WO2021213042A1 - 显示模组及显示装置 - Google Patents

显示模组及显示装置 Download PDF

Info

Publication number
WO2021213042A1
WO2021213042A1 PCT/CN2021/079856 CN2021079856W WO2021213042A1 WO 2021213042 A1 WO2021213042 A1 WO 2021213042A1 CN 2021079856 W CN2021079856 W CN 2021079856W WO 2021213042 A1 WO2021213042 A1 WO 2021213042A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
charged particles
display
light
display screen
Prior art date
Application number
PCT/CN2021/079856
Other languages
English (en)
French (fr)
Inventor
陈秀云
孙凌宇
杜景军
钟鹏
侯婷琇
赵健
王敏
梁菲
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/764,921 priority Critical patent/US11822167B2/en
Publication of WO2021213042A1 publication Critical patent/WO2021213042A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13725Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on guest-host interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/35Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display module and a display device.
  • Transparent display products are widely used in booths, home appliances and special consumer goods.
  • the display effect of transparent display products is strongly dependent on external light, so auxiliary light sources are indispensable.
  • the traditional backlight source is not suitable for transparent display products because of its blocking effect on transparent display.
  • the side-lit auxiliary light source completely relies on the optical waveguide inside the transparent display product, which has low propagation efficiency, uneven brightness and darkness, and poor user experience.
  • the embodiments of the present disclosure provide a display module and a display device, which can improve the uniformity of the screen of the display module.
  • a display module includes a display screen.
  • the display screen includes a first surface and a second surface opposite to each other. At least one of the first surface and the second surface is a display surface; the display module further includes A light modulation structure arranged on at least one of the first surface and the second surface of the display screen, the light modulation structure comprising:
  • a first transparent substrate and a second transparent substrate arranged opposite to each other;
  • a first transparent electrode structure the first transparent electrode structure is disposed between the first transparent substrate and the second transparent substrate, and is used to form an electric field that drives the movement of the charged particles.
  • the charged particles include white charged particles and/or colored charged particles.
  • a plurality of transparent capsule shells distributed in an array are arranged between the first transparent substrate and the second transparent substrate, and a plurality of the charged particles are arranged in the transparent capsule shell.
  • a side surface of the display screen located between the first surface and the second surface is a light incident side
  • the density of the charged particles gradually decreases from the side close to the light incident side to the side far from the light incident side.
  • the cross-sectional shape of the transparent capsule shell in a direction perpendicular to the first transparent substrate is a trapezoid, and the upper and lower bottoms of the trapezoid are arranged parallel to the display screen.
  • the first transparent electrode structure includes: a first electrode and a second electrode, the second electrode includes a plurality of electrode blocks, and the orthographic projection of each electrode block on the first transparent substrate and The orthographic projections of at least one of the transparent capsule shells on the first transparent substrate overlap, and each of the electrode blocks is individually connected to a voltage signal line.
  • the display screen is a liquid crystal display screen.
  • the liquid crystal display screen includes a common electrode
  • the first electrode in the light modulation structure is a common electrode, and the common electrode of the liquid crystal display screen is shared with the driving of the first electrode.
  • the display module is a transparent display module.
  • the display module further includes a control unit configured to control the electrical signal applied to the first transparent electrode structure to control the movement of the charged particles.
  • control unit includes:
  • Ambient light detector used to detect the brightness of the ambient light
  • the controller is used to control the first transparent electrode structure not to apply an electrical signal when the brightness of the external environment light is greater than or equal to a predetermined value, so that the charged particles are scattered and arranged; when the brightness of the external environment light is less than the predetermined value, An electrical signal is applied to the first transparent electrode structure to move the charged particles.
  • the controller is used to control the voltage applied on the first transparent electrode structure to gradually change from a side close to the light incident side to a side far from the light incident side, so that the transparent
  • the distance between the charged particles in the capsule shell and the display screen in the direction perpendicular to the first transparent substrate gradually increases from the side close to the light incident side to the side far from the light incident side.
  • the plurality of transparent capsule shells includes a first area on a side close to the light incident side, the first area includes at least two of the transparent capsule shells, and the controller is configured to control at least in the first area
  • the voltage applied to the first transparent electrode structure corresponding to each of the transparent capsule shells periodically changes;
  • the controller is configured to control the first transparent electrode structure to be powered off when the display image of the display screen does not change for a predetermined period of time.
  • a display device includes the above-mentioned display module and an auxiliary light source, and the auxiliary light source is arranged on the light-incident side of the display screen in the display module.
  • At least one of the opposite first and second sides of the display screen is the display surface.
  • the light modulation structure can be controlled by the electrical signal applied by the first transparent electrode structure.
  • the movement state of the charged particles After the scattered light of the display screen enters the light modulation structure from the display surface of the display screen, part of the light is reflected by the surface of the charged particles and enters the display screen again, thereby improving the light utilization rate, especially in the environment.
  • the first transparent electrode structure in the light modulation structure is energized to move the charged particles and arrange them as required.
  • the reflection of light on the surface of the charged particles improves the utilization of light and achieves high uniformity and transparent display requirements;
  • the charged particles are arranged in a random manner, which can increase the viewing angle of the scattering state distribution of the display panel; and the charged particles of the light modulation structure are distributed on demand after the first transparent electrode structure is powered on, and the power can still be maintained when the power is off.
  • the previous state can save power consumption;
  • the light emitted by the light source is scattered by charged particles after the display screen, which can effectively eliminate the hotspot phenomenon;
  • the setting of the light modulation structure is not limited by the shape and size of the screen, and is applicable Display panels of various shapes and sizes.
  • FIG. 1 shows a schematic structural diagram of a display module provided by an embodiment of the present disclosure when the auxiliary light source and the light modulation structure are not powered on when the ambient light is sufficient in the dark state;
  • FIG. 2 shows a schematic structural diagram of the display module provided by an embodiment of the present disclosure when the auxiliary light source and the light modulation structure are not powered on when the ambient light is sufficient in the bright state;
  • FIG. 3 shows a schematic structural diagram of the auxiliary light source and the light modulation structure when the auxiliary light source and the light modulation structure are powered on under the condition of insufficient ambient light in the dark state of the display module provided by the embodiment of the present disclosure
  • FIG. 4 shows a schematic structural diagram of the display module provided by an embodiment of the present disclosure when the auxiliary light source and the light modulation structure are powered on when the ambient light is sufficient in the bright state;
  • FIG. 5 shows a schematic diagram of the distribution state of charged particles in each transparent capsule shell when the light modulation structure is energized in the display module provided by an embodiment of the present disclosure, wherein the left side of the figure is the side close to the light source, and the right side is the side far away from the light source;
  • FIG. 6 is a schematic diagram showing the distribution state of charged particles in the transparent capsule shell in the first area near the light source side in the display module provided by the embodiment of the present disclosure within a period;
  • FIG. 7 shows a schematic structural diagram of a display module provided by another embodiment of the present disclosure.
  • FIG. 8 shows a schematic structural diagram of a light modulation structure provided on both sides of a display screen in a display module provided by another embodiment of the present disclosure
  • FIG. 9 shows a structural block diagram of a control unit in a display module in an embodiment of the present disclosure.
  • FIG. 10 shows a top view of a display module provided in an embodiment of the present disclosure. For ease of understanding, only the common electrode of the display screen, the first electrode of the light modulation structure, and the structure of the driving IC are illustrated.
  • transparent display products are widely used in booths, home appliances and special consumer goods.
  • the display effect of transparent display products is highly dependent on external light, so auxiliary light sources are indispensable.
  • the traditional backlight source is no longer applicable because of its blocking effect on the transparent display. Therefore, transparent display products usually use side-entry auxiliary light sources.
  • One side of the display screen is the light-incident side.
  • An auxiliary light source is set on the light-incident side. When the light source is turned on, it enters the display screen and causes transmission, refraction, scattering, etc. In this way, it is completely dependent on the light guide inside the display screen.
  • the side close to the light source is a bright area, and the side far from the light source is a dark area.
  • the display content is almost invisible. Uneven brightness and darkness, poor display effect, and poor light guiding effect of the display screen, poor light scattering effect in the screen, resulting in serious hotspot phenomenon, and the light source is a light bar, which cannot correspond to a special-shaped display screen.
  • the embodiments of the present disclosure provide a display module and a display device, which can improve light utilization and improve image uniformity.
  • FIG. 1 to FIG. 4 and FIG. 7 are schematic diagrams of the structure of the display module provided by the embodiments of the disclosure.
  • the display module includes: a display screen 200 and a light modulation structure 100.
  • the display screen 200 includes a first surface and a second surface opposite to each other. At least one of the second surfaces is a display surface, and the light modulation structure 100 is disposed on at least one of the first surface and the second surface of the display screen 200; the light modulation structure 100 includes:
  • the first transparent electrode structure 140 which is disposed between the first transparent substrate 110 and the second transparent substrate 120, is used to form an electric field that drives the charged particles 131 to move.
  • the movement state of the charged particles 131 can be controlled by the electrical signal applied by the first transparent electrode structure 140 in the light modulation structure 100.
  • the display surface of the screen 200 enters the light modulation structure 100, part of the light is reflected by the surface of the charged particles 131, and then enters the display screen 200 again, thereby increasing the utilization of light in the display area and achieving the goal of improving the uniformity of the display screen.
  • the first transparent electrode structure 140 in the light modulation structure 100 is energized to move the charged particles 131 and arrange them as required.
  • the reflection of light on the surface of the charged particles 131 improves the utilization rate of light. Achieving high uniformity and transparent display requirements; when the ambient light is sufficient, the charged particles 131 are arranged in a random manner, which can increase the viewing angle of the scattering state distribution of the display panel; and the charged particles 131 of the light modulation structure 100 are energized in the first transparent electrode structure 140
  • the power can still be maintained in the state before the power failure, which can save power consumption; in addition, the light emitted by the light source is scattered by the charged particles 131 after the display screen 200, which can effectively eliminate the hotspot phenomenon;
  • the setting of the modulation structure 100 is not limited by the shape and size of the screen, and is suitable for display panels of various shapes and sizes.
  • the display module provided by the embodiment of the present disclosure may be a transparent display module
  • the display screen 200 may be a transparent display screen, wherein the first transparent substrate 110 and the second transparent substrate 120 are both High transmittance substrate.
  • the display module is not limited to be applied to transparent display products. In practical applications, the display module can also be applied to other types of display products, for example, it can also be a common display product. Opaque display.
