行于y1方向;蓝色激光和绿色激光在经过反射棱镜反射进而射出激光器10后,该蓝色激光和绿色激光的偏振方向平行于x1方向。因此,图1所示的激光器10最终发出的激光中红色激光的偏振方向仍垂直于蓝色激光和绿色激光的偏振方向。
图4是相关技术提供的一种投影设备的部分结构示意图。如图4所示,投影设备可以包括激光器10和半波片B,半波片B与激光器10发出的部分激光对应设置,如半波片B设置在该部分激光的传输方向上。该部分激光包括蓝色激光和绿色激光。图4所示的激光器10可以为图1所示的激光器10的左视图翻转180度之后的示意图。半波片可以用于旋转激光的偏振方向以改变激光的偏振极性,故蓝色激光和绿色激光在穿过半波片后偏振方向变为与红色激光的偏振方向一致,进而投影设备可以采用偏振方向相同的红色激光、蓝色激光和绿色激光进行投影,以便于实现激光投影画面的颜色均匀性。
由于半波片的厚度与其透过的激光的波长相关,故相关技术中需要根据激光器发出的蓝色激光和绿色激光的波长设计对应厚度的半波片。且半波片通过晶体生长得到,半波片的成本较高。半波片还需要用支架固定,半波片的固定难度较大,且设置半波片需要占用投影设备中较多的空间。因此,相关技术中投影设备的成本较高,体积较大。
如图4所示,投影设备还可以包括合光镜J,该合光镜J用于将激光器10发出的红色激光、绿色激光和蓝色激光合成一束激光,并射向所需的方向,如射向图4所示的汇聚透镜G。该合光镜J可以包括反射棱镜J1,二向色镜J2和二向色镜J3。需要说明的是,二向色镜能够对一波长范围的光几乎完全透过,而对另一波长范围的光几乎完全反射。如图4所示的激光器10发出的四束激光沿y1方向依次为绿色激光、蓝色激光、红色激光和红色激光,该二向色镜J2可以对绿色激光完全透过,且对蓝色激光完全反射;该二向色镜J3可以对绿色激光和蓝色激光完全透过,且对红色激光完全反射。合光镜J在将激光器10发出的激光射向汇聚透镜G后,汇聚透镜G可以将该激光汇聚至收光元件H,进而收光元件H可以将收到的激光传输至投影设备的镜头进行投射。
由上述介绍可知,相关技术中采用激光器作为投影设备的光源,还需在激光器的出光侧设置半波片,故投影设备的体积较大,成本较高。本申请以下实施例提供了一种激光器,采用该激光器作为投影设备的光源可以减小投影设备的体积,降低投影设备的成本,便于投影设备的小型化。
图5是本申请实施例提供的一种激光器的结构示意图,图6是本申请实施例提供的另一种激光器的结构示意图,且图5可以为图6所示的激光器的俯视图。如图5和图6所示,激光器20包括底板201以及贴装在底板201上的多个发光芯片(如第一类发光芯片202a或第二类发光芯片202b)和至少一个反射棱镜203。反射棱镜203位于对应的发光芯片的出光侧,发光芯片用于向对应的反射棱镜203发出激光,反射棱镜203用于将激光向远离底板201的方向出射,进而实现激光器20的出光。如图6所示,反射棱镜203靠近发光芯片的表面M可以为反射面,该反射面M用于将激光向远离底板201的方向出射。
该多个发光芯片可以包括:第一类发光芯片202a和第二类发光芯片202b。第一类发光芯片202a与第二类发光芯片202b发出的激光的偏振方向垂直(也可以称为正交),也即是由第一类发光芯片202a射向对应的反射棱镜203的激光的偏振方向,垂直于由第二类发光芯片202a射向对应的反射棱镜203的激光的偏振方向。第一类发光芯片202a发出的激光的传输方向垂直于第二类发光芯片202b发出的激光的传输方向,也即,第一类发光芯片202a的出光方向垂直于第二类发光芯片202b的出光方向。可选地,第一类发光芯片与 第二类发光芯片发出的激光的传输方向可以均平行于底板。
本申请实施例中,每个发光芯片的出光方向与该发光芯片对应的反射棱镜203的排布方向相同。示例地,第一类发光芯片202a与对应的反射棱镜203的排布方向为第一方向,第二类发光芯片202b与对应的反射棱镜203的排布方向为第二方向,该第一方向垂直于第二方向。如该第一方向平行于图5或图6所示的方向x2,该第二方向平行于图5或图6所示的方向y2,方向x2和y2所在的平面与底板平行。
需要说明的是,激光的偏振方向垂直于传输方向。本申请实施例中,第一类发光芯片与第二类发光芯片均向平行底板的方向发光,从第一类发光芯片与第二类发光芯片发出的激光的传输方向垂直。第一类发光芯片与第二类发光芯片中,一类发光芯片发出的激光的偏振方向平行于底板,另一类发光芯片发出的激光的偏振方向垂直于底板。假设第一类发光芯片发出的激光的传输方向平行于底板,偏振方向垂直于底板,第二类发光芯片发出的激光的传输方向和偏振方向均平行于底板;故第二类发光芯片发出的激光的偏振方向平行于第一类发光芯片发出的激光的传输方向。
