WO2021212989A1 - 含强化层的基材、制备方法、可折叠盖板及电子设备 - Google Patents

含强化层的基材、制备方法、可折叠盖板及电子设备 Download PDF

Info

Publication number
WO2021212989A1
WO2021212989A1 PCT/CN2021/077253 CN2021077253W WO2021212989A1 WO 2021212989 A1 WO2021212989 A1 WO 2021212989A1 CN 2021077253 W CN2021077253 W CN 2021077253W WO 2021212989 A1 WO2021212989 A1 WO 2021212989A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
glass
strengthening
base layer
Prior art date
Application number
PCT/CN2021/077253
Other languages
English (en)
French (fr)
Inventor
廖奕翔
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021212989A1 publication Critical patent/WO2021212989A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/18Telephone sets specially adapted for use in ships, mines, or other places exposed to adverse environment
    • H04M1/185Improving the rigidity of the casing or resistance to shocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/119Deposition methods from solutions or suspensions by printing

Definitions

  • This application relates to the field of electronic technology, in particular to a substrate containing a strengthening layer, a preparation method, a foldable cover plate and an electronic device.
  • the present application provides a substrate containing a strengthening layer, a preparation method, a foldable cover plate, and an electronic device, which can resist the impact strength of the substrate so that cracks are not easily generated after the substrate is deformed.
  • the present application provides a substrate, including: a base layer; and a reinforcement layer, the reinforcement layer is formed on at least one surface of the base layer; Material production and formation.
  • the present application also provides a method for processing a substrate containing a reinforced layer, including: providing a substrate layer; forming a reinforced layer on the surface of the substrate layer to obtain a substrate containing a reinforced layer; wherein the reinforced layer is composed of high
  • the mixed material of molecular polymer and silane coupling agent is produced and formed.
  • a foldable cover plate comprising: a foldable base layer; and a strengthening layer, the strengthening layer is formed on at least one surface of the foldable base layer; the strengthening layer is composed of a polymer and a silane coupling The mixed material of the coupling agent is made and formed.
  • the present application also provides an electronic device, the electronic device includes a cover plate, the cover plate is made of the aforementioned base material; or the cover plate is the aforementioned foldable cover plate.
  • the strengthening layer of the embodiment of the present application can have the impact strength of the substrate, so that the substrate is not prone to cracks after deformation.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a substrate containing a strengthening layer provided by the first embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structure diagram of another substrate containing a strengthening layer provided by the first embodiment of the present application.
  • FIG. 3 is a schematic flow chart of a method for processing a substrate containing a strengthening layer provided by a second embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional view of the foldable cover provided by the third embodiment of the present application, and the arrow indicates the foldable direction.
  • FIG. 5 is a schematic cross-sectional structure diagram of an electronic device provided by a fourth embodiment of the present application.
  • the first embodiment of the present application provides a substrate.
  • the substrate includes a substrate layer and a reinforcement layer formed on at least one surface of the substrate layer. Material production and formation.
  • the impact strength of the substrate provided in the present application is at least 2 times the impact strength of the base layer without a reinforced layer, thereby greatly improving the impact strength of the substrate.
  • the substrate 100 includes a base layer 10 and a strengthening layer 20.
  • the base layer 10 includes a first surface 101 and a second surface 102 opposite to each other.
  • the strengthening layer 20 is formed on On the first surface 101 of the base layer 10.
  • the substrate 100 includes a base layer 10 and a strengthening layer 20.
  • the base layer 10 includes a first surface 101 and a second surface 102 opposite to each other.
  • the strengthening layer 20 respectively It is formed on the first surface 101 and the second surface 102 of the base layer 10.
  • the second surface 102 of the base layer 10 is an outer surface, that is, a surface that may be damaged by impact, and the strengthening layer 20 is formed at least on the first surface 101 of the base layer 10 superior.
  • the base layer 10 is a foldable material. When folded, the center of curvature of the base layer 10 is located on the side of the first surface 101, and the strengthening layer 20 is formed at least on the base layer. 10 on the first surface 101.
  • the mass content of the high molecular polymer in the mixed material is greater than or equal to 99% and less than 100%, and the mass content of the silane coupling agent in the mixed material is greater than 0 and less than or equal to 1%, this ratio can increase the impact strength of the substrate of the present application to at least 2.2 times the impact strength of the base layer without the reinforcement layer.
  • the high molecular polymer in the reinforcing layer may be, but not limited to, cycloolefin polymer or polyurethane.
  • the silane coupling agent in the strengthening layer may be, but is not limited to, an alkoxysilane-based silicon compound or the like.
  • the reinforcing layer is made of a mixed material of a high molecular polymer and a silane coupling agent, that is, the reinforcing layer 20 is made of two components: a high molecular polymer and a silane coupling agent. It does not contain adhesives, adhesives and other substances; the reinforced layer formed by this formula can increase the impact strength of the substrate of the present application to at least 2.5 times the impact strength of the base layer without the reinforced layer.
  • the base layer 10 is glass, such as ultra-thin glass with a thickness of less than or equal to 150 microns, ordinary glass with a thickness of greater than 150 microns, or thick glass with a thickness of greater than 500 microns; among them, the present application is particularly suitable for The ultra-thin glass whose thickness is less than or equal to 150 microns is easily damaged when the ultra-thin glass itself is impacted.
  • the strengthening layer 20 of the present application can increase the impact resistance of the ultra-thin glass by at least one time.
  • the first is deformation when impacted.
  • the deformation will cause the surface to compress and produce compressive stress, and the part of the middle layer will produce tensile stress due to stretching.
  • the largest surface deformation of the lowermost layer will also produce a larger tensile stress, and the rupture of the glass is often caused by the tensile stress of the lowermost layer. Therefore, the principle of strengthening the glass is to strengthen the compression against this tensile stress.
  • the strain capacity can achieve the effect of improving the resistance of glass; the second type is that there are nano-level micro-cracks on the glass surface that are invisible to the naked eye.
  • a strengthening layer is formed at least on the surface of the glass opposite to the impacted surface to enhance the compressive stress of the glass and resist the tensile stress generated by the deformation of the glass.
  • the strengthening layer has the following characteristics:
  • the adhesive force range between the strengthened layer and the glass is more than 20 N per 25 millimeters (N/25mm); the adhesive force between the optical adhesive (OCA) and glass in the general industry is only about 10N/25mm, the strengthening of this application
  • the adhesive force between the layer material and the glass is more than twice the adhesive force of OCA and glass; the glass is not easily separated from the strengthened layer after being impacted, so that the strengthened layer can protect the glass;
  • the reference standard for the test method of adhesive force is the ISO29862:2007 (JIS Z 0237:2009) test standard; the strengthening layer material of the present application can be directly bonded to the glass without using any adhesive in between.
  • the elastic module of the strengthening layer material of this application is above 500Mpa.
  • the value of this elastic modulus refers to the test result of the material at a normal temperature of 23 degrees and a frequency of 100 to 10000 Hz; when the glass is subjected to high-speed impact, this The reinforced layer with high elastic modulus can reduce the instantaneous deformation of the glass and improve the anti-drop performance of the glass.
  • the loss coefficient (tan ⁇ ) of the strengthening layer material of this application is 0.08 or more.
  • the value of this loss coefficient refers to the test result of the material at a normal temperature of 23 degrees and a frequency of 100 to 10000 Hz; when the glass is subjected to high-speed impact, this high elastic modulus A large amount of strengthening layer can absorb impact energy, and the greater the loss coefficient, the better the impact energy absorption effect, thereby reducing the instantaneous deformation of the glass and improving the drop resistance of the glass.
  • the substrate of the present application is used for the screen of an electronic device and needs to have good optical performance. Therefore, the visible light wavelength (380 nanometers (nm) to 780 nm) transmittance range of the strengthening layer material is 91 % Or more, the refractive index is about 1.5, and the haze is 1 or less.
  • the glass is chemically strengthened ultra-thin glass
  • the thickness of the glass can be 15 microns (um) to 150um
  • the glass material can be soda-silica glass or aluminum-silica glass