  • the display module provided by the embodiment of the present disclosure will be described in detail by taking the display module as a transparent display module, that is, the display screen 200 is a transparent display 200 as an example.
  • the charged particles 131 include white charged particles.
  • the charged particles 131 are white charged particles, and the size of the white charged particles is nanometer level, with a diameter of tens to hundreds of nanometers, which is invisible to the naked eye.
  • the white charged particles By selecting the distribution density of the white charged particles, a transparent display can be realized.
  • the white charged particles have higher light reflectivity, which can increase the light reflectivity to improve the optical utilization.
  • the white charged particles may be cationic white charged particles or anionic white charged particles.
  • the charged particles are not limited to white charged particles, but may also be colored charged particles with colors, or mixed particles of white charged particles and colored charged particles, for example, the colored charged particles Red charged particles, blue charged particles, yellow charged particles or black charged particles can be selected.
  • the size of the colored charged particles is nanometer level, with a diameter of tens to hundreds of nanometers, which is invisible to the naked eye.
  • the selection of the distribution density can also achieve transparent display, and the colored charged particles can absorb or enhance the light of a specific color, so that the light transmitted by the light of the specific color is reduced or increased to adjust the final The display chromaticity of the display module.
  • a plurality of transparent capsule shells 132 distributed in an array are further provided between the first transparent substrate 110 and the second transparent substrate 120.
  • the transparent capsule shell 132 is provided with a plurality of the charged particles 131.
  • the first transparent electrode structure 140 includes: a first electrode 141 and a second electrode 142.
  • the second electrode 142 includes a plurality of electrode blocks, and each electrode block is formed on the first transparent substrate 110.
  • the orthographic projection coincides with the orthographic projection of at least one transparent capsule shell 132 on the first transparent substrate 110, and each of the electrode blocks is individually connected to a voltage signal line.
  • a plurality of transparent capsule shells 132 are distributed in an array between the first transparent substrate 110 and the second transparent substrate 120, and the charged particles 131 are distributed in the transparent capsule shell 132.
  • the transparent capsule shell 132 is perpendicular to the first transparent substrate 110 and the second transparent substrate 120.
  • the height in the direction of a transparent substrate 110 is about 150 ⁇ m, and the charged particles 131 have a diameter of tens to hundreds of nanometers, which are invisible to the naked eye; each transparent capsule shell 132 and its corresponding first electrode 141 and second electrode 142 constitutes an ink tank unit.
  • the movement state of the charged particles 131 in each ink tank unit can be individually controlled, and each ink tank unit can be individually controlled according to actual needs, so that the charged particles 131 can reach the ideal particle arrangement state.
  • the first electrode 141 and the second electrode 142 used in the first transparent electrode structure 140 are respectively located on the first transparent substrate 110 and the second transparent substrate 120, for example
  • the first electrode 141 is disposed on the side of the first substrate 110 facing the second substrate 120
  • the second electrode 142 is disposed on the side of the second substrate 120 facing the first substrate 110.
  • the first electrode 141 and the second electrode 142 in the first transparent electrode structure 140 may also be located on the same substrate.
  • each electrode block in the second electrode 142 on the first transparent substrate 110 coincides with a transparent capsule shell 132, that is, each One said electrode block can correspond to one transparent capsule shell 132.
  • one transparent capsule shell 132 and the first electrode 141 and the electrode block whose orthographic projections overlap in the direction perpendicular to the first transparent substrate together form an ink cartridge.
  • the orthographic projection of each electrode block in the second electrode 142 on the first transparent substrate coincides with the plurality of transparent capsule shells 132, that is, in the second electrode 142
  • Each electrode block can also correspond to a plurality of transparent capsule shells 132.
  • each electrode block, the plurality of transparent capsule shells 132 and the first electrode 141 corresponding to the electrode block together form an ink cartridge unit, that is, one
  • the ink cartridge unit may include one transparent capsule shell 132 or a plurality of transparent capsule shells 132.
  • the first electrode 141 may be a planar electrode corresponding to the entire first transparent substrate 110, and each electrode block in the second electrode 142 Separately connect the signal lines, so that for different ink cartridge units, the electrical signals applied to the first electrode 141 can be the same, and it is only necessary to control the electrical signals applied to the electrode blocks to be different, so that the charged particles 131 in different ink cartridge units can be arranged.
  • the cloth state is different.
  • each of the electrode blocks is separately connected to a voltage signal line.
  • a number of the electrode blocks are used as a unit and are connected to the same Signal line.
  • one side of the display screen 200 is a light incident side, and an auxiliary light source is provided on the light incident side of the display screen 200 10; among the plurality of transparent capsule shells, the density of the charged particles 131 in the transparent capsule shell 132 on the side close to the light incident side is greater than that of the transparent capsule on the side far from the light incident side The density of the charged particles 131 in the shell 132.
  • the density of the charged particles 131 near the light source is greater than the density of the charged particles 131 far away from the light source (the density of the charged particles 131 is the transparent capsule shell The number of charged particles 131 in 132).
  • the high density of charged particles can reduce the brightness on the side near the light source, and increase the brightness on the side far away from the light source. The light reflected by the charged particles back to the display screen close to the light source side will continue to propagate in the display screen to further achieve a uniform display brightness screen. Effect.
  • the density of the charged particles 131 gradually decreases from a side close to the light incident side to a side far from the light incident side.
  • the density of the charged particles 131 changes linearly with the distance between the transparent capsule housing 132 and the light source, and the density of the charged particles 131 in the transparent capsule housing 132 gradually decreases from the side close to the light source to the side away from the light source to further increase Display brightness uniformity.
  • the density of the charged particles 131 gradually decreases from the side close to the light incident side to the side far from the light incident side.
  • the density of charged particles in the plurality of transparent capsule shells becomes smaller one by one;
  • the N transparent capsule shells are grouped into M groups of transparent capsule shells, where N is an integer greater than 1, and M is greater than An integer of 1, the density of charged particles in the transparent capsule shells in each group is the same, while the density of charged particles in the transparent capsule shells of the M group becomes smaller group by group.
  • the cross-sectional shape of the transparent capsule shell 132 in a direction perpendicular to the first transparent substrate 110 is a trapezoid, and the trapezoid includes An upper bottom and a lower bottom, the upper and lower bottoms of the trapezoid are arranged parallel to the display screen.
  • the cross-sectional shape of the transparent capsule housing 132 is trapezoidal, and the orthographic projection of the bottom of each transparent capsule housing 132 on the first transparent substrate can cover the entire display area of the display module.
  • the trapezoid may be an inverted trapezoid
  • the white charged particles in the transparent capsule shell 132 are cationic particles
  • the first transparent electrode structure 140 is formed when an electrical signal is applied.
  • the electric field direction of is the direction that drives the white charged particles from the side close to the display screen 200 to the side far away from the display screen 200.
  • the white charged particles are moved away from the side close to the display screen 200 in the following
  • the movement of one side of the display screen 200 is called upward movement of the white charged particles.
  • the first transparent electrode structure 140 applies an electrical signal
  • the white charged particles in the transparent capsule shell 132 move upward, and the transparent capsule shell 132 is trapezoidal. In this way, it can be ensured that the charged particles 131 in each transparent capsule shell 132 are in the
  • the orthographic projection on the first transparent substrate can cover the entire display area of the display screen 200 and be evenly distributed.
  • the upper base length L2 may be about 15 microns
  • the lower base length L2 may be about 150 microns
  • the height H may be about 150 microns.
  • the above is only an example, and it is not limited thereto.
  • the trapezoid may also be a regular trapezoid, and its bottom is located on the side of the upper bottom close to the display screen 200.
  • the first transparent electrode structure 140 applies electricity.
  • the direction of the electric field formed during the signal is the direction that drives the white charged particles to move from the side away from the display screen 200 to the side close to the display screen 200 (downward movement for short), and the transparent capsule shell 132 is in a regular trapezoid shape. In this way, it can be ensured that when an electrical signal is applied, the orthographic projection of the charged particles 131 in each transparent capsule shell 132 on the first transparent substrate can cover the entire display area of the display screen 200 and be evenly distributed.
  • the cross-sectional shape of the transparent capsule shell 132 is a trapezoid, which also has the following advantages:
  • the cross section of the transparent capsule shell 132 is trapezoidal, when the charged particles 131 move up or down in the transparent capsule shell 132, they move to different heights.
  • the area of the orthographic projection of the charged particles 131 on the first transparent substrate 100 is Different, because the number of charged particles 131 in each transparent capsule shell 132 is certain, then when the charged particles 131 in each transparent capsule shell 132 move at different heights, the charged particles 131 are in the transparent capsule shell 132.
  • the distribution density in the capsule shell 132 will change accordingly. Therefore, the movement heights of the charged particles 131 in different transparent capsule shells 132 can be controlled to determine the distribution density of the charged particles 131 in the transparent capsule shell 132 at different positions. Further control can achieve the purpose of adjusting the brightness of the screen display at different positions of the display area, and finally achieve the screen effect of uniform display brightness. Of course, the effect of adjusting the display brightness of a local area can also be achieved according to actual needs.
  • the structure of the transparent capsule shell 132 is not limited to this, and may also have other shapes.
  • the cross-sectional shape in the direction perpendicular to the first transparent substrate 110 may also be round. Shape or ellipse or cone or rectangle, etc. It should be noted that when the cross-sectional shape of the transparent capsule shell 132 is a shape with a gradually changing inner diameter, such as a circle, an ellipse, or a cone, the technical effect brought by the above embodiment with a trapezoidal cross-section can also be achieved.
  • the display module in the embodiment of the present disclosure further includes a control unit for controlling the electrical signal applied to the transparent electrode structure to control the movement of the charged particles 131.
  • control unit 300 includes:
  • the ambient light detector 301 is used to detect the brightness of the ambient light
  • the controller 302 is used to control the first transparent electrode structure 140 not to apply an electrical signal when the brightness of the external environment light is greater than or equal to a predetermined value, so that the charged particles 131 are scattered and arranged; when the brightness of the external environment light is less than the predetermined value , Applying an electrical signal to the first transparent electrode structure 140 to make the charged particles 131 move.
  • one side of the display screen 200 is the light-incident side, and the auxiliary light source 10 is arranged on the light-incident side.
  • the auxiliary light source 10 and the light modulation structure No charge is applied in 100, and the charged particles 131 are arranged randomly.
  • the charged particles in the light modulation structure 100 can increase the viewing angle of the scattering state of the display screen 200; as shown in Figure 3 and Figure 4, when the ambient light is insufficient, the The auxiliary light source 10 and the first transparent electrode structure 140 in the light modulation structure 100 are energized, the charged particles 131 are arranged as required, and the light is reflected on the surface of the charged particles 131, which improves the utilization of light and meets the requirements for transparent display with high uniformity.
  • the controller 302 is configured to control the voltage applied on the first transparent electrode structure 140 from a side close to the light incident side to a side far away from the light incident side.
