WO2021212587A1 - 一种 oled 显示面板及显示装置 - Google Patents

一种 oled 显示面板及显示装置 Download PDF

Info

Publication number
WO2021212587A1
WO2021212587A1 PCT/CN2020/091654 CN2020091654W WO2021212587A1 WO 2021212587 A1 WO2021212587 A1 WO 2021212587A1 CN 2020091654 W CN2020091654 W CN 2020091654W WO 2021212587 A1 WO2021212587 A1 WO 2021212587A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pixel electrode
sub
electrode
display panel
Prior art date
Application number
PCT/CN2020/091654
Other languages
English (en)
French (fr)
Inventor
韩志斌
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/954,102 priority Critical patent/US11538866B2/en
Publication of WO2021212587A1 publication Critical patent/WO2021212587A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • This application relates to the field of display technology, and in particular to an OLED display panel and a display device.
  • OLED displays have gradually become high-end displays that replace liquid crystal displays due to their ultra-high contrast, wide color gamut, fast response, and active light-emitting advantages.
  • the size of OLED displays and OLED TVs continues to increase, the size of their corresponding mass-produced glass substrates is also increasing.
  • the hybrid arrangement Moti Model Group, MMG
  • the pixel arrangement of the OLED panel is that the long side direction of the sub-pixel is parallel to the short side direction of the panel, the long side direction of the sub-pixel R/G/B in Figure 1 is shown in the direction of the arrow, resulting in two OLEDs of different sizes
  • the pixel arrangement directions of the panel are perpendicular to each other.
  • the commonly used method of printing OLED light-emitting materials is to print a whole line of sub-pixels of the same color in the same bank (bank) area, that is, the printing method of Line-Bank (linear bank).
  • the sub-pixels R/G/B are printed as a whole strip respectively. Therefore, the traditional mixed arrangement of OLED panels and pixel arrangements will limit the printing method of Line-Bank.
  • the present application provides an OLED display panel and a display device to alleviate the technical problem that the pixel arrangement of the existing hybrid arrangement of the OLED panel restricts the printing method.
  • An embodiment of the application provides an OLED display panel, which includes a plurality of first pixel units and a plurality of second pixel units, the first pixel unit and the second pixel unit are mirror-symmetrical to each other, and the first pixel
  • the unit includes a first sub-pixel, a second sub-pixel, and a third sub-pixel.
  • the first sub-pixel includes a first pixel electrode, and a long side direction of the first pixel electrode is parallel to a long side direction of the OLED display panel.
  • the second sub-pixel includes a second pixel electrode, the second pixel electrode is adjacent to the first pixel electrode but in a different row, and the long side direction of the second pixel electrode is the same as that of the OLED display panel.
  • the long sides are parallel.
  • the third sub-pixel includes a third pixel electrode, the third pixel electrode and the second pixel electrode are arranged in parallel and spaced apart, and the long side direction of the third pixel electrode is the same as that of the OLED display panel.
  • the sides are parallel.
  • the first pixel electrode is covered with a whole strip of blue electroluminescent material
  • the second pixel electrode and the third pixel electrode are covered with a second type of electroluminescent material.
  • the second electroluminescent material includes a yellow electroluminescent material.
  • the width of the second pixel electrode is equal to the width of the third pixel electrode, and the width of the second pixel electrode or the width of the third pixel electrode is less than or It is equal to the width of the first pixel electrode.
  • the sum of the length of the second pixel electrode and the length of the third pixel electrode is smaller than the length of the first pixel electrode.
  • the length of the second pixel electrode is equal to the length of the third pixel electrode.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel all further include a thin film transistor and a via located on the thin film transistor.
  • the first pixel electrode, the second pixel electrode, and the third pixel electrode are respectively connected to the corresponding thin film transistor through the via hole.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel all further include a bridge electrode, and the bridge electrode is the same as the first pixel electrode. And the bridge electrode is respectively connected with the corresponding first pixel electrode, the second pixel electrode, and the third pixel electrode.
  • each of the bridge electrodes is close to the via hole of the corresponding pixel electrode.
  • the length of the bridge electrode is smaller than the interval between the first pixel unit and the second pixel unit.
  • the material of the first pixel electrode, the second pixel electrode, the third pixel electrode, and the bridge electrode includes indium tin oxide.
  • An embodiment of the present application provides a display device, which includes an OLED display panel and a cover plate disposed on the OLED display panel.
  • the OLED display panel includes a plurality of first pixel units and a plurality of second pixel units.
  • a pixel unit and the second pixel unit are mirror-symmetrical to each other, and the first pixel unit includes a first sub-pixel, a second sub-pixel, and a third sub-pixel.
  • the first sub-pixel includes a first pixel electrode, and a long side direction of the first pixel electrode is parallel to a long side direction of the OLED display panel.
  • the second sub-pixel includes a second pixel electrode, the second pixel electrode is adjacent to the first pixel electrode but in a different row, and the long side direction of the second pixel electrode is the same as that of the OLED display panel.
  • the long sides are parallel.
  • the third sub-pixel includes a third pixel electrode, the third pixel electrode and the second pixel electrode are arranged in parallel and spaced apart, and the long side direction of the third pixel electrode is the same as that of the OLED display panel.
  • the sides are parallel.
  • the first pixel electrode is covered with a whole strip of blue electroluminescent material
  • the second pixel electrode and the third pixel electrode are covered with a second type of electroluminescent material.
  • a red filter and a green filter are arranged on the cover plate, and the red filter and the green filter respectively correspond to the second sub-pixel or the third sub-pixel.
  • the second electroluminescent material includes a yellow electroluminescent material.
  • the width of the second pixel electrode is equal to the width of the third pixel electrode, and the width of the second pixel electrode or the width of the third pixel electrode is less than or equal to The width of the first pixel electrode.
  • the sum of the length of the second pixel electrode and the length of the third pixel electrode is smaller than the length of the first pixel electrode.
  • the length of the second pixel electrode is equal to the length of the third pixel electrode.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel all further include a thin film transistor and a via located on the thin film transistor.
  • a pixel electrode, the second pixel electrode, and the third pixel electrode are respectively connected to the corresponding thin film transistor through the via hole.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel all further include a bridge electrode, and the bridge electrode is in the same layer as the first pixel electrode.
  • the bridge electrode is arranged and connected to the corresponding first pixel electrode, the second pixel electrode, and the third pixel electrode, respectively.
  • each of the bridge electrodes is close to the via hole of the corresponding pixel electrode.
  • the length of the bridge electrode is smaller than the interval between the first pixel unit and the second pixel unit.
  • materials of the first pixel electrode, the second pixel electrode, the third pixel electrode, and the bridge electrode include indium tin oxide.