对于射向反射棱镜的反射面M的激光,该反射面M与底板所在的平面呈一夹角。可选地该夹角可以为45°。若该激光的偏振方向与该反射面M平行,即,该偏振方向位于与底板平行的平面内,该偏振方向为线方向,平行于反射面M所在的平面,则该激光在被该反射面M反射后,激光的偏振方向不会改变;若该激光的偏振方向与该反射面M相交,也即,该偏振方向垂直于底板所在的平面,相当于该偏振方向为底板所在平面的垂线方向,从而与反射面M具有夹角,则该激光在被该反射面M反射后,激光的偏振方向会改变,且偏振方向改变的角度可以与入射光与反射光的夹角相同。需要说明的是,激光的偏振方向发生改变也即是该激光的偏振极性发生改变。如第一类发光芯片与第二类发光芯片发出的激光均由平行于底板的传输方向变为远离底板的传输方向,激光的入射光与反射光的夹角可以为90度。第一类发光芯片发出的激光的偏振方向与该激光射向的反射面相交,进而该激光的偏振方向改变90度(也即该激光进行了90度极性转换),变为平行于底板且与该激光的原传输方向相同。第二类发光芯片发出的激光的偏振方向与该激光射向的反射面平行,故该激光的偏振方向不变,仍与第一类发光芯片发出的激光的原传输方向相同。因此,第一类发光芯片与第二类发光芯片发出的激光朝远离底板的方向出射后偏振方向相同。
示例地,本申请实施例中第一类发光芯片202a发出的激光可以为P偏振光,第二类发光芯片202b发出的激光为S偏振光,且该P偏振光与该S偏振光的传输方向垂直。图7是本申请实施例提供的一种第一类发光芯片发出的激光的传播示意图,图7可以为图5所 示的激光器中的截面a-a’的示意图,图7中示出的波形用于示意该第一类发光芯片发出的激光的光波的波形。如图7所示,第一类发光芯片202a在将激光射出后,该激光朝对应的反射棱镜203传播,该激光的传输方向平行于方向x2,且该激光的偏振方向垂直于底板201,也即是垂直于x2方向以及图5或图6中的y2方向。由于第一类发光芯片202a射出的激光的偏振方向与对应的反射棱镜203中的反射面M相交,故该激光在反射棱镜203的反射面M上反射并朝远离底板201的方向传播后,该激光的偏振方向发生改变并变为平行于x2方向。此种情况也即是该激光进行了90度的极性转换的情况。
图8是本申请实施例提供的一种第二类发光芯片发出的激光的传播示意图,图8可以为图5所示的激光器中的截面b-b’的示意图。如图8所示,第二类发光芯片202a在将激光射出后,该激光朝对应的反射棱镜203传播,该激光的传输方向平行于方向y2,且该激光的偏振方向平行于底板201,并垂直于激光的传输方向y2,该激光的偏振方向为垂直于纸面的方向。需要说明的是,图8中垂直于纸面的方向即为图5、图6和图7中的x2方向,故该激光的偏振方向平行于x2方向。由于该激光的偏振方向与该反射棱镜203的反射面M平行,故该激光在反射棱镜203的反射面M上反射并朝远离底板201的方向传播后,该激光在反射后偏振方向不变,该偏振方向仍平行于x2方向。该激光的偏振极性并未发生改变。
结合图7与图8可知,本申请实施例中第一类发光芯片202a与第二类发光芯片202b发出的激光在射出激光器后偏振方向相同,偏振方向均平行于x2方向,故激光器20能够发出偏振方向均相同的激光。
需要说明的是,本申请实施例中以激光器20包括16个发光芯片为例进行示意,可选地,激光器20中发光芯片的个数也可以为20个、12个或者其他个数,本申请实施例不作限定。
综上所述,本申请实施例提供的激光器中,第一类发光芯片与第二类发光芯片发出的激光的偏振方向正交,且第一类发光芯片与第二类发光芯片发出的激光的传输方向垂直,且均平行于底板。由于激光的偏振方向垂直于传输方向,故第一类发光芯片与第二类发光芯片中,一类发光芯片发出的激光的偏振方向平行于底板,另一类发光芯片发出的激光的偏振方向垂直于底板。在这种情况下,反射棱镜可以仅将偏振方向垂直于底板的激光的偏振方向进行更改,具体进行90度极性转换,故第一类发光芯片与第二类发光芯片发出的激光在被反射棱镜反射后,偏振方向变得一致。如此一来,采用该激光器作为投影设备的光源便可以直接得到偏振方向相同的激光,投影设备中无需再设置半波片对其中一种偏振方向的光束进行极性转换,进而投影设备的体积较小,有利于投影设备的小型化。
如图6、图7或图8所示,激光器20还可以包括至少一个热沉204,每个热沉与至少一个发光芯片对应,发光芯片可以通过对应的热沉204贴装在底板201上。可选地,本申请实施例中热沉的导热系数可以较大,进而可以在发光芯片发光产生热量时快速将该热量导出,避免该热量对发光芯片的损坏。如热沉的材料可以包括氮化铝和碳化硅中的一种或多种。
可选地,底板的材料可以包括无氧铜和可伐材料中的一种或多种。当底板的材料包括无氧铜时,由于无氧铜的导热系数也较大,此时底板可以辅助热沉对发光芯片产生的热量进行传导。可选地,底板的厚度范围可以为1毫米~3毫米。
可选地,如图6、图7或图8所示,发光芯片靠近对应的反射棱镜的一端,凸出于热沉靠近该反射棱镜的一端。可选地,发光芯片凸出于热沉的部分,在发光芯片靠近对应的反射棱镜的方向上的长度可以小于15微米。需要说明的是,由于发光芯片发出的激光具有发散角,发光芯片凸出于热沉可以进一步使发光芯片与反射棱镜的距离较近,进而保证发光芯片发出的光较多地射向反射棱镜,避免发光芯片发出的激光射向底板导致的激光浪费,因此激光器发出的激光亮度可以较高。