  • One side gradually changes, so that the distance between the charged particles 131 in the transparent capsule shell 132 and the display screen 200 in the direction perpendicular to the first transparent substrate 110 is from close to the light incident side From the side to the side away from the light incident side gradually decreases.
  • the driving voltage on the first transparent electrode structure can be controlled to make the distribution heights of the charged particles 131 in the transparent capsule shell 132 different, that is to say, the charged particles 131 are vertical
  • the distance between the first transparent substrate 110 and the display screen 200 is different. In each of the transparent capsule shells 132, the closer the distance of the light source, the higher the distribution height of the charged particles 131.
  • the charged particles 131 are cationic white charged particles that move upward under the driving voltage
  • the density of the charged particles 131 in the transparent capsule shell 132 gradually decreases, and the driving voltage gradually decreases, correspondingly ,
  • the distribution height of the driving particles gradually decreases, and the scattering angle of the light scattered by the white charged particles gradually decreases, which is beneficial to the improvement of the uniformity of the entire screen.
  • the voltage signal applied to the first transparent electrode structure 140 may be about -8 to -15V.
  • a plurality of the transparent capsule shells 132 include a first area on a side close to the light incident side, the first area includes at least two of the transparent capsule shells 132, and the control The device 302 is used to at least control the periodic change of the voltage applied to the first transparent electrode structure corresponding to each of the transparent capsule shells 132 in the first region.
  • the plurality of transparent capsule shells 132 close to the light incident side that is, the distribution of the charged particles 131 in the first area may change periodically with time, as shown in FIG. 6
  • the driving voltage of the charged particles 131 in the transparent capsule housing 132 close to the light incident side is changed, so that the charged particles 131 move in the transparent capsule housing 132, so that the scattering angle of the scattered light corresponding to the charged particles 131 changes.
  • the degree of light concentration so as to eliminate the hotspot phenomenon.
  • the refresh frequency of the driving voltage of each transparent capsule housing 132 in the first region is 25-100 Hz, which can be selected and adjusted according to actual applications.
  • the controller is configured to control the first transparent electrode structure 140 to be powered off when the display screen of the display screen 200 does not change for a predetermined period of time.
  • the first transparent electrode structure 140 is energized. After the charged particles 131 are moved to a specified position by the electric field, the power supply can be cut off. In this way, the power consumption can be reduced, and the light modulation structure 100 can be driven according to the picture requirements.
  • control unit may be a driving IC provided on the display screen.
  • the display screen 200 is a liquid crystal display screen.
  • the liquid crystal display screen may include:
  • the third substrate 210 and the fourth substrate 220 provided to the box;
  • the second transparent electrode structure 240, the second transparent electrode structure 240 is disposed between the third substrate 210 and the fourth substrate 220, and is used to form and drive the liquid crystal layer or the liquid crystal polymer layer or dye The electric field of the liquid crystal layer 230, wherein the second transparent electrode structure 240 includes a third electrode 241 and a fourth electrode 242.
  • the third electrode 241 is disposed on a side of the third substrate 210 facing the fourth substrate 220
  • the fourth electrode 242 is disposed on a side of the fourth substrate 220 facing the third substrate 210. side.
  • the third electrode 241 and the fourth electrode 242 may also be both disposed on the third substrate 210, or both may be disposed on the fourth substrate 220.
  • the display 200 may be a liquid crystal display 200, for example, a PNLC (Polymer Network Liquid Crystal) transparent display, or PDLC (polymer dispersed liquid crystal) Transparent display.
  • a PNLC Polymer Network Liquid Crystal
  • PDLC polymer dispersed liquid crystal
  • the liquid crystal in PNLC is not spherical (or ellipsoidal) droplets, but is distributed in a three-dimensional polymer network to form a continuous channel network.
  • FIGS 1 to 4 and Figure 7 show the light path diagrams drawn by taking the PNLC transparent display screen as an example.
  • the display screen is not limited to this kind of transparent display screen.
  • the display screen 200 may also be a dye-type transparent display screen, wherein the liquid crystal layer is a dye liquid crystal layer, and the dye liquid crystal layer may be composed of a mixture of a liquid crystal matrix and dye molecules doped.
  • the dye-type transparent display screen when the light propagates in the display screen 200, since the dye molecules have an absorption effect on the light, the light modulation structure 100 has a more significant improvement effect on the light utilization rate.
  • the liquid crystal display includes a common electrode
  • the first electrode 141 in the light modulation structure is a common electrode
  • the The common electrode of the liquid crystal display is shared with the driving of the first electrode 141.
  • the common electrode of the liquid crystal display screen can be the third electrode 241 or the fourth electrode 242, and the first electrode 141 in the light modulation structure is the common electrode, which can connect the common electrode of the liquid crystal display screen and The driving of the first electrode 141 is shared.
  • FIG. 10 shows a top view of a display module provided in an embodiment of the present disclosure. For ease of understanding, only the common electrode of the display screen and the first electrode of the light modulation structure and the driving IC are shown As shown in Figure 10, the common signal line 20 of the common electrode of the liquid crystal display and the common signal line 21 of the first electrode 141 in the light modulation structure are connected to the driver IC 30, and can be connected to The slurry method is connected together to realize drive sharing.
  • the first electrode 141 is a surface electrode corresponding to the entire first transparent substrate 110
  • the third electrode 241 is a surface corresponding to the entire third substrate 210.
  • the third electrode 241 and the first electrode 141 have the same electrical signal applied to them, and they are driven in common.
  • the display module has a total of four substrates, namely, the first, second, third, and fourth substrates.
  • the four substrates are made of materials with high transmittance.
  • the first electrode 141, the second The electrode 142 is used to drive the charged particles 131, and the third electrode 241 and the fourth electrode 242 are used to drive the liquid crystal or liquid crystal polymer or dye liquid crystal molecules in the liquid crystal layer in the display screen 200, wherein the first electrode 141 and the third electrode 241
  • the second electrode 142 and the fourth electrode 242 can provide a source signal (signal source) by connecting together the common driving electrodes through silver paste dots.
  • the first transparent substrate 110 is located on a side of the second transparent substrate 120 close to the display screen 200, and the third substrate 210 is located on the fourth substrate. 220 on the side close to the light modulation structure 100, wherein the first transparent substrate 110 is attached to the third substrate 210, or the first transparent substrate 110 can also be multiplexed as the third substrate.
  • the substrate 210 is located on a side of the second transparent substrate 120 close to the display screen 200, and the third substrate 210 is located on the fourth substrate. 220 on the side close to the light modulation structure 100, wherein the first transparent substrate 110 is attached to the third substrate 210, or the first transparent substrate 110 can also be multiplexed as the third substrate.
  • the substrate 210 is located on a side of the second transparent substrate 120 close to the display screen 200, and the third substrate 210 is located on the fourth substrate. 220 on the side close to the light modulation structure 100, wherein the first transparent substrate 110 is attached to the third substrate 210, or the first transparent substrate 110 can also be multiplexed as the
  • the first transparent substrate 110 is located on the side of the second transparent substrate 120 away from the display screen 200, and the third substrate 210 is located on the side of the second transparent substrate 120.
  • the second transparent substrate 120 is attached to the third substrate 210, or the second transparent substrate 120 may also be multiplexed as the The third substrate 210.
  • the light modulation structure is provided on one side of the display screen (that is, one of the first side or the second side) as an example.
  • the The light modulation structure is provided on both sides of the display screen.
  • both the first and second sides may be display surfaces.
  • the light modulation structure may be provided on the first surface.
  • the light modulation structure can also be arranged on the second surface, and the light modulation structure can also be arranged on both the first surface and the second surface.
  • a schematic structural diagram of an exemplary embodiment For an ordinary opaque display screen, the light modulation structure 100 may be provided only on one side of the display surface.
  • the embodiment of the present disclosure also provides a method for driving the display module provided by the embodiment of the present disclosure.
  • the method includes: controlling the application of the first transparent electrode structure 140 An electrical signal to drive the charged particles 131 to move.
  • controlling the electrical signal applied to the first transparent electrode structure 140 to drive the movement of the charged particles 131 specifically includes:
  • an electrical signal is applied to the first transparent electrode structure 140 to make the charged particles 131 move.
  • the first transparent electrode structure 140 in the light modulation structure 100 is energized, so that the charged particles 131 are moved and arranged as required.
  • the reflection of light on the surface of the charged particles 131 improves the utilization rate of light.
  • the charged particles 131 are arranged in a random manner, which can increase the viewing angle of the scattering state distribution of the display panel.
  • applying an electrical signal to the first transparent electrode structure 140 to move the charged particles 131 specifically includes:
  • the voltage applied to the first transparent electrode structure 140 gradually changes to make the charged inside the transparent capsule shell 132
  • the distance between the particles 131 and the display screen 200 in a direction perpendicular to the first transparent substrate 110 gradually decreases from a side close to the light incident side to a side far from the light incident side.
  • the driving voltage on the first transparent electrode structure can be controlled so that the distribution heights of the charged particles 131 in the transparent capsule shell 132 are different, that is, the charged particles 131
  • the distance from the display screen 200 in the direction perpendicular to the first transparent substrate 110 is different.
  • the closer the distance of the light source the higher the distribution height of the charged particles 131.
  • the charged particles 131 are cationic white charged particles that move upward under the driving voltage
  • the density of the charged particles 131 in the transparent capsule shell 132 gradually decreases, and the driving voltage gradually decreases, correspondingly ,
  • the distribution height of the driving particles gradually decreases, and the scattering angle of the light scattered by the white charged particles gradually decreases, which is beneficial to the improvement of the uniformity of the entire screen.
  • the voltage signal applied to the first transparent electrode structure 140 may be about -8 to -15V.
  • the plurality of transparent capsule shells includes a first area on a side close to the light incident side, the first area includes at least two of the transparent capsule shells, and The voltage applied to the first transparent electrode corresponding to each of the transparent capsule shells 132 in the first region changes periodically.
  • the plurality of transparent capsule shells 132 close to the light incident side that is, the distribution of the charged particles 131 in the first area may change periodically with time, as shown in FIG. 6
  • the driving voltage of the charged particles 131 in the transparent capsule housing 132 close to the light incident side is changed, so that the charged particles 131 move in the transparent capsule housing 132, so that the scattering angle of the scattered light corresponding to the charged particles 131 changes.
  • the degree of light concentration so as to eliminate the hotspot phenomenon.
  • applying an electrical signal to the first transparent electrode structure 140 to move the charged particles 131 specifically includes:
  • the first transparent electrode structure 140 is controlled to be powered off.
  • the state before the power off can be maintained when the power is off, which can save power consumption.
  • an embodiment of the present disclosure also provides a display device, including an auxiliary light source 10 and the display module provided by the embodiment of the present disclosure, and the auxiliary light source 10 is disposed on the light-incident side of the display screen 200 in the display module.
  • the display device can be applied to various display devices, for example, transparent display products such as booths and home appliances.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种显示模组,包括显示屏(200)和设置在显示屏(200)的显示面或相对面上的光调制结构(100)。光调制结构(100)包括相对设置的第一透明基板(110)和第二透明基板(120)以及设置在二者之间的带电粒子(131);还包括第一透明电极结构(140),设置在第一透明基板(110)和第二透明基板(120)之间,用于形成驱动带电粒子(131)运动的电场。一种显示装置,包括显示模组和辅助光源(10)。当显示屏的散射光线从显示屏的显示面入射至光调制机构之后,部分光电被带电粒子表面反射而再次进入显示屏内,提升光线利用率和显示模组画面显示均一性。