  • this ultra-thin glass must meet the requirements of extreme The small R-angle bending test exceeds 100,000 times without breaking or cracking of the glass.
  • the R-angle must be less than 5 millimeters (mm)
  • chemical strengthening refers to the use of ion exchange methods to exchange potassium ions with lithium ions in the glass Or sodium ion exchange to achieve chemical strengthening, where the depth of chemical strengthening is 5um to 15um
  • chemical strengthening can be both on the first surface 101 and the second surface 102 of the glass, that is, double-sided chemically strengthened glass.
  • the compressive stress value of the upper first surface 101 and the compressive stress value of the second surface 102 will be the same or close; in some embodiments, the compressive stress value ⁇ 1 of the glass after chemical strengthening needs to be greater than 500 megapascals (Mpa); Young’s modulus The amount (Young's Modules) is 60 gigapascals (Gpa) or more.
  • the impacted surface of the glass is the second surface, and the strengthening layer 20 is formed on the first surface of the glass to allow the glass to be stretched on the first surface after the second surface is impacted.
  • the stress ⁇ t is less than the compressive stress value ⁇ 1, that is, ⁇ t ⁇ 1 generated at the moment of impact, which reduces the risk of glass breakage.
  • a second embodiment of the present application provides a method for processing a substrate containing a strengthening layer, including the steps:
  • the base layer can be referred to as described in the first embodiment.
  • a coating material may be formed on the surface of the base layer by coating, and then the coating material may be cured to obtain the strengthening layer.
  • the coating method can be, but is not limited to, spraying, dipping, spin-coating, shower coating, screen printing, ink jet And so on; the base layer is placed on the coating jig, the coating material is coated on the base layer through the above-mentioned coating method, the coating thickness is 5um to 50um; the curing method of the coating material can be: The coating material is cured by heating or pressurizing, or by heating and pressurizing at the same time, wherein the pressurizing pressure can be 0Mpa to 5Mpa, the heating temperature can be 25 degrees Celsius to 150 degrees Celsius, and the heating or pressurizing time is more than 30 seconds.
  • the coating material is also a paste or liquid suitable for coating made of a mixed material containing a high molecular polymer and a silane coupling agent; wherein, in the coating material, the high molecular weight
  • the mass content of the polymer in the mixed material is greater than or equal to 99% and less than 100%, and the mass content of the silane coupling agent in the mixed material is greater than 0 and less than or equal to 1%.
  • the coating material may also contain solvents, leveling agents and the like.
  • the high molecular polymer in the coating material can be, but is not limited to, cycloolefin polymer or polyurethane.
  • the reinforcing layer is made of a mixed material of a high molecular polymer and a silane coupling agent, that is, the reinforcing layer 20 is made of two components: a high molecular polymer and a silane coupling agent. It does not contain adhesives, adhesives and other substances.
  • the coating material can also be formed on the surface of the base layer by pasting, and then the coating material is cured to obtain the strengthening layer.
  • the method of attaching the film may be pressing or heating, or pressing and heating at the same time; the thickness of the formed film material is 5um to 50um.
  • the coating material is also made of a mixed material containing a high molecular polymer and a silane coupling agent to form a film-like material; in the coating material, the high molecular polymer is in the The mass content of the mixed material is greater than or equal to 99% and less than 100%, and the mass content of the silane coupling agent in the mixed material is greater than 0 and less than or equal to 1%. It is understood that the coating material may also contain solvents and the like.
  • the high molecular polymer in the coating material may be, but not limited to, cycloolefin polymer or polyurethane.
  • the reinforcing layer is made of a mixed material of a high molecular polymer and a silane coupling agent, that is, the reinforcing layer 20 is composed of two components: a high molecular polymer and a silane coupling agent. It is made without adhesives, adhesives and other substances.
  • the thin glass attached with the film material can be heated or pressurized, or heated and pressurized at the same time to obtain the strengthened layer; wherein the pressurizing pressure can be 0Mpa to 10Mpa, and the heating temperature can be 25 degrees Celsius to 150 degrees Celsius, heating time is more than 30 seconds.
  • the third embodiment of the present application also provides a foldable cover plate, which is used for foldable electronic devices; as shown in FIG. 4, the foldable cover plate 300 includes a foldable base layer 31 and a The reinforcing layer 32 on the surface of the base layer 31 is made of a mixed material containing a high molecular polymer and a silane coupling agent.
  • the base layer 31 includes a first surface 301 and a second surface 302 opposite to each other.
  • the first surface 301 faces inward, and the second surface 302 faces outward. That is, the center of curvature when folded is located on the first surface 301 side; the strengthening layer 32 is formed at least on the first surface 301.
  • the high molecular polymer in the reinforcing layer may be, but not limited to, cycloolefin polymer or polyurethane.
  • the mass content of the high molecular polymer in the mixed material is greater than or equal to 99% and less than 100%, and the mass content of the silane coupling agent in the mixed material is greater than 0 and less than or equal to 1%, this ratio can increase the impact strength of the substrate of the present application to at least 2.2 times the impact strength of the base layer without the reinforcement layer.
  • the reinforcing layer is made of a mixed material of a high molecular polymer and a silane coupling agent, that is, the reinforcing layer 20 is made of two components: a high molecular polymer and a silane coupling agent. It does not contain adhesives and adhesives; the reinforced layer formed by this formula can increase the impact strength of the substrate of the present application to at least 2.5 times the impact strength of the base layer without the reinforced layer.
  • the base layer 31 is ultra-thin glass of 150 microns and below.
  • the strengthening layer of the present application has the following characteristics:
  • the adhesive force range between the strengthened layer and the glass is more than 20 N per 25 millimeters (N/25mm); the adhesive force between the optical adhesive (OCA) and glass in the general industry is only about 10N/25mm, the strengthening of this application
  • the adhesive force between the layer material and the glass is more than twice the adhesive force of the OCA and the glass, so that the glass is not easily separated from the strengthening layer after being impacted, so that the strengthening layer can protect the glass;
  • the reference standard for the test method of adhesive force is the ISO29862:2007 (JIS Z 0237:2009) test standard; the strengthening layer material of the present application can be directly bonded to glass without any adhesive in between.
  • the elastic module of the strengthening layer material of this application is above 500Mpa.
  • the value of this elastic modulus refers to the test result of the material at a normal temperature of 23 degrees and a frequency of 100 to 10000 Hz; when the glass is subjected to high-speed impact, this The reinforced layer with high elastic modulus can reduce the instantaneous deformation of the glass and improve the anti-drop performance of the glass.
  • the loss coefficient (tan ⁇ ) of the strengthening layer material of this application is 0.08 or more.
  • the value of this loss coefficient refers to the test result of the material at a normal temperature of 23 degrees and a frequency of 100 to 10000 Hz; when the glass is subjected to high-speed impact, this high elastic modulus A large amount of strengthening layer can absorb impact energy, and the greater the loss coefficient, the better the impact energy absorption effect, thereby reducing the instantaneous deformation of the glass and improving the drop resistance of the glass.
  • the substrate of the present application is used for the screen of an electronic device and needs to have good optical performance. Therefore, the visible light wavelength (380nm to 780nm) of the strengthening layer material has a transmittance range of 91% or more. The rate is about 1.5, and the haze is 1 or less.
  • the glass is chemically strengthened ultra-thin glass
  • the thickness of the glass can be 15 micrometers (um) to 150um
  • the glass material can be soda silica glass or aluminum silicate glass.
  • This ultra-thin glass must To meet the requirements of bending test with a very small R angle for more than 100,000 times without glass breakage or cracks, the R angle must be less than 5 millimeters (mm);
  • chemical strengthening refers to the use of ion exchange method to combine K ions with glass
  • the lithium ion or sodium ion exchange is chemically strengthened, where the depth of chemical strengthening is 5um to 15um; chemical strengthening can be both on the first surface 101 and the second surface 102 of the glass, that is, double-sided chemically strengthened glass, chemically strengthened After strengthening, theoretically, the compressive stress value of the first surface 101 and the compressive stress value of the second surface 102 will be the same or close to each other.
  • the compressive stress value ⁇ 1 of the glass after chemical strengthening needs to be greater than 500 megapascals (Mp
  • the first is deformation when impacted.
  • the deformation will cause the surface to compress and produce compressive stress, and the part of the middle layer will produce tensile stress due to stretching.