可选地,激光器中也可以存在部分发光芯片靠近对应的反射棱镜的一端与热沉靠近反射棱镜的一端平齐,或者激光器中的每个中发光芯片靠近反射棱镜的一端均与热沉靠近反射棱镜的一端平齐,本申请实施例不作限定。当发光芯片靠近反射棱镜的一端均与热沉靠近反射棱镜的一端平齐时,发光芯片与热沉的接触面积较大,进而增加了发光芯片中被热沉支撑的区域面积,提高了发光芯片的设置稳固性。并且,发光芯片中各个区域产生的热量均可以直接通过热沉进行传导,因此提高了发光芯片的散热效果。
可选地,如图5至图8所示,反射棱镜203位于底板201的中间区域,发光芯片位于底板201的边缘区域,该边缘区域包围该中间区域。如此一来,激光器中反射棱镜的距离较近,由于各个发光芯片发出的激光最终由反射棱镜射出激光器,故反射棱镜位于底板的中间区域可以保证各个发光芯片射出的激光在射出激光器时距离较近;进而可以保证激光器射出的激光的光束较细,形成的光斑较小,且光斑中各个位置的亮度差异较小,保证光斑的亮度较为均匀。
需要说明的是,图5至图8均以反射棱镜包围的区域中并不设置其他部件为例。此时由于激光器中发光芯片的个数越多,则反射棱镜围成的区域面积越大,激光器形成的光斑越大,该光斑的中间位置与其他位置的亮度差异较大,故本申请实施例中发光芯片的个数可以较小,如小于或等于某个数阈值。如该个数阈值可以为20或者16或者其他个数。示例地,本申请实施例中激光器的功率可以较小,该激光器可以用于微型投影设备的光源。
可选地,反射棱镜包围的区域中也可以还设置有多个发光芯片,此时可以降低激光器形成的光斑的中间位置与其他位置的亮度差异;且同一体积的激光器中可以设置有更多的发光芯片,可以避免激光器的体积的浪费,进一步有助于激光器的小型化,本申请实施例不作限定。可选地,本申请实施例中也可以发光芯片位于底板的中间区域,而使反射棱镜位于底板的边缘区域,本申请实施例不作限定。
需要说明的是,图5至图8以激光器20中各个发光芯片均对应独立的反射棱镜203与热沉204为例进行示意。可选地,激光器中也可以存在热沉对应多个发光芯片中的至少两个发光芯片。其中,该至少两个发光芯片的排布方向垂直于该至少两个发光芯片与对应的反射棱镜203的排布方向,且该至少两个发光芯片相邻。
可选地,激光器中可以存在反射棱镜对应多个发光芯片中至少两个发光芯片。可选地,该至少两个发光芯片可以位于对应的反射棱镜的同侧,且该至少两个发光芯片相邻。如此,该反射棱镜靠近对应的发光芯片的反射面可以用于反射该至少两个发光芯片射出的激光。可选地,该至少两个发光芯片也可以位于反射棱镜的不同侧。如位于反射棱镜中相对的两侧,如此该反射棱镜中位于该两侧中每侧的反射面可以用于反射该侧的发光芯片射出的激光。
示例地,图9是本申请实施例提供的再一种激光器的结构示意图。如图9所示,激光器20包括:沿x2方向排布的四个发光芯片及对应的反射棱镜(位于图9中虚线框K1中),沿x2方向的反方向排布的四个发光芯片及对应的反射棱镜(位于图9中虚线框K2中),沿y2方向排布的四个发光芯片及对应的反射棱镜(位于图9中虚线框K3中),以及沿y2方向的反方向排布的四个发光芯片及对应的反射棱镜(位于图9中虚线框K4中)。图9以每个虚线框中的四个发光芯片对应同一反射棱镜203为例。可选地,每个虚线框中也可以仅相邻的两个发光芯片对应同一反射棱镜,或者相邻的三个发光芯片对应同一反射棱镜,本申请实施例不作限定。
可选地,本申请实施例中激光器20的多个发光芯片可以均对应同一反射棱镜203。示例地,图10是本申请实施例提供的又一种激光器的结构示意图。如图10所示,激光器20可以仅包括一个反射棱镜203,该反射棱镜203位于底板201的中间区域,激光器中的多个发光芯片位于底板201的边缘区域,该多个发光芯片均对应该反射棱镜203,且该反射棱镜203呈四棱台状。该四棱台的四个侧面均可以为反射面,每个反射面用于反射射向该反射面的激光,并将该激光向远离底板的方向出射。如此可以直接在底板201上贴装一个四棱台状的反射棱镜即可,简化了反射棱镜的贴装工艺。且仅设置一个四棱台状的反射棱镜可以使各个发光芯片的排布较为紧凑,可以进一步减小激光器的体积。由于该四棱台状 的反射棱镜各个侧面的面积较大,对于该反射棱镜的贴装仅需保证各个发光芯片发出的激光可以射向对应的侧面即可,因此,对于反射棱镜的贴装精准度的要求较低。可选地,该四棱台可以为正四棱台。
可选地,如图5、图6、图9或图10所示,激光器20中多个发光芯片可以围成矩形(图中未对该矩形进行示意),其中,第一类发光芯片202a可以位于该矩形的一组对边上,第二类发光芯片202b可以位于该矩形的另一组对边上。