Description

显示模组及显示装置
相关申请的交叉引用
本申请主张在2020年04月23日在中国提交的PCT专利申请号No.202010325581.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示模组及显示装置。
背景技术
透明显示产品广泛应用于展台、家电及特殊消费品方向,透明显示产品的显示效果对于外界光线的依赖性较强,因此辅助光源必不可少。传统的背光源由于对透明显示有遮挡效果,不适用于透明显示产品,而侧入式辅助光源完全依赖于透明显示产品内部的光波导,传播效率低,亮暗不均,用户体验差。
发明内容
本公开实施例提供了一种显示模组及显示装置,能够提升显示模组画面均一性。
本公开实施例所提供的技术方案如下:
一种显示模组,包括显示屏,所述显示屏包括相对的第一面和第二面,所述第一面和所述第二面中至少一面为显示面;所述显示模组还包括设置在所述显示屏的第一面和第二面中至少一面上的光调制结构,所述光调制结构包括:
相对设置的第一透明基板和第二透明基板;
设置在所述第一透明基板和所述第二透明基板之间的带电粒子;
及,第一透明电极结构,所述第一透明电极结构设置在所述第一透明基板和所述第二透明基板之间,用于形成驱动所述带电粒子运动的电场。
示例性的,所述带电粒子包括白色带电粒子、和/或彩色带电粒子。
示例性的,所述第一透明基板和所述第二透明基板之间还设有呈阵列分布的多个透明胶囊外壳,所述透明胶囊外壳内设有多个所述带电粒子。
示例性的,所述显示屏中位于所述第一面和所述第二面之间的一侧面为入光侧;
多个所述透明胶囊外壳中,从靠近所述入光侧的一侧至远离所述入光侧的一侧,所述带电粒子的密度逐渐减小。
示例性的,所述透明胶囊外壳在垂直于所述第一透明基板的方向上的截面形状为梯形,所述梯形的上底和下底平行于所述显示屏设置。
示例性的,所述第一透明电极结构包括:第一电极和第二电极,所述第二电极包括多个电极块,每一所述电极块在所述第一透明基板上的正投影与至少一个所述透明胶囊外壳在所述第一透明基板上的正投影重合,且每一所述电极块单独连接一电压信号线。
示例性的,所述显示屏为液晶显示屏。
示例性的,所述液晶显示屏包括公共电极;
所述光调制结构中的所述第一电极为公共电极,所述液晶显示屏的公共电极与所述第一电极的驱动共用。
示例性的,所述显示模组为透明显示模组。
示例性的,所述显示模组还包括控制单元,所述控制单元用于控制所述第一透明电极结构上所施加的电信号,以控制所述带电粒子运动。
示例性的,所述控制单元包括:
环境光检测器,用于检测环境光亮度;
控制器,用于当外部环境光亮度大于等于预定值时,控制所述第一透明电极结构上不施加电信号,以使所述带电粒子散乱排布;当外部环境光亮度小于预定值时,向所述第一透明电极结构上施加电信号,以使所述带电粒子运动。
示例性的,所述控制器用于控制所述第一透明电极结构上所施加的电压从靠近所述入光侧的一侧至远离所述入光侧的一侧逐渐变化,以使所述透明胶囊外壳内的所述带电粒子在垂直于所述第一透明基板方向上、与所述显示屏之间的距离从靠近所述入光侧的一侧至远离所述入光侧的一侧逐渐减小;
和/或,
多个所述透明胶囊外壳包括靠近所述入光侧的一侧的第一区域,所述第一区域包括至少两个所述透明胶囊外壳,所述控制器用于至少控制所述第一区域内的各所述透明胶囊外壳所对应的所述第一透明电极结构上所施加的电压周期性变化;
和/或,所述控制器用于当所述显示屏的显示画面在预定时间段不变时,控制所述第一透明电极结构断电。
一种显示装置,包括如上所述的显示模组和辅助光源,所述辅助光源设置在所述显示模组中显示屏的入光侧。
本公开实施例所带来的技术效果如下:
上述方案,显示屏的相对的第一面和第二面中至少一面为显示面,通过在显示屏的显示面设置光调制结构,光调制结构内可通过第一透明电极结构施加的电信号控制带电粒子运动状态,当显示屏的散射光线从显示屏的显示面入射至光调制结构之后,部分光线被带电粒子表面反射,而再次进入显示屏内,从而提升光线利用率,尤其是,在环境光不足时,光调制结构内第一透明电极结构上加电,使带电粒子运动而按需排布,光线在带电粒子表面的反射作用,提升光线利用率,达成高均一性的透明显示需求;环境光充足时,带电粒子呈散乱排布,可提升显示面板散射态分布视角;并且,光调制结构的带电粒子在第一透明电极结构加电而按需分布之后,断电仍可保持断电前的状态,可节省功耗;此外,光源发出的光经显示屏之后,又经过带电粒子散射,可有效消除hotspot现象;此外,光调制结构的设置,可不受屏幕形状、尺寸等限制,适用各种形状、尺寸的显示面板。
附图说明
图1表示本公开实施例所提供的显示模组在暗态时环境光充足条件下,辅助光源和光调制结构不加电时的结构示意图;
图2表示本公开实施例所提供的显示模组在亮态时环境光充足条件下,辅助光源和光调制结构不加电时的结构示意图;
图3表示本公开实施例所提供的显示模组在暗态时环境光不足条件下, 辅助光源和光调制结构加电时的结构示意图;
图4表示本公开实施例所提供的显示模组在亮态时环境光充足条件下,辅助光源和光调制结构加电时的结构示意图;
图5表示本公开实施例所提供的显示模组中在光调制结构加电时各透明胶囊外壳内带电粒子的分布状态示意图,其中图中左侧为靠近光源侧,右侧为远离光源侧;
图6表示本公开实施例所提供的显示模组中靠近光源侧的第一区域的透明胶囊外壳内带电粒子在一个周期内的分布状态示意图;
图7表示本公开另一实施例所提供的显示模组的结构示意图。
图8表示本公开另一实施例所提供的显示模组中显示屏双面设置光调制结构的结构示意图;
图9表示本公开实施例中的显示模组中控制单元的结构框图;
图10表示本公开实施例中提供的显示模组的俯视图,其中为了便于理解,仅示意出了显示屏的公共电极和光调制结构的第一电极以及驱动IC的结构。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接 的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在对本公开实施例提供的显示模组、显示装置及显示模组的驱动方法进行详细说明之前,有必要对于相关技术进行以下说明:
在相关技术中,透明显示产品广泛应用于展台、家电及特殊消费品方向。透明显示产品的显示效果对于外界光线的依赖性较强,因此辅助光源是必不可少的。传统的背光源由于对透明显示有遮挡效果,不再适用。因此,透明显示产品通常采用侧入式辅助光源,显示屏的一侧为入光侧,在入光侧设置辅助光源,光源开启时,进入显示屏,在显示屏内部发生透射、折射、散射等作用,这样,完全依赖显示屏内部的光波导,由于光线在显示屏内部传播损耗大,传输距离短,故靠近光源侧为亮区,远离光源侧为暗区,显示内容几乎不可见,整个屏幕亮暗不均,显示效果差,且由于显示屏的导光效果差,光线在屏幕内散射效果差,导致hotspot(热点)现象严重,且光源为灯条,无法对应异形显示屏幕。
本公开实施例中提供了一种显示模组及显示装置,能够提升光线利用率,提高画面均一性。
图1至图4和图7所示为本公开实施例所提供的显示模组的结构示意图。
如图1至图4和图7所示,所述显示模组包括:显示屏200和光调制结构100,所述显示屏200包括相对的第一面和第二面,所述第一面和所述第二面中至少一面为显示面,所述光调制结构100设置在所述显示屏200的第一面和第二面中至少一面上;所述光调制结构100包括:
相对设置的第一透明基板110和第二透明基板120;
设置在所述第一透明基板110和所述第二透明基板120之间带电粒子131;
及,第一透明电极结构140,所述第一透明电极结构140设置在所述第一透明基板110和所述第二透明基板120之间,用于形成驱动所述带电粒子131运动的电场。
上述方案,通过在显示屏200的显示面设置光调制结构100,光调制结构100内可通过第一透明电极结构140施加的电信号控制带电粒子131运动状态,当显示屏200的散射光线从显示屏200的显示面入射至光调制结构100 之后,部分光线被带电粒子131表面反射,而再次进入显示屏200内,从而提升光线在显示区内部利用率,达到提升显示画面均一性的目的。
具体地,在环境光不足时,光调制结构100内第一透明电极结构140上加电,使带电粒子131运动而按需排布,光线在带电粒子131表面的反射作用,提升光线利用率,达成高均一性的透明显示需求;环境光充足时,带电粒子131呈散乱排布,可提升显示面板散射态分布视角;并且,光调制结构100的带电粒子131在第一透明电极结构140加电而按需分布之后,断电仍可保持断电前的状态,可节省功耗;此外,光源发出的光经显示屏200之后,又经过带电粒子131散射,可有效消除hotspot现象;并且,光调制结构100的设置,可不受屏幕形状、尺寸等限制,适用各种形状、尺寸的显示面板。