  • the long side direction of the pixel electrode of each sub-pixel is parallel to the long side direction of the OLED display panel, and the entire strip of electroluminescent material is printed on the pixel electrode.
  • the OLED panels of the two products can be printed directly. It does not increase the cost of equipment and time, and is suitable for mass production.
  • the blue sub-pixels are separately arranged in one row, and the red sub-pixels and green sub-pixels are arranged in another row together.
  • each sub-pixel is also provided with a bridge electrode.
  • the bridge electrode can be bridged with adjacent sub-pixels of the same color by means of laser welding. Repair function.
  • FIG. 1 is a schematic bottom view of the arrangement of display panels on a glass substrate in a conventional hybrid arrangement technology.
  • FIG. 2 is a schematic bottom view showing the comparison of the printing width of each sub-pixel in the conventional linear printing.
  • FIG. 3 is a schematic bottom view of the first OLED display panel provided by an embodiment of the application.
  • FIG. 4 is a schematic bottom view of a first pixel unit structure provided by an embodiment of the application.
  • FIG. 5 is a schematic bottom view of the arrangement of electroluminescent materials on an OLED display panel provided by an embodiment of the application.
  • FIG. 6 is a schematic bottom view of a second pixel unit structure provided by an embodiment of the application.
  • FIG. 7 is a schematic bottom view of a comparison of the structure of each pixel electrode of the first pixel unit provided by an embodiment of the application.
  • FIG. 8 is a schematic bottom view of a second type of OLED display panel provided by an embodiment of the application.
  • FIG. 9 is a schematic circuit diagram of the bridging principle of the bridging electrode provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a second setting method of the bridge electrode provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of a third setting method of the bridge electrode provided by an embodiment of the application.
  • an OLED display panel 100 is provided, as shown in FIG. 3, which includes a plurality of first pixel units 1 and a plurality of second pixel units 2, the first pixel unit 1 and the second pixel unit 1
  • the two pixel units 2 are mirror-symmetrical to each other.
  • the first pixel unit 1 includes a first sub-pixel 10, a second sub-pixel 20, and a third sub-pixel 30.
  • the first sub-pixel 10 includes a first pixel electrode 11, the long side direction of the first pixel electrode 11 is parallel to the long side direction X of the OLED display panel 100 (in the figure X represents the long side direction of the OLED display panel, and Y represents the short side direction of the OLED display panel).
  • the second sub-pixel 20 includes a second pixel electrode 21, and the second pixel electrode 21 is adjacent to the first pixel electrode 11 but in a different row (the row described in this application refers to the length parallel to the OLED display panel 100).
  • the row of the side direction X), and the long side direction of the second pixel electrode 21 is parallel to the long side direction X of the OLED display panel 100.
  • the third sub-pixel 30 includes a third pixel electrode 31, the third pixel electrode 31 and the second pixel electrode 21 are arranged in parallel and spaced apart, and the long side direction of the third pixel electrode 31 is the same as the The longitudinal direction X of the OLED display panel 100 is parallel.
  • the first pixel electrode 11 is covered with a whole strip of blue electroluminescent material 40
  • the second pixel electrode 21 and the third pixel electrode 31 are covered with a second type of electroluminescence material.
  • Luminescent material 50 is shown in FIG. 5
  • the second pixel unit 2 also includes three sub-pixels, which are respectively a first sub-pixel 10', a second sub-pixel 20', and a third sub-pixel 30'.
  • Each sub-pixel also includes a pixel electrode, such as the first pixel electrode 11', the second pixel electrode 21', and the third pixel electrode 31' in Fig. 6.
  • the first pixel unit 1 and the second pixel unit 2 are alternately arranged at intervals and are mirror-symmetrical to each other. That is, the first pixel units 1 are arranged in one row along the long side direction X of the OLED display panel 100, and the second pixel units 2 are arranged in another row along the long side direction X of the OLED display panel 100. And the first pixel unit 1 is located between two rows of second pixel units, as shown in FIG. 3, the second pixel unit 2 and the second pixel unit 2', of which only part of the second pixel unit 2'is shown.
  • the first pixel electrode 11' of one second pixel unit 2' is adjacent to the first pixel electrode 11 of the first pixel unit 1.
  • the second pixel electrode 21 ′ and the third pixel electrode 31 ′ of the other second pixel unit 2 are adjacent to the second pixel electrode 21 and the third pixel electrode 31 of the first pixel unit 1.
  • the long side direction of the first pixel electrode 11 is parallel to the long side direction X of the OLED display panel 100, and a plurality of first pixel electrodes 11
  • the OLED display panel 100 is arranged in a row at intervals along the longitudinal direction X of the OLED display panel 100.
  • the long side directions of the second pixel electrode 21 and the third pixel electrode 31 are parallel to the long side direction X of the OLED display panel 100, and the plurality of second pixel electrodes 21 and the plurality of third pixel electrodes 31 are spaced apart and arranged in a row in a staggered manner, And the row is different from the first pixel electrode 11.
  • the width H2 of the second pixel electrode 21 is equal to the width H3 of the third pixel electrode 31, and the width H2 of the second pixel electrode 21 or the third pixel electrode 31
  • the width H3 of is less than or equal to the width H1 of the first pixel electrode 11.
  • the sum of the length L2 of the second pixel electrode 21 and the length L3 of the third pixel electrode 31 is less than the length L1 of the first pixel electrode 11.
  • the length L2 of the second pixel electrode 21 is equal to the length L3 of the third pixel electrode 31.
  • the present application is not limited to the length L2 of the second pixel electrode 21 being equal to the length L3 of the third pixel electrode 31, and the length L2 of the second pixel electrode 21 and the length L3 of the third pixel electrode 31 may not be equal.
  • the first sub-pixel 10, the second sub-pixel 20, and the third sub-pixel 30 all further include a thin film transistor (not shown) and a thin film transistor located on the thin film transistor.
  • a thin film transistor not shown
  • Via 60, the first pixel electrode 11, the second pixel electrode 21, and the third pixel electrode 31 are respectively connected to the corresponding thin film transistor through the via 60.
  • the entire strip of blue electroluminescent material is covered on the first pixel electrode of the first sub-pixel. That is, the first sub-pixel is the blue sub-pixel of the first pixel unit.
  • the second pixel electrode of the second sub-pixel and the third pixel electrode of the third sub-pixel cover the entire strip of second electroluminescent material.
  • the second electroluminescent material includes yellow electroluminescent material and the like.
  • the second sub-pixel and the third sub-pixel emit yellow light due to the use of yellow electroluminescent materials, so in order to realize the red and green of the three primary colors, the second sub-pixel and the third sub-pixel need to cooperate with the red filter. Film and green filter. Of course, this application is not limited to the use of yellow electroluminescent materials.
  • the arrangement of the pixel electrodes of the sub-pixels of the second pixel unit and the arrangement of the electroluminescent materials are the same as those of the sub-pixels of the first pixel unit.
  • the long side direction of the pixel electrode of each sub-pixel is parallel to the long side direction of the OLED display panel, and the entire electroluminescent material is printed on the pixel electrode.