本申请实施例中第一类发光芯片可以用于发出中心波长位于第一波长范围内的激光,第二类发光芯片中一部分发光芯片可以用于发出中心波长位于第二波长范围内的激光,另一部分发光芯片可以用于发出中心波长位于第三波长范围内的激光;该第一波长范围、第二波长范围和第三波长范围中的波长均不同。
需要说明的是,发光芯片较难发出仅具有一个波长的激光,发光芯片发出的激光包含一个波长范围中多个波长的光。发光芯片发出的激光的中心波长为该多个波长的中值,或者也可以用发光芯片发出的激光的最小波长与最大波长的平均值来表示。如发光芯片发出中心波长为550纳米的激光,那么该发光芯片实际发出的可能是549纳米~551纳米范围内不同波长的激光。
激光器中第一类发光芯片发出的激光与第二类发光芯片发出的激光可以混合得到白色的激光。可选地,该一部分发光芯片与该另一部分发光芯片可以位于该矩形另一组对边中的不同边上。可选地,该一部分发光芯片与该另一部分发光芯片也可以交替排布在该另一组对边中的每条边上,此时该一部分发光芯片与该另一部分发光芯片发出的激光的混光效果较好,本申请实施例不作限定。
示例地,该第一波长范围可以为620纳米~680纳米,该第二波长范围可以为505纳米~525纳米,该第三波长范围可以为407纳米~470纳米。也即是,第一类发光芯片可以发出红色激光,第二类发光芯片中一部分发光芯片可以发出蓝色激光,另一部分发光芯片可以发出绿色激光。由于白光中红光的占比需要较多,而蓝光与绿光的占比相当,如白光中红光、蓝光与绿光的比例可以为2:1:1,故本申请实施例中第一类发光芯片的个数可以与第二类发光芯片的个数相等,第二类发光芯片中一半发光芯片可以用于发出蓝色激光,另一半发光芯片用于发出绿色激光。可选地,该第一波长范围,第二波长范围与该第三波长范围也可以为其他范围,仅需保证第一类发光芯片与第二类发光芯片发出的激光可以混合得到白色的激光即可,本申请实施例不作限定。
发光芯片可以通过多种方式与外部电源电连接。在一种可选实现方式中,激光器还可以包括导电引脚,导电引脚可以通过导线与发光芯片的电极电连接,以将外部电源传输至 发光芯片,进而激发发光芯片发出激光。示例地,导电引脚可以通过导线与其相邻的发光芯片的电极相连接,用于发出同一波长范围内的激光的相邻发光芯片的电极之间可以通过导线连接,以将电源传输至每个发光芯片。如该导线可以为金线,也即是该导线的材质为金。在另一种可选实现方式中,在发光芯片与底板之间可以设置导电条,发光芯片的电极与该导电条连接,该导电条可以与外部电源电连接,进而将外部电源传输至发光芯片,激发发光芯片发出激光。需要说明的是,该两种可选实现方式中以多个发光芯片串联为例,可选地各个发光芯片也可以通过导线分别与外部电源电连接,本申请实施例不作限定。
可选地,激光器可以分时发出中心波长在不同波长范围内的激光,进而该不同波长范围的激光进行混合得到白色的激光。示例地,第一类发光芯片、第二类发光芯片中的该一部分发光芯片,以及第二类发光芯片中的该另一部分发光芯片可以依次发出激光,激光器中的第一类发光芯片的电极可以相连接,该一部分发光芯片的电极可以相连接,该另一部分发光芯片的电极可以相连接。本申请实施例中,第一类发光芯片位于矩形的一组对边上,第二类发光芯片中一部分发光芯片与该另一部分发光芯片位于矩形另一组对边中的不同边上,故可以便于将该第一类发光芯片的电极相连接,且便于将该一部分发光芯片的电极相连接,将该另一部分发光芯片的电极相连接。
可选地,本申请实施例中对于发出的激光的中心波长均位于同一波长范围内的相邻的两个发光芯片,该两个发光芯片发出的激光的中心波长不同,该同一波长范围为上述第一波长范围、第二波长范围和第三波长范围中的任一波长范围。例如,本申请实施例中位于发光芯片围成的矩形的同一边上且相邻的任意两个发光芯片发出的激光的中心波长不同。如用于发出红色激光的相邻的两个发光芯片发出的红色激光的中心波长不同,用于发出蓝色激光的相邻的两个发光芯片发出的蓝色激光的中心波长不同,用于发出绿光的相邻的两个发光芯片发出的绿色激光的中心波长也不同。可选地,该任意两个发光芯片发出的激光的中心波长之差的绝对值可以大于或等于1纳米。如该绝对值可以为1纳米或者2纳米。
需要说明的是,相关技术中采用激光器作为投影设备的光源进行投影显示时通常会产生散斑效应。散斑效应指的是相干光源发出的两束激光在照射粗糙的物体(如投影设备的屏幕)发生散射后,该两束激光就会在空间中产生干涉,最终在屏幕上出现颗粒状的明暗相间的斑点的效应。激光器中发出波长相同相位恒定的激光的两个相邻的发光芯片为相干光源。散斑效应使得投影图像的显示效果较差,且明暗相间的这些未聚焦的斑点在人眼看来处于闪烁状态,长时间观看易产生眩晕感,用户的观看体验较差。
而本申请实施例中,对于发出的激光的中心波长均位于同一波长范围内的相邻的两个发光芯片,该两个发光芯片发出的激光的中心波长不同,故该两个发光芯片并非相干光源。 因此,该两个发光芯片发出的激光较难产生干涉,进而可以降低采用激光器作为投影设备的光源进行投影显示时的散斑效应,避免投影图像变花,提高投影图像的显示效果,避免人眼观看产生的眩晕感。