需要说明的是,本公开实施例提供的显示模组可以是透明显示模组,所述显示屏200可以为透明显示屏,其中所述第一透明基板110和所述第二透明基板120均为高透过率基板。但是,应当理解的是,所述显示模组并不仅仅局限于应用于透明显示产品中,在实际应用中,所述显示模组也可以应用于其他类型显示产品,例如,也可以是普通的不透明显示屏。
以下以所述显示模组为透明显示模组,也就是,所述显示屏200为透明显示屏200为例,来对本公开实施例提供的显示模组进行详细说明。
在一种示例性的实施例中,所述带电粒子131包括白色带电粒子。
采用上述方案,所述带电粒子131为白色带电粒子,白色带电粒子的尺寸为纳米级别,直径几十到几百纳米,肉眼不可见,通过对白色带电粒子的分布密度选择,可以实现透明显示,且相较于彩色带电粒子来说,白色带电粒子的光反射率更高,可提升光线反射率,以提高光学利用率。该白色带电粒子可以是阳离子型白色带电粒子,也可以是阴离子型白色带电粒子。
在本公开的一些实施例中,所述带电粒子不仅限于白色带电粒子,还可以是带有颜色的彩色带电粒子,或者,白色带电粒子和彩色带电粒子混合的粒子,例如,所述彩色带电粒子可以选用红色带电粒子、蓝色带电粒子、黄色带电粒子或黑色带电粒子等,所述彩色带电粒子的尺寸为纳米级别,直径几十到几百纳米,肉眼不可见,通过对所述彩色带电粒子的分布密度选择,也可以实现透明显示,且彩色带电粒子可起到对特定颜色的光吸收或者使特 定颜色光增强的作用,从而使得特定颜色的光线透射出去的光线减少或者增多,以调整最终显示模组的显示色度。
在一种示例性的实施例中,如图1至图4所示,所述第一透明基板110和所述第二透明基板120之间还设有呈阵列分布的多个透明胶囊外壳132,所述透明胶囊外壳132内设有多个所述带电粒子131。
其中,所述第一透明电极结构140包括:第一电极141和第二电极142,所述第二电极142包括多个电极块,每一所述电极块在所述第一透明基板110上的正投影与至少一个所述透明胶囊外壳132在所述第一透明基板110上的正投影重合,且每一所述电极块单独连接一电压信号线。
采用上述方案,在第一透明基板110与第二透明基板120之间阵列分布多个透明胶囊外壳132,带电粒子131分布于透明胶囊外壳132内,示例性的,透明胶囊外壳132在垂直于第一透明基板110的方向上的高度大约在150μm左右,带电粒子131直径几十到几百纳米,肉眼不可见;每个所述透明胶囊外壳132和其所对应的第一电极141和第二电极142构成一个墨水盒单元,这样,可单独控制每个墨水盒单元内的带电粒子131运动状态,以根据实际需求单独控制各墨水盒单元,以使带电粒子131达到理想粒子排布状态。
需要说明的是,在一些示例性的实施例中,所述第一透明电极结构140所采用的第一电极141和第二电极142分别位于第一透明基板110和第二透明基板120上,例如,所述第一电极141设置于所述第一基板110的面向所述第二基板120的一侧,所述第二电极142设置于所述第二基板120的面向所述第一基板110的一侧,在其他实施例中,所述第一透明电极结构140中第一电极141和第二电极142也可以均位于同一基板上。
还需要说明的是,上述示例性的实施例中,所述第二电极142中每个电极块在所述第一透明基板110上的正投影与一个透明胶囊外壳132重合,也就是说,每一所述电极块可对应一个透明胶囊外壳132,这样,一个透明胶囊外壳132和其在垂直于所述第一透明基板方向上正投影重合的的第一电极141和电极块共同构成一个墨水盒单元,在其他实施例中,所述第二电极142中每个电极块在所述第一透明基板上的正投影与多个透明胶囊外壳132重合,也就是说,所述第二电极142中每个电极块还可以对应多个透明胶囊外壳132, 这样,每一电极块和该电极块所对应的多个透明胶囊外壳132、第一电极141共同构成一个墨水盒单元,也就是说,一个墨水盒单元可包括一个透明胶囊外壳132,也可以包括多个透明胶囊外壳132。
并且,在上述示例性的实施例中,如图1至图4所示,所述第一电极141可以是对应整个第一透明基板110设置的面状电极,而第二电极142中各电极块单独连接信号线,这样,对于不同墨水盒单元,第一电极141上施加的电信号可以相同,仅需要控制各电极块上施加的电信号不同,即可使得不同墨水盒单元中带电粒子131排布状态不同。
还需要说明的是,在上述示例性的实施例中,每一所述电极块单独连接一电压信号线,在实际应用中,还可以是,若干个所述电极块作为一个单元,共同连接同一信号线。
此外,在一种示例性的实施例中,如图1至图4和图5所示,所述显示屏200的一侧面为入光侧,在所述显示屏200的入光侧设置辅助光源10;多个所述透明胶囊外壳中,靠近所述入光侧的一侧的所述透明胶囊外壳132中所述带电粒子131的密度大于远离所述入光侧的一侧的所述透明胶囊外壳132中所述带电粒子131的密度。
由于在相关技术中侧入式透明显示屏,光线在显示屏内部传播损耗大,传输距离短,靠近光源侧为亮区,远离光源侧为暗区,显示内容几乎不可见,导致整个屏幕亮暗不均,显示效果差,因此,为了提升整个画面均一性,在上述方案中,靠近光源侧的带电粒子131的密度大于远离光源侧的带电粒子131的密度(带电粒子131的密度即透明胶囊外壳132内带电粒子131的数量),这是由于光线从显示屏的显示面出射至带电粒子131上时,会一部分光线被反射回显示屏内,一部分光线从光调制结构透射出去,带电粒子131分布密度越大,则光线带电粒子131表面反射概率越大,也就是说,光线中被反射回显示屏的光线越多,而从光调制结构中透射出去的光线越少,从而,在靠近光源侧,带电粒子分布密度大,可降低近光源侧亮度,而提升远离光源侧亮度,且靠近光源侧被带电粒子反射回显示屏的光线会在显示屏内继续传播,进一步地达成显示亮度均匀的画面效果。
示例性的,多个所述透明胶囊外壳,从靠近所述入光侧的一侧至远离所 述入光侧的一侧,所述带电粒子131的密度逐渐减小。
在上述方案中,带电粒子131的密度随着透明胶囊外壳132与光源的距离呈线性变化,透明胶囊外壳132内带电粒子131的密度从靠近光源侧向远离光源侧逐渐变小,以进一步地提高显示亮度均一性。
需要说明的是,在上述方案中,从靠近所述入光侧的一侧至远离所述入光侧的一侧,所述带电粒子131的密度逐渐减小,可以是指,在从靠近所述入光侧的一侧至远离所述入光侧的一侧的排列方向上,多个所述透明胶囊外壳内的带电粒子密度,逐个变小;还可以是,在从靠近所述入光侧的一侧至远离所述入光侧的一侧的排列方向上,以N个所述透明胶囊外壳为一组,共分为M组透明胶囊外壳,N为大于1的整数,M为大于1的整数,每组内的透明胶囊外壳内的带电粒子密度相同,而M组透明胶囊外壳的带电粒子密度,逐组变小。
此外,在一种示例性的实施例中,如图1至图4所示,所述透明胶囊外壳132在垂直于所述第一透明基板110的方向上的截面形状为梯形,所述梯形包括上底和下底,所述梯形的上底和下底平行所述显示屏设置。
上述实施例中,所述透明胶囊外壳132的截面形状为梯形,各个透明胶囊外壳132的下底在所述第一透明基板上的正投影可覆盖整个显示模组的显示区域,在一些实施例中,例如,图1至图4所示,所述梯形可以为倒梯形,所述透明胶囊外壳132内的白色带电粒子为阳离子型粒子,所述第一透明电极结构140施加电信号时所形成的电场方向为驱动白色带电粒子从靠近所述显示屏200一侧向远离所述显示屏200一侧运动的方向,为了便于描述,以下将白色带电粒子从靠近所述显示屏200一侧向远离所述显示屏200一侧运动称为白色带电粒子向上运动。当第一透明电极结构140施加电信号时,透明胶囊外壳132内的白色带电粒子向上运动,透明胶囊外壳132为梯形,这样,可保证各所述透明胶囊外壳132内的带电粒子131在所述第一透明基板上的正投影能够覆盖整个显示屏200的显示区域,并均匀分布。
在一些实施例中,所述透明胶囊外壳132的梯形结构中,上底长度L2可以在15微米左右,下底长度L2可以在150微米左右,高度H在150微米左右。当然,以上仅是一种示例,不以此为限。
在一些实施例中,如图7所示,所述梯形还可以为正梯形,其下底位于上底的靠近所述显示屏200的一侧,例如,所述第一透明电极结构140施加电信号时所形成的电场方向为驱动白色带电粒子从远离所述显示屏200一侧向靠近所述显示屏200一侧运动的方向(简称向下运动),所述透明胶囊外壳132内为正梯形,这样,可保证施加电信号时,各所述透明胶囊外壳132内的带电粒子131在所述第一透明基板上的正投影能够覆盖整个显示屏200的显示区域,并均匀分布。
此外,需要说明的是,在上述实施例中,所述透明胶囊外壳132为的截面形状为梯形,还具有以下优点:
由于透明胶囊外壳132的截面为梯形,当带电粒子131在透明胶囊外壳132内向上或向下运动时,运动至不同高度,带电粒子131在所述第一透明基板100上的正投影的面积则不同,由于每个所述透明胶囊外壳132内的带电粒子131数量是一定的,那么,当每个所述透明胶囊外壳132内的带电粒子131运动高度不同时,则带电粒子131在所述透明胶囊外壳132内的分布密度会发生相应变化,由此,可以通过控制不同透明胶囊外壳132内的带电粒子131的运动高度,以对不同位置处的透明胶囊外壳132内的带电粒子131分布密度进行进一步的控制,以达到对显示区域不同位置处的画面显示亮度调节的目的,最终达成显示亮度均匀的画面效果,当然,也可以根据实际需求实现局部区域的显示亮度调整的效果。
当然可以理解的是,在其他实施例中,所述透明胶囊外壳132的结构不限于此,还可以是其他形状,例如,还可以是在垂直于第一透明基板110方向上的截面形状呈圆形或椭圆形或或锥形或矩形等。需要说明的是,所述透明胶囊外壳132的截面形状为圆形、椭圆形或锥形等内径逐渐变化的形状时,也可以实现上述截面为梯形的实施例所带来的技术效果。
此外,本公开实施例中的显示模组还包括控制单元,所述控制单元用于控制所述透明电极结构上所施加的电信号,以控制所述带电粒子131运动。
在一些示例性的实施例中,如图9所示,所述控制单元300包括:
环境光检测器301,用于检测环境光亮度;
控制器302,用于当外部环境光亮度大于等于预定值时,控制所述第一 透明电极结构140上不施加电信号,以使带电粒子131散乱排布;当外部环境光亮度小于预定值时,向所述第一透明电极结构140上施加电信号,以使带电粒子131运动。
采用上述方案,在显示屏200的一侧为入光侧,在入光侧设置辅助光源10,如图1和图2所示,环境光充足时,所述辅助光源10和所述光调制结构100内均不加电,带电粒子131呈散乱排布,此时,光调制结构100内带电粒子可提升显示屏200散射态分布视角;如图3和图4所示,环境光不足时,所述辅助光源10和光调制结构100内第一透明电极结构140上加电,带电粒子131按需排布,光线在带电粒子131表面反射,提升光线利用率,并达成高均一性的透明显示需求。
具体地,一种示例性实施例中,所述控制器302用于控制所述第一透明电极结构140上所施加的电压从靠近所述入光侧的一侧至远离所述入光侧的一侧逐渐变化,以使所述透明胶囊外壳132内的所述带电粒子131在垂直于所述第一透明基板110方向上、与所述显示屏200之间的距离从靠近所述入光侧的一侧至远离所述入光侧的一侧逐渐减小。
采用上述方案,为了进一步地提高画面亮度均一性,可通过第一透明电极结构上驱动电压的控制,使得带电粒子131在透明胶囊外壳132内的分布高度不同,也就是说,带电粒子131在垂直于所述第一透明基板110方向上、与所述显示屏200之间的距离不同。各所述透明胶囊外壳132中,光源的距离越近,带电粒子131的分布高度越高。
例如,当带电粒子131为阳离子型白色带电粒子,在驱动电压驱动下向上运动,随着与光源的距离增加,透明胶囊外壳132内的带电粒子131密度逐渐减小,驱动电压逐渐降低,相应的,驱动粒子的分布高度逐渐减小,则经过白色带电粒子散射光线的散射角度逐渐变小,有利于整个画面均一性提升。其中,以阳离子型白色带电粒子为例,所述第一透明电极结构140上所施加的电压信号可以在-8~-15V左右。
此外,在一些实施例中,多个所述透明胶囊外壳132包括靠近所述入光侧的一侧的第一区域,所述第一区域包括至少两个所述透明胶囊外壳132,所述控制器302用于至少控制所述第一区域内的各所述透明胶囊外壳132所 对应的所述第一透明电极结构上所施加的电压周期性变化。
采用上述方案,为了消除显示模组的hotspot现象,靠近入光侧的多个透明胶囊外壳132,也就是,所述第一区域内的带电粒子131分布情况可随时间周期性变化,如图6所示,一个周期内,改变靠近入光侧的透明胶囊外壳132内带电粒子131的驱动电压,使得带电粒子131在透明胶囊外壳132内移动,从而带电粒子131对应的散射光线的散射角度变化,从而破坏光源的光束,降低光线集中程度,以消除hotspot现象。
其中,所述第一区域的各透明胶囊外壳132的驱动电压刷新频率为25~100Hz,可根据实际应用进行选择和调整。
此外,在一些实施例的实施例中,所述控制器用于当所述显示屏200的显示画面在预定时间段不变时,控制所述第一透明电极结构140断电。
采用上述方案,当显示固定画面时,所述第一透明电极结构140加电,带电粒子131受电场作用移动至指定位置后,可切断供电,带电粒子131具有双稳性,可带电保持位置不变,这样,可降低功耗,根据画面需求进行光调制结构100驱动。
需要说明的是,所述控制单元可以是设置于显示屏的驱动IC。
此外,在一些示例性的实施例中,所述显示屏200为液晶显示屏。
一种示例性实施例中,如图1至图4所示,所述液晶显示屏可以包括:
对盒设置的第三基板210和第四基板220;
设置在所述第三基板210和所述第四基板220之间的液晶层或液晶聚合物层或染料液晶层230;
及,第二透明电极结构240,所述第二透明电极结构240设置在所述第三基板210和所述第四基板220之间,用于形成驱动所述液晶层或液晶聚合物层或染料液晶层230的电场,其中,所述第二透明电极结构240包括:第三电极241和第四电极242。
示例性的,第三电极241设置于所述第三基板210的面向所述第四基板220的一侧,第四电极242设置于所述第四基板220的面向所述第三基板210的一侧。当然可以理解的是,所述第三电极241和所述第四电极242还可以均设置于所述第三基板210上,或均设置于所述第四基板220上。
上述方案中,所述显示屏200可以是液晶显示屏200,例如,PNLC(Polymer Network Liquid Crystal,即聚合物网络液晶)透明显示屏,或者,PDLC(polymer dispersed liquid crystal,即聚合物分散液晶)透明显示屏。PNLC与PDLC相比,PNLC中的液晶不是成球形(或椭球形)微滴,而是分布在聚合物三维网络中,形成连续性的通道网。
其中图1至图4和图7所示即以PNLC透明显示屏为例所绘制的光路图,但是,所述显示屏不仅限于这种透明显示屏。
例如,所述显示屏200还可以是染料型透明显示屏,其中所述液晶层为染料液晶层,该染料液晶层可以是由液晶母体与染料分子掺杂的混合物组成。对于染料型透明显示屏,光线在显示屏200内传播时,由于染料分子对光线有吸收作用,光调制结构100对光线利用率的提升效果更为显著。
此外,在一些示例性的实施例中,如图1至4以及图10所示,所述液晶显示屏包括公共电极,所述光调制结构中的所述第一电极141为公共电极,所述液晶显示屏的公共电极与所述第一电极141的驱动共用。
采用上述方案,所述液晶显示屏的公共电极可以是第三电极241或第四电极242,所述光调制结构中的所述第一电极141为公共电极,可以将液晶显示屏的公共电极与第一电极141的驱动共用,例如,图10表示本公开实施例中提供的显示模组的俯视图,其中为了便于理解,仅示意出了显示屏的公共电极和光调制结构的第一电极以及驱动IC的结构,如图10所示,将所述液晶显示屏的公共电极的公共信号线20与所述光调制结构中第一电极141的公共信号线21连接至驱动IC 30,并可通过点银浆方式连接一起,以实现驱动共用。
此外,在一些实施例中,例如,所述第一电极141为对应整个所述第一透明基板110设置的面状电极,所述第三电极241为对应整个所述第三基板210设置的面状电极,并作为液晶显示屏的公共电极,所述第三电极241与所述第一电极141上所施加的电信号相同,并进行驱动共用。
在一些实施例中,显示模组共四个基板,即,第一、第二、第三和第四基板,其中,四个基板均为高透过率的材质,第一电极141、第二电极142用于驱动带电粒子131,第三电极241和第四电极242用于驱动显示屏200 内的液晶层中液晶或液晶聚合物或染料液晶分子,其中,第一电极141和第三电极241可通过银浆点连接在一起共用驱动电极,第二电极142和第四电极242提供source信号(信号源)。
此外,在一种示例性的实施例中,所述第一透明基板110位于所述第二透明基板120的靠近所述显示屏200的一侧,所述第三基板210位于所述第四基板220的靠近所述光调制结构100的一侧,其中,所述第一透明基板110与所述第三基板210贴合,或者,所述第一透明基板110还可以复用为所述第三基板210。
在另一些实施例中,如图1至图4所示,所述第一透明基板110位于所述第二透明基板120的远离所述显示屏200的一侧,所述第三基板210位于所述第四基板220的靠近所述光调制结构100的一侧,所述第二透明基板120与所述第三基板210贴合,或者,所述第二透明基板120还可以复用为所述第三基板210。