  • the blue sub-pixels are separately arranged in one row, and the red sub-pixels and green sub-pixels are arranged in another row together. In the case where the aperture ratio of the blue sub-pixel is sufficiently large, it is ensured that the printing width of the red sub-pixel and the green sub-pixel will not be greatly reduced and the minimum printing width will not be reached.
  • the difference from the foregoing embodiment is that the OLED display panel 101 shown in FIG. 8 includes a plurality of first pixel units 1 and a plurality of second pixel units 2, and the first pixel unit 1 includes a A sub-pixel 10, a second sub-pixel 20, and a third sub-pixel 30.
  • the second pixel unit 2 includes a first sub-pixel 10', a second sub-pixel 20', and a third sub-pixel 30'.
  • Each sub-pixel of the first pixel unit 1 and the second pixel unit 2 further includes a bridge electrode (including 12, 22, 32, 12', 22', 32' as shown in FIG. 8), and the bridge electrode and the second pixel unit A pixel electrode 11 is arranged in the same layer, and the bridge electrodes are respectively connected to the corresponding pixel electrodes.
  • each of the bridge electrodes is close to the via hole of the corresponding pixel electrode.
  • the via hole of the pixel electrode refers to a via hole through which the pixel electrode and the corresponding thin film transistor are connected.
  • the length of the bridge electrode is smaller than the interval between the first pixel unit and the second pixel unit.
  • the materials of the first pixel electrode, the second pixel electrode, the third pixel electrode, and the bridge electrode include transparent conductive electrode materials such as indium tin oxide.
  • the first sub-pixel 10 further includes a first bridge electrode 12.
  • the first bridge electrode 12 and the first pixel electrode 11 are arranged in the same layer, that is, the first bridge electrode 12 is prepared at the same time as the pixel electrode 11 is prepared.
  • the first bridge electrode 12 is connected to the long side of the first pixel electrode 11, and the long side of the first pixel electrode 11 is parallel to the long side direction X of the OLED display panel 101.
  • the first bridge electrode 12 is close to the via hole 60 of the first pixel electrode 11 and extends toward the adjacent first pixel electrodes 11' in different rows.
  • the length of the first bridge electrode 12 is smaller than the interval between the first pixel electrode 11 and the adjacent first pixel electrodes 11' in different rows. That is, the length of the first bridge electrode 12 is smaller than the interval between the first pixel unit 1 and the adjacent second pixel unit 2. Of course, the width of the first bridge electrode 12 is smaller than the length of the first pixel electrode 11.
  • the second sub-pixel 20 further includes a second bridge electrode 22, and the third sub-pixel 30 further includes a third bridge electrode 32.
  • the second bridge electrode 22 and the third bridge electrode 32 are also arranged in the same layer as the first pixel electrode 11.
  • the first pixel electrode 11, the second pixel electrode 21, and the third pixel electrode 31 are arranged in the same layer, and this application only uses the first pixel electrode 11 as an example to illustrate the positions of the bridge electrodes.
  • the second bridge electrode 22 and the third bridge electrode 32 are connected to the long sides of the second pixel electrode 21 and the third pixel electrode 31, respectively.
  • the second bridge electrode 22 is close to the via hole (not labeled in the figure) of the second pixel electrode 21, and extends toward the second pixel electrodes 21' in different adjacent rows.
  • the third bridge electrode 32 is close to the via hole of the third pixel electrode 31 and extends toward the adjacent third pixel electrodes 31' in different rows.
  • the length of the second bridge electrode 22 is smaller than the interval between the second pixel electrode 21 and the adjacent second pixel electrodes 21' in different rows.
  • the length of the third bridge electrode 32 is smaller than the interval between the third pixel electrode 31 and the adjacent third pixel electrodes 31' in different rows. That is, the lengths of the second bridge electrode 22 and the third bridge electrode 32 are both smaller than the interval between the first pixel unit 1 and another adjacent second pixel unit 2.
  • the three sub-pixels of the second pixel unit 2 are also provided with bridge electrodes (12', 22', 32' as shown in FIG. 8).
  • bridge electrodes (12', 22', 32' as shown in FIG. 8.
  • the setting method of the bridge electrode is not repeated here.
  • the bridge electrode of the sub-pixel can be bridged with adjacent sub-pixels of the same color in different rows to repair the abnormal sub-pixel.
  • the first sub-pixel 10 of the first pixel unit 1 when the control circuit of the first sub-pixel 10 (that is, the thin film transistor part of the first sub-pixel) appears short or broken, the first sub-pixel 10 will not light up or always light up.
  • the first bridge electrode 12 of the first sub-pixel 10 and the first pixel electrode 11' of the adjacent and different row of the first sub-pixel 10' can be wired ( (Not shown in the figure) connection, so that the first sub-pixel 10 can be turned on and off synchronously with the adjacent first sub-pixel 10' in different rows to avoid dark spots.
  • the principle of the first bridge electrode bridging is shown in FIG. 9, taking a conventional 3T1C (one sub-pixel includes three thin film transistors and one storage capacitor) circuit as an example, but the application is not limited to this.
  • the adjacent sub-pixel G1 of the same color is cut off due to short lines or short circuits during the manufacturing process (the cut-off position 70 in FIG. 9 )
  • the sub-pixel G1 will not be lit.
  • it can be connected to the adjacent sub-pixel G2 of the same color to emit light by means such as laser welding.
  • the broken line in FIG. 9 indicates the repair connection line.
  • each sub-pixel is provided with a bridge electrode.
  • the bridge electrode of the sub-pixel can be bridged with adjacent sub-pixels of the same color in different rows. To repair the sub-pixel.
  • the difference from the foregoing embodiment is that two adjacent and different rows of the same color sub-pixels share one bridge electrode.
  • the first pixel electrodes of two first sub-pixels in adjacent and different rows are taken as an example for description.
  • a bridge electrode 80 is provided between the first pixel electrode 10 and the adjacent first pixel electrode 10' in a different row. Both ends of the bridge electrode 80 are respectively close to the two via holes 60 of two adjacent first pixel electrodes, but are not connected to the two adjacent first pixel electrodes.
  • the bridge electrode 80 can be connected to the first pixel electrode of the two adjacent first sub-pixels through two laser welding.
  • the wiring (not shown) under the via 60 is connected.
  • the bridge electrode 80' of each first sub-pixel may be arranged on the short side of the first pixel electrode 10.
  • the bridge electrode 80' can bridge the trace under the via hole 60 of the first pixel electrode 10 adjacent to the same line.
  • a display device which includes the OLED display panel of one of the above embodiments and a cover plate disposed on the OLED display panel, wherein the cover plate is provided with a red filter and The green filter, the red filter and the green filter respectively correspond to the second sub-pixel or the third sub-pixel.
  • the present application provides an OLED display panel and a display device.
  • the OLED display panel includes a plurality of first pixel units and second pixel units that are mirror-symmetrical to each other.
  • Each pixel unit includes three sub-pixels, and the long-side directions of the pixel electrodes of the three sub-pixels are all parallel to the long-side direction of the OLED display panel.
  • the blue sub-pixels are separately arranged in one row, and the red sub-pixels and green sub-pixels are arranged in another row together.
  • each sub-pixel is also provided with a bridge electrode.
  • the bridge electrode can be bridged with adjacent sub-pixels of the same color through laser welding to achieve the repair function.