可选地,对于发出的激光的中心波长均位于同一波长范围内的相邻的两个发光芯片,该两个发光芯片发出的激光的任一波长均不同。如该两个发光芯片中一个发光芯片发出的激光的最大波长,可以小于另一个发光芯片发出的最小波长。如此可以进一步确保该两个发光芯片并非相干光源,避免该两个发光芯片发出的激光产生干涉。
还需要说明的是,相关技术中由于激光器发出偏振方向不同的两种激光,而偏振方向不同的激光在幕布上的反射率不同,如幕布对P偏振光的反射率大于对S偏振光的反射率。并且由于光学镜片本身对P偏振光和S偏振光的透射率和反射率存在差异,如光学镜片对于P偏振光的透过率大于对S偏振光的透过率。因此相关技术中激光器射出的P偏振光能够更多地射向幕布进而反射如人眼。若直接采用相关技术中的激光器发出的激光在幕布上进行投射,则形成的投影图像会出现局部偏色,如部分区域偏红的情况,使得实际显示的颜色与所需显示的颜色不同。且目前超短焦投影设备的应用越来越广泛,而超短焦投影设备中光学镜片的数量越多,故投影图像偏色的情况更加明显。
而本申请实施例中,激光器可以直接发出偏振方向均相同的激光,进而激光器发出的激光在经过光学镜片时的透过率均可以相同,且在幕布上的反射率也均可以相同,进而可以保证不同颜色的光被幕布反射进入人眼的光通量较为均衡,改善投影图像的偏色现象,提高投影图像的显示效果。
可选地,图11是本申请另一实施例提供的一种激光器的结构示意图,图11可以为图10所示的激光器中截面c-c’的示意图,图10可以为图11所示的激光器中部分结构的俯视图。如图11所示,激光器20还可以包括管壳205和密封透光层206。管壳205可以呈环状且贴装在底板201上,管壳205、透光密封层206与底板201可以形成密封空间,激光器20中的发光芯片和反射棱镜可以位于该密封空间内。可选地,该密封空间内可以填充有惰性气体,如氮气,以对发光芯片进行保护,防止发光芯片被氧化。
可选地,该透光密封层206的边缘可以粘贴于管壳205远离底板201的表面上,或者,透光密封层206也可以通过其他部件固定在管壳上。示例地,如图11所示,激光器20还可以包括上盖207,上盖207位于发光芯片202远离底板201的一侧,上盖207可以呈环状,且该上盖207的中间区域朝底板201凹陷。上盖207的边缘区域固定在管壳205远离底板201的表面上。透光密封层206位于上盖207的中间区域远离底板201的一侧,故透光密封层206通过上盖207固定于管壳205上。上盖207、透光密封层206、管壳205和 底板201可以形成密封空间,发光芯片和反射棱镜均位于该密封空间中。
可选地,请继续参考图11,该激光器20还可以包括与发光芯片202一一对应的多个准直透镜208,准直透镜208可以位于密封透光层206远离底板201的表面上。每个发光芯片发出的激光在经过对应的反射棱镜反射后可以射向对应的准直透镜208,进而准直透镜208可以对该激光进行准直后射出激光器。可选地,如图11所示,该多个准直透镜208可以一体成型,或者该多个准直透镜也可以相互独立,本申请实施例不作限定。需要说明的是,图11以该多个准直透镜位于透光密封层206远离底板201的一侧为例,可选地,该准直透镜也可以位于上述密封空间内,本申请实施例不作限定。
综上所述,本申请实施例提供的激光器中,第一类发光芯片与第二类发光芯片发出的激光的偏振方向正交,且第一类发光芯片与第二类发光芯片发出的激光的传输方向垂直,且均平行于底板。由于激光的偏振方向垂直于传输方向,故第一类发光芯片与第二类发光芯片中,一类发光芯片发出的激光的偏振方向平行于底板,另一类发光芯片发出的激光的偏振方向垂直于底板。在这种情况下,反射棱镜可以仅将偏振方向垂直于底板的激光的偏振方向进行更改,具体进行90度极性转换,故第一类发光芯片与第二类发光芯片发出的激光在被反射棱镜反射后,偏振方向变得一致。如此一来,采用该激光器作为投影设备的光源便可以直接得到偏振方向相同的激光,投影设备中无需再设置半波片对其中一种偏振方向的光束进行极性转换,进而投影设备的体积较小,有利于投影设备的小型化。
图12是本申请实施例提供的一种投影设备的结构示意图。如图12所示,该投影设备可以包括:激光器20,以及光机30和镜头40,光机30位于激光器20的出光侧,镜头40位于光机30的出光侧;激光器20用于向光机30发出激光,光机30用于将激光器20发出的激光汇聚至镜头40,镜头40用于将光机20汇聚后的激光进行投射。该激光器20可以为图5、图6以及图9至图11中任一激光器。
