WO2021212672A1 - 氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用 - Google Patents

氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用 Download PDF

Info

Publication number
WO2021212672A1
WO2021212672A1 PCT/CN2020/102509 CN2020102509W WO2021212672A1 WO 2021212672 A1 WO2021212672 A1 WO 2021212672A1 CN 2020102509 W CN2020102509 W CN 2020102509W WO 2021212672 A1 WO2021212672 A1 WO 2021212672A1
Authority
WO
WIPO (PCT)
Prior art keywords
pig manure
nitrogen
manure charcoal
charcoal
preparation
Prior art date
Application number
PCT/CN2020/102509
Other languages
English (en)
French (fr)
Inventor
单胜道
庄海峰
潘根兴
谢巧娜
Original Assignee
浙江科技学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江科技学院 filed Critical 浙江科技学院
Priority to US17/919,288 priority Critical patent/US11738326B2/en
Publication of WO2021212672A1 publication Critical patent/WO2021212672A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C11/00Other nitrogenous fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/40Mixtures of one or more fertilisers with additives not having a specially fertilising activity for affecting fertiliser dosage or release rate; for affecting solubility
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/80Soil conditioners
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/40Fertilisers incorporated into a matrix
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to a preparation method of carbon-based fertilizer, in particular to a special pig manure charcoal modified by amino grafting, a preparation method and its application in farmland reclaimed water and nitrogen reuse, belonging to the comprehensive utilization of waste and farmland nitrogen and phosphorus non-point source The field of pollution prevention and control.
  • Biomass charcoal materials have been widely used in many fields in the environment because of their porous properties, huge specific surface area, and excellent performance in soil improvement and conditioning, water retention and fertilizer retention, etc.
  • the rapid development of agricultural technology in the new era has led to the excessive application of fertilizers, pesticides and other elements in the planting industry and the random discharge of livestock and poultry manure in the breeding industry, which exceeds the nutrient load of the farmland.
  • the excess nitrogen causes groundwater pollution through surface runoff and other channels.
  • Water eutrophication and other issues In recent years, China's total nitrogen emissions due to fertilizer application have increased to more than 6 million tons, and total phosphorus emissions have increased to more than 500,000 tons.
  • Biochar has a developed pore structure, abundant oxygen-containing functional groups, and a stable aromatization structure. It can be used in soil improvement to improve soil porosity, increase soil water retention, adjust soil pH, etc., and more importantly, biochar raw materials Low cost and easy to regenerate.
  • the amount of livestock manure produced in China has increased from 2.121 billion tons in 2011 to 2.875 billion tons, and it is expected to reach 3.743 billion tons by 2023.
  • a large amount of livestock manure has not been treated and utilized timely and effectively, which has severely restricted the sustainable and efficient development of China's livestock breeding industry.
  • livestock manure According to the data of the first national survey of pollution sources, livestock manure has become the three main sources of water pollution together with industrial sources and domestic sources. Therefore, it is urgent to find a suitable method for resource utilization.
  • the purpose of the present invention is to provide a preparation method of special pig manure charcoal for amino grafting transformation, which has high specific surface area and pores, abundant and stable ammonia-containing functional groups, and significantly improves the adsorption and reduction performance of nitrogen pollution from the farmland.
  • the invention also provides special pig manure charcoal for amino grafting transformation obtained by the preparation method.
  • a preparation method of special pig manure charcoal for amino grafting transformation includes the following steps:
  • Raw material drying Dehydrate the raw pig manure to a moisture content of 80%-85%, then sequentially pickling, drying, and crushing to obtain dried pig manure powder;
  • Step 2) Liquid nitrogen pretreatment and high-temperature carbonization:
  • the dried pig manure powder prepared in step 1) is sealed with liquid nitrogen, stirred for 30-60 minutes, added with absolute ethanol to quickly volatilize, and then filtered, washed, dried, and dried.
  • the product is calcined and carbonized at a high temperature of 600-800°C, and high-purity nitrogen with a purity of 98.99%-99.99% is introduced.
  • the carbonized product is washed and vacuum-dried at 100 ⁇ 5°C for 12-24h.
  • the expanded pig manure charcoal prepared in step 2) is ultrasonically dispersed in concentrated nitric acid with a mass concentration of 65%-68%, and then stirred for 4-6h under the assistance of microwave, and the product is washed and filtered ⁇ Dry to obtain carboxylated pig manure charcoal;
  • Amino grafting Add the carboxylated pig manure charcoal prepared in step 3) to ammonia fluid, stir under 200-240°C oil bath heating condition for 20-24h, after cooling to room temperature, wash and filter the reaction product, and blow with N 2 After drying, the product is vacuum-dried at 110 ⁇ 5°C for 12-24 hours, and after grinding, special pig manure charcoal for amino grafting is obtained.
  • Pig manure charcoal itself has excellent properties, and at the same time, doping with nitrogen can improve the wettability, biocompatibility and conductivity of the material.
  • the grafting of amino groups ensures the grafting rate of amino groups, makes the material have higher reactivity, and further improves the adsorption performance of nitrogen in the water body, so that it can be applied as nitrogen fertilizer to farmland again, and it also has the waste resource recycling of "using waste to treat waste”.
  • ammonium nitrogen and nitrate nitrogen are nitrogen that plants can absorb in a large amount
  • ammonium nitrogen is in a reduced state, which is a cation
  • nitrate nitrogen is in an oxidized state, which is an anion.
  • the use of amino-grafted pig manure charcoal can adsorb a large amount of ammonium nitrogen, and nitrogen doping can improve the adsorption of anions, that is, the material can adsorb most of the nitrogen through chemical reaction and electrostatic effect, and realize the reuse of nitrogen fertilizer.