  • the largest surface deformation of the lowermost layer will also produce a larger tensile stress, and the rupture of the glass is often caused by the tensile stress of the lowermost layer. Therefore, the principle of strengthening the glass is to strengthen the compression against this tensile stress.
  • the strain capacity can achieve the effect of improving the resistance of glass; the second type is that there are nano-level micro-cracks on the glass surface that are invisible to the naked eye.
  • the micro-cracks on the lower surface are affected by the tensile stress of the deformation, and the cracks will become more and more open. It will eventually cause the glass to break. Therefore, if you can add a protection to the micro-cracks, increasing the compressive stress during impact will also improve the resistance of the glass. Therefore, in the present application, when the center of curvature is located on the first surface 301 side of the base layer 31 of the foldable cover 300, the strengthening layer 31 is formed at least on the first surface 301 side, so that the glass can be placed on the first surface 301 side. After the two surfaces are impacted, the tensile stress ⁇ t generated on the first surface is less than the compressive stress value ⁇ 1, that is, ⁇ t generated at the moment of impact ⁇ 1, which reduces the risk of glass breakage.
  • the foldable cover of the present application can be applied to electronic devices such as folding screen mobile phones, and the foldable cover can be bent at least 200,000 times with a very small R angle.
  • the fourth embodiment of the present application further provides an electronic device 400.
  • the electronic device 400 includes a cover 41.
  • the cover 41 may be a foldable cover as described in the third embodiment of the present application.
  • the plate 300 may include a cover plate made of the base material 100 as described in the first embodiment of the present application.
  • the electronic device 400 further includes an OLED display screen 42, and the strengthening layer 410 of the cover plate 41 and the OLED display screen 42 are bonded by an adhesive 43;
  • the adhesive 43 may be, for example, a transparent optical adhesive (OCA); the thickness of the adhesive 43 may be 50 micrometers to 150 micrometers.
  • an ink layer 44 for blocking light is further formed on the surface of the strengthening layer 410, and the ink layer 44 is formed on the periphery of the cover plate 41.
  • a protective film layer 45 is further formed on the surface of the cover plate 41 away from the strengthening layer 410, and the protective film layer 45 is used to protect the base layer 411 of the cover plate 41. Scratched, etc.; the protective film layer 45 can be bonded to the base layer 411 of the cover plate 41 by OCA glue.
  • cover plate 41 The specific introduction of the cover plate 41 can be referred to the first or third embodiment, which will not be repeated here.
  • a substrate includes a substrate layer and a strengthening layer formed on the first surface of the substrate layer;
  • the substrate layer is a chemically strengthened aluminum-silicon-based ultra-thin glass with a thickness of 70 microns, the ultra-thin glass
  • the compressive stress value ⁇ 1 of the ultra-thin glass is 550 MPa, and the depth of chemical strengthening of the ultra-thin glass is about 10 microns;
  • the strengthening layer is composed of 99.2% cycloolefin polymer and 0.8% silane coupling agent Made of mixed materials.
  • the second surface of the substrate of Example 1 opposite to the first surface was subjected to a falling ball impact test and a pen drop test, and the average value of the weight change before and after the substrate was broken was recorded.
  • a substrate includes a substrate layer and a strengthening layer formed on a first surface of the substrate layer, the substrate layer is a chemically strengthened aluminum-silicon-based ultra-thin glass with a thickness of 70 microns, the ultra-thin glass
  • the compressive stress value ⁇ 1 of the ultra-thin glass is 550 MPa, and the depth of chemical strengthening of the ultra-thin glass is about 10 microns;
  • the strengthening layer is made of a mixed material of 99% polyurethane and 1% silane coupling agent form. Record the substrate as sample 2.
  • the second surface of the substrate of Example 1 opposite to the first surface was subjected to a falling ball impact test and a pen drop test, and the average value of the weight change before and after the substrate was broken was recorded.
  • a substrate includes a substrate layer and a strengthening layer formed on a first surface of the substrate layer, the substrate layer is a chemically strengthened aluminum-silicon-based ultra-thin glass with a thickness of 70 microns, the ultra-thin glass
  • the compressive stress value ⁇ 1 of the ultra-thin glass is 550 MPa, and the depth of chemical strengthening of the ultra-thin glass is about 10 microns;
  • the strengthening layer is composed of 99.2% cycloolefin polymer and 0.8% silane coupling agent Made of mixed materials. Record the substrate as sample 3.
  • a ball impact test and a pen drop test were performed on the first surface of the substrate of Example 1, and the average weight change before and after the substrate was broken was recorded.
  • a substrate includes a substrate layer and a strengthening layer formed on a first surface of the substrate layer, the substrate layer is a chemically strengthened aluminum-silicon-based ultra-thin glass with a thickness of 70 microns, the ultra-thin glass
  • the compressive stress value ⁇ 1 of the ultra-thin glass is 550 MPa, and the depth of chemical strengthening of the ultra-thin glass is about 10 microns;
  • the strengthening layer is made of a mixed material of 99% polyurethane and 1% silane coupling agent form. Record the substrate as sample 4.
  • a ball impact test and a pen drop test were performed on the first surface of the substrate of Example 1, and the average weight change before and after the substrate was broken was recorded.
  • a substrate is provided, the substrate includes a substrate layer, the substrate layer is a chemically strengthened aluminum-silicon ultra-thin glass with a thickness of 70 microns, the compressive stress value ⁇ 1 of the ultra-thin glass is 550 MPa, and the The depth of chemical strengthening of ultra-thin glass is about 10 microns. Record the substrate as sample 5.
  • a ball impact test and a pen drop test were performed on one surface of the substrate of Example 1, and the average weight change before and after the substrate was broken was recorded.
  • the specific method of the falling ball impact test is: fix the sample on the marble test bench, move the test steel ball weighing 32.65 grams to a predetermined height above the sample, control the test steel ball to fall freely, and observe whether the sample has cracks, Broken; Wherein, if the sample has no cracks or broken, adjust the test steel ball to rise a predetermined height, use a new sample to test again, until a high sample cracks or breaks, record this height value. Repeat the above test five times, and take the average of the recorded height values as the withstand height value of the falling ball impact test in the above table.
  • the specific method of the pen drop test is: fix the sample on the marble test bench, move the test pen with a pen tip diameter of 0.5 mm and a pen weight of 12 g to 13 g to a predetermined height above the sample, and control the test pen to fall freely , Observe whether the sample is cracked or broken; among them, if the sample is not cracked or broken, adjust the test pen to a predetermined height, and use a new sample to test again until the sample is cracked or broken at a height, record this The height value. Repeat the above test five times, and take the average of the recorded height values as the pen drop test tolerance height value in the above table.
  • the use of the strengthening layer provided by the embodiments of the present application can greatly improve the impact resistance of the base layer; from the comparison samples 1, 2 and samples 3, 4, it can be seen that the strengthening layer is formed on the base layer.
  • the impacted surface of the bottom layer is still the opposite side of the impacted surface, and the impact resistance of the obtained substrate is very different.
  • the strengthening layer is formed on the surface of the base layer opposite to the impacted surface.
  • the impact resistance ratio of the substrate is The strengthening layer is formed on the impacted surface of the base layer, and the impact resistance of the substrate is at least 2 times better. From the comparative samples 3, 4 and sample 5, it can be seen that the strengthening layer is formed on the impacted surface of the base layer.
  • the impact resistance of the substrate obtained from the surface is better than the impact resistance of the base layer itself, it is not much better.
  • the surface opposite to the impacted surface can have better impact resistance; comparative samples 1 to 5 can be seen that the weight of the substrate with a strengthening layer formed on the surface is reduced when it is crushed by impact than that of the surface without a strengthening layer.
  • the weight of the substrate is small when it is crushed by impact, that is to say, the strengthening layer can effectively prevent the broken glass from scattering, and when it is crushed by impact, the strengthening layer is formed on the impacted substrate layer.
  • the magnitude of the weight reduction of the base material obtained by the surface is greater than the magnitude of the weight reduction of the base material obtained by the reinforcing layer formed on the surface of the base layer opposite to the impacted surface, that is, the reinforcing layer is formed on the base layer and the impacted surface
  • the opposite surface can more effectively prevent the broken glass from scattering after impact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Signal Processing (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请提供一种基材,包括:基底层;及强化层,所述强化层形成于所述基底层的至少一个表面;所述强化层由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。还提供一种含强化层的基材的加工方法、可折叠盖板及电子设备。