图13是本申请实施例提供的一种投影设备的部分结构示意图。如图13所示,投影设备中的光机30可以包括扩散轮301,该扩散轮301包括能够旋转的扩散片,该扩散轮301可以用于将聚焦后的激光光束进行滤色,对该激光光束的光斑进行均匀化,进而能够起到消除散斑的作用。可选地,光机30还可以包括光棒302和光阀303。该光棒302用于将滤色后的激光光束进行收集;该光阀303用于接收对光棒302收集的激光光束进行调制,进而将调制后的激光光束输入镜头40。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种激光器,其特征在于,所述激光器包括:底板,以及贴装在所述底板上的多个发光芯片和至少一个反射棱镜;所述反射棱镜与至少一个所述发光芯片对应,所述反射棱镜位于对应的所述发光芯片的出光侧,所述发光芯片用于向对应的所述反射棱镜发出激光,所述反射棱镜用于将所述激光向远离所述底板的方向出射;
    所述多个发光芯片包括:第一类发光芯片和第二类发光芯片,所述第一类发光芯片与所述第二类发光芯片发出的激光的偏振方向垂直,且从所述第一类发光芯片与所述第二类发光芯片发出的激光的传输方向垂直。
  2. 根据权利要求1所述的激光器,其特征在于,所述反射棱镜与所述多个发光芯片中至少两个发光芯片对应,所述至少两个发光芯片位于所述反射棱镜的同侧,且所述至少两个发光芯片相邻。
  3. 根据权利要求1所述的激光器,其特征在于,所述反射棱镜位于所述底板的中间区域,所述发光芯片位于所述底板的边缘区域,所述边缘区域包围所述中间区域。
  4. 根据权利要求3所述的激光器,其特征在于,所述反射棱镜与所述多个发光芯片对应,且所述反射棱镜呈四棱台状。
  5. 根据权利要求1至4任一所述的激光器,其特征在于,所述第一类发光芯片位于矩形的一组对边上,所述第二类发光芯片位于所述矩形的另一组对边上。
  6. 根据权利要求5所述的激光器,其特征在于,所述第一类发光芯片用于发出中心波长位于第一波长范围内的激光,所述第二类发光芯片中一部分发光芯片用于发出中心波长位于第二波长范围内的激光,另一部分发光芯片用于发出中心波长位于第三波长范围内的激光;所述第一波长范围、所述第二波长范围和所述第三波长范围中的波长均不同;
    所述一部分发光芯片与所述另一部分发光芯片位于所述另一组对边中的不同边上。
  7. 根据权利要求6所述的激光器,其特征在于,位于所述矩形同一边上且相邻的任意两个所述发光芯片发出的激光的中心波长不同。
  8. 根据权利要求7所述的激光器,其特征在于,所述任意两个所述发光芯片发出的激光的中心波长之差的绝对值大于或等于1纳米。
  9. 根据权利要求1至4任一所述的激光器,其特征在于,所述激光器还包括管壳和密封透光层,所述管壳、所述透光密封层与所述底板形成密封空间,所述多个发光芯片和所述至少一个反射棱镜位于所述密封空间内。
  10. 一种投影设备,其特征在于,所述投影设备包括:权利要求1至9任一所述的激光器,以及光机和镜头,所述光机位于所述激光器的出光侧,所述镜头位于所述光机的出光侧;
    所述激光器用于向所述光机发出激光,所述光机用于将所述激光器发出的激光汇聚至所述镜头,所述镜头用于将所述光机汇聚后的激光进行投射。
PCT/CN2021/082139 2020-04-21 2021-03-22 激光器和投影设备 WO2021213106A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180029640.3A CN115428282A (zh) 2020-04-21 2021-03-22 激光器和投影设备
US17/943,608 US20230007218A1 (en) 2020-04-21 2022-09-13 Laser projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010318957.6A CN113534587B (zh) 2020-04-21 2020-04-21 激光器和投影设备
CN202010318957.6 2020-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/943,608 Continuation US20230007218A1 (en) 2020-04-21 2022-09-13 Laser projection apparatus

Publications (1)

Publication Number Publication Date
WO2021213106A1 true WO2021213106A1 (zh) 2021-10-28

Family

ID=78093927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082139 WO2021213106A1 (zh) 2020-04-21 2021-03-22 激光器和投影设备

Country Status (3)

Country Link
US (1) US20230007218A1 (zh)