Abstract

本申请提供一种OLED显示面板及显示装置。OLED显示面板包括互为镜像的第一像素单元和第二像素单元。每个像素单元的像素电极的长边方向均与OLED显示面板的长边方向平行。每个像素单元的蓝色子像素单独设置在一行。红色子像素和绿色子像素一起设置在另一行。以缓解现有混合排列OLED面板的像素排列方式使打印方式受限的问题。

Description

一种OLED显示面板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种OLED显示面板及显示装置。
背景技术
有机发光二极管(Organic Light emitting Display,OLED)显示器由于其超高对比度,广色域,快速响应,主动发光等优势而逐步成为取代液晶显示的高端显示器。随着OLED显示器以及OLED电视尺寸的不断增大,其相应量产的玻璃基板尺寸也不断增大。为最大化玻璃利用率,需要在同一块玻璃基板上制备不同尺寸的OLED产品,即混合排列(Muti Model Group,MMG)技术。传统混合排列OLED面板和像素排列方式如图1所示,65”和55”两款不同尺寸的OLED面板排列方向相互垂直的排列在同一玻璃基板800上。由于其OLED面板像素排列方式均为子像素长边方向与面板短边方向平行,如图1中的子像素R/G/B的长边方向如箭头方向所示,导致两款不同尺寸的OLED面板的像素排列方向相互垂直。而常用的打印OLED发光材料的方式为在同一bank(隔堤)区域内打印一整条同颜色的子像素,即Line-Bank(线状隔堤)的打印方式。如图1所示,子像素R/G/B分别打印呈一整条。因此,传统混合排列OLED面板和像素排列方式就会使Line-Bank的打印方式受到限制。需要打印完一款产品的OLED面板后,旋转玻璃基板90°再打印另一款产品的OLED面板。这导致了设备成本的增加和生产时间的增加,对量产不利。同时在高像素密度(Pixels Per Inch,PPI)面板设计中,由于子像素B的发光效率欠佳,需要更高的开口率,这会使得子像素G和子像素R的开口率进一步被压缩,甚至不能满足打印的最小宽度H要求,如图2所示。
因此,现有混合排列OLED面板的像素排列方式使打印方式受限的问题需要解决。
技术问题
本申请提供一种OLED显示面板及显示装置,以缓解现有混合排列OLED面板的像素排列方式使打印方式受限的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种OLED显示面板,其包括多个第一像素单元和多个第二像素单元,所述第一像素单元和所述第二像素单元互为镜像对称,所述第一像素单元包括第一子像素、第二子像素、第三子像素。所述第一子像素包括第一像素电极,所述第一像素电极的长边方向与所述OLED显示面板的长边方向平行。所述第二子像素,包括第二像素电极,所述第二像素电极与所述第一像素电极相邻但不同行,且所述第二像素电极的长边方向与所述OLED显示面板的长边方向平行。所述第三子像素,包括第三像素电极,所述第三像素电极与所述第二像素电极同行且间隔设置,且所述第三像素电极的长边方向与所述OLED显示面板的长边方向平行。其中,所述第一像素电极上覆盖有整条蓝色电致发光材料,所述第二像素电极和所述第三像素电极上覆盖有第二种电致发光材料。
在本申请实施例提供的OLED显示面板中,所述第二种电致发光材料包括黄色电致发光材料。
在本申请实施例提供的OLED显示面板中,所述第二像素电极的宽度等于所述第三像素电极的宽度,且所述第二像素电极的宽度或所述第三像素电极的宽度小于或等于所述第一像素电极的宽度。
在本申请实施例提供的OLED显示面板中,所述第二像素电极的长度与所述第三像素电极的长度之和小于所述第一像素电极的长度。
在本申请实施例提供的OLED显示面板中,所述第二像素电极的长度等于所述第三像素电极的长度。
在本申请实施例提供的OLED显示面板中,所述第一子像素、所述第二子像素、所述第三子像素均还包括薄膜晶体管及位于所述薄膜晶体管上的过孔,所述第一像素电极、所述第二像素电极、所述第三像素电极分别通过所述过孔与对应的所述薄膜晶体管连接。
在本申请实施例提供的OLED显示面板中,所述第一子像素、所述第二子像素、所述第三子像素均还包括桥接电极,所述桥接电极与所述第一像素电极同层设置且所述桥接电极分别与对应的所述第一像素电极、所述第二像素电极、所述第三像素电极连接。
在本申请实施例提供的OLED显示面板中,每个所述桥接电极靠近对应的像素电极的所述过孔。
在本申请实施例提供的OLED显示面板中,所述桥接电极的长度小于所述第一像素单元与所述第二像素单元之间的间隔。
在本申请实施例提供的OLED显示面板中,所述第一像素电极、所述第二像素电极、所述第三像素电极、及所述桥接电极的材料包括氧化铟锡。
本申请实施例提供一种显示装置,其包括OLED显示面板及设置于所述OLED显示面板上盖板,所述OLED显示面板包括多个第一像素单元和多个第二像素单元,所述第一像素单元和所述第二像素单元互为镜像对称,所述第一像素单元包括第一子像素、第二子像素、第三子像素。所述第一子像素包括第一像素电极,所述第一像素电极的长边方向与所述OLED显示面板的长边方向平行。所述第二子像素,包括第二像素电极,所述第二像素电极与所述第一像素电极相邻但不同行,且所述第二像素电极的长边方向与所述OLED显示面板的长边方向平行。所述第三子像素,包括第三像素电极,所述第三像素电极与所述第二像素电极同行且间隔设置,且所述第三像素电极的长边方向与所述OLED显示面板的长边方向平行。其中,所述第一像素电极上覆盖有整条蓝色电致发光材料,所述第二像素电极和所述第三像素电极上覆盖有第二种电致发光材料。所述盖板上设置有红色滤光片和绿色滤光片,所述红色滤光片和所述绿色滤光片分别对应所述第二子像素或所述第三子像素。
在本申请实施例提供的显示装置中,所述第二种电致发光材料包括黄色电致发光材料。
在本申请实施例提供的显示装置中,所述第二像素电极的宽度等于所述第三像素电极的宽度,且所述第二像素电极的宽度或所述第三像素电极的宽度小于或等于所述第一像素电极的宽度。
在本申请实施例提供的显示装置中,所述第二像素电极的长度与所述第三像素电极的长度之和小于所述第一像素电极的长度。
在本申请实施例提供的显示装置中,所述第二像素电极的长度等于所述第三像素电极的长度。