Description

含强化层的基材、制备方法、可折叠盖板及电子设备 技术领域
本申请涉及电子技术领域,具体涉及一种含强化层的基材、制备方法、可折叠盖板及电子设备。
背景技术
许多材料例如玻璃、树脂复合板等在收到冲击时容易发生形变,产生裂纹,进而破碎,所以,提升基材的抗冲击强度一直是广大科研单位、公司等争先研究的对象。
发明内容
针对上述问题,本申请提供一种含强化层的基材、制备方法、可折叠盖板及电子设备,能够对基材的抗冲击强度,使基材形变之后不易产生裂纹。
本申请提供了一种基材,包括:基底层;及强化层,所述强化层形成于所述基底层的至少一个表面;所述强化层由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。
本申请还提供了一种含强化层的基材的加工方法,包括:提供基底层;在所述基底层表面形成强化层,得到含强化层的基材;其中,所述强化层由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。
一种可折叠盖板,包括:可折叠的基底层;及强化层,所述强化层形成于所述可折叠的基底层的至少一个表面;所述强化层由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。
本申请还提供一种电子设备,所述电子设备包括盖板,所述盖板采用前所述的基材制成;或所述盖板为如前所述的可折叠盖板。
本申请实施例的强化层能够对基材的抗冲击强度,使基材形变之后不易产生裂纹。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例提供的一种含强化层的基材的剖视结构示意图。
图2是本申请第一实施例提供的另一种含强化层的基材的剖视结构示意图。
图3是本申请第二实施例提供的含强化层的基材的加工方法的流程示意图。
图4是本申请第三实施例提供的可折叠盖板的剖视结构示意图,箭头所示为可折叠方向。
图5是本申请第四实施例提供的电子设备的剖视结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
下面将结合附图,对本申请实施例中的技术方案进行描述。
需要说明的是,为便于说明,在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。
本申请第一实施例提供一种基材,所述基材包括基底层及形成于所述基底层至少一个表面的强化层,所述强化层由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。
本申请提供的所述基材的抗冲击强度是不加强化层的基底层的抗冲击强度至少2倍以上,从而大大提升了基材的抗冲击强度。
在一些实施例中,请参阅图1,所述基材100包括基底层10及强化层20,所述基底层10包括相对的第一表面101及第二表面102,所述强化层20形成于所述基底层10的第一表面101上。
在另一些实施例中,请参阅图2,所述基材100包括基底层10及强化层20,所述基底层10包括相对的第一表面101及第二表面102,所述强化层20分别形成于所述基底层10的第一表面101及第二表面102上。
在一些实施例中,所述基底层10的所述第二表面102为外表面,也即为可能受到冲击伤害的表面,所述强化层20至少形成于所述基底层10的第一表面101上。
在一些实施例中,所述基底层10为可折叠的材料,在折叠时,所述基底层10的曲率中心位于所述第一表面101侧,所述强化层20至少形成于所述基底层10的第一表面101上。
在一优选实施例中,所述高分子聚合物在所述混合材料中的质量含量为大于或等于99%且小于100%,所述硅烷偶联剂在所述混合材料中的质量含量为大于0且小于或等于1%,此配比能够使本申请的所述基材的抗冲击强度提升至不加强化层的基底层的抗冲击强度至少2.2倍以上。
所述强化层中的高分子聚合物可以但不限于为环烯烃聚合体或聚氨酯等。
所述强化层中的硅烷偶联剂可以但不限于为烷氧基硅烷类硅系化合物等。
在一优选实施例中,所述强化层由高分子聚合物及硅烷偶联剂的混合材料制作形成,也即,所述强化层20由高分子聚合物及硅烷偶联剂两种组分制成,不含粘合剂、胶粘剂等其他物质;此配方形成的强化层能够使本申请的所述基材的抗冲击强度提升至不加强化层的基底层的抗冲击强度至少2.5倍以上。
在一些实施例中,所述基底层10为玻璃,例如为厚度小于或等于150微米的超薄玻璃、厚度大于150微米的普通玻璃或厚度大于500微米的厚玻璃;其中,本申请尤其适用于厚度小于或等于150微米的超薄玻璃,因超薄玻璃本身受到冲击时极易破损,本申请的强化层20能够对超薄玻璃的抗冲击强度提升至少1倍以上。
一般地,玻璃受到冲击时会有两种现象造成玻璃破裂,第一种为受冲击时产生形变,形变造成表面会有压缩因而产生压缩应力,中间层的部份因为拉伸而产生拉伸应力,最下层表面形变最大也会产生较大的拉伸应力,而玻璃的破裂常常是从最下层的拉伸应力的地方产生破裂点,因此强化玻璃的原理就是需要加强抵抗此拉伸应力的压缩应变能力达到玻璃抗跌的提升效果;第二种为玻璃表面有奈米等级肉眼看不见的微裂纹,当玻璃受到冲击时,下层表面的微裂纹因为形变的拉伸应力影响,裂纹会越放越大,最终导致玻璃破裂,也因此如果能在微裂纹处增加一个保护,增加受冲击时的压缩应力也对玻璃抗跌有提升的效果。本申请是至少在玻璃的与受撞击表面相对的一侧表面形成一强化层来增强玻璃的压缩应力进而抵抗玻璃形变产生的拉伸应力。
在一些实施例中,所述强化层具有如下特性:
1.所述强化层与玻璃间的接着力范围为20牛每25毫米(N/25mm)以上;一般业界的光学胶(OCA)与玻璃的接着力只有约为10N/25mm,本申请的强化层材料与玻璃的接着力是OCA与玻璃的接着力的2倍以上;使得玻璃受到冲击后不易与强化层分离,从而所述强化层能够保护玻璃;
其中,所述接着力的测试方法的参照标准为ISO29862:2007(JIS Z 0237:2009)测试标准;本申请的强化层材料可以与玻璃直接粘合,中间不使用任何的粘合剂。
2.本申请的强化层材料的弹性模量(elastic modules)在500Mpa以上,此弹性模量的数值是指材料在常温23度、频率100至10000Hz下的测试结果;玻璃受到高速冲击时,此高弹性模量的强化层能够减少玻璃的瞬间形变,提升玻璃的抗跌性能。
3.本申请的强化层材料的损失系数(tanδ)为0.08以上,此损失系数的数值是指材料在常温23度、频率100至10000Hz下的测试结果;玻璃受到高速冲 击时,此高弹性模量的强化层能够吸收冲击能量,且损失系数越大吸收冲击能量的效果越好,从而减少玻璃的瞬间形变,提升玻璃的抗跌性能。
在一些实施例中,本申请的基材用于电子设备的屏幕,需要具备良好的光学性能,故,所述强化层材料的可见光波长(380纳米(nm)至780nm)透过率范围为91%以上,折射率为1.5左右,雾度为1以下。