CN (2) CN113534587B (zh)
WO (1) WO2021213106A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013418A1 (ja) * 2021-08-06 2023-02-09 ヌヴォトンテクノロジージャパン株式会社 多波長光源モジュール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545716A (zh) * 2020-11-26 2022-05-27 青岛海信激光显示股份有限公司 激光器和投影设备
WO2023124332A1 (zh) * 2021-12-28 2023-07-06 青岛海信激光显示股份有限公司 激光投影设备
WO2023185784A1 (zh) * 2022-03-31 2023-10-05 青岛海信激光显示股份有限公司 一种激光器和激光投影设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049338A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 発光装置および光装置
DE102012201307A1 (de) * 2012-01-31 2013-08-01 Osram Gmbh Konversionseinheit, laseranordnung, beleuchtungsanordnung, verfahren zum herstellen einer konversionseinheit und verfahren zum betreiben einer laseranordnung
US20130272329A1 (en) * 2012-04-16 2013-10-17 Osram Opto Semiconductors Gmbh Laser diode devices
US20150303648A1 (en) * 2014-04-18 2015-10-22 Nichia Corporation Light emitting device
US10218151B1 (en) * 2018-05-25 2019-02-26 Arima Lasers Corp. Laser module package with dual colors and multi-dies
CN109390843A (zh) * 2018-12-10 2019-02-26 业成科技(成都)有限公司 发射模组及其制作方法
US20190067913A1 (en) * 2017-08-31 2019-02-28 Nichia Corporation Method of manufacturing light emitting device and light emitting device
CN109560455A (zh) * 2017-09-26 2019-04-02 青岛海信激光显示股份有限公司 一种激光器阵列

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2600053B1 (en) * 2010-07-30 2019-09-04 Sony Corporation Illumination device, and display device
DE102012200407A1 (de) * 2012-01-12 2013-07-18 Osram Gmbh Projektionsvorrichtung und Verfahren zum Betreiben einer Projektionsvorrichtung
US9625671B2 (en) * 2013-10-23 2017-04-18 Lasermax, Inc. Laser module and system
JPWO2015111145A1 (ja) * 2014-01-22 2017-03-23 日立マクセル株式会社 光源装置およびこれを用いた映像表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049338A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 発光装置および光装置
DE102012201307A1 (de) * 2012-01-31 2013-08-01 Osram Gmbh Konversionseinheit, laseranordnung, beleuchtungsanordnung, verfahren zum herstellen einer konversionseinheit und verfahren zum betreiben einer laseranordnung