需要说明的是,在上述实施例中,以显示屏的单侧(也就是第一面或第二面中的一面)设置光调制结构为例进行的说明,在其他实施例中,也可以在显示屏的双侧设置光调制结构,例如,所述显示屏200为透明显示屏时,其第一面和第二面均可以为显示面,此时,可在第一面上设置光调制结构,也可以在第二面上设置光调制结构,还可以在第一面和第二面上均设置光调制结构(图8所示即为在显示屏双面设置光调制结构的显示模组的一种示例性实施例的结构示意图)。对于普通的不透明显示屏,可以仅在显示面一侧设置光调制结构100。
此外,本公开实施例中还提供了一种显示模组的驱动方法,用于驱动本公开实施例提供的显示模组,所述方法包括:控制所述第一透明电极结构140上所施加的电信号,以驱动带电粒子131运动。
示例性的,所述控制所述第一透明电极结构140上所施加的电信号,以驱动带电粒子131运动,具体包括:
外部环境光亮度大于等于预定值时,所述第一透明电极结构140上不施加电信号,以使带电粒子131散乱排布;
外部环境光亮度小于所述预定值时,向所述第一透明电极结构140上施 加电信号,以使带电粒子131运动。
上述方案,在环境光不足时,光调制结构100内第一透明电极结构140上加电,使带电粒子131运动而按需排布,光线在带电粒子131表面的反射作用,提升光线利用率,达成高均一性的透明显示需求;环境光充足时,带电粒子131呈散乱排布,可提升显示面板散射态分布视角。
示例性的,所述外部环境光亮度小于所述预定值时,向所述第一透明电极结构140上施加电信号,以使带电粒子131运动,具体包括:
从靠近所述入光侧的一侧至远离所述入光侧的一侧,所述第一透明电极结构140上所施加的电压逐渐变化,以使所述透明胶囊外壳132内的所述带电粒子131在垂直于所述第一透明基板110方向上、与所述显示屏200之间的距离从靠近所述入光侧的一侧至远离所述入光侧的一侧逐渐减小。
采用上述方案,为了进一步地提高画面亮度均一性,可通过所述第一透明电极结构上驱动电压的控制,使得带电粒子131在透明胶囊外壳132内的分布高度不同,也就是说,带电粒子131在垂直于所述第一透明基板110方向上、与所述显示屏200之间的距离不同。各所述透明胶囊外壳132中,光源的距离越近,带电粒子131的分布高度越高。
例如,当带电粒子131为阳离子型白色带电粒子,在驱动电压驱动下向上运动,随着与光源的距离增加,透明胶囊外壳132内的带电粒子131密度逐渐减小,驱动电压逐渐降低,相应的,驱动粒子的分布高度逐渐减小,则经过白色带电粒子散射光线的散射角度逐渐变小,有利于整个画面均一性提升。其中,以阳离子型白色带电粒子为例,所述第一透明电极结构140上所施加的电压信号可以在-8~-15V左右。
此外,示例性的,所述方法中,多个所述透明胶囊外壳包括靠近所述入光侧的一侧的第一区域,所述第一区域包括至少两个所述透明胶囊外壳,所述第一区域内的各所述透明胶囊外壳132所对应的所述第一透明电极上所施加的电压周期性变化。
采用上述方案,为了消除显示模组的hotspot现象,靠近入光侧的多个透明胶囊外壳132,也就是,所述第一区域内的带电粒子131分布情况可随时间周期性变化,如图6所示,一个周期内,改变靠近入光侧的透明胶囊外壳 132内带电粒子131的驱动电压,使得带电粒子131在透明胶囊外壳132内移动,从而带电粒子131对应的散射光线的散射角度变化,从而破坏光源的光束,降低光线集中程度,以消除hotspot现象。
此外,示例性的,所述外部环境光亮度小于预定值时,向所述第一透明电极结构140上施加电信号,以使所述带电粒子131运动,具体还包括:
当所述显示屏200的显示画面在预定时间段不变时,控制所述第一透明电极结构140断电。
上述方案,光调制结构100的带电粒子131在第一透明电极结构140加电而按需分布之后,断电仍可保持断电前的状态,可节省功耗。
此外,本公开实施例还提供了一种显示装置,包括辅助光源10及本公开实施例所提供的显示模组,辅助光源10设置在所述显示模组中显示屏200的入光侧。
该显示装置可以应用于各种显示装置,例如,展台、家电等透明显示产品中。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种显示模组,包括显示屏,所述显示屏包括相对的第一面和第二面,所述第一面和所述第二面中至少一面为显示面;其特征在于,所述显示模组还包括设置在所述显示屏的第一面和第二面中至少一面上的光调制结构,所述光调制结构包括:
    相对设置的第一透明基板和第二透明基板;
    设置在所述第一透明基板和所述第二透明基板之间的带电粒子;
    及,第一透明电极结构,所述第一透明电极结构设置在所述第一透明基板和所述第二透明基板之间,用于形成驱动所述带电粒子运动的电场。
  2. 根据权利要求1所述的显示模组,其特征在于,
    所述带电粒子包括白色带电粒子、和/或彩色带电粒子。
  3. 根据权利要求1所述的显示模组,其特征在于,
    所述第一透明基板和所述第二透明基板之间还设有呈阵列分布的多个透明胶囊外壳,所述透明胶囊外壳内设有多个所述带电粒子。
  4. 根据权利要求3所述的显示模组,其特征在于,
    所述显示屏中位于所述第一面和所述第二面之间的一侧面为入光侧;
    多个所述透明胶囊外壳中,从靠近所述入光侧的一侧至远离所述入光侧的一侧,所述带电粒子的密度逐渐减小。
  5. 根据权利要求3所述的显示模组,其特征在于,
    所述透明胶囊外壳在垂直于所述第一透明基板的方向上的截面形状为梯形,所述梯形的上底和下底平行于所述显示屏设置。
  6. 根据权利要求3所述的显示模组,其特征在于,
    所述第一透明电极结构包括:第一电极和第二电极,所述第二电极包括多个电极块,每一所述电极块在所述第一透明基板上的正投影与至少一个所述透明胶囊外壳在所述第一透明基板上的正投影重合,且每一所述电极块单独连接一电压信号线。
  7. 根据权利要求6所述的显示模组,其特征在于,
    所述显示屏为液晶显示屏。
  8. 根据权利要求7所述的显示模组,其特征在于,
    所述液晶显示屏包括公共电极;
    所述光调制结构中的所述第一电极为公共电极,所述液晶显示屏的公共电极与所述第一电极的驱动共用。
  9. 根据权利要求1至8任一项所述的显示模组,其特征在于,
    所述显示模组为透明显示模组。
  10. 根据权利要求3所述的显示模组,其特征在于,
    所述显示模组还包括控制单元,所述控制单元用于控制所述第一透明电极结构上所施加的电信号,以控制所述带电粒子运动。
  11. 根据权利要求10所述的显示模组,其特征在于,
    所述控制单元包括:
    环境光检测器,用于检测环境光亮度;
    控制器,用于当外部环境光亮度大于等于预定值时,控制所述第一透明电极结构上不施加电信号,以使所述带电粒子散乱排布;当外部环境光亮度小于预定值时,向所述第一透明电极结构上施加电信号,以使所述带电粒子运动。
  12. 根据权利要求11所述的显示模组,其特征在于,
    所述控制器用于控制所述第一透明电极结构上所施加的电压从靠近所述显示屏的入光侧的一侧至远离所述入光侧的一侧逐渐变化,以使所述透明胶囊外壳内的所述带电粒子在垂直于所述第一透明基板方向上、与所述显示屏之间的距离从靠近所述入光侧的一侧至远离所述入光侧的一侧逐渐减小;
    和/或,
    多个所述透明胶囊外壳包括靠近所述入光侧的一侧的第一区域,所述第一区域包括至少两个所述透明胶囊外壳,所述控制器用于至少控制所述第一区域内的各所述透明胶囊外壳所对应的所述第一透明电极结构上所施加的电压周期性变化;
    和/或,所述控制器用于当所述显示屏的显示画面在预定时间段不变时,控制所述第一透明电极结构断电。
  13. 一种显示装置,其特征在于,包括如权利要求1至12任一项所述的 显示模组和辅助光源,所述辅助光源设置在所述显示模组中显示屏的入光侧。
PCT/CN2021/079856 2020-04-23 2021-03-10 显示模组及显示装置 WO2021213042A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/764,921 US11822167B2 (en) 2020-04-23 2021-03-10 Display module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010325581.1 2020-04-23
CN202010325581.1A CN111489637B (zh) 2020-04-23 2020-04-23 显示模组及显示装置