在一些实施例中,所述玻璃为化学强化超薄玻璃,玻璃厚度可以为15微米(um)至150um,玻璃材质可以为钠硅系玻璃或铝硅系玻璃,此超薄玻璃必须满足以极小的R角弯曲测试超过10万次而不会发生玻璃破裂或是产生裂纹,所述R角需小于5毫米(mm);化学强化是指使用离子交换法将钾离子与玻璃中的锂离子或钠离子交换达到化学强化,此处的化学强化的深度为5um至15um;化学强化可以在玻璃的第一表面101及第二表面102都有,也就是双面化学强化玻璃,化学强化后理论上第一表面101的压缩应力值与第二表面102的压缩应力值会一样或接近;在一些实施例中,玻璃化学强化后的压缩应力值σ1需大于500兆帕(Mpa);杨氏模量(Young’s Modules)为60吉帕(Gpa)以上。在一实施例中,所述玻璃的受撞击面为第二表面,所述强化层20形成于所述玻璃的第一表面,能让玻璃于第二表面受到冲击后第一表面产生的拉伸应力σt小于所述压缩应力值σ1,也就是冲击瞬间产生的σt<σ1,减小玻璃破裂的风险。
请参阅图3,本申请第二实施例提供了一种含强化层的基材的加工方法,包括步骤:
S301,提供基底层;
S302,在所述基底层表面形成强化层,得到含强化层的基材;其中,所述强化层由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。
其中,所述基底层可参第一实施例所述。
在一些实施例中,可以通过涂覆的方式在所述基底层表面形成涂层材料,之后固化所述涂层材料得到所述强化层。
其中,所述涂覆方式可以但不限于喷涂(Spray),浸润(Dipping),旋转镀膜(Spin-coating),淋涂(Shower Coating),丝网印刷(Screen Printing),喷墨(Ink Jet)等等;将基底层放置于涂覆治具上,经由上述涂覆方式将涂层材料涂覆于 所述基底层上,涂覆厚度为5um至50um;所述涂层材料固化方式可以为:将涂涂层材料经由加热或加压,或者是同时加热加压固化,其中,加压压力可以为0Mpa至5Mpa,加热温度可以为25摄氏度至150摄氏度,加热或加压时间为30秒以上。
所述涂层材料也即为由包含高分子聚合物及硅烷偶联剂的混合材料制作形成的适用于涂覆的膏状体或液体等;其中,所述涂层材料中,所述高分子聚合物在所述混合材料中的质量含量为大于或等于99%且小于100%,所述硅烷偶联剂在所述混合材料中的质量含量为大于0且小于或等于1%。可以理解,所述涂层材料中还可以包含溶剂、流平剂等。
所述涂层材料中的高分子聚合物可以但不限于为环烯烃聚合体或聚氨酯等。
在一优选实施例中,所述强化层由高分子聚合物及硅烷偶联剂的混合材料制作形成,也即,所述强化层20由高分子聚合物及硅烷偶联剂两种组分制成,不含粘合剂、胶粘剂等其他物质。
在另一些实施例中,也可以通过贴膜的方式在所述基底层表面形成覆膜材料,之后固化所述覆膜材料得到所述强化层。
其中,所述贴膜的方式可以为加压或加热贴合,或是同时加压加热贴合;形成的覆膜材料的厚度为5um至50um。
在一些实施例中,所述覆膜材料也即为由包含高分子聚合物及硅烷偶联剂的混合材料制作形成膜状材料;所述覆膜材料中,所述高分子聚合物在所述混合材料中的质量含量为大于或等于99%且小于100%,所述硅烷偶联剂在所述混合材料中的质量含量为大于0且小于或等于1%。可以理解,所述覆膜材料中还可以包含溶剂等。
所述覆膜材料中的高分子聚合物可以但不限于为环烯烃聚合体或聚氨酯等。
在一更优选实施例中,所述强化层由高分子聚合物及硅烷偶联剂的混合材料制作形成,也即,所述强化层20由高分子聚合物及硅烷偶联剂两种组分制成,不含粘合剂、胶粘剂等其他物质。
在一实施例中,可以将贴附好薄膜材料的薄玻璃经由加热或加压,或者是 同时加热加压固化得到所述强化层;其中,加压压力可以为0Mpa至10Mpa,加热温度可以为25摄氏度至150摄氏度,加热时间为30秒以上。
所述强化层的其他相关内容可参第一实施例所述,此处不再赘述。
本申请第三实施例还提供一种可折叠盖板,所述可折叠盖板用于可折叠电子设备;如图4所示,所述可折叠盖板300包括可折叠的基底层31及形成于所述基底层31表面的强化层32,所述强化层31由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。
所述基底层31包括相对的第一表面301及第二表面302,其中,所述可折叠盖板300折叠时,所述第一表面301朝内,所述第二表面302朝外进行折叠,也即,折叠时的曲率中心位于所述第一表面301侧;所述强化层32至少形成于所述第一表面301上。
所述强化层中的高分子聚合物可以但不限于为环烯烃聚合体或聚氨酯等。
在一优选实施例中,所述高分子聚合物在所述混合材料中的质量含量为大于或等于99%且小于100%,所述硅烷偶联剂在所述混合材料中的质量含量为大于0且小于或等于1%,此配比能够使本申请的所述基材的抗冲击强度提升至不加强化层的基底层的抗冲击强度至少2.2倍以上。
在一优选实施例中,所述强化层由高分子聚合物及硅烷偶联剂的混合材料制作形成,也即,所述强化层20由高分子聚合物及硅烷偶联剂两种组分制成,不含粘合剂、胶粘剂;此配方形成的强化层能够使本申请的所述基材的抗冲击强度提升至不加强化层的基底层的抗冲击强度至少2.5倍以上。
在一些实施例中,所述基底层31为150微米及以下的超薄玻璃。
在一些实施例中,本申请的强化层具有如下特性:
1.所述强化层与玻璃间的接着力范围为20牛每25毫米(N/25mm)以上;一般业界的光学胶(OCA)与玻璃的接着力只有约为10N/25mm,本申请的强化层材料与玻璃的接着力是OCA与玻璃的接着力的2倍以上,使得玻璃受到冲击后不易与强化层分离,从而所述强化层能够保护玻璃;
其中,所述接着力的测试方法的参照标准为ISO29862:2007(JIS Z 0237:2009)测试标准;本申请的强化层材料可以与玻璃直接粘合,中间没有任何的粘合剂。
2.本申请的强化层材料的弹性模量(elastic modules)在500Mpa以上,此弹性模量的数值是指材料在常温23度、频率100至10000Hz下的测试结果;玻璃受到高速冲击时,此高弹性模量的强化层能够减少玻璃的瞬间形变,提升玻璃的抗跌性能。
3.本申请的强化层材料的损失系数(tanδ)为0.08以上,此损失系数的数值是指材料在常温23度、频率100至10000Hz下的测试结果;玻璃受到高速冲击时,此高弹性模量的强化层能够吸收冲击能量,且损失系数越大吸收冲击能量的效果越好,从而减少玻璃的瞬间形变,提升玻璃的抗跌性能。
在一些实施例中,本申请的基材用于电子设备的屏幕,需要具备良好的光学性能,故,所述强化层材料的可见光波长(380nm至780nm)透过率范围为91%以上,折射率为1.5左右,雾度为1以下。
在一些实施例中,所述玻璃为化学强化超薄玻璃,所述玻璃的厚度可以为15微米(um)至150um,玻璃材质可以为钠硅系玻璃或铝硅系玻璃,此超薄玻璃必须满足以极小的R角弯曲测试超过10万次而不会发生玻璃破裂或是产生裂纹,所述R角需小于5毫米(mm);化学强化是指使用离子交换法将K离子与玻璃中的锂离子或钠离子交换达到化学强化,此处的化学强化的深度为5um至15um;化学强化可以在玻璃的第一表面101及第二表面102都有,也就是双面化学强化玻璃,化学强化后理论上第一表面101的压缩应力值与第二表面102的压缩应力值会一样或接近。在一些实施例中,玻璃化学强化后的压缩应力值σ1需大于500兆帕(Mpa);杨氏模量(Young’s Modules)为60吉帕(Gpa)以上。