  • the present invention uses waste pig manure as raw material to prepare amino grafting technology to transform pig manure charcoal through liquid nitrogen pretreatment, high-temperature carbonization and amino grafting, etc., which can be used to reduce the nitrogen pollution of farmland returning water and reuse the farmland.
  • step 1) pickling, drying and crushing are impregnated with 1-2 mol/L H 3 PO 4 or HNO 3 , agitator slowly stirring for 3-5 h, rotating speed 100-200r/min, fast stirring 1- 2h, rotating speed 500-600r/min, drying in an oven at 85-110°C for 12-24h, pulverize to a particle size of ⁇ 0.1mm.
  • the weight ratio of dry pig manure powder to liquid nitrogen in step 2) is 2:1-1.5, and the stirring speed is 200-400rpm;
  • the ethanol is added in 2-3 times, the time interval of each addition is 1.5-2.5min, the weight ratio of each addition to the dry pig manure powder is 2:0.8-1.5, and then washed with water and filtered.
  • the high-temperature calcination and carbonization in step 2) is carried out in a high-temperature tube furnace, the flow rate of high-purity nitrogen is 400-650 mL/min, and the washing condition is alternate washing with absolute ethanol and water until the pH of the solution is neutral.
  • the expanded pig manure charcoal is dispersed in concentrated nitric acid by ultrasonic, the ultrasonic frequency is 40kHz, and the ultrasonic time is 0.5-2h.
  • the stirring speed is 300-600r/min.
  • the washing condition is alternate washing with absolute ethanol and water until the pH of the solution becomes neutral, and then vacuum drying at 85-100°C.
  • the ammonia fluid in step 4) is an ammonia supercritical fluid prepared under the conditions of a temperature of 320°C and a pressure of 10 MPa, with a concentration of 2-3 mol/L;
  • the weight ratio of carboxylated pig manure charcoal to ammonia supercritical fluid is 2:2-3, and the flow rate of nitrogen gas is 300-600mL/min. Wash with absolute ethanol and water alternately until the pH of the solution is neutral.
  • the content of nitrogen doped in step 2) is 5-10%, and the content of amino group doped by amino grafting in step 4) is 10-15 wt%.
  • the liquid nitrogen treatment is nitrogen doping
  • the concentrated nitric acid is carboxylated to enhance the reactivity of the carbon material surface
  • the ammonia water supercritical fluid is used for amino grafting.
  • nitrogen doping is to increase the electron density on the surface of the carbon material, reduce the adsorption energy between the carbon material and nitrogen, and improve the adsorption efficiency
  • the amino group is a functional group for adsorbing nitrogen during the amino group grafting process.
  • a special pig manure charcoal for amino grafting and transformation prepared by the method of the present invention.
  • the amino group content is 10-15 wt%, and the nitrogen content is 5-10%.
  • the surface area is 110-130m 2 /g.
  • the backwater from farmland enters the pig manure charcoal high-efficiency adsorption reactor.
  • the high-efficiency adsorption reactor is composed of three successively connected reaction tanks.
  • the first reaction tank is used for rapid adsorption.
  • the bottom is equipped with a turbo-type agitator with a rotation speed of 300-600r. /min, put the special pig manure charcoal for amino grafting transformation into the pond, the ratio of the volume of the material to the reactor volume is 1:15-20, and the effluent from the reaction tank passes through the pore isolation net at the bottom; the second reaction tank performs interception adsorption
  • the bottom is also equipped with a turbine agitator for stirring.
  • the pig manure charcoal for amino grafting transformation After the pig manure charcoal for amino grafting transformation fully adsorbs the nitrogen pollution in the water body to the super adsorption equilibrium, it enters the third reaction tank-inclined plate In the sedimentation tank, the sediment is collected after the reaction, dried or dried to obtain a slow-release carbon-based nitrogen fertilizer.
  • the special pig manure charcoal saturated with adsorbed nitrogen is recovered to obtain a slow-release carbon-based nitrogen fertilizer, which is applied to soil fertility improvement and improvement, and the application ratio of the slow-release carbon-based nitrogen fertilizer is 3-5 wt%.
  • the present invention has the following beneficial effects:
  • the special pig manure charcoal for amino grafting transformation of the present invention has high specific surface area and pores, and abundant and stable ammonia-containing functional groups;
  • the special pig manure charcoal for amino grafting transformation of the present invention is used to reduce the nitrogen pollution of farmland return water, has high efficiency and stable performance, is economical and environmentally friendly, has high energy recovery, is easy to apply, and is suitable for farmland return water treatment engineering applications or existing Engineering improvement
  • the raw material of the present invention is derived from waste pig manure, which belongs to the "use waste to treat waste” and a sustainable preparation technology, which effectively solves the problem of high value-added utilization of pig manure, and has good economic and environmental benefits;
  • Figure 1 is an electron microscope photo of special pig manure charcoal, the left is ordinary pig manure charcoal, and the right is the special pig manure charcoal.
  • a preparation method of special pig manure charcoal for amino grafting transformation the method specifically is:
  • Raw material drying The raw materials pig dehydrated until the water content 80% -85%, using 1mol / L of HNO 3 pickling, a stirrer slowly stir 3h, the rotational speed of 100-200r / min, IH fast stirring, speed of 500-600r/min, drying in an oven at 100°C for 12 hours, crushing to a particle size of ⁇ 0.1mm to obtain dry pig manure powder.
  • Dry pig manure powder is treated with liquid nitrogen airtight, the weight ratio of dry pig manure powder to liquid nitrogen is 2:1, the magnetic stirring speed is 300rpm, stirring for 40min, anhydrous ethanol is added in 2 times, and the amount of each addition is the same as that of dry pig manure.
  • the weight ratio of the powder is 2:1, the addition is completed in 4 minutes, and then it is washed and filtered with water, and dried in an oven at 100°C for 12 hours.