在本申请实施例提供的显示装置中,所述第一子像素、所述第二子像素、所述第三子像素均还包括薄膜晶体管及位于所述薄膜晶体管上的过孔,所述第一像素电极、所述第二像素电极、所述第三像素电极分别通过所述过孔与对应的所述薄膜晶体管连接。
在本申请实施例提供的显示装置中,所述第一子像素、所述第二子像素、所述第三子像素均还包括桥接电极,所述桥接电极与所述第一像素电极同层设置且所述桥接电极分别与对应的所述第一像素电极、所述第二像素电极、所述第三像素电极连接。
在本申请实施例提供的显示装置中,每个所述桥接电极靠近对应的像素电极的所述过孔。
在本申请实施例提供的显示装置中,所述桥接电极的长度小于所述第一像素单元与所述第二像素单元之间的间隔。
在本申请实施例提供的显示装置中,所述第一像素电极、所述第二像素电极、所述第三像素电极、及所述桥接电极的材料包括氧化铟锡。
有益效果
本申请提供的OLED显示面板及显示装置中,每个子像素的像素电极的长边方向均与OLED显示面板的长边方向平行,电致发光材料整条打印在像素电极上。实现在混合排列方式的情况下,不需要旋转玻璃基板90°,可直接打印两款产品的OLED面板。不增加设备和时间成本,适用于量产。同时,蓝色子像素单独设置在一行,红色子像素和绿色子像素一起设置在另一行。在蓝色子像素开口率足够大的情况下,保证红色子像素和绿色子像素的打印宽度不会大幅缩减而达不到最小打印宽度。而且每个子像素还设置有桥接电极,当某个子像素的控制电路在制程中出现短线或者短路等问题时,可以通过激光熔接的方式把桥接电极与相邻同颜色的子像素桥接在一起,实现修复功能。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有混合排列技术中玻璃基板上显示面板排列的下视示意图。
图2为现有线状打印中各子像素打印宽度对比的下视示意图。
图3为本申请实施例提供的第一种OLED显示面板的下视示意图。
图4为本申请实施例提供的第一像素单元结构的下视示意图。
图5为本申请实施例提供的OLED显示面板上电致发光材料的排布的下视示意图。
图6为本申请实施例提供的第二像素单元结构的下视示意图。
图7为本申请实施例提供的第一像素单元各像素电极结构对比的下视示意图。
图8为本申请实施例提供的第二种OLED显示面板的下视示意图。
图9为本申请实施例提供的桥接电极桥接原理的电路示意图。
图10为本申请实施例提供的桥接电极的第二种设置方式的示意图。
图11为本申请实施例提供的桥接电极的第三种设置方式的示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
在一种实施例中,提供一种OLED显示面板100,如图3所示,其包括多个第一像素单元1和多个第二像素单元2,所述第一像素单元1和所述第二像素单元2互为镜像对称。如图4所示,所述第一像素单元1包括第一子像素10、第二子像素20、第三子像素30。请参照图3和图4,所述第一子像素10包括第一像素电极11,所述第一像素电极11的长边方向与所述OLED显示面板100的长边方向X平行(图示中X表示OLED显示面板的长边方向,Y表示OLED显示面板的短边方向)。所述第二子像素20,包括第二像素电极21,所述第二像素电极21与所述第一像素电极11相邻但不同行(本申请描述的行,指平行于OLED显示面板100长边方向X的行),且所述第二像素电极21的长边方向与所述OLED显示面板100的长边方向X平行。所述第三子像素30,包括第三像素电极31,所述第三像素电极31与所述第二像素电极21同行且间隔设置,且所述第三像素电极31的长边方向与所述OLED显示面板100的长边方向X平行。其中,如图5所示,所述第一像素电极11上覆盖有整条蓝色电致发光材料40,所述第二像素电极21和所述第三像素电极31上覆盖有第二种电致发光材料50。
具体的,如图6所述,第二像素单元2也包括三个子像素,分别为第一子像素10’、第二子像素20’和第三子像素30’。每个子像素也分别包括一个像素电极,如图6中的第一像素电极11’、第二像素电极21’、第三像素电极31’。
具体的,第一像素单元1和第二像素单元2间隔交错设置,且互为镜像对称。即第一像素单元1沿着OLED显示面板100的长边方向X设置为一行,所述第二像素单元2沿着OLED显示面板100的长边方向X设置为另一行。且第一像素单元1位于两行第二像素单元之间,如图3所示的第二像素单元2和第二像素单元2’,其中第二像素单元2’只示出了部分。
具体的,与第一像素单元1相邻的第二像素单元有两个,其中一个第二像素单元2’的第一像素电极11’与第一像素单元1的第一像素电极11相邻,另外一个第二像素单元2的第二像素电极21’和第三像素电极31’与第一像素单元1的第二像素电极21和第三像素电极31相邻。
进一步的,以所述第一像素单元1为例说明,如图3所示,第一像素电极11的长边方向与OLED显示面板100的长边方向X平行,且多个第一像素电极11沿着OLED显示面板100的长边方向X间隔排布成一行。第二像素电极21和第三像素电极31的长边方向与OLED显示面板100的长边方向X平行,多个第二像素电极21和多个第三像素电极31间隔且交错排布成一行,且与第一像素电极11不同行。
具体的,如图7所示,所述第二像素电极21的宽度H2等于所述第三像素电极31的宽度H3,且所述第二像素电极21的宽度H2或所述第三像素电极31的宽度H3小于或等于所述第一像素电极11的宽度H1。
进一步的,所述第二像素电极21的长度L2与所述第三像素电极31的长度L3之和小于所述第一像素电极11的长度L1。
进一步的,所述第二像素电极21的长度L2等于所述第三像素电极31的长度L3。当然的,本申请不限于第二像素电极21的长度L2等于第三像素电极31的长度L3,第二像素电极21的长度L2和第三像素电极31的长度L3也可以不相等。
进一步的,如图4所示,所述第一子像素10、所述第二子像素20、所述第三子像素30均还包括薄膜晶体管(图未示)及位于所述薄膜晶体管上的过孔60,所述第一像素电极11、所述第二像素电极21、所述第三像素电极31分别通过所述过孔60与对应的所述薄膜晶体管连接。
进一步的,第一子像素的第一像素电极上覆盖整条的蓝色电致发光材料。即第一子像素为第一像素单元的蓝色子像素。
进一步的,第二子像素的第二像素电极和第三子像素的第三像素电极上覆盖整条第二电致发光材料。
进一步的,所述第二种电致发光材料包括黄色电致发光材料等。
进一步的,第二子像素和第三子像素因使用黄色电致发光材料会发出黄光,故为了实现三基色中的红色和绿色,第二子像素和第三子像素需配合使用红色滤光片和绿色滤光片。当然的,本申请不限于使用黄色电致发光材料。