Publications (1)

Publication Number Publication Date
WO2021213042A1 true WO2021213042A1 (zh) 2021-10-28

Family

ID=71794810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079856 WO2021213042A1 (zh) 2020-04-23 2021-03-10 显示模组及显示装置

Country Status (3)

Country Link
US (1) US11822167B2 (zh)
CN (1) CN111489637B (zh)
WO (1) WO2021213042A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111489637B (zh) 2020-04-23 2022-11-25 京东方科技集团股份有限公司 显示模组及显示装置
CN115047685A (zh) * 2021-03-08 2022-09-13 Oppo广东移动通信有限公司 电致变色模组、盖板组件、控制装置及电子设备
CN113805397A (zh) * 2021-09-09 2021-12-17 Oppo广东移动通信有限公司 微胶囊及其制作方法、磁致变色器件、电子纸和电子设备
CN116360174B (zh) * 2023-03-14 2024-08-06 重庆惠科金渝光电科技有限公司 显示面板、显示面板的制作方法及显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201740953U (zh) * 2010-08-19 2011-02-09 华映视讯(吴江)有限公司 半穿透半反射式显示装置
US20120026434A1 (en) * 2010-07-29 2012-02-02 Wen-Zheng Chen Transflective display device
CN102782572A (zh) * 2010-03-01 2012-11-14 默克专利有限公司 电光切换元件和电光显示器
CN104133319A (zh) * 2014-07-16 2014-11-05 京东方科技集团股份有限公司 一种显示装置
CN104849912A (zh) * 2015-06-11 2015-08-19 京东方科技集团股份有限公司 一种透反切换装置及其驱动方法
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN108761898A (zh) * 2018-03-30 2018-11-06 重庆京东方显示照明有限公司 一种反射片及其控制方法、背光模组、显示装置
CN109920831A (zh) * 2019-03-22 2019-06-21 京东方科技集团股份有限公司 一种显示面板及其驱动方法、显示装置
CN209281113U (zh) * 2019-02-14 2019-08-20 昆山龙腾光电有限公司 一种透明显示装置
CN111489637A (zh) * 2020-04-23 2020-08-04 京东方科技集团股份有限公司 显示模组及显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI387829B (zh) * 2008-09-11 2013-03-01 Prime View Int Co Ltd 彩色顯示裝置
JP5756931B2 (ja) * 2009-12-11 2015-07-29 ソニー株式会社 照明装置および表示装置
KR101430696B1 (ko) * 2010-09-30 2014-08-18 코오롱인더스트리 주식회사 전기영동 디스플레이 장치 및 이의 제조 방법
US20130271811A1 (en) * 2010-12-15 2013-10-17 Switch Materials, Inc. Variable transmittance optical filter with substantially co-planar electrode system
JP2012252993A (ja) * 2011-05-10 2012-12-20 Sony Corp 照明装置および表示装置
CN102998841B (zh) * 2012-12-21 2015-07-22 京东方科技集团股份有限公司 一种显示基板和具有该显示基板的显示装置
KR20140131669A (ko) * 2013-05-06 2014-11-14 삼성전자주식회사 반사형 디스플레이 장치
US9411374B2 (en) * 2014-02-20 2016-08-09 Amazon Technologies, Inc. Electronic device display stack
CN108919586B (zh) * 2018-06-28 2021-09-28 上海天马微电子有限公司 显示面板及显示装置
CN109581748B (zh) * 2019-01-08 2021-12-28 合肥京东方光电科技有限公司 光学膜片及背光模组、显示装置
WO2021007807A1 (zh) * 2019-07-17 2021-01-21 京东方科技集团股份有限公司 显示基板及其驱动方法、显示装置
CN110824771B (zh) * 2019-11-12 2022-03-25 昆山龙腾光电股份有限公司 显示装置及其驱动方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782572A (zh) * 2010-03-01 2012-11-14 默克专利有限公司 电光切换元件和电光显示器
US20120026434A1 (en) * 2010-07-29 2012-02-02 Wen-Zheng Chen Transflective display device
CN201740953U (zh) * 2010-08-19 2011-02-09 华映视讯(吴江)有限公司 半穿透半反射式显示装置
CN104133319A (zh) * 2014-07-16 2014-11-05 京东方科技集团股份有限公司 一种显示装置
CN104849912A (zh) * 2015-06-11 2015-08-19 京东方科技集团股份有限公司 一种透反切换装置及其驱动方法
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN108761898A (zh) * 2018-03-30 2018-11-06 重庆京东方显示照明有限公司 一种反射片及其控制方法、背光模组、显示装置
CN209281113U (zh) * 2019-02-14 2019-08-20 昆山龙腾光电有限公司 一种透明显示装置
CN109920831A (zh) * 2019-03-22 2019-06-21 京东方科技集团股份有限公司 一种显示面板及其驱动方法、显示装置
CN111489637A (zh) * 2020-04-23 2020-08-04 京东方科技集团股份有限公司 显示模组及显示装置

Also Published As

Publication number Publication date
US20230025151A1 (en) 2023-01-26
CN111489637B (zh) 2022-11-25
CN111489637A (zh) 2020-08-04
US11822167B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2021213042A1 (zh) 显示模组及显示装置
WO2021051787A1 (zh) 一种显示装置及背光模组
US10578895B2 (en) Light ray direction controlling device and display device
TWI458918B (zh) 具有有利設計特性之薄形中空背光
US7248394B2 (en) Transflective electrophoretic display and manufacturing method thereof
US7339716B2 (en) Transflective electrophoretic display device
CN101713503B (zh) 照明设备、显示设备以及光调制元件的制造方法
CN106019697A (zh) 显示装置
CN107589594B (zh) 一种可调反射装置、背光模组及显示装置
CN105974672A (zh) 一种显示装置
CN207882620U (zh) 显示装置
CN111240094B (zh) 一种面光源
JP2010026410A (ja) 表示装置
US11467445B2 (en) Display panel and display device
WO2018076669A1 (zh) 显示面板及其驱动和制作方法以及显示装置
CN102914873A (zh) 显示方法、显示装置、电子设备以及照明单元
KR20140004882A (ko) 표시 장치 및 그 제조 방법
WO2018059086A1 (zh) 显示面板及其制造方法、显示装置和亮度控制方法
US20130002984A1 (en) Light control device and image display device
US20070147081A1 (en) Blacklight unit, liquid crystal display device having the same, and method for providing substantially white light for liquid crystal display device
KR102090457B1 (ko) 액정표시장치
TWI804139B (zh) 顯示裝置
WO2023160643A9 (zh) 显示模组和显示装置
CN108681132B (zh) 显示装置
KR20200127064A (ko) 광 경로 제어 기능을 갖는 확산판 및 백라이트 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792802

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21792802

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023)