一般地,玻璃受到冲击时会有两种现象造成玻璃破裂,第一种为受冲击时产生形变,形变造成表面会有压缩因而产生压缩应力,中间层的部份因为拉伸而产生拉伸应力,最下层表面形变最大也会产生较大的拉伸应力,而玻璃的破裂常常是从最下层的拉伸应力的地方产生破裂点,因此强化玻璃的原理就是需要加强抵抗此拉伸应力的压缩应变能力达到玻璃抗跌的提升效果;第二种为玻璃表面有奈米等级肉眼看不见的微裂纹,当玻璃受到冲击时,下层表面的微裂纹因为形变的拉伸应力影响,裂纹会越放越大,最终导致玻璃破裂,也因此如果能在微裂纹处增加一个保护,增加受冲击时的压缩应力也对玻璃抗跌有提升 的效果。故,在本申请中,曲率中心位于所述可折叠盖板300的基底层31的第一表面301侧时,所述强化层31至少形成于所述第一表面301侧,能让玻璃于第二表面受到冲击后第一表面产生的拉伸应力σt小于压缩应力值σ1,也就是冲击瞬间产生的σt<σ1,减小玻璃破裂的风险。
本申请的所述可折叠盖板可应用于折叠屏手机等电子设备,所述可折叠盖板能够以极小的R角弯折至少20万次。
如图5所示,本申请第四实施例还提供一种电子设备400,所述电子设备400包括盖板41,所述盖板41可以为如本申请第三实施例所述的可折叠盖板300或可以包括如本申请第一实施例所述的基材100制作的盖板。
在一些实施例中,如图5所示,所述电子设备400还包括OLED显示屏42,所述盖板41的强化层410与所述OLED显示屏42通过粘胶43相贴合;所述粘胶43例如可以为透明光学胶(OCA);所述粘胶43的厚度可以为50微米至150微米。
在一些实施例中,如图5所示,所述强化层410表面还形成有遮挡光线用的油墨层44,所述油墨层44形成于所述盖板41的周边位置。
在一些实施例中,如图5所示,所述盖板41的远离所述强化层410的表面还形成有保护膜层45,所述保护膜层45用于保护盖板41的基底层411被刮伤等;所述保护膜层45可以通过OCA胶粘结于所述盖板41的基底层411上。
所述盖板41的具体介绍可以参第一或第三实施例所述,此处不再赘述。
以下结合具体实施例对本案进行说明。
实施例1
提供一基材,所述基材包括基底层及形成于基底层的第一表面的强化层;所述基底层为厚度为70微米的化学强化的铝硅系超薄玻璃,所述超薄玻璃的压缩应力值σ1为550兆帕,所述超薄玻璃的化学强化的深度为10微米左右;所述强化层由含量为99.2%的环烯烃聚合体与含量为0.8%的硅烷偶联剂的混合材料制作形成。
对实施例1的基材的与所述第一表面相对的第二表面进行落球冲击测试及笔跌测试,并记录基材破碎前后的重量变化平均值。
实施例2
提供一基材,所述基材包括基底层及形成于基底层的第一表面的强化层,所述基底层为厚度为70微米的化学强化的铝硅系超薄玻璃,所述超薄玻璃的压缩应力值σ1为550兆帕,所述超薄玻璃的化学强化的深度为10微米左右;所述强化层由含量为99%的聚氨酯与含量为1%的硅烷偶联剂的混合材料制作形成。将所述基材记做样本2。
对实施例1的基材的与所述第一表面相对的第二表面进行落球冲击测试及笔跌测试,并记录基材破碎前后的重量变化平均值。
对比例1
提供一基材,所述基材包括基底层及形成于基底层的第一表面的强化层,所述基底层为厚度为70微米的化学强化的铝硅系超薄玻璃,所述超薄玻璃的压缩应力值σ1为550兆帕,所述超薄玻璃的化学强化的深度为10微米左右;所述强化层由含量为99.2%的环烯烃聚合体与含量为0.8%的硅烷偶联剂的混合材料制作形成。将所述基材记做样本3。
对实施例1的基材的第一表面进行落球冲击测试及笔跌测试,并记录基材破碎前后的重量变化平均值。
对比例2
提供一基材,所述基材包括基底层及形成于基底层的第一表面的强化层,所述基底层为厚度为70微米的化学强化的铝硅系超薄玻璃,所述超薄玻璃的压缩应力值σ1为550兆帕,所述超薄玻璃的化学强化的深度为10微米左右;所述强化层由含量为99%的聚氨酯与含量为1%的硅烷偶联剂的混合材料制作形成。将所述基材记做样本4。
对实施例1的基材的第一表面进行落球冲击测试及笔跌测试,并记录基材破碎前后的重量变化平均值。
对比例3
提供一基材,所述基材包括基底层,所述基底层为厚度为70微米的化学强化的铝硅系超薄玻璃,所述超薄玻璃的压缩应力值σ1为550兆帕,所述超薄玻璃的化学强化的深度为10微米左右。将所述基材记做样本5。
对实施例1的基材的一表面进行落球冲击测试及笔跌测试,并记录基材破 碎前后的重量变化平均值。
测试结果如下表所示:
表1
  落球冲击测试耐受高度 笔跌测试耐受高度 破碎前后重量变化
样本1 120cm 13cm 0
样本2 120cm 13cm 0
样本3 45cm 3.5cm -10%
样本4 44cm 3.5cm -10%
样本5 25cm 3cm -37%
其中,落球冲击测试的具体方式为:将一样本固定在大理石测试台上,将32.65克重的测试钢球移动至样本上方预定高度,控制所述测试钢球自由落下,观察样本是否有裂纹、破碎;其中,如果此样本没有裂纹、破碎,则调整所述测试钢球上升一个预定高度,采用新的样本再次测试,直到在一高度样本出现裂纹、破碎,记录此高度值。重复上述测试五次,并取记录的高度值的平均值为上述表格中的落球冲击测试耐受高度值。
笔跌测试的具体方式为:将一样本固定在大理石测试台上,将笔头直径为0.5毫米、笔重量为12克至13克的测试笔移动至样本上方预定高度,控制所述测试笔自由落下,观察样本是否有裂纹、破碎;其中,如果此样本没有裂纹、破碎,则调整所述测试笔上升一个预定高度,采用新的样本再次测试,直到在一高度一样本出现裂纹、破碎,记录此高度值。重复上述测试五次,并取记录的高度值的平均值为上述表格中的笔跌测试耐受高度值。
根据上述表格可以看出,使用本申请实施例提供的强化层可以极大的提高基底层的抗冲击性能;从对比样本1、2及样本3、4可以看出,所述强化层形成于基底层受冲击的面还是受冲击的面相对的面,得到的基材的抗冲击性能差异非常大,强化层形成于基底层的与受冲击的表面相对的表面得到的基材的抗冲击性能比强化层形成于基底层的受冲击的表面得到的基材的抗冲击性能优秀至少2倍以上,而从对比样本3、4及样本5可以看出,所述强化层形成于 基底层受冲击的面得到的基材的抗冲击性能比基底层本身的抗冲击性能虽然好一点,但是并没有好太多,此说明,所述强化层形成于基底层的那个表面非常重要,形成于基底层的受冲击的面相对的面可以具有更好的抗冲击性能;对比样本1至5可以看出,表面形成有强化层的基材在收到撞击破碎时重量减少的幅度比表面没有形成强化层的基材在收到撞击破碎时重量减少的幅度小,也就是说,所述强化层可以有效防止破碎的玻璃飞散,并且,在收到撞击破碎时,所述强化层形成于基底层受冲击的面得到的基材重量减少的幅度大于强化层形成于基底层的与受冲击的面相对的面得到的基材重量减少的幅度,也就是说,强化层形成于基底层的与受冲击的面相对的面可以更有效的防止撞击后破碎的玻璃飞散。
在本文中提及“实施例”“实施方式”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (15)