可以理解的,第二像素单元的子像素的像素电极的排布方式及电致发光材料的设置方式分别与第一像素单元的子像素相同。
在本实施例中,每个子像素的像素电极的长边方向均与OLED显示面板的长边方向平行,电致发光材料整条打印在像素电极上。实现在混合排列方式的情况下,不需要旋转玻璃基板90°,可直接打印两款产品的OLED面板。不增加设备和时间成本,适用于量产。同时,蓝色子像素单独设置在一行,红色子像素和绿色子像素一起设置在另一行。在蓝色子像素开口率足够大的情况下,保证红色子像素和绿色子像素的打印宽度不会大幅缩减而达不到最小打印宽度。
在一种实施例中,与上述实施例不同的是,如图8所示的OLED显示面板101,包括多个第一像素单元1和多个第二像素单元2,第一像素单元1包括第一子像素10、第二子像素20、第三子像素30,第二像素单元2包括第一子像素10’、第二子像素20’、第三子像素30’。第一像素单元1和第二像素单元2的每个子像素均还包括桥接电极(包括如图8示出的12、22、32、12’、22’、32’),所述桥接电极与第一像素电极11同层设置且所述桥接电极分别与对应的像素电极连接。
具体的,每个所述桥接电极靠近对应的像素电极的所述过孔。像素电极的所述过孔指像素电极与对应的薄膜晶体管连接通过的过孔。
进一步的,所述桥接电极的长度小于所述第一像素单元与所述第二像素单元之间的间隔。
具体的,所述第一像素电极、所述第二像素电极、所述第三像素电极、及所述桥接电极的材料包括氧化铟锡等透明导电电极材料。
具体的,以所述第一像素单元1为例说明,第一子像素10还包括第一桥接电极12。第一桥接电极12与第一像素电极11同层设置,即在制备像素电极11的同时制备第一桥接电极12。且第一桥接电极12与第一像素电极11的长边连接,第一像素电极11的长边平行于OLED显示面板101的长边方向X。
具体的,第一桥接电极12靠近第一像素电极11的所述过孔60,并朝相邻的不同行的第一像素电极11’延伸。
进一步的,第一桥接电极12的长度小于第一像素电极11与相邻且不同行的第一像素电极11’之间的间隔。也即第一桥接电极12的长度小于第一像素单元1与相邻的第二像素单元2之间的间隔。当然的,第一桥接电极12的宽度小于第一像素电极11的长度。
进一步的,第二子像素20还包括第二桥接电极22,第三子像素30还包括第三桥接电极32。第二桥接电极22和第三桥接电极32也均与第一像素电极11同层设置。当然的,第一像素电极11、第二像素电极21及第三像素电极31同层设置,本申请仅以第一像素电极11为例来说明各桥接电极的位置。且第二桥接电极22和第三桥接电极32分别与第二像素电极21和第三像素电极31的长边连接。
进一步的,第二桥接电极22靠近第二像素电极21的所述过孔(图中未标示),并朝相邻的不同行的第二像素电极21’延伸。第三桥接电极32靠近第三像素电极31的所述过孔,并朝相邻的不同行的第三像素电极31’延伸。
进一步的,第二桥接电极22的长度小于第二像素电极21与相邻的不同行的第二像素电极21’之间的间隔。第三桥接电极32的长度小于第三像素电极31与相邻的不同行的第三像素电极31’之间的间隔。也即第二桥接电极22和第三桥接电极32的长度均小于第一像素单元1与相邻的另一第二像素单元2之间的间隔。
可以理解的,第二像素单元2的三个子像素也同样设置有桥接电极(如图8示出的12’、22’、32’),桥接电极的具体设置方式可参照上述第一像素单元1的桥接电极的设置方式,在此不再赘述。
进一步的,当某个子像素在制程中出现短线或断线时,可以把该子像素的桥接电极与相邻的不同行的同色子像素进行桥接,以修复该异常的子像素。
具体的,以第一像素单元1的第一子像素10为例说明,当第一子像素10的控制电路(即第一子像素的薄膜晶体管部分)出现短线或断线时,第一子像素10就会不亮或常亮。此时可通过激光熔接等方式使第一子像素10的第一桥接电极12与相邻的且不同行的第一子像素10’的第一像素电极11’的过孔60下方的走线(图未示)连接,使第一子像素10可以与相邻的且不同行的第一子像素10’同步明灭,避免产生暗点。
具体的,第一桥接电极桥接的原理如图9所示,以常规的3T1C(一个子像素包括3个薄膜晶体管和1个存储电容)电路为例说明,但本申请不限此。如图9所示,当临近同颜色子像素G1在制程中出现短线或者短路等问题被切断后(如图9中的切断位置70),该子像素G1就不会被点亮。但是可以通过激光熔接等方式与临近相同颜色的子像素G2连接发光,如图9中的虚线标示修复连接线。
在本实施例中,每个子像素均设置有桥接电极,当某个子像素的控制电路出现短线或断线时,可以把该子像素的桥接电极与相邻的不同行的同色子像素进行桥接,以修复该子像素。
在一种实施例中,与上述实施例不同的是,相邻且不同行的两个同色子像素共用一条桥接电极。具体的,以相邻且不同行的两个第一子像素的第一像素电极为例说明。如图10所示,第一像素电极10与相邻且不同行的第一像素电极10’之间设置一条桥接电极80。桥接电极80的两端分别靠近相邻的两个第一像素电极的两个过孔60,但不与相邻的两个第一像素电极连接。当相邻的两个第一子像素中任一个的控制电路出现短线或断线时,可以通过两次激光熔接把桥接电极80分别与相邻的两个第一子像素的第一像素电极的过孔60下方的走线(图未示)连接。其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,与上述实施例不同的是,如图11所示,每个第一子像素的桥接电极80’可以设置在第一像素电极10的短边上。当某个第一子像素的控制电路出现短线或断线时,桥接电极80’可以与同行相邻的第一像素电极10的过孔60下方的走线进行桥接。其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,提供一种显示装置,其包括上述实施例其中之一的OLED显示面板及设置于所述OLED显示面板上盖板,其中所述盖板上设置有红色滤光片和绿色滤光片,所述红色滤光片和所述绿色滤光片分别对应所述第二子像素或所述第三子像素。
根据上述实施例可知:
本申请提供一种OLED显示面板及显示装置,OLED显示面板包括互为镜像对称的多个第一像素单元和第二像素单元。每个像素单元均包括三个子像素,三个子像素的像素电极的长边方向均与OLED显示面板的长边方向平行。实现在混合排列方式的情况下,不需要旋转玻璃基板90°,可直接打印两款产品的OLED面板。不增加设备和时间成本,适用于量产。同时,蓝色子像素单独设置在一行,红色子像素和绿色子像素一起设置在另一行。在蓝色子像素开口率足够大的情况下,保证红色子像素和绿色子像素的打印宽度不会大幅缩减而达不到最小打印宽度。而且每个子像素还设置有桥接电极,当某个子像素在制程中出现短线或者短路等问题时,可以通过激光熔接的方式把桥接电极与相邻同颜色的子像素桥接在一起,实现修复功能。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种OLED显示面板,其中,包括多个第一像素单元和多个第二像素单元,所述第一像素单元和所述第二像素单元互为镜像对称,所述第一像素单元包括:
    第一子像素,包括第一像素电极,所述第一像素电极的长边方向与所述OLED显示面板的长边方向平行;
    第二子像素,包括第二像素电极,所述第二像素电极与所述第一像素电极相邻但不同行,且所述第二像素电极的长边方向与所述OLED显示面板的长边方向平行;以及
    第三子像素,包括第三像素电极,所述第三像素电极与所述第二像素电极同行且间隔设置,且所述第三像素电极的长边方向与所述OLED显示面板的长边方向平行;
    其中,所述第一像素电极上覆盖有整条蓝色电致发光材料,所述第二像素电极和所述第三像素电极上覆盖有第二种电致发光材料。
  2. 根据权利要求1所述的OLED显示面板,其中,所述第二种电致发光材料包括黄色电致发光材料。
  3. 根据权利要求1所述的OLED显示面板,其中,所述第二像素电极的宽度等于所述第三像素电极的宽度,且所述第二像素电极的宽度或所述第三像素电极的宽度小于或等于所述第一像素电极的宽度。
  4. 根据权利要求3所述的OLED显示面板,其中,所述第二像素电极的长度与所述第三像素电极的长度之和小于所述第一像素电极的长度。
  5. 根据权利要求4所述的OLED显示面板,其中,所述第二像素电极的长度等于所述第三像素电极的长度。
  6. 根据权利要求1所述的OLED显示面板,其中,所述第一子像素、所述第二子像素、所述第三子像素均还包括薄膜晶体管及位于所述薄膜晶体管上的过孔,所述第一像素电极、所述第二像素电极、所述第三像素电极分别通过所述过孔与对应的所述薄膜晶体管连接。
  7. 根据权利要求6所述的OLED显示面板,其中,所述第一子像素、所述第二子像素、所述第三子像素均还包括桥接电极,所述桥接电极与所述第一像素电极同层设置且所述桥接电极分别与对应的所述第一像素电极、所述第二像素电极、所述第三像素电极连接。
  8. 根据权利要求7所述的OLED显示面板,其中,每个所述桥接电极靠近对应的像素电极的所述过孔。
  9. 根据权利要求8所述的OLED显示面板,其中,所述桥接电极的长度小于所述第一像素单元与所述第二像素单元之间的间隔。
  10. 根据权利要求7所述的OLED显示面板,其中,所述第一像素电极、所述第二像素电极、所述第三像素电极、及所述桥接电极的材料包括氧化铟锡。
  11. 一种显示装置,其包括OLED显示面板、及设置于所述OLED显示面板上盖板,所述OLED显示面板包括多个第一像素单元和多个第二像素单元,所述第一像素单元和所述第二像素单元互为镜像对称,所述第一像素单元包括:
    第一子像素,包括第一像素电极,所述第一像素电极的长边方向与所述OLED显示面板的长边方向平行;
    第二子像素,包括第二像素电极,所述第二像素电极与所述第一像素电极相邻但不同行,且所述第二像素电极的长边方向与所述OLED显示面板的长边方向平行;以及
    第三子像素,包括第三像素电极,所述第三像素电极与所述第二像素电极同行且间隔设置,且所述第三像素电极的长边方向与所述OLED显示面板的长边方向平行;
    其中,所述第一像素电极上覆盖有整条蓝色电致发光材料,所述第二像素电极和所述第三像素电极上覆盖有第二种电致发光材料;所述盖板上设置有红色滤光片和绿色滤光片,所述红色滤光片和所述绿色滤光片分别对应所述第二子像素或所述第三子像素。
  12. 根据权利要求11所述的显示装置,其中,所述第二种电致发光材料包括黄色电致发光材料。
  13. 根据权利要求11所述的显示装置,其中,所述第二像素电极的宽度等于所述第三像素电极的宽度,且所述第二像素电极的宽度或所述第三像素电极的宽度小于或等于所述第一像素电极的宽度。
  14. 根据权利要求13所述的显示装置,其中,所述第二像素电极的长度与所述第三像素电极的长度之和小于所述第一像素电极的长度。
  15. 根据权利要求14所述的显示装置,其中,所述第二像素电极的长度等于所述第三像素电极的长度。
  16. 根据权利要求11所述的显示装置,其中,所述第一子像素、所述第二子像素、所述第三子像素均还包括薄膜晶体管及位于所述薄膜晶体管上的过孔,所述第一像素电极、所述第二像素电极、所述第三像素电极分别通过所述过孔与对应的所述薄膜晶体管连接。
  17. 根据权利要求16所述的显示装置,其中,所述第一子像素、所述第二子像素、所述第三子像素均还包括桥接电极,所述桥接电极与所述第一像素电极同层设置且所述桥接电极分别与对应的所述第一像素电极、所述第二像素电极、所述第三像素电极连接。
  18. 根据权利要求17所述的显示装置,其中,每个所述桥接电极靠近对应的像素电极的所述过孔。
  19. 根据权利要求18所述的显示装置,其中,所述桥接电极的长度小于所述第一像素单元与所述第二像素单元之间的间隔。
  20. 根据权利要求17所述的显示装置,其中,所述第一像素电极、所述第二像素电极、所述第三像素电极、及所述桥接电极的材料包括氧化铟锡。
PCT/CN2020/091654 2020-04-23 2020-05-21 一种 oled 显示面板及显示装置 WO2021212587A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/954,102 US11538866B2 (en) 2020-04-23 2020-05-21 OLED display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010326087.7A CN111524937B (zh) 2020-04-23 2020-04-23 一种oled显示面板及显示装置
CN202010326087.7 2020-04-23