  • the dried product is carbonized in a high-temperature tube furnace.
  • the carbonization temperature is 700°C.
  • the flow rate of 99.99% high-purity nitrogen is 500mL/min.
  • the carbonized product is washed with water and vacuumed at 100°C. Dry for 15 hours to obtain expanded pig manure charcoal.
  • the expanded pig manure charcoal was ultrasonically dispersed in concentrated nitric acid, the ultrasonic frequency was 40kHz, and the ultrasonic time was 1h. Then, it was heated and stirred by a microwave heating furnace at a power of 300W. The stirring speed was 400r/min and stirred for 5h. Alternate washing with water, ethanol and water until the pH of the solution is neutral, and then vacuum drying at 85°C to obtain carboxylated pig manure charcoal.
  • carboxylated pig manure charcoal to ammonia supercritical fluid with a concentration of 2mol/L prepared at a temperature of 320°C and a pressure of 10MPa.
  • the weight ratio of carboxylated pig manure charcoal to ammonia supercritical fluid is 2:3.
  • the heating temperature of the bath reached 220° C., and magnetic stirring was performed for 20 hours.
  • the reaction product was washed and filtered. After drying with nitrogen at a flow rate of 400 mL/min, the product was placed in a vacuum oven at 110°C for 15 hours, and ground to obtain a special pig manure charcoal for amino grafting transformation.
  • the high-temperature calcination method is used to prepare ordinary pig manure charcoal, and the specific process is the same as that in Example 1, but step 3) carboxylation treatment and step 4) amino grafting and nitrogen doping are not carried out, and the ordinary pig manure charcoal is obtained by this process.
  • X-ray photoelectron spectrometer was used to detect and analyze the special pig manure charcoal to determine the chemical bonding information on the surface of the special pig manure charcoal.
  • the amino group content of the special pig manure charcoal prepared in Example 1 was 11.5% by weight, and the nitrogen content was added.
  • the pig manure charcoal prepared in Comparative Example 1 has an amino group content of 2.1% by weight and a nitrogen content of 1.3%.
  • special pig manure charcoal As shown in the electron microscope picture in Figure 1, compared with pig manure charcoal, special pig manure charcoal has more pores, and its specific surface area is as high as 115.3m 2 /g, which is significantly higher than that of ordinary pig manure charcoal by 7.2m 2 /g. Adsorption of physical structure.
  • the high-efficiency adsorption reactor is composed of three reaction tanks connected in sequence, and the volume ratio of the first, second, and third reaction tanks is 3:1:2.
  • Special pig manure charcoal for amino grafting transformation is added to the first reaction tank.
  • the backwater from farmland enters the pig manure charcoal high-efficiency adsorption reactor for treatment, and the reactor continuously flows in water with a hydraulic retention time of 48h.
  • the first reaction tank is used for rapid adsorption.
  • the bottom is equipped with a turbo-type agitator with a rotation speed of 500r/min.
  • Special pig manure charcoal for amino grafting transformation is put into the tank.
  • the volume ratio of the material to the reactor is 1:15.
  • the reaction tank The effluent water passes through the pore isolation net at the bottom;
  • the second reaction tank is used for interception and adsorption. While the pig manure charcoal is intercepted, the bottom is also equipped with a turbine agitator for stirring. After the pig manure charcoal for amino grafting transformation fully adsorbs the nitrogen pollution in the water body to the super adsorption equilibrium, it enters the second reaction tank.
  • the third reaction tank is an inclined plate sedimentation tank for solid-liquid separation of special pig manure charcoal, the sediment is collected, dried or dried to obtain a slow-release carbon-based nitrogen fertilizer.
  • Farmland receding water The crops used in the experiment are single-season rice. The experimental period is 20 days after fertilization.
  • the nitrogen pollution of the receding farmland is 14.2 ⁇ 2.5mg/L of ammonia nitrogen, 18.5 ⁇ 1.7mg/L of total nitrogen, and nitrogen nutrient. Too much, the water quality deteriorates, and there is a potential risk of eutrophication of the water body.
  • Example 1 Using ordinary pig manure charcoal (Comparative Example 1) and special pig manure charcoal (Example 1), the method described in Example 2 was used to carry out the farmland water return treatment test. After the high-efficiency adsorption reactor runs stably, it is tested and analyzed. The maximum nitrogen adsorption capacity, the results are shown in Table 1.
  • Table 1 shows that the special pig manure charcoal for amino grafting is highly effective in adsorbing ammonia nitrogen and total nitrogen from farmland, and its maximum adsorption capacity is 5.1 times and 4.6 times higher than that of ordinary pig manure charcoal, respectively. It can remove ammonia nitrogen and total nitrogen. The rate is stable at around 90% and 80%.
  • nitrogen pollution in the effluent is efficiently reused to special pig manure charcoal, and the water quality is significantly improved, which basically meets the basic project standard limit of the surface water environmental quality standard (GB3838-2002) Class V, There is no potential harm to the water environment to cause eutrophication.
  • GB3838-2002 surface water environmental quality standard
  • the experiment was conducted on a farmland near a pig farm.
  • the pig manure manure was taken from the pig farm.
  • the nitrogen-saturated special pig manure charcoal was recovered and used for soil fertility improvement and improvement.
  • the weight percentage of pig manure charcoal applied in the soil Is 3%.
  • Table 2 The effects of special pig manure charcoal for amino grafting transformation on soil improvement and yield increase are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Pest Control & Pesticides (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Soil Sciences (AREA)
  • Fertilizers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种炭基肥的制备方法,特别涉及一种以氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用。一种氨基嫁接改造专用猪粪炭的制备方法,该方法包括以下步骤:1)原料干燥:将原料猪粪脱水至含水率80%-85%后依次进行酸洗、干燥、粉碎制得干猪粪粉;2)液氮预处理与高温炭化,制得膨胀型猪粪炭;3)羧基化处理得到羧基化猪粪炭;4)氨基嫁接:将步骤3)制得的羧基化猪粪炭加入氨水流体,200-240℃油浴加热条件下搅拌20-24h,冷却至室温后,将反应产物洗涤过滤,用N 2吹干后将产物置于110±5℃条件下真空烘干12-24h,研磨后得到氨基嫁接改造专用猪粪炭。