US20130272329A1 (en) * 2012-04-16 2013-10-17 Osram Opto Semiconductors Gmbh Laser diode devices
US20150303648A1 (en) * 2014-04-18 2015-10-22 Nichia Corporation Light emitting device
US20190067913A1 (en) * 2017-08-31 2019-02-28 Nichia Corporation Method of manufacturing light emitting device and light emitting device
CN109560455A (zh) * 2017-09-26 2019-04-02 青岛海信激光显示股份有限公司 一种激光器阵列
US10218151B1 (en) * 2018-05-25 2019-02-26 Arima Lasers Corp. Laser module package with dual colors and multi-dies
CN109390843A (zh) * 2018-12-10 2019-02-26 业成科技(成都)有限公司 发射模组及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013418A1 (ja) * 2021-08-06 2023-02-09 ヌヴォトンテクノロジージャパン株式会社 多波長光源モジュール

Also Published As

Publication number Publication date
US20230007218A1 (en) 2023-01-05
CN113534587A (zh) 2021-10-22
CN113534587B (zh) 2022-08-12
CN115428282A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2021213106A1 (zh) 激光器和投影设备
US6310723B1 (en) Polarization luminaire and projection display
US7988305B2 (en) Projection type display device and light source device
JP6447081B2 (ja) 光源装置及び該光源装置を備えたプロジェクタ
US20210247678A1 (en) Light source device and optical engine
US8746892B2 (en) Illuminating optical system and projector device
CN211375295U (zh) 光源模块与投影装置
CN108459454B (zh) 照明装置和投影仪
CN109426057A (zh) 光源装置以及投影型显示装置
CN113534588B (zh) 激光器和投影设备
WO2017126027A1 (ja) 蛍光体ホイールとこれを用いた発光ユニットおよびプロジェクタ
JP4815301B2 (ja) 光源モジュール及び投影型表示装置
JP2017212363A (ja) 光源装置及びプロジェクター
JP6690259B2 (ja) 光源装置及びプロジェクター
JP2006337428A (ja) 照明光学系、光学エンジン及び投射型映像表示装置
CN117666159B (zh) 一种动态的用于消散斑的光源系统
US20230305376A1 (en) Light source apparatus and projector
US11487194B2 (en) Wavelength conversion element, light source device, and projector
JP4880789B1 (ja) 画像表示装置
US20230305377A1 (en) Light source apparatus and projector
JP7108901B2 (ja) 照明装置及び投写型表示装置
KR100546604B1 (ko) 디스플레이 장치
JP6759714B2 (ja) 光源装置およびプロジェクター
WO2019111722A1 (ja) 光源装置、照明装置、およびプロジェクタ
CN117178448A (zh) 激光器和投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792550

Country of ref document: EP

Kind code of ref document: A1