  1. 一种基材,其特征在于,包括:
    基底层;及
    强化层,所述强化层形成于所述基底层的至少一个表面;所述强化层由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。
  2. 如权利要求1所述的基材,其特征在于,所述高分子聚合物在所述混合材料中的质量含量为大于或等于99%且小于100%,所述硅烷偶联剂在所述混合材料中的质量含量为大于0且小于或等于1%。
  3. 如权利要求1或2所述的基材,其特征在于,所述强化层中的高分子聚合物为环烯烃聚合体或聚氨酯。
  4. 如权利要求1至3任一项所述的基材,其特征在于,所述基底层为玻璃;所述强化层与玻璃间的接着力大于20牛每25毫米;所述强化层的材料的弹性模量大于或等于500兆帕;所述强化层的材料的损失系数大于或等于0.08。
  5. 如权利要求4所述的基材,其特征在于,所述强化层的可见光波长透过率为91%以上,折射率为1.5左右,雾度为1以下。
  6. 一种含强化层的基材的加工方法,其特征在于,包括:
    提供基底层;
    在所述基底层表面形成强化层,得到含强化层的基材;
    其中,所述强化层由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。
  7. 如权利要求6所述的含强化层的基材的加工方法,其特征在于,所述高分子聚合物在所述混合材料中的质量含量为大于或等于99%且小于100%,所述硅烷偶联剂在所述混合材料中的质量含量为大于0且小于或等于1%。
  8. 如权利要求6所述的含强化层的基材的加工方法,其特征在于,所述强化层中的高分子聚合物为环烯烃聚合体或聚氨酯。
  9. 如权利要求6至8任一项所述的含强化层的基材的加工方法,其特征在于,通过涂覆的方式在所述基底层表面形成涂层材料,之后固化所述涂层材料得到所述强化层;或通过贴膜的方式在所述基底层表面形成覆膜材料,之后固化所述覆膜材料得到所述强化层。
  10. 一种可折叠盖板,其特征在于,包括:
    可折叠的基底层;及
    强化层,所述强化层形成于所述基底层的至少一个表面;所述强化层由包含高分子聚合物及硅烷偶联剂的混合材料制作形成。
  11. 如权利要求10所述的可折叠盖板,其特征在于,所述高分子聚合物在所述混合材料中的质量含量为大于或等于99%且小于100%,所述硅烷偶联剂在所述混合材料中的质量含量为大于0且小于或等于1%。
  12. 如权利要求10所述的可折叠盖板,其特征在于,所述基底层包括相对的第一表面及第二表面,所述基底层在折叠时曲率中心位于所述第一表面侧,所述强化层形成于所述第一表面上。
  13. 如权利要求10至12任一项所述的可折叠盖板,其特征在于,所述强化层中的高分子聚合物为环烯烃聚合体或聚氨酯。
  14. 如权利要求10至13任一项所述的可折叠盖板,其特征在于,所述可折叠的基底层为100微米及以下的表面强化处理的超薄玻璃。
  15. 一种电子设备,其特征在于,所述电子设备包括盖板,所述盖板采用 如权利要求1至5任一项所述的基材制成;或所述盖板为如权利要求10至14任一项所述的可折叠盖板。
PCT/CN2021/077253 2020-04-24 2021-02-22 含强化层的基材、制备方法、可折叠盖板及电子设备 WO2021212989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010335396.0A CN111497402B (zh) 2020-04-24 2020-04-24 含强化层的基材、制备方法、可折叠盖板及电子设备
CN202010335396.0 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021212989A1 true WO2021212989A1 (zh) 2021-10-28