Description

氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用 技术领域
本发明涉及一种炭基肥的制备方法,特别涉及一种以氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用,属于废弃物综合利用和农田氮磷面源污染防控领域。
背景技术
生物质炭材料因其具有多孔特性、巨大的比表面积以及在土壤改良调理、保水保肥等方面表现出优异的性能,因而在环境中的多个领域得到广泛应用。新时期农业技术的迅速发展导致种植业化肥、农药等要素的过量施用以及养殖业畜禽粪便的乱排乱放,超过了农田的养分负荷,过剩的氮素通过地表径流等途径而造成地下水污染,水体富营养化等问题。近年来,我国因化肥施用引致的总氮排放增加到600多万吨,总磷排放增加到50多万吨。农业退水氮超标不仅严重破坏水域景观,同时也导致生态系统的失衡,以至于危害人类安全和发展。因此,减少土壤中氮流失、消减农田退水中氮污染以及畜禽粪便的资源利用对于控制农业面源污染十分重要,亟需研发一种定向高效吸附氮素的生物质炭材料,作为氮肥提升作物产量兼具土壤改良修复的作用。
生物质炭具有发达的孔隙结构、丰富的含氧官能团、稳定的芳香化结构,应用于土壤改良,能改善土壤孔隙度,增加土壤持水度,调节土壤pH等,更重要的是生物炭原料成本低廉且易再生。近年来,我国畜禽粪便产生量已经由2011年的21.21亿吨增加到28.75亿吨,预计到2023年将达到37.43亿吨。大量的禽畜粪便未得到及时有效的处理和利用,已严重制约我国禽畜养殖业持续高效发展。据全国第一次污染源普查数据显示,禽畜粪便已与工业源、生活源成为水污染的三大主要来源。因此,亟需寻找一种合适的方法对其进行资源化利用。
发明内容
本发明的目的在于提供一种氨基嫁接改造专用猪粪炭的制备方法,具有高的比表面积和孔隙、丰富稳定的含氨官能团,显著提升农田退水氮污染的吸附消减性能。
本发明还提供所述制备方法得到的氨基嫁接改造专用猪粪炭。
本发明解决其技术问题所采用的技术方案是:
一种氨基嫁接改造专用猪粪炭的制备方法,该方法包括以下步骤:
1)原料干燥:将原料猪粪脱水至含水率80%-85%后依次进行酸洗、干燥、粉碎制得干猪粪粉;
2)液氮预处理与高温炭化:将步骤1)制得的干猪粪粉进行液氮密闭处理,搅拌30-60min,加入无水乙醇快速挥发,随后过滤、洗涤、干燥,将烘干后的产物进行600-800℃的高温煅烧炭化,并通入纯度为98.99%-99.99%的高纯氮气,炭化处理后的产物经洗涤后于100±5℃的条件下真空烘干12-24h,制得膨胀型猪粪炭;
3)羧基化处理:将步骤2)制得的膨胀型猪粪炭采用超声分散于质量浓度为65%-68%的浓硝酸中,随后在微波辅助下搅拌4-6h,将产物洗涤、过滤、干燥得到羧基化猪粪炭;
4)氨基嫁接:将步骤3)制得的羧基化猪粪炭加入氨水流体,200-240℃油浴加热条件下搅拌20-24h,冷却至室温后,将反应产物洗涤过滤,用N 2吹干后将产物置于110±5℃条件下真空烘干12-24h,研磨后得到氨基嫁接改造专用猪粪炭。
猪粪炭本身具有优良的性能,同时掺氮可以改善材料的浸润性、生物兼容性和导电性。氨基的嫁接保证了氨基的嫁接率,使材料具有较高的反应活性,进一步提高对水体中氮素的吸附性能,以便再次作为氮肥施于农田,兼具“以废治废”的废物资源化特点且成本低廉。
肥料中的氮主要有三种存在形式:铵态氮、硝态氮、尿素氮(或酰胺态氮)。其中,铵态氮和硝态氮是植物可以大量吸收的氮,铵态氮是还原态,为阳离子,硝态氮是氧化态,为阴离子。利用氨基嫁接猪粪炭可以吸附大量的铵态氮,而掺氮可以提高对阴离子的吸附,即该材料可通过化学反应和静电作用吸附大部分氮素,实现氮肥的重复利用。
本发明以废弃物猪粪为原料,通过液氮预处理、高温炭化和氨基嫁接等技术制备出氨基嫁接技术改造猪粪炭,可用来消减农田退水氮污染,并且农田回用。
作为优选,步骤1)中酸洗、干燥、粉碎为采用1-2mol/L的H 3PO 4或HNO 3浸渍,搅拌器慢搅3-5h,转速为100-200r/min,快搅1-2h,转速为500-600r/min,烘箱85-110℃干燥12-24h后,粉碎至粒径<0.1mm。
作为优选,步骤2)中干猪粪粉与液氮的重量比为2:1-1.5,搅拌转速为200-400rpm;
乙醇分2-3次添加,每次添加时间间隔为1.5-2.5min,每次添加量与干猪粪粉的重量比为2:0.8-1.5,随后用水洗涤过滤。
作为优选,步骤2)中高温煅烧炭化在高温管式炉中进行,通入高纯氮气的流速为400-650mL/min,洗涤条件为无水乙醇和水交替洗涤,直至溶液pH呈中性。