Publications (1)

Publication Number Publication Date
WO2021212587A1 true WO2021212587A1 (zh) 2021-10-28

Family

ID=71910627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091654 WO2021212587A1 (zh) 2020-04-23 2020-05-21 一种 oled 显示面板及显示装置

Country Status (3)

Country Link
US (1) US11538866B2 (zh)
CN (1) CN111524937B (zh)
WO (1) WO2021212587A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112712762B (zh) * 2020-12-30 2022-05-03 深圳市华星光电半导体显示技术有限公司 显示面板、显示母板及显示装置
CN112599585A (zh) * 2020-12-30 2021-04-02 深圳市华星光电半导体显示技术有限公司 显示面板、显示母板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150048322A1 (en) * 2013-08-14 2015-02-19 Samsung Display Co., Ltd. Organic light emitting diode display
CN104752469A (zh) * 2013-12-31 2015-07-01 昆山国显光电有限公司 一种像素结构及采用该像素结构的有机发光显示器
CN104904015A (zh) * 2013-01-17 2015-09-09 科迪华公司 高分辨率有机发光二极管器件
US20160284769A1 (en) * 2015-03-25 2016-09-29 Hon Hai Precision Industry Co., Ltd. Structure of pixel
CN205959985U (zh) * 2016-07-01 2017-02-15 铼宝科技股份有限公司 具有桥接结构的显示面板
US20180053812A1 (en) * 2016-08-22 2018-02-22 Emagin Corporation Arrangement of color sub-pixels for full color oled and method of manufacturing same
CN108231827A (zh) * 2016-12-14 2018-06-29 乐金显示有限公司 有机发光显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444050B2 (en) * 2013-01-17 2016-09-13 Kateeva, Inc. High resolution organic light-emitting diode devices, displays, and related method
CN108054286B (zh) * 2017-12-13 2020-03-06 合肥鑫晟光电科技有限公司 一种电致发光器件、显示装置及其制作方法
CN108231848B (zh) * 2018-01-02 2020-08-11 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN109346498B (zh) * 2018-09-18 2020-06-16 京东方科技集团股份有限公司 一种阵列基板及显示面板
US11257870B2 (en) * 2019-12-30 2022-02-22 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel having color conversion layer and display device thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904015A (zh) * 2013-01-17 2015-09-09 科迪华公司 高分辨率有机发光二极管器件
US20150048322A1 (en) * 2013-08-14 2015-02-19 Samsung Display Co., Ltd. Organic light emitting diode display
CN104752469A (zh) * 2013-12-31 2015-07-01 昆山国显光电有限公司 一种像素结构及采用该像素结构的有机发光显示器
US20160284769A1 (en) * 2015-03-25 2016-09-29 Hon Hai Precision Industry Co., Ltd. Structure of pixel
CN205959985U (zh) * 2016-07-01 2017-02-15 铼宝科技股份有限公司 具有桥接结构的显示面板
US20180053812A1 (en) * 2016-08-22 2018-02-22 Emagin Corporation Arrangement of color sub-pixels for full color oled and method of manufacturing same
CN108231827A (zh) * 2016-12-14 2018-06-29 乐金显示有限公司 有机发光显示装置

Also Published As

Publication number Publication date
US20220130916A1 (en) 2022-04-28
CN111524937B (zh) 2021-08-24
US11538866B2 (en) 2022-12-27
CN111524937A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2021232984A1 (zh) 显示面板、驱动方法及显示装置
WO2020151289A1 (zh) 显示面板、其制备方法及显示装置
US20220352299A1 (en) Display panel, manufacturing method thereof, and display device
EP3214650B1 (en) Organic light emitting diode display device, driving method and display apparatus thereof
CN111162114B (zh) 显示阵列基板、显示面板及显示装置
CN105552107A (zh) 一种显示面板、制作方法以及电子设备
WO2021017322A1 (zh) 有机发光二极管显示面板及其制作方法
KR20090049515A (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2021168964A1 (zh) 一种像素结构及其制备方法、显示面板
TWI404447B (zh) 電激發光顯示面板之畫素結構
WO2021138920A1 (zh) 显示面板及显示装置
WO2021077355A1 (zh) 阵列基板及其制造和控制方法、显示装置
WO2020073401A1 (zh) 像素结构、阵列基板及显示装置
WO2020098136A1 (zh) 有源矩阵有机发光二极管面板结构
WO2021212587A1 (zh) 一种 oled 显示面板及显示装置
WO2019041990A1 (zh) 有机电致发光显示面板及其制备方法
US20210399062A1 (en) Display substrate motherboard and fabricating method thereof, and display substrate
CN105006479A (zh) 显示基板及应用其的显示装置
CN111739911A (zh) 显示基板母板及其制备方法、显示基板及其缺陷修补方法
US20230117098A1 (en) Display substrate, color filter substrate, display panel and display device
WO2021227025A1 (zh) 一种显示面板及其制作方法、显示装置
WO2021253795A1 (zh) 显示面板及其制备方法、显示面板的缺陷修补方法
KR102512416B1 (ko) 투명표시장치 및 이를 제조하는 방법
CN111384083B (zh) 像素排列结构、显示面板以及显示装置
US20240049548A1 (en) Display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932692

Country of ref document: EP

Kind code of ref document: A1