Family

ID=71848579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077253 WO2021212989A1 (zh) 2020-04-24 2021-02-22 含强化层的基材、制备方法、可折叠盖板及电子设备

Country Status (2)

Country Link
CN (1) CN111497402B (zh)
WO (1) WO2021212989A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497402B (zh) * 2020-04-24 2023-03-10 Oppo广东移动通信有限公司 含强化层的基材、制备方法、可折叠盖板及电子设备
CN114654910B (zh) * 2020-12-23 2023-08-01 掌阅科技股份有限公司 电子设备盖板的油墨丝印制备工艺及电子设备盖板
CN113257129B (zh) * 2021-05-13 2023-06-09 京东方科技集团股份有限公司 柔性盖板及制备方法、显示面板及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146792A1 (en) * 2009-12-17 2011-06-23 Shaofu Wu Composite laminates and uses thereof
CN108724881A (zh) * 2018-05-30 2018-11-02 Oppo(重庆)智能科技有限公司 复合板材及其制备方法、壳体以及电子设备
CN110191606A (zh) * 2019-06-05 2019-08-30 Oppo广东移动通信有限公司 电子设备盖板及其制备方法和电子设备
CN111497402A (zh) * 2020-04-24 2020-08-07 Oppo广东移动通信有限公司 含强化层的基材、制备方法、可折叠盖板及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3391053A (en) * 1964-10-29 1968-07-02 Corning Glass Works Flexible glass-plastic laminate
JP2870880B2 (ja) * 1989-11-08 1999-03-17 大日本インキ化学工業株式会社 ガラス保護塗料用樹脂組成物
CN105001438A (zh) * 2015-08-07 2015-10-28 浙江大学 一种防护玻璃用聚氨酯胶片的改性方法
CN108032582A (zh) * 2017-12-08 2018-05-15 马鞍山合力仪表有限责任公司 一种提高玻璃仪表外壳抗震防冲击性能的方法
CN109768108B (zh) * 2018-12-29 2023-08-29 南京索尔玻璃科技股份有限公司 一种包边超薄增强玻璃背板、其制备方法及包含它的光伏组件
CN110014707B (zh) * 2019-04-30 2021-01-15 拓米(成都)应用技术研究院有限公司 一种可折叠超薄玻璃盖板及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146792A1 (en) * 2009-12-17 2011-06-23 Shaofu Wu Composite laminates and uses thereof
CN108724881A (zh) * 2018-05-30 2018-11-02 Oppo(重庆)智能科技有限公司 复合板材及其制备方法、壳体以及电子设备
CN110191606A (zh) * 2019-06-05 2019-08-30 Oppo广东移动通信有限公司 电子设备盖板及其制备方法和电子设备
CN111497402A (zh) * 2020-04-24 2020-08-07 Oppo广东移动通信有限公司 含强化层的基材、制备方法、可折叠盖板及电子设备

Also Published As

Publication number Publication date
CN111497402B (zh) 2023-03-10
CN111497402A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2021212989A1 (zh) 含强化层的基材、制备方法、可折叠盖板及电子设备
WO2021000605A1 (zh) 柔性显示盖板、柔性显示模组和柔性显示装置
WO2020042885A1 (zh) 光学胶及其制造方法、显示装置
CN111105710B (zh) 窗口基底和包括窗口基底的柔性显示装置
KR20180034056A (ko) 표시 장치용 윈도우 및 표시 장치
TWI688794B (zh) 附有黏著劑層之光學薄膜
KR102267829B1 (ko) 광학 적층체와, 이를 갖는 화상 표시 장치의 전면판, 화상 표시 장치, 저항막식 터치 패널 및 정전 용량식 터치 패널
JP6356383B2 (ja) 粘着性組成物、粘着剤および粘着シート
KR101821801B1 (ko) 편광판, 그의 제조방법 및 이를 포함하는 광학표시장치
KR102278242B1 (ko) 점착성 조성물, 점착제 및 점착시트
CN112876989B (zh) 一种高抗冲击超薄玻璃盖板及其制备方法
CN111690332B (zh) 一种高清疏水屏幕保护膜及其用途
KR100770032B1 (ko) 광학 보상막의 제조방법, 이 광학 보상막을 가진 편광판과그 제조방법
JP2016218304A (ja) 積層体及び液晶表示装置
JP4180450B2 (ja) 透明複合シート
WO2013081032A1 (ja) 粘着剤、粘着シートおよび光学積層体
CN111625142A (zh) 保护盖板、触控组件、显示屏以及电子设备
TWI527509B (zh) An electronic device with a bonded structure
JP6502999B2 (ja) 粘着性組成物、粘着剤および粘着シート
TWI825894B (zh) 具有經改善強度的可撓性覆蓋窗
WO2022110002A1 (zh) 一种屏幕盖板、显示装置和电子设备
CN218710145U (zh) 屏幕保护膜
KR20230057284A (ko) 적층체 및 표시 장치
TW202231469A (zh) 具壓縮頂層之玻璃聚合物積層
CN116656260A (zh) 一种适用于手机曲面屏的防爆膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792636

Country of ref document: EP

Kind code of ref document: A1