作为优选,步骤3)中膨胀型猪粪炭采用超声分散于浓硝酸中,超声频率为40kHz,超声时间为0.5-2h。采用微波加热炉,在功率为200-300W条件下进行加热搅拌,搅拌转速为300-600r/min。洗涤条件为无水乙醇和水交替洗涤,直至溶液pH呈中性,随后在85-100℃下真空干燥。
作为优选,步骤4)中所述氨水流体为在温度320℃、压强10MPa条件下制得的氨水超临界流体,其浓度为2-3mol/L;
羧基化猪粪炭与氨水超临界流体的重量比为2:2-3,通入氮气的流速为300-600mL/min。用无水乙醇和水交替洗涤,直至溶液pH呈中性。
作为优选,步骤2)中掺氮含量为5-10%,步骤4)中氨基嫁接掺杂的氨基含量为10-15wt%。
步骤二中液氮处理是进行氮掺杂;步骤三中浓硝酸进行羧基化处理,增强碳材料表面的反应活性;步骤四中用氨水超临界流体是进行氨基嫁接。本发明方法中,氮掺杂是为了提高碳材料表面的电子密度,降低碳材料与氮之间的吸附能,提高吸附效率;氨基嫁接过程中氨基是吸附氮的功能基团。
一种采用本发明所述的方法制得的氨基嫁接改造专用猪粪炭,所述的氨基嫁接改造专用猪粪炭中,氨基含量为10-15wt%,掺氮含量为5-10%,比表面积为110-130m 2/g。
一种所述的氨基嫁接改造专用猪粪炭在农田退水氮污染消减与回用方面的应用。
作为优选,农田退水进入猪粪炭高效吸附反应器,高效吸附反应器由三个依次连接的反应池组成,第一个反应池进行快速吸附,底部设有涡轮式搅拌器,转速300-600r/min,池中投入氨基嫁接改造专用猪粪炭,材料投加体积与反应器的体积比为1:15-20,反应池出水均通过底部的孔隙隔离网;第二个反应池进行截留吸附,截留猪粪炭的同时,底部也设有涡轮式搅拌器进行搅拌,待氨基嫁接改造专用猪粪炭充分吸附水体中的氮污染至超吸附平衡后,进入第三个反应池——斜板沉淀池,反应后收集沉淀物,晾干或烘干后得到缓释型炭基氮肥。
将吸附氮饱和的专用猪粪炭回收,得到缓释型炭基氮肥,应用于土壤肥力提升和改良,该缓释型炭基氮肥的施用比例为3-5wt%。
施用缓释型炭基氮肥时,测定含氮量,依据当地土壤的理化性质确定最佳施用量,在作物行间开沟,将此肥料施入其中覆土。
与现有技术相比,本发明具有以下有益效果:
1)本发明所述的氨基嫁接改造专用猪粪炭,具有高的比表面积和孔隙、丰富稳定的含氨官能团;
2)本发明所述的氨基嫁接改造专用猪粪炭,用于消减农田退水氮污染,性能高效稳定,经济环保,回收能源高,易于应用,适合于农田退水处理工程化应用或现有工程改良;
3)本发明的原料来自于废弃物猪粪,属于“以废治废”和可持续发展的制备技术,有效解决了猪粪的高附加值利用问题,具有良好的经济和环境效益;
4)吸附超饱和的专用猪粪炭作为缓释型炭基氮肥还田,不仅能改良土壤结构,而且提升土壤肥力等。
附图说明
图1为专用猪粪炭的电镜照片,左为普通猪粪炭,右为专用猪粪炭。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。应当理解,本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通和/或改变都将落入本发明保护范围。
在本发明中,若非特指,所有的份、百分比均为重量单位,所采用的设备和原料等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
实施例1
一种氨基嫁接改造专用猪粪炭的制备方法,该方法具体是:
1)原料干燥:将原料猪粪脱水至含水率80%-85%,采用1mol/L的HNO 3进行酸洗,搅拌器慢搅3h,转速为100-200r/min,快搅1h,转速为500-600r/min,烘箱100℃干燥12h,粉碎至粒径<0.1mm,得干猪粪粉。
2)液氮预处理与高温炭化:
干猪粪粉进行液氮密闭处理,干猪粪粉与液氮的重量比为2:1,磁力搅拌转速为 300rpm,搅拌40min,无水乙醇分2次添加,每次添加量与干猪粪粉的重量比为2:1,4分钟添加完毕,随后用水洗涤过滤,烘箱100℃干燥12h。烘干后的产物在高温管式炉中进行炭化,炭化温度为700℃,通入99.99%高纯氮气的流速为500mL/min,炭化处理后的产物经水洗涤后于100℃的条件下真空烘干15h,得到膨胀型猪粪炭。
3)羧基化处理:
将膨胀型猪粪炭超声分散于浓硝酸中,超声频率为40kHz,超声时间为1h,随后利用微波加热炉在功率为300W的条件下加热搅拌,搅拌转速为400r/min,搅拌5h,用无水乙醇和水交替洗涤,直至溶液pH呈中性,随后在85℃下真空干燥,得到羧基化猪粪炭。
4)氨基嫁接:
往羧基化猪粪炭中加入在温度320℃、压强10MPa条件下制得的浓度为2mol/L的氨水超临界流体,羧基化猪粪炭与氨水超临界流体的重量比为2:3,油浴加热温度达220℃,并磁力搅拌20h,冷却至室温后,将反应产物洗涤过滤。用流速为400mL/min的氮气吹干后,将产物置于110℃条件下真空烘干15h,研磨制得氨基嫁接改造专用猪粪炭。
对比例1
采用高温煅烧方法制备普通猪粪炭,具体过程同实施例1,但不进行步骤3)羧基化处理和步骤4)氨基嫁接及氮掺杂,该过程得到的即为普通猪粪炭。
采用X射线光电子能谱仪对专用猪粪炭进行检测分析,以确定专用猪粪炭表面的化学键合信息,经检测实施例1制得的专用猪粪炭氨基含量为11.5wt%,掺氮含量为6.7%,对比例1制得的猪粪炭氨基含量为2.1wt%,掺氮含量为1.3%。如图1电镜图片所示,相比于猪粪炭,专用猪粪炭孔隙更为丰富,比表面积高达115.3m 2/g,显著高于普通猪粪炭7.2m 2/g,具有更好的吸附物理结构。
实施例2
采用实施例1制得的氨基嫁接改造专用猪粪炭实现强化消减农田退水氮污染的方 法,具体是:
高效吸附反应器由三个依次连接的反应池组成,第一、二、三三个反应池的体积比为3:1:2。第一个反应池中添加氨基嫁接改造专用猪粪炭。该方法中,农田退水进入猪粪炭高效吸附反应器进行处理,反应器连续流进水,水力停留时间48h。
第一个反应池进行快速吸附,底部设有涡轮式搅拌器,转速500r/min,池中投入氨基嫁接改造专用猪粪炭,材料投加体积与反应器的体积比为1:15,反应池出水均通过底部的孔隙隔离网;
第二个反应池进行截留吸附,截留猪粪炭的同时,底部也设有涡轮式搅拌器进行搅拌,待氨基嫁接改造专用猪粪炭充分吸附水体中的氮污染至超吸附平衡后,进入第三个反应池;
第三个反应池为斜板沉淀池,进行专用猪粪炭的固液分离,收集沉淀物,晾干或烘干后得到缓释型炭基氮肥。
施用缓释型炭基氮肥时,测定含氮量,依据当地土壤的理化性质确定最佳施用量,在作物行间开沟,将此肥料施入其中覆土。
应用实施例1
农田退水:用于实验的农田退水种植作物为单季稻,实验时期为施肥20天后,农田退水氮污染为氨氮浓度14.2±2.5mg/L、总氮浓度18.5±1.7mg/L,氮养分过多,水质恶化,有形成水体富营养化的潜在危险。
分别用普通猪粪炭(对比例1)和专用猪粪炭(实施例1),采用实施例2所述的方法进行农田退水处理试验,高效吸附反应器运行稳定后检测并分析两者的氮最大吸附量,结果见表1。
表1 氨基嫁接改造专用猪粪炭对氮污染的吸附去除性能
Figure PCTCN2020102509-appb-000001
表1数据表明氨基嫁接专用猪粪炭对农田退水的氨氮和总氮具有高效的吸附性,其最大吸附量分别高于普通猪粪炭的5.1倍和4.6倍,对氨氮和总氮的去除率稳定在90%与80%左右,处理后出水氮污染被高效回用至专用猪粪炭,水质得到明显改善,基本符合地表水环境质量标准基本项目标准限值(GB3838-2002)Ⅴ类,不存在对水环境造成富营养的潜在危害。通过氨基嫁接技术改造猪粪炭后,对农田退水氮污染吸附具有显著强化作用。
应用实施例2 缓释型炭基氮肥对土壤的改良
以某养猪场附近的农田进行试验,猪粪厩肥取自于该养猪场,将吸附氮饱和的专用猪粪炭回收并应用于土壤肥力提升和改良,土壤中施用猪粪炭的重量百分比为3%。表2氨基嫁接改造专用猪粪炭对土壤改良与增产的效能如表2所示。
表2 氨基嫁接改造专用猪粪炭对土壤改良与增产的效能
Figure PCTCN2020102509-appb-000002
由表2可知,相比于原始土壤,施用专用猪粪炭有效的降低了土壤容重,提升了土壤持水和保肥能力,猪粪炭本身具有良好的营养元素,吸附饱和氮后其肥力也得到提升,具有缓释的功效,氮肥溶出率减少了31.1%,适宜于土壤改良的实际应用。施用专用猪粪炭提高了辣椒和番茄的产量,幅度达到40%-50%,因此,专用猪粪炭在改良土壤性质的同时也增加了植物产量,具有良好的实际应用价值。
综上所述,猪粪高温炭化后,灰分、有机炭、全磷、全钾和速效钾的含量较猪粪厩肥有所提高,而全氮、速效磷和碱解氮含量有所降低。将专用猪粪炭改造后吸附农田退水中的氮素作为缓释型炭基氮肥,正好又弥补了普通猪粪炭氮素不足的缺陷,对土壤增肥和植物减肥增产有显著作用。同时,节约了猪粪炭再生的处理成本,是一种变废为宝、循环利用的方法,也避免了二次污染。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装 置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
以上对本发明所提供的氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种氨基嫁接改造专用猪粪炭的制备方法,其特征在于该方法包括以下步骤:
    1)原料干燥:将原料猪粪脱水至含水率80%-85%后依次进行酸洗、干燥、粉碎制得干猪粪粉;
    2)液氮预处理与高温炭化:将步骤1)制得的干猪粪粉进行液氮密闭处理,搅拌30-60min,加入无水乙醇快速挥发,随后过滤、洗涤、干燥,将烘干后的产物进行600-800℃的高温煅烧炭化,并通入纯度为98.99%-99.99%的高纯氮气,炭化处理后的产物经洗涤后于100±5℃的条件下真空烘干12-24h,制得膨胀型猪粪炭;
    3)羧基化处理:将步骤2)制得的膨胀型猪粪炭采用超声分散于质量浓度为65%-68%的浓硝酸中,随后在微波辅助下搅拌4-6h,将产物洗涤、过滤、干燥得到羧基化猪粪炭;
    4)氨基嫁接:将步骤3)制得的羧基化猪粪炭加入氨水流体,200-240℃油浴加热条件下搅拌20-24h,冷却至室温后,将反应产物洗涤过滤,用N 2吹干后将产物置于110±5℃条件下真空烘干12-24h,研磨后得到氨基嫁接改造专用猪粪炭。
  2. 根据权利要求1所述的制备方法,其特征在于:步骤1)中酸洗、干燥、粉碎为采用1-2mol/L的H 3PO 4或HNO 3浸渍,搅拌器慢搅3-5h,转速为100-200r/min,快搅1-2h,转速为500-600r/min,烘箱85-110℃干燥12-24h后,粉碎至粒径<0.1mm。
  3. 根据权利要求1所述的制备方法,其特征在于:步骤2)中干猪粪粉与液氮的重量比为2:1-1.5,搅拌转速为200-400rpm;
    乙醇分2-3次添加,每次添加时间间隔为1.5-2.5min,每次添加量与干猪粪粉的重量比为2:0.8-1.5,随后用水洗涤过滤。
  4. 根据权利要求1所述的制备方法,其特征在于:步骤2)中高温煅烧炭化在高温管式炉中进行,通入高纯氮气的流速为400-650mL/min,洗涤条件为无水乙醇和自来水交替洗涤,直至溶液pH呈中性。
  5. 根据权利要求1所述的制备方法,其特征在于:步骤3)中膨胀型猪粪炭采用超声分散于浓硝酸中,超声频率为40kHz,超声时间为0.5-2h。
  6. 根据权利要求1所述的制备方法,其特征在于:步骤4)中所述氨水流体为在温度320℃、压强10MPa条件下制得的氨水超临界流体,其浓度为2-3mol/L;
    羧基化猪粪炭与氨水超临界流体的重量比为2:2-3,通入氮气的流速为300-600mL/min。
  7. 根据权利要求1所述的制备方法,其特征在于:步骤2)中掺氮含量为5-10%,步骤 4)中氨基嫁接掺杂的氨基含量为10-15wt%。
  8. 一种采用权利要求所述的方法制得的氨基嫁接改造专用猪粪炭,其特征在于:所述的氨基嫁接改造专用猪粪炭中,氨基含量为10-15wt%,掺氮含量为5-10%,比表面积为110-130m 2/g。
  9. 一种权利要求1所述的氨基嫁接改造专用猪粪炭在农田退水氮污染消减与回用方面的应用。
  10. 根据权利要求9所述的制备方法,其特征在于:农田退水进入猪粪炭高效吸附反应器,高效吸附反应器由三个依次连接的反应池组成,第一个反应池进行快速吸附,底部设有涡轮式搅拌器,转速300-600r/min,池中投入氨基嫁接改造专用猪粪炭,材料投加体积与反应器的体积比为1:15-20,反应池出水均通过底部的孔隙隔离网;第二个反应池进行截留吸附,截留猪粪炭的同时,底部也设有涡轮式搅拌器进行搅拌,待氨基嫁接改造专用猪粪炭充分吸附水体中的氮污染至超吸附平衡后,进入第三个反应池——斜板沉淀池,反应后收集沉淀物,晾干或烘干后得到缓释型炭基氮肥。
PCT/CN2020/102509 2020-04-20 2020-07-16 氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用 WO2021212672A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/919,288 US11738326B2 (en) 2020-04-20 2020-07-16 Special pig manure charcoal modified by amino grafting, preparation method thereof, and its application in the reuse of nitrogen from farmland drainage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010313757.1 2020-04-20
CN202010313757.1A CN111495318B (zh) 2020-04-20 2020-04-20 氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用

Publications (1)

Publication Number Publication Date
WO2021212672A1 true WO2021212672A1 (zh) 2021-10-28

Family

ID=71876507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102509 WO2021212672A1 (zh) 2020-04-20 2020-07-16 氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用

Country Status (3)

Country Link
US (1) US11738326B2 (zh)
CN (1) CN111495318B (zh)
WO (1) WO2021212672A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116282622A (zh) * 2022-12-22 2023-06-23 塔里木大学 农田高盐排水联合改性炭同步回收养殖沼液中氮磷的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111661943B (zh) * 2020-06-11 2022-08-23 浙江恒美环保科技有限公司 沼液综合利用方法
CN114324270A (zh) * 2021-12-24 2022-04-12 江西广源化工有限责任公司 Bdpqi在检测土壤中活性氧的应用、具有光响应的肥料及其制备方法
CN114471465B (zh) * 2022-03-09 2024-02-23 湖北第二师范学院 偶联剂表面改性橘子皮衍生炭材料的制备方法及应用
CN115197017A (zh) * 2022-08-03 2022-10-18 大连亚泰科技新材料股份有限公司 一种废弃资源制备镁钾无机材料复合肥的制备工艺
CN115744873A (zh) * 2022-12-15 2023-03-07 舟山市农业科学研究院(舟山市农业生态与能源发展中心) 一种原位氮掺杂磁改性猪粪炭制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311790A (zh) * 2016-04-26 2017-11-03 黄名义 一种硝化改性生物炭肥的制备方法
CN109569525A (zh) * 2018-12-07 2019-04-05 南方科技大学 一种氨基修饰磁性稻壳生物炭的制备及利用其吸附水体中铀的方法
EP3587381A1 (de) * 2018-06-28 2020-01-01 Andree Gilhofer Verfahren zur herstellung von biomassedünger aus gülle von in der landwirtschaft gehaltenen tieren, wie rind, schwein, schaf, hühnern und dergleichen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361186B1 (en) * 2009-06-08 2013-01-29 Full Circle Biochar, Inc. Biochar
CN105272389A (zh) * 2015-06-04 2016-01-27 浙江科技学院 基于土壤改良的猪粪炭基肥料开发方法
CN108164358A (zh) * 2017-12-23 2018-06-15 郭舒洋 一种增肥解毒型酸性土壤改良剂的制备方法
CN108467036B (zh) * 2018-05-22 2021-10-15 吉林化工学院 一种脱硅稻壳基活性炭及其制备方法和应用
CN109319777A (zh) * 2018-11-21 2019-02-12 江苏大学 一种松塔基制备生物活性炭的方法及其应用
CN109529783A (zh) * 2019-01-08 2019-03-29 滨州学院 氨基改性生物炭制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311790A (zh) * 2016-04-26 2017-11-03 黄名义 一种硝化改性生物炭肥的制备方法
EP3587381A1 (de) * 2018-06-28 2020-01-01 Andree Gilhofer Verfahren zur herstellung von biomassedünger aus gülle von in der landwirtschaft gehaltenen tieren, wie rind, schwein, schaf, hühnern und dergleichen
CN109569525A (zh) * 2018-12-07 2019-04-05 南方科技大学 一种氨基修饰磁性稻壳生物炭的制备及利用其吸附水体中铀的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116282622A (zh) * 2022-12-22 2023-06-23 塔里木大学 农田高盐排水联合改性炭同步回收养殖沼液中氮磷的方法

Also Published As

Publication number Publication date
US11738326B2 (en) 2023-08-29
CN111495318B (zh) 2021-03-26
CN111495318A (zh) 2020-08-07
US20230148315A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
WO2021212672A1 (zh) 氨基嫁接改造专用猪粪炭、制备方法及其在农田退水氮回用方面的应用
CN104084126B (zh) 生物质基铁铝复合球形炭的制备方法
CN105170091A (zh) 铁改性芦苇生物炭的制备及其在处理含磷废水上的应用
CN108889270B (zh) 一种载镁的酸改性膨胀蛭石复合吸附材料的制备方法及其应用
CN107115843A (zh) 一种源于花生壳改性活性炭的制备方法及其应用
CN104289179A (zh) 一步炭化活化制备凹凸棒石/碳复合材料吸附剂的方法
CN103288080B (zh) 一种制备中孔率高、吸附性强的生态炭方法
CN108246269B (zh) 一种锂离子吸附剂及其制备方法与应用
CN109734219B (zh) 一种生活污水处理及磷素回收方法
CN109550484B (zh) 一种入侵植物茎基铬离子吸附剂的制备方法
CN106744789A (zh) 一种利用木质素制备多孔炭以及在超级电容器中的应用
CN109569525A (zh) 一种氨基修饰磁性稻壳生物炭的制备及利用其吸附水体中铀的方法
CN106747299A (zh) 一种活化给水厂污泥基陶粒强化其吸磷效果的方法
CN106883858A (zh) 一种添加根瘤菌粉末改性的土壤改良剂用秸秆生物质炭及其制作方法
CN102423690B (zh) 一种多介孔西红柿杆活性炭的制备方法
CN108480380A (zh) 一种超声深度淋洗耦合纳米岩复合改良剂的原位与异位盐土修复方法
CN106744949A (zh) 一种以芝麻秸秆为原料制备活性炭的方法
CN111661943B (zh) 沼液综合利用方法
CN105664864A (zh) 一种维管植物基多孔氧化聚合螯合吸附材料的制备方法与应用
CN106865545A (zh) 一种高吸附力木质颗粒活性炭的制备方法
CN103521183A (zh) 一种处理丙烯腈废水的吸附剂及其制备方法与应用
CN103657605A (zh) 一种花生壳的改性方法
CN104085889B (zh) 一种颗粒活性炭的制备方法
CN114146684A (zh) 一种改性赤泥生物炭材料及其制备和应用方法
CN104692504A (zh) 一种天然橡胶废水预处理和粗蛋白质回收的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932173

Country of ref document: EP

Kind code of ref